1
|
Qiu J, Zhao H, Luan S, Wang L, Shi H. Recent advances in functional polyurethane elastomers: from structural design to biomedical applications. Biomater Sci 2025; 13:2526-2540. [PMID: 40172059 DOI: 10.1039/d5bm00122f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Polyurethane (PU) is a synthetic polymer with a micro-phase separation structure and tunable mechanical properties. Since the first successful application of thermoplastic polyurethane (TPU) in vivo in 1967, PU has become an important biomedical material for various applications in tissue engineering, artificial organs, wound healing, surgical sutures, medical catheters, and bio-flexible electronics. This review summarizes three strategies for regulating the mechanical properties of medical PU elastomers, including monomer design and selection, modification and arrangement of segments, and incorporation of nanofillers. Furthermore, we discuss the feasible strategies to achieve the biodegradability and self-healing properties of polyurethane to meet specific biomedical needs. Finally, this review highlights the latest advancements in functionalized PU for biomedical applications and offers insights into its future development.
Collapse
Affiliation(s)
- Jinhua Qiu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Wang L, Wang X, Wu J, Chen J, He Z, Wang J, Zhang X. Magnesium Ions Induce Endothelial Cell Differentiation into Tip Cell and Enhance Vascularized Bone Regeneration. Adv Healthc Mater 2025:e2500274. [PMID: 40346783 DOI: 10.1002/adhm.202500274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/07/2025] [Indexed: 05/12/2025]
Abstract
Vascularization has been considered an essential strategy for bone regeneration and can be promoted by magnesium ions (Mg2+). During angiogenesis, the differentiation of endothelial cells (ECs) into tip cell is a critical step since it controls the growth direction and pattern of new vascular sprouts. While several studies have noted the pro-angiogenic effects of Mg2+, however, their specific influence on tip cell formation is unclear. Therefore, this research seeks to examine the impact of Mg2+ on tip cells and elucidate the potential mechanisms involved. The results reveal that Mg2+ shows good compatibility and stimulates ECs to migrate and invade in vitro. Moreover, Mg2+ enhances EC spheroids sprouting and elevates the expression of genes linked to tip cells. The underlying mechanisms are that Mg2+ facilitates tip cell differentiation via the VEGFA-VEGFR2/Notch1 signaling pathway crosstalk and promotes migration and filopodia formation of tip cells and proliferation of stalk cells by inducing YAP nuclear translocation, culminating in the maturation of vascular networks. Furthermore, EC spheroids stimulated by Mg2+ load in hydrogel enhance vascularized bone regeneration in vivo. These findings enrich the understanding of how Mg2+ influence blood vessel formation and provide practical strategies for the development and design of magnesium-based biomaterials.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zihan He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Prosthodontics and Implantology, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
3
|
Yang D, Xu Z, Huang D, Luo Q, Zhang C, Guo J, Tan L, Ge L, Mu C, Li D. Immunomodulatory multifunctional janus collagen-based membrane for advanced bone regeneration. Nat Commun 2025; 16:4264. [PMID: 40335547 PMCID: PMC12059164 DOI: 10.1038/s41467-025-59651-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Guided bone regeneration (GBR) is a standard therapy for treating bone defects, with collagen-based barrier membranes widely used clinically. However, these membranes face challenges like poor mechanical properties, early bacterial invasion and immunomodulation deficiency, potentially risking GBR failure. Orchestrating macrophage activation and controlling their M1 or M2 polarization are effective strategies for bone repair. Here, we present a Janus collagen-based barrier membrane with immunomodulation. The porous layer promotes direct osteogenic differentiation and inward growth of osteoblasts. The dense layer prevents invasion of soft tissue into bone defects and protects bone defects from bacterial infection. The membrane also enhances rat bone marrow-derived mesenchymal stem cell infiltration, proliferation, and osteogenic differentiation by regulating the immune microenvironment, demonstrating superior bone regeneration compared to the commercial Bio-Gide® membrane. Overall, the Janus collagen-based membrane reduces tissue inflammation and fosters an osteoimmune environment conducive to new bone formation, offering effective material design for advanced GBR technology.
Collapse
Affiliation(s)
- Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Dou Huang
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Qi Luo
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Chunli Zhang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Jimin Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, P. R. China.
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, P. R. China.
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China.
| | - Lu Tan
- Department of Osteology, Wushan County Hospital of Traditional Chinese Medicine, Wushan, Chongqing, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, P. R. China.
| |
Collapse
|
4
|
Marjan T, Lafuente-Gómez N, Rampal A, Mooney DJ, Peyton SR, Qazi TH. Cell-Instructive Biomaterials with Native-Like Biochemical Complexity. Annu Rev Biomed Eng 2025; 27:185-209. [PMID: 39874600 PMCID: PMC12045723 DOI: 10.1146/annurev-bioeng-120823-020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Biochemical signals in native tissue microenvironments instruct cell behavior during many biological processes ranging from developmental morphogenesis and tissue regeneration to tumor metastasis and disease progression. The detection and characterization of these signals using spatial and highly resolved quantitative methods have revealed their existence as matricellular proteins in the matrisome, some of which are bound to the extracellular matrix while others are freely diffusing. Including these biochemical signals in engineered biomaterials can impart enhanced functionality and native-like complexity, ultimately benefiting efforts to understand, model, and treat various diseases. In this review, we discuss advances in characterizing, mimicking, and harnessing biochemical signals in developing advanced engineered biomaterials. An overview of the diverse forms in which these biochemical signals exist and their effects on intracellular signal transduction is also provided. Finally, we highlight the application of biochemically complex biomaterials in the three broadly defined areas of tissue regeneration, immunoengineering, and organoid morphogenesis.
Collapse
Affiliation(s)
- Tuba Marjan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Nuria Lafuente-Gómez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Akaansha Rampal
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA;
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Shelly R Peyton
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA;
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
5
|
Yang L, Zhang X. Editorial: Advanced functional materials for disease diagnosis, drug delivery and tissue repair. Front Bioeng Biotechnol 2025; 13:1602628. [PMID: 40291559 PMCID: PMC12021906 DOI: 10.3389/fbioe.2025.1602628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Affiliation(s)
- Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xianzhi Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Zhao Y, Hang R, Li H, Sun Y, Yao R, Huang X, Zhang X, Yao X, Wang H, Xiao Y, Huang D, Han Y, Wang X, Hang R. Biomaterial Surface-Mediated Macrophages Exert Immunomodulatory Roles by Exosomal CCL2-Induced Membrane Integrin β1 Trafficking in Recipient Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409809. [PMID: 39836488 PMCID: PMC11905086 DOI: 10.1002/advs.202409809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
The interaction between biomaterials and immune system is a critical area of research, especially in tissue engineering and regenerative medicine. A fascinating and less explored aspect involves the immunomodulatory behaviors of macrophage (MΦ)-derived exosomes induced by biomaterial surfaces. Herein, untreated surface, nanostructured surface, and type I collagen (Col-I)-decorated nanostructured surface of titanium implants are chosen to culture MΦs, followed by extraction of MΦ-derived exosomes and investigation of their immunomodulatory functions and mechanisms. The results show that the exosomes in the untreated group carried plenty of inflammatory cytokines, predominantly C─C motif chemokine ligand 2 (CCL2). After targeting recipient cells, the CCL2 on the exosomes can specifically bind to its receptor C─C motif chemokine receptor 2, triggering downstream signaling pathways to induce internalization of membrane integrin β1 and targeted lysosomal degradation, consequently suppressing the functions of recipient cells. In contrast, the exosomes in the nanostructured group, especially Col-I-decorated nanostructured group carried few CCL2, moderating their inhibition on the functions of recipient cells. These findings not only clearly show that CCL2 is a key constituent of exosomes involved in the interaction between biomaterials and host immune system, but also potentially a key target for designing advanced biomaterials to promote tissue repair and regeneration.
Collapse
Affiliation(s)
- Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Huifei Li
- School and Hospital of StomatologyShanxi Medical UniversityTaiyuan030001China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaobo Huang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiangyu Zhang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Huaiyu Wang
- Center for Human Tissues and Organs DegenerationShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yin Xiao
- School of Medicine and DentistryGriffith UniversityGold CoastQLD4222Australia
| | - Di Huang
- Research Center for Nano‐Biomaterials & Regenerative MedicineDepartment of Biomedical EngineeringCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yong Han
- State‐Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xing Wang
- School and Hospital of StomatologyShanxi Medical UniversityTaiyuan030001China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
- State‐Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
7
|
Li W, Zhao Y, Cheng Z, Niu F, Ding J, Bai Y, Li Z, Midgley AC, Zhu M. Fine-tuning of porous microchannelled silk fibroin scaffolds for optimal tissue ingrowth. MATERIALS & DESIGN 2025; 251:113711. [DOI: 10.1016/j.matdes.2025.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
8
|
Senyange B, Wesana J, Van Huylenbroeck G, Gellynck X, De Steur H. Tissue engineering in the agri-food industry: current status, socio-economic overview and regulatory compliance. Curr Opin Biotechnol 2025; 91:103228. [PMID: 39591885 DOI: 10.1016/j.copbio.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
The growing global demand for sustainable and safe food is a major challenge that increases the need for advanced alternatives such as tissue engineering (TE). TE offers promising solutions by improving yields, nutritional value and resilience of crops while also producing cultivated meat that reduces the environmental impact of livestock farming. The market potential for TE in meat production is considerable, and significant growth is expected. However, the regulatory framework for these innovations is developing slowly, and approval procedures vary across regions. This overview critically assesses the current applications of TE in the agri-food sector, their socio-economic potential and the regulatory challenges. It emphasises the need for harmonised, flexible and adaptive policies to effectively integrate engineered foods into the market.
Collapse
Affiliation(s)
- Brian Senyange
- Ghent University, Department of Agricultural Economics, Coupure Links 653, 9000 Ghent, Belgium
| | - Joshua Wesana
- Ghent University, Department of Agricultural Economics, Coupure Links 653, 9000 Ghent, Belgium; Mountains of the Moon University, Department of Food Innovation and Nutrition, PO Box 837, Fort Portal, Uganda
| | - Guido Van Huylenbroeck
- Ghent University, Department of Agricultural Economics, Coupure Links 653, 9000 Ghent, Belgium
| | - Xavier Gellynck
- Ghent University, Department of Agricultural Economics, Coupure Links 653, 9000 Ghent, Belgium
| | - Hans De Steur
- Ghent University, Department of Agricultural Economics, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Yang F, Wang Y, Yang D, Zheng X, Xie X, Feng K, Cheng G, Hu Q, Chai C, Zhang Q. Topography immune-responsive silk films for skin regeneration. Int J Biol Macromol 2025; 287:138543. [PMID: 39653216 DOI: 10.1016/j.ijbiomac.2024.138543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Scar formation and chronic refractory wounds pose a significant threat to public health, with abnormal immune regulation as a key characteristic. However, topography, a crucial factor influencing immune responses, has not been adequately considered in the design of wound dressings. In this study, we constructed a hierarchical structure on silk fibroin (SF) films by combining soft lithography and femtosecond laser ablation, without altering the intrinsic properties of SF. The discontinuity in the hierarchical structure induced a transformation in the morphology of macrophage RAW264.7 cells from round to spindle or pancake-like shapes, leading to phenotypic polarization toward M2 or M1. The timely transition from M1 to M2 polarization and the balance between these states promoted fibroblast L929 cells to express mRNA for FN, coll-I, TGF-β1, and α-SMA. The hierarchical structure of SF films facilitates full-thickness wound repair in vivo by regulating inflammation and promoting neovascularization and collagen deposition. Thus, hierarchical topography presents a promising strategy for the design of immunomodulatory wound dressings.
Collapse
Affiliation(s)
- Futing Yang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yonglong Wang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Daiying Yang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xi Zheng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaofan Xie
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Kun Feng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Guotao Cheng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Chunli Chai
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Sheikh ZA, Clarke O, Mir A, Hibino N. Deep Learning for Predicting Spheroid Viability: Novel Convolutional Neural Network Model for Automating Quality Control for Three-Dimensional Bioprinting. Bioengineering (Basel) 2025; 12:28. [PMID: 39851302 PMCID: PMC11761550 DOI: 10.3390/bioengineering12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Spheroids serve as the building blocks for three-dimensional (3D) bioprinted tissue patches. When larger than 500 μm, the desired size for 3D bioprinting, they tend to have a hypoxic core with necrotic cells. Therefore, it is critical to assess the viability of spheroids in order to ensure the successful fabrication of high-viability patches. However, current viability assays are time-consuming, labor-intensive, require specialized training, or are subject to human bias. In this study, we build a convolutional neural network (CNN) model to efficiently and accurately predict spheroid viability, using a phase-contrast image of a spheroid as its input. A comprehensive dataset of mouse mesenchymal stem cell (mMSC) spheroids of varying sizes with corresponding viability percentages, which was obtained through CCK-8 assays, was established and used to train and validate the model. The model was trained to automatically classify spheroids into one of four distinct categories based on their predicted viability: 0-20%, 20-40%, 40-70%, and 70-100%. The model achieved an average accuracy of 92%, with a consistent loss below 0.2. This deep-learning model offers a non-invasive, efficient, and accurate method to streamline the assessment of spheroid quality, thereby accelerating the development of bioengineered cardiac tissue patches for cardiovascular disease therapies.
Collapse
Affiliation(s)
- Zyva A. Sheikh
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (Z.A.S.); (O.C.); (A.M.)
| | - Oliver Clarke
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (Z.A.S.); (O.C.); (A.M.)
| | - Amatullah Mir
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (Z.A.S.); (O.C.); (A.M.)
| | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (Z.A.S.); (O.C.); (A.M.)
- Pediatric Cardiac Surgery, Advocate Children’s Hospital, 4440 W 95th St., Chicago, IL 60453, USA
| |
Collapse
|
11
|
Ma S, Zhang L, Wu Y, Huang W, Liu F, Li M, Fan Y, Xia H, Wang X, Li X, Deng H. Glucosamine sulfate-loaded nanofiber reinforced carboxymethyl chitosan sponge for articular cartilage restoration. J Colloid Interface Sci 2025; 677:632-644. [PMID: 39116561 DOI: 10.1016/j.jcis.2024.07.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cartilage is severely limited in self-repair after damage, and tissue engineering scaffold transplantation is considered the most promising strategy for cartilage regeneration. However, scaffolds without cells and growth factors, which can effectively avoid long cell culture times, high risk of infection, and susceptibility to contamination, remain scarce. Hence, we developed a cell- and growth factor-dual free hierarchically structured nanofibrous sponge to mimic the extracellular matrix, in which the encapsulated core-shell nanofibers served both as mechanical supports and as long-lasting carriers for bioactive biomass molecules (glucosamine sulfate). Under the protection of the nanofibers in this designed sponge, glucosamine sulfate could be released continuously for at least 30 days, which significantly accelerated the repair of cartilage tissue in a rat cartilage defect model. Moreover, the nanofibrous sponge based on carboxymethyl chitosan as the framework could effectively fill irregular cartilage defects, adapt to the dynamic changes during cartilage movement, and maintain almost 100 % elasticity even after multiple compression cycles. This strategy, which combines fiber freeze-shaping technology with a controlled-release method for encapsulating bioactivity, allows for the assembly of porous bionic scaffolds with hierarchical nanofiber structure, providing a novel and safe approach to tissue repair.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Medicine and Health Sciences, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, China
| | - Li Zhang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yang Wu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Wei Huang
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Medicine and Health Sciences, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, China
| | - Fangtian Liu
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Mingguang Li
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Medicine and Health Sciences, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, China
| | - Yifeng Fan
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Medicine and Health Sciences, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, China
| | - Haibin Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xianguo Wang
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xinzhi Li
- Department of Orthopedic Surgery, Affiliated Renhe Hospital of China Three Gorges University, College of Medicine and Health Sciences, Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, China.
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
12
|
Li K, Wang S, Chen C, Xie Y, Dai X, Chen Y. Sonocatalytic biomaterials. Coord Chem Rev 2025; 522:216242. [DOI: 10.1016/j.ccr.2024.216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Hemati S, Ghiasi M, Salimi A. Osteogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells on Composite Polymeric Scaffolds: A Review. Curr Stem Cell Res Ther 2025; 20:33-49. [PMID: 38315659 DOI: 10.2174/011574888x263333231218065453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The mesenchymal stem cells (MSCs) are the fundamental part of bone tissue engineering for the emergence of reconstructive medicine. Bone tissue engineering has recently been considered a promising strategy for treating bone diseases and disorders. The technique needs a scaffold to provide an environment for cell attachment to maintain cell function and a rich source of stem cells combined with appropriate growth factors. MSCs can be isolated from adipose tissue (ASCs), bone marrow (BM-MSCs), or umbilical cord (UC-MSCs). In the present study, the potential of ASCs to stimulate bone formation in composite polymeric scaffolds was discussed and it showed that ASCs have osteogenic ability in vitro. The results also indicated that the ASCs have the potential for rapid growth, easier adipose tissue harvesting with fewer donor site complications and high proliferative capacity. The osteogenic differentiation capacity of ASCs varies due to the culture medium and the addition of factors that can change signaling pathways to increase bone differentiation. Furthermore, gene expression analysis has a significant impact on improving our understanding of the molecular pathways involved in ASCs and, thus, osteogenic differentiation. Adding some drugs, such as dexamethasone, to the biomaterial composite also increases the formation of osteocytes. Combining ASCs with scaffolds synthesized from natural and synthetic polymers seems to be an effective strategy for bone regeneration. Applying exopolysaccharides, such as schizophyllan, chitosan, gelatin, and alginate in composite scaffolds enhances the osteogenesis potential of ASCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhu J, Du Y, Backman LJ, Chen J, Ouyang H, Zhang W. Cellular Interactions and Biological Effects of Silk Fibroin: Implications for Tissue Engineering and Regenerative Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409739. [PMID: 39668424 DOI: 10.1002/smll.202409739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Silk fibroin (SF), the core structural protein derived from Bombyx mori silk, is extensively employed in tissue engineering and regenerative medicine due to its exceptional mechanical properties, favorable biocompatibility, tunable biodegradability, and versatile processing capabilities. Despite these advantages, current research predominantly focuses on SF biomaterials as structural scaffolds or drug carriers, often overlooking their potential role in modulating cellular behavior and tissue regeneration. This review aims to present a comprehensive overview of the inherent biological effects of SF biomaterials, independent of any exogenous biomolecules, and their implications for various tissue regeneration. It will cover in vitro cellular interactions of SF with various cell types, including stem cells and functional tissue cells such as osteoblasts, chondrocytes, keratinocytes, endothelial cells, fibroblasts, and epithelial cells. Moreover, it will summarize in vivo immune responses, cellular responses, and tissue regeneration following SF implantation, specifically focusing on vascular, bone, skin, cartilage, ocular, and tendon/ligament regeneration. Furthermore, it will address current limitations and future perspectives in the design of bioactive SF biomaterials. A comprehensive understanding of these cellular interactions and the biological effects of SF is crucial for predicting regenerative outcomes with precision and for designing SF-based biomaterials tailored to specific properties, enabling broader applications in regenerative medicine.
Collapse
Affiliation(s)
- Jialin Zhu
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Yan Du
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
- Department of Community Medicine and Rehabilitation, Section of Physiotherapy, Umeå University, Umeå, 90187, Sweden
| | - Jialin Chen
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| | - Hongwei Ouyang
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Zhang
- School of Medicine, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210000, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310000, China
| |
Collapse
|
15
|
Wu Y, Wu Z, Li Z, Hong Y. Simulation of the bone remodelling microenvironment by calcium compound-loaded hydrogel fibrous membranes for in situ bone regeneration. J Mater Chem B 2024; 12:10012-10027. [PMID: 39248119 DOI: 10.1039/d4tb01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The endowment of guided bone regeneration (GBR) membranes with the ability to activate the endogenous regenerative capability of bone to regenerate bone defects is of clinical significance. Herein we explored the preparation of the calcium compound (CC) (calcium sulfate (CaSL), calcium hydrophosphate (CaHP), or tricalcium phosphate (TCaP)) loaded ultrathin silk fibroin (SF)/gelatin (G) fibre membranes via electrospinning as the GBR membranes to regenerate the calvarial bone defects. The in vitro experiments demonstrated that the CaSL-loaded ultrathin fibrous membranes could simulate optimally the bone remodelling microenvironment in comparison with the CaHP- and TCaP-loaded fibrous membranes, displaying the highest activity to regulate the migration, proliferation, and differentiation of mesenchymal stem cells (MSCs). Also, the in vivo experiments demonstrated that the CaSL-loaded fibrous membranes presented the highest intrinsic osteoinduction to guide in situ regeneration of bone. Furthermore, the in vivo experiments demonstrated that the as-prepared composite fibrous membranes possessed good degradability. In summary, our results suggested that the CaSL-loaded fibrous membranes with high intrinsic osteoinduction and good degradability have potential to translate into clinical practice.
Collapse
Affiliation(s)
- Yanmei Wu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Zhen Wu
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
- School of Medicine and Health, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, Henan 450000, China
| | - Zhe Li
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| | - Youliang Hong
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
16
|
Tanner GI, Schiltz L, Narra N, Figueiredo ML, Qazi TH. Granular Hydrogels Improve Myogenic Invasion and Repair after Volumetric Muscle Loss. Adv Healthc Mater 2024; 13:e2303576. [PMID: 38329892 DOI: 10.1002/adhm.202303576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Indexed: 02/10/2024]
Abstract
Skeletal muscle injuries including volumetric muscle loss (VML) lead to excessive tissue scarring and permanent functional disability. Despite its high prevalence, there is currently no effective treatment for VML. Bioengineering interventions such as biomaterials that fill the VML defect to support cell and tissue growth are a promising therapeutic strategy. However, traditional biomaterials developed for this purpose lack the pore features needed to support cell infiltration. The present study investigates for the first time, the impact of granular hydrogels on muscle repair - hypothesizing that their flowability will permit conformable filling of the defect site and their inherent porosity will support the invasion of native myogenic cells, leading to effective muscle repair. Small and large microparticle fragments are prepared from photocurable hyaluronic acid polymer via extrusion fragmentation and facile size sorting. In assembled granular hydrogels, particle size and degree of packing significantly influence pore features, rheological behavior, and injectability. Using a mouse model of VML, it is demonstrated that, in contrast to bulk hydrogels, granular hydrogels support early-stage (satellite cell invasion) and late-stage (myofiber regeneration) muscle repair processes. Together, these results highlight the promising potential of injectable and porous granular hydrogels in supporting endogenous repair after severe muscle injury.
Collapse
Affiliation(s)
- Gabrielle I Tanner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Leia Schiltz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Niharika Narra
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Marxa L Figueiredo
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
17
|
Han J, Sheng T, Zhang Y, Cheng H, Gao J, Yu J, Gu Z. Bioresponsive Immunotherapeutic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209778. [PMID: 36639983 DOI: 10.1002/adma.202209778] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The human immune system is an interaction network of biological processes, and its dysfunction is closely associated with a wide array of diseases, such as cancer, infectious diseases, tissue damage, and autoimmune diseases. Manipulation of the immune response network in a desired and controlled fashion has been regarded as a promising strategy for maximizing immunotherapeutic efficacy and minimizing side effects. Integration of "smart" bioresponsive materials with immunoactive agents including small molecules, biomacromolecules, and cells can achieve on-demand release of agents at targeted sites to reduce overdose-related toxicity and alleviate off-target effects. This review highlights the design principles of bioresponsive immunotherapeutic materials and discusses the critical roles of controlled release of immunoactive agents from bioresponsive materials in recruiting, housing, and manipulating immune cells for evoking desired immune responses. Challenges and future directions from the perspective of clinical translation are also discussed.
Collapse
Affiliation(s)
- Jinpeng Han
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jianqing Gao
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
19
|
Saini D, Sengupta D, Mondal B, Mishra HK, Ghosh R, Vishwakarma PN, Ram S, Mandal D. A Spin-Charge-Regulated Self-Powered Nanogenerator for Simultaneous Pyro-Magneto-Electric Energy Harvesting. ACS NANO 2024; 18:11964-11977. [PMID: 38656962 DOI: 10.1021/acsnano.4c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In view of the depletion of natural energy resources, harvesting energy from waste is a revolution to simultaneously capture, unite, and recycle various types of waste energies in flexible devices. Thus, in this work, a spin-charge-regulated pyro-magneto-electric nanogenerator is devised at a well-known ferroelectric P(VDF-TrFE) copolymer. It promptly stores thermal-magnetic energies in a "capacitor" that generates electricity at room temperature. The ferroelectric domains are regulated to slip at the interfaces (also twins) of duly promoting polarization and other properties. An excellent pyroelectric coefficient p ∼ 615 nC·m-2·K-1 is obtained, with duly enhanced stimuli of a thermal sensitivity ∼1.05 V·K-1, a magnetoelectric coefficient αme ∼8.8 mV·cm-1·Oe-1 at 180 Hz (resonance frequency), and a magnetosensitivity ∼473 V/T. It is noteworthy that a strategy of further improving p (up to 41.2 μC·m-2·K-1) and αme (up to 23.6 mV·cm-1·Oe-1) is realized in the electrically poled dipoles. In a model hybrid structure, the spins lead to switch up the electric dipoles parallel at the polymer chains in a cohesive charged layer. It is an innovative approach for efficiently scavenging waste energies from electric vehicles, homes, and industries, where abundant thermal and magnetic energies are accessible. This sustainable strategy could be useful in next-generation self-powered electronics.
Collapse
Affiliation(s)
- Dalip Saini
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Dipanjan Sengupta
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Bidya Mondal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Hari Krishna Mishra
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| | - Rubina Ghosh
- Department of Physics and Astronomy, National Institute of Technology, Rourkela 769008, India
| | | | - Shanker Ram
- Materials Science Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Dipankar Mandal
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
20
|
Henderson T, Christman KL, Alperin M. Regenerative Medicine in Urogynecology: Where We Are and Where We Want to Be. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:519-527. [PMID: 38683203 PMCID: PMC11342648 DOI: 10.1097/spv.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
ABSTRACT Pelvic floor disorders (PFDs) constitute a major public health issue given their negative effect on quality of life for millions of women worldwide and the associated economic burden. As the prevalence of PFDs continues to increase, novel therapeutic approaches for the effective treatment of these disorders are urgently needed. Regenerative medicine techniques, including cellular therapies, extracellular vesicles, secretomes, platelet-rich plasma, laser therapy, and bioinductive acellular biomaterial scaffolds, are emerging as viable clinical options to counteract urinary and fecal incontinence, as well as pelvic organ prolapse. This brief expert review explores the current state-of-science regarding application of these therapies for the treatment of PFDs. Although regenerative approaches have not been widely deployed in clinical care to date, these innovative techniques show a promising safety profile and potential to positively affect the quality of life of patients with PFDs. Furthermore, investigations focused on regeneration of the main constituents of the pelvic floor and lower urinary tract improve our understanding of the underlying pathophysiology of PFDs. Regenerative medicine techniques have a high potential not only to revolutionize treatment of PFDs but also to prevent these complex conditions.
Collapse
Affiliation(s)
- Tatyanna Henderson
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| | - Marianna Alperin
- Division of Urogynecology and Reconstructive Pelvic Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences
- Sanford Consortium for Regenerative Medicine, La Jolla, CA
| |
Collapse
|
21
|
Anitua E, Troya M, Zalduendo M, Tierno R, Alkhraisat MH, Osinalde N, Fullaondo A, Zubiaga AM. Improving the mechanical and biological functions of cell sheet constructs: The interplay of human-derived periodontal ligament stem cells, endothelial cells and plasma rich in growth factors. Biomed Pharmacother 2024; 174:116599. [PMID: 38640711 DOI: 10.1016/j.biopha.2024.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE The aim of this study was to produce and characterize triple-layered cell sheet constructs with varying cell compositions combined or not with the fibrin membrane scaffold obtained by the technology of Plasma Rich in Growth Factors (mPRGF). MATERIALS AND METHODS Human primary cultures of periodontal ligament stem cells (hPDLSCs) were isolated, and their stemness nature was evaluated. Three types of triple-layered composite constructs were generated, composed solely of hPDLSCs or combined with human umbilical vein endothelial cells (HUVECs), either as a sandwiched endothelial layer or as coculture sheets of both cell phenotypes. These three triple-layered constructs were also manufactured using mPRGF as cell sheets' support. Necrosis, glucose consumption, secretion of extracellular matrix proteins and synthesis of proangiogenic factors were determined. Histological evaluations and proteomic analyses were also performed. RESULTS The inclusion of HUVECs did not clearly improve the properties of the multilayered constructs and yet hindered their optimal conformation. The presence of mPRGF prevented the shrinkage of cell sheets, stimulated the metabolic activity and increased the matrix synthesis. At the proteome level, mPRGF conferred a dramatic advantage to the hPDLSC constructs in their ability to provide a suitable environment for tissue regeneration by inducing the expression of proteins necessary for bone morphogenesis and cellular proliferation. CONCLUSIONS hPDLSCs' triple-layer construct onto mPRGF emerges as the optimal structure for its use in regenerative therapeutics. CLINICAL RELEVANCE These results suggest the suitability of mPRGF as a promising tool to support cell sheet formation by improving their handling and biological functions.
Collapse
Affiliation(s)
- Eduardo Anitua
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.
| | - María Troya
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mar Zalduendo
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Roberto Tierno
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H Alkhraisat
- BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Nerea Osinalde
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Asier Fullaondo
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ana M Zubiaga
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
22
|
Hasson M, Fernandes LM, Solomon H, Pepper T, Huffman NL, Pucha SA, Bariteau JT, Kaiser JM, Patel JM. Considering the Cellular Landscape in Marrow Stimulation Techniques for Cartilage Repair. Cells Tissues Organs 2024; 213:523-537. [PMID: 38599194 PMCID: PMC11633897 DOI: 10.1159/000538530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY In this review, we accomplish three goals: (1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; (2) detail the cellular populations in bone marrow and their impact on healing; and (3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots," "elements," and "blood." Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.
Collapse
Affiliation(s)
- Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Tristan Pepper
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas L. Huffman
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Saitheja A. Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jason T. Bariteau
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jarred M. Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| |
Collapse
|
23
|
Li Z, Shao Y, Yang Y, Zan J. Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration. Front Bioeng Biotechnol 2024; 12:1386534. [PMID: 38655386 PMCID: PMC11035894 DOI: 10.3389/fbioe.2024.1386534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Extensive research on zeolitic imidazolate framework (ZIF-8) and its derivatives has highlighted their unique properties in nanomedicine. ZIF-8 exhibits advantages such as pH-responsive dissolution, easy surface functionalization, and efficient drug loading, making it an ideal nanosystem for intelligent drug delivery and phototherapy. These characteristics have sparked significant interest in its potential applications in tissue regeneration, particularly in bone, skin, and nerve regeneration. This review provides a comprehensive assessment of ZIF-8's feasibility in tissue engineering, encompassing material synthesis, performance testing, and the development of multifunctional nanosystems. Furthermore, the latest advancements in the field, as well as potential limitations and future prospects, are discussed. Overall, this review emphasizes the latest developments in ZIF-8 in tissue engineering and highlights the potential of its multifunctional nanoplatforms for effective complex tissue repair.
Collapse
Affiliation(s)
- Zhixin Li
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Yinjin Shao
- Department of Rehabilitation, Ganzhou People’s Hospital, Ganzhou, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
| |
Collapse
|
24
|
Xiao JH, Zhang ZB, Li J, Chen SM, Gao HL, Liao Y, Chen L, Wang Z, Lu Y, Hou Y, Wu H, Zou D, Yu SH. Bioinspired polysaccharide-based nanocomposite membranes with robust wet mechanical properties for guided bone regeneration. Natl Sci Rev 2024; 11:nwad333. [PMID: 38333231 PMCID: PMC10852990 DOI: 10.1093/nsr/nwad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
Abstract
Polysaccharide-based membranes with excellent mechanical properties are highly desired. However, severe mechanical deterioration under wet conditions limits their biomedical applications. Here, inspired by the structural heterogeneity of strong yet hydrated biological materials, we propose a strategy based on heterogeneous crosslink-and-hydration (HCH) of a molecule/nano dual-scale network to fabricate polysaccharide-based nanocomposites with robust wet mechanical properties. The heterogeneity lies in that the crosslink-and-hydration occurs in the molecule-network while the stress-bearing nanofiber-network remains unaffected. As one demonstration, a membrane assembled by bacterial cellulose nanofiber-network and Ca2+-crosslinked and hydrated sodium alginate molecule-network is designed. Studies show that the crosslinked-and-hydrated molecule-network restricts water invasion and boosts stress transfer of the nanofiber-network by serving as interfibrous bridge. Overall, the molecule-network makes the membrane hydrated and flexible; the nanofiber-network as stress-bearing component provides strength and toughness. The HCH dual-scale network featuring a cooperative effect stimulates the design of advanced biomaterials applied under wet conditions such as guided bone regeneration membranes.
Collapse
Affiliation(s)
- Jian-Hong Xiao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Zhen-Bang Zhang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - YinXiu Liao
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lu Chen
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - ZiShuo Wang
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - YiFan Lu
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - DuoHong Zou
- Department of Dental Implant Center, Stomatologic Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei 230032, China
- Department of Oral Surgery, College of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials (I2M), Department of Chemistry, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
26
|
Siqueira Andrade S, Faria AVDS, Augusto Sousa A, da Silva Ferreira R, Camargo NS, Corrêa Rodrigues M, Longo JPF. Hurdles in translating science from lab to market in delivery systems for Cosmetics: An industrial perspective. Adv Drug Deliv Rev 2024; 205:115156. [PMID: 38104897 DOI: 10.1016/j.addr.2023.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
In recent decades, a sweeping technological wave has reshaped the global economic landscape. Fueled by the unceasing forces of digital innovation and venture capital investment, this transformative machine has left a significant mark across numerous economic sectors. More recently, the emergence of 'deep tech' start-ups, focusing on areas such as artificial intelligence, nanotechnology, and biotechnology, has infused a fresh wave of innovation into various sectors, including the pharmaceutical and cosmetic industry. This review explores the significance of innovation within the cosmetics sector, with a particular emphasis on delivery systems. It assesses the crucial process of bridging the gap between research and the market, particularly in the translation of nanotechnology into tangible real-world applications. With the rise of nanotechnology-based beauty ingredients, we can anticipate groundbreaking advancements that promise to surpass consumer expectations, ushering in a new era of unparalleled innovation in beauty products.
Collapse
Affiliation(s)
- Sheila Siqueira Andrade
- PlateInnove Biotechnology, Sorocaba, São Paulo, Brazil; Department of Science and Innovation, Glia Innovation, Goiânia, Goiás, Brazil
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | - Mosar Corrêa Rodrigues
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil
| | - João Paulo Figueiró Longo
- Department of Science and Innovation, Glia Innovation, Goiânia, Goiás, Brazil; Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil.
| |
Collapse
|
27
|
Schiltz L, Grivetti E, Tanner GI, Qazi TH. Recent Advances in Implantable Biomaterials for the Treatment of Volumetric Muscle Loss. Cells Tissues Organs 2024; 213:486-502. [PMID: 38219727 DOI: 10.1159/000536262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Volumetric muscle loss (VML) causes pain and disability in patients who sustain traumatic injury from invasive surgical procedures, vehicle accidents, and battlefield wounds. Clinical treatment of VML injuries is challenging, and although options such as free-flap autologous grafting exist, patients inevitably develop excessive scarring and fatty infiltration, leading to muscle weakness and reduced quality of life. SUMMARY New bioengineering approaches, including cell therapy, drug delivery, and biomaterial implantation, have emerged as therapies to restore muscle function and structure to pre-injury levels. Of these, acellular biomaterial implants have attracted wide interest owing to their broad potential design space and high translational potential as medical devices. Implantable biomaterials fill the VML defect and create a conduit that permits the migration of regenerative cells from the intact muscle tissue to the injury site. Invading cells and regenerating myofibers are sensitive to the biomaterial's structural and biochemical properties, which can play instructive roles in guiding cell fate and organization into functional tissue. KEY MESSAGES Many diverse biomaterials have been developed for skeletal muscle regeneration with variations in biophysical and biochemical properties, and while many have been tested in vitro, few have proven their regenerative potential in clinically relevant in vivo models. Here, we provide an overview of recent advances in the design, fabrication, and application of acellular biomaterials made from synthetic or natural materials for the repair of VML defects. We specifically focus on biomaterials with rationally designed structural (i.e., porosity, topography, alignment) and biochemical (i.e., proteins, peptides, growth factors) components, highlighting their regenerative effects in clinically relevant VML models.
Collapse
Affiliation(s)
- Leia Schiltz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Elizabeth Grivetti
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gabrielle I Tanner
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
28
|
Praharaj R, Rautray TR. Polymer Composites for Biomedical Applications. ENGINEERING MATERIALS 2024:489-532. [DOI: 10.1007/978-981-97-2075-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Wang H, Duan C, Keate RL, Ameer GA. Panthenol Citrate Biomaterials Accelerate Wound Healing and Restore Tissue Integrity. Adv Healthc Mater 2023; 12:e2301683. [PMID: 37327023 PMCID: PMC11468745 DOI: 10.1002/adhm.202301683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti-inflammatory, and pro-angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re-epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Chongwen Duan
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rebecca L. Keate
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Guillermo A. Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- International Institute for NanotechnologyNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
30
|
Lee SS, Kleger N, Kuhn GA, Greutert H, Du X, Smit T, Studart AR, Ferguson SJ. A 3D-Printed Assemblable Bespoke Scaffold as a Versatile Microcryogel Carrier for Site-Specific Regenerative Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302008. [PMID: 37632210 DOI: 10.1002/adma.202302008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/22/2023] [Indexed: 08/27/2023]
Abstract
Advances in additive manufacturing have led to diverse patient-specific implant designs utilizing computed tomography, but this requires intensive work and financial implications. Here, Digital Light Processing is used to fabricate a hive-structured assemblable bespoke scaffold (HIVE). HIVE can be manually assembled in any shape/size with ease, so a surgeon can create a scaffold that will best fit a defect before implantation. Simultaneously, it can have site-specific treatments by working as a carrier filled with microcryogels (MC) incorporating different biological factors in different pockets of HIVE. After characterization, possible site-specific applications are investigated by utilizing HIVE as a versatile carrier with incorporated treatments such as growth factors (GF), bioceramic, or cells. HIVE as a GF-carrier shows a controlled release of bone morphogenetic protein/vascular endothelial growth factor (BMP/VEGF) and induced osteogenesis/angiogenesis from human mesenchymal stem cells (hMSC)/human umbilical vein endothelial cells (HUVECs). Furthermore, as a bioceramic-carrier, HIVE demonstrates enhanced mineralization and osteogenesis, and as a HUVEC carrier, it upregulates both osteogenic and angiogenic gene expression of hMSCs. HIVE with different combinations of MCs yields a distinct local effect and successful cell migration is confirmed within assembled HIVEs. Finally, an in vivo rat subcutaneous implantation demonstrates site-specific osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Seunghun S Lee
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Nicole Kleger
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Gisela A Kuhn
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Helen Greutert
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Xiaoyu Du
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Thijs Smit
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
31
|
Li J, Zhang J. Effect of composite conjugated materials on tissue healing during exercise rehabilitation training. Front Chem 2023; 11:1279463. [PMID: 37927564 PMCID: PMC10620295 DOI: 10.3389/fchem.2023.1279463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
The application of traditional materials to tissue healing in sports rehabilitation training has problems such as poor effect, high rejection reaction, and slow healing speed. It also brings many challenges to the development of sports rehabilitation training. This article aims to explore the impact of composite conjugated materials on tissue healing to promote rapid and efficient tissue healing and improve the effect of sports rehabilitation training. Through research and analysis, this article found that composite conjugated materials have unique biocompatibility and can promote cell growth and differentiation. In skin tissue healing, composite conjugated materials can control the release rate and duration of drugs to promote skin healing. During the fracture healing process, conjugated materials can provide growth factors and extracellular matrix components, stimulate bone cell proliferation and differentiation, and promote fracture healing. In terms of soft tissue injuries, composite conjugated materials serve as supporting structures or matrices, providing a favorable environment for the regeneration of damaged tissue. In the regulation of inflammatory responses, composite conjugated materials reduce inflammatory responses and accelerate the healing process by modulating immune responses. The results of this study show that 1 week after the experiment, the skin healing rates of the control group and the experimental group were 42.55% and 58.17% respectively; 5 weeks after the experiment, the skin healing rates of the control group and the experimental group were 51.28% and 73.24% respectively. After 1, 2, 3, 4, and 5 weeks of experiment, it was found that the average tissue repair rates of the control group were 44.03%, 54.18%, 58.40%, 67.08%, and 72.09% respectively, and the average tissue repair rates of the experimental group were 52.18%, 61.91%, 63.40%, 74.61%, and 85.05% respectively. This study highlights the huge potential of composite conjugated materials in promoting tissue healing and tissue repair, and is of great significance for promoting technological progress in the field of sports rehabilitation and improving rehabilitation effects.
Collapse
Affiliation(s)
- Jie Li
- College of Physical Education, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jing Zhang
- Orthopedics, Hubei Provincial Hospital of TCM (Affiliated Hospital of Hubei University of Chinese Medicine), Wuhan, Hubei, China
| |
Collapse
|
32
|
Wang RM, Mesfin JM, Karkanitsa M, Ungerleider JL, Zelus E, Zhang Y, Kawakami Y, Kawakami Y, Kawakami T, Christman KL. Immunomodulatory contribution of mast cells to the regenerative biomaterial microenvironment. NPJ Regen Med 2023; 8:53. [PMID: 37730736 PMCID: PMC10511634 DOI: 10.1038/s41536-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Bioactive immunomodulatory biomaterials have shown promise for influencing the immune response to promote tissue repair and regeneration. Macrophages and T cells have been associated with this response; however, other immune cell types have been traditionally overlooked. In this study, we investigated the role of mast cells in the regulation of the immune response to decellularized biomaterial scaffolds using a subcutaneous implant model. In mast cell-deficient mice, there was dysregulation of the expected M1 to M2 macrophage transition typically induced by the biomaterial scaffold. Polarization progression deviated in a sex-specific manner with an early transition to an M2 profile in female mice, while the male response was unable to properly transition past a pro-inflammatory M1 state. Both were reversed with adoptive mast cell transfer. Further investigation of the later-stage immune response in male mice determined a greater sustained pro-inflammatory gene expression profile, including the IL-1 cytokine family, IL-6, alarmins, and chemokines. These results highlight mast cells as another important cell type that influences the immune response to pro-regenerative biomaterials.
Collapse
Affiliation(s)
- Raymond M Wang
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Maria Karkanitsa
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Jessica L Ungerleider
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Emma Zelus
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
- Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Yuko Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
- Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
- Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
33
|
Lambrichts I, Wolfs E, Bronckaers A, Gervois P, Vangansewinkel T. The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability. Int J Mol Sci 2023; 24:14314. [PMID: 37762617 PMCID: PMC10532231 DOI: 10.3390/ijms241814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Esther Wolfs
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Annelies Bronckaers
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Pascal Gervois
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Lin CJ, Lin HL, You WC, Ho HO, Sheu MT, Chen LC, Cheng WJ. Composite Hydrogels of Ultrasound-Assisted-Digested Formic Acid-Decellularized Extracellular Matrix and Sacchachitin Nanofibers Incorporated with Platelet-Rich Plasma for Diabetic Wound Treatment. J Funct Biomater 2023; 14:423. [PMID: 37623667 PMCID: PMC10455550 DOI: 10.3390/jfb14080423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, an ultrasound-assisted digestion method of a formic acid-decellularized extracellular matrix (dECM) of porcine skin was developed and optimized to form UdECM hydrogels for diabetic wound healing. Results demonstrated that ultrasonication improved the extraction rate of collagen from dECM samples, preserved the collagen content of dECM, reduced residual cells, and extracted greater DNA contents. Scanning electron microscope (SEM) analyses were performed, which demonstrated the optimal porosity on the surface and density of the cross-section in the hydrogel structure, which could control the release of growth factors embedded in UdECM hydrogels at desirable rates to boost wound healing. A wound-healing study was conducted with six different composite hydrogels, both empty materials and materials enriched with rat platelet-rich plasma (R-PRP), sacchachitin nanofibers (SCNFs), and TEMPO-oxidized sacchachitin in diabetic rats. The assessment based on scars stained with hematoxylin and eosin (H&E), Masson's trichrome (MT), and a cluster of differentiation 31 (CD31) staining showed that the UdECM/SC/R-PRP treatment group had the most significant efficacy of promoting healing and even recovery of diabetic wounds to normal tissues. UdECM/R-PRP and UdECM/SCNFs demonstrated better healing rates than UdECM hydrogel scaffolds, which had only recovered 50% resemblance to normal skin. Treatment with both UdECM/TEMPO 050 and UdECM/TEMPO 050/R-PRP hydrogel scaffolds was ranked last, with even poorer efficacy than UdECM hydrogels. In summary, formulated UdECM and SCNF hydrogels loaded with PRP showed synergistic effects of accelerating wound healing and ultimately stimulating the wound to recover as functional tissues. This newly UdECM/SCNF composite hydrogel has promising potential for healing and regenerating diabetic wounds.
Collapse
Affiliation(s)
- Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (H.-L.L.)
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (H.-L.L.)
| | - Wen-Chen You
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (H.-O.H.); (M.-T.S.)
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (H.-O.H.); (M.-T.S.)
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (H.-O.H.); (M.-T.S.)
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Wei-Jie Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan (H.-O.H.); (M.-T.S.)
| |
Collapse
|
35
|
Duran P, Sesillo FB, Cook M, Burnett L, Menefee SA, Do E, French S, Zazueta-Damian G, Dzieciatkowska M, Saviola AJ, Shah MM, Sanvictores C, Osborn KG, Hansen KC, Shtrahman M, Christman KL, Alperin M. Proregenerative extracellular matrix hydrogel mitigates pathological alterations of pelvic skeletal muscles after birth injury. Sci Transl Med 2023; 15:eabj3138. [PMID: 37531414 PMCID: PMC10460616 DOI: 10.1126/scitranslmed.abj3138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Pelvic floor disorders, including pelvic organ prolapse and urinary and fecal incontinence, affect millions of women globally and represent a major public health concern. Pelvic floor muscle (PFM) dysfunction has been identified as one of the leading risk factors for the development of these morbid conditions. Childbirth, specifically vaginal delivery, has been recognized as the most important potentially modifiable risk factor for PFM injury; however, the precise mechanisms of PFM dysfunction after parturition remain elusive. In this study, we demonstrated that PFMs exhibit atrophy and fibrosis in parous women with symptomatic pelvic organ prolapse. These pathological alterations were recapitulated in a preclinical rat model of simulated birth injury (SBI). The transcriptional signature of PFMs after injury demonstrated an impairment in muscle anabolism, persistent expression of genes that promote extracellular matrix (ECM) deposition, and a sustained inflammatory response. We also evaluated the administration of acellular injectable skeletal muscle ECM hydrogel for the prevention of these pathological alterations. Treatment of PFMs with the ECM hydrogel either at the time of birth injury or 4 weeks after injury mitigated PFM atrophy and fibrosis. By evaluating gene expression, we demonstrated that these changes are mainly driven by the hydrogel-induced enhancement of endogenous myogenesis, ECM remodeling, and modulation of the immune response. This work furthers our understanding of PFM birth injury and demonstrates proof of concept for future investigations of proregenerative biomaterial approaches for the treatment of injured pelvic soft tissues.
Collapse
Affiliation(s)
- Pamela Duran
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Francesca Boscolo Sesillo
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Mark Cook
- Department of Integrative, Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lindsey Burnett
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Shawn A. Menefee
- Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Kaiser Permanente, San Diego, CA 92110, USA
| | - Emmy Do
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saya French
- Department of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Gisselle Zazueta-Damian
- Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Kaiser Permanente, San Diego, CA 92110, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Manali M. Shah
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Clyde Sanvictores
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kent G. Osborn
- Center for Veterinary Sciences and Comparative Medicine, Division of Comparative Pathology and Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Matthew Shtrahman
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Marianna Alperin
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Female Pelvic Medicine and Reconstructive Surgery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Lu Q, Diao J, Wang Y, Feng J, Zeng F, Yang Y, Kuang Y, Zhao N, Wang Y. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioact Mater 2023; 26:413-424. [PMID: 36969106 PMCID: PMC10036893 DOI: 10.1016/j.bioactmat.2023.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/28/2023] Open
Abstract
Bone bionics and structural engineering have sparked a broad interest in optimizing artificial scaffolds for better bone regeneration. However, the mechanism behind scaffold pore morphology-regulated bone regeneration remains unclear, making the structure design of scaffolds for bone repair challenging. To address this issue, we have carefully assessed diverse cell behaviors of bone mesenchymal stem cells (BMSCs) on the β-tricalcium phosphate (β-TCP) scaffolds with three representative pore morphologies (i.e., cross column, diamond, and gyroid pore unit, respectively). Among the scaffolds, BMSCs on the β-TCP scaffold with diamond pore unit (designated as D-scaffold) demonstrated enhanced cytoskeletal forces, elongated nucleus, faster cell mobility, and better osteogenic differentiation potential (for example, the alkaline phosphatase expression level in D-scaffold were 1.5-2 times higher than other groups). RNA-sequencing analysis and signaling pathway intervention revealed that Ras homolog gene family A (RhoA)/Rho-associated kinase-2 (ROCK2) has in-depth participated in the pore morphology-mediated BMSCs behaviors, indicating an important role of mechanical signaling transduction in scaffold-cell interactions. Finally, femoral condyle defect repair results showed that D-scaffold could effectively promote endogenous bone regeneration, of which the osteogenesis rate was 1.2-1.8 times higher than the other groups. Overall, this work provides insights into pore morphology-mediated bone regeneration mechanisms for developing novel bioadaptive scaffold designs.
Collapse
Affiliation(s)
- Qiji Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Jingjing Diao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- Medical Devices Research & Testing Center of SCUT, Guangzhou, 510006, PR China
| | - Yingqu Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
| | - Jianlang Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Fansen Zeng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Yan Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
| | - Yudi Kuang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510535, PR China
- Corresponding author. National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| | - Naru Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- NMPA Key Laboratory for Research and Evaluation of Innovative Biomaterials for Medical Devices. Guangzhou, 510006, PR China
- Guangdong Institute of Advanced Biomaterials and Medical Devices, Guangzhou, 510535, PR China
- Corresponding author. School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, PR China.
| |
Collapse
|
37
|
Wu P, Shen L, Liu HF, Zou XH, Zhao J, Huang Y, Zhu YF, Li ZY, Xu C, Luo LH, Luo ZQ, Wu MH, Cai L, Li XK, Wang ZG. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Mil Med Res 2023; 10:35. [PMID: 37525300 PMCID: PMC10388535 DOI: 10.1186/s40779-023-00469-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Most bone-related injuries to grassroots troops are caused by training or accidental injuries. To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops, it is imperative to develop new strategies and scaffolds to promote bone regeneration. METHODS In this study, a porous piezoelectric hydrogel bone scaffold was fabricated by incorporating polydopamine (PDA)-modified ceramic hydroxyapatite (PDA-hydroxyapatite, PHA) and PDA-modified barium titanate (PDA-BaTiO3, PBT) nanoparticles into a chitosan/gelatin (Cs/Gel) matrix. The physical and chemical properties of the Cs/Gel/PHA scaffold with 0-10 wt% PBT were analyzed. Cell and animal experiments were performed to characterize the immunomodulatory, angiogenic, and osteogenic capabilities of the piezoelectric hydrogel scaffold in vitro and in vivo. RESULTS The incorporation of BaTiO3 into the scaffold improved its mechanical properties and increased self-generated electricity. Due to their endogenous piezoelectric stimulation and bioactive constituents, the as-prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory, angiogenic, and osteogenic capabilities; they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration, tube formation, and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs) and facilitated the migration, osteo-differentiation, and extracellular matrix (ECM) mineralization of MC3T3-E1 cells. The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model. The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis, and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization. CONCLUSION The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation, angiogenesis, and osteogenesis functions may be used as a substitute in periosteum injuries, thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat effectiveness in grassroots troops.
Collapse
Affiliation(s)
- Ping Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Hui-Fan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiang-Hui Zou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Yu Huang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Yu-Fan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhao-Yu Li
- Department of Overseas Education College, Jimei University, Xiamen, 361021, Fujian, China
| | - Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Hua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhi-Qiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min-Hao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Xiao-Kun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhou-Guang Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
38
|
Liu W, Zhao H, Zhang C, Xu S, Zhang F, Wei L, Zhu F, Chen Y, Chen Y, Huang Y, Xu M, He Y, Heng BC, Zhang J, Shen Y, Zhang X, Huang H, Chen L, Deng X. In situ activation of flexible magnetoelectric membrane enhances bone defect repair. Nat Commun 2023; 14:4091. [PMID: 37429900 DOI: 10.1038/s41467-023-39744-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
For bone defect repair under co-morbidity conditions, the use of biomaterials that can be non-invasively regulated is highly desirable to avoid further complications and to promote osteogenesis. However, it remains a formidable challenge in clinical applications to achieve efficient osteogenesis with stimuli-responsive materials. Here, we develop polarized CoFe2O4@BaTiO3/poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)] core-shell particle-incorporated composite membranes with high magnetoelectric conversion efficiency for activating bone regeneration. An external magnetic field force conduct on the CoFe2O4 core can increase charge density on the BaTiO3 shell and strengthens the β-phase transition in the P(VDF-TrFE) matrix. This energy conversion increases the membrane surface potential, which hence activates osteogenesis. Skull defect experiments on male rats showed that repeated magnetic field applications on the membranes enhanced bone defect repair, even when osteogenesis repression is elicited by dexamethasone or lipopolysaccharide-induced inflammation. This study provides a strategy of utilizing stimuli-responsive magnetoelectric membranes to efficiently activate osteogenesis in situ.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Han Zhao
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Chenguang Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shiqi Xu
- School of Materials Science and Engineering & Advanced Research, Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Fengyi Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Ling Wei
- Third Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Fangyu Zhu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying Chen
- First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Yumin Chen
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, P. R. China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing Department of Materials Science and Engineering Tsinghua University, Beijing, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P. R. China.
| | - Houbing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China.
| |
Collapse
|
39
|
Hu X, Wang T, Li F, Mao X. Surface modifications of biomaterials in different applied fields. RSC Adv 2023; 13:20495-20511. [PMID: 37435384 PMCID: PMC10331796 DOI: 10.1039/d3ra02248j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023] Open
Abstract
Biomaterial implantation into the human body plays a key role in the medical field and biological applications. Increasing the life expectancy of biomaterial implants, reducing the rejection reaction inside the human body and reducing the risk of infection are the problems in this field that need to be solved urgently. The surface modification of biomaterials can change the original physical, chemical and biological properties and improve the function of materials. This review focuses on the application of surface modification techniques in various fields of biomaterials reported in the past few years. The surface modification techniques include film and coating synthesis, covalent grafting, self-assembled monolayers (SAMs), plasma surface modification and other strategies. First, a brief introduction to these surface modification techniques for biomaterials is given. Subsequently, the review focuses on how these techniques change the properties of biomaterials, and evaluates the effects of modification on the cytocompatibility, antibacterial, antifouling and surface hydrophobic properties of biomaterials. In addition, the implications for the design of biomaterials with different functions are discussed. Finally, based on this review, it is expected that the biomaterials have development prospects in the medical field.
Collapse
Affiliation(s)
- Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
40
|
Ni R, Luo Y, Jiang L, Mao X, Feng Y, Tuersun S, Hu Z, Zhu Y. Repairing gastric ulcer with hyaluronic acid/extracellular matrix composite through promoting M2-type polarization of macrophages. Int J Biol Macromol 2023:125556. [PMID: 37364804 DOI: 10.1016/j.ijbiomac.2023.125556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The treatment of gastric ulcer and perforation using synthetic and biomaterials has been a clinical challenge. In this work, a drug-carrying layer of hyaluronic acid was combined with a gastric submucosal decellularized extracellular matrix called gHECM. The regulation of macrophage polarization by the extracellular matrix's components was then investigated. This work proclaims how gHECM responds to inflammation and aids in the regeneration of the gastric lining by altering the phenotype of surrounding macrophages and stimulating the body's whole immune response. In a nutshell, gHECM promotes tissue regeneration by changing the phenotype of macrophages around the site of injury. In particular, gHECM reduces the production of pro-inflammatory cytokines, decreases the percentage of M1 macrophages, and further encourages differentiation of macrophage subpopulation to the M2 phenotype and the release of anti-inflammatory cytokines, which could block the NF-κB pathway. Activated macrophages are capable of immediately delivering through spatial barriers, modulating the peripheral immune system, influencing the inflammatory microenvironment, and ultimately promoting the recovery of inflammation and healing of ulcers. They contribute to the secreted cytokines that act on local tissues or enhance the chemotactic ability of macrophages through paracrine secretion. In this study, we focused on the immunological regulatory network of macrophage polarization to further develop the mechanisms behind this process. Nevertheless, the signaling pathways involved in this process need to be further explored and identified. We think that our research will encourage more investigation into how the decellularized matrix affects immune modulation and will help the decellularized matrix perform better as a new class of natural biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Renhao Ni
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Yang Luo
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Lingjing Jiang
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Xufeng Mao
- Department of Orthopedics, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Yuyao Feng
- Ningbo University, Health Science Center, Ningbo 315211, China
| | | | - Zeming Hu
- Ningbo University, Health Science Center, Ningbo 315211, China
| | - Yabin Zhu
- Ningbo University, Health Science Center, Ningbo 315211, China.
| |
Collapse
|
41
|
Yue X, Wang Z, Shi H, Wu R, Feng Y, Yuan L, Hou S, Song X, Liu L. Silk fibroin-based piezoelectric nanofibrous scaffolds for rapid wound healing. Biomater Sci 2023. [PMID: 37338183 DOI: 10.1039/d3bm00308f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Piezoelectric polymer nanofibers are attracting increasing attention in the stimulation of cell growth and proliferation in tissue engineering and wound healing applications. However, their intrinsic non-biodegradability in vivo hinders widespread applications in the biological fields. Herein, we designed, synthesized and characterized composite materials of silk fibroin (SF)/LiNbO3 (LN) nanoparticles/MWCNTs by electrospinning technology, which displayed good biocompatibility and comparable piezoelectric properties with an output current of up to 15 nA and output voltage of up to 0.6 V under pressure stimulation, remaining stable after 200 cycles of pressure release without significant decay. Meanwhile, the mechanical properties of the LN/CNTs/SF-nanofiber scaffolds (SF-NFSs) are also enhanced, with a tensile strength reaching 12.84 MPa and an elongation at break reaching 80.07%. Importantly, in vitro cell proliferation experiments showed that the LN/CNTs/SF-NFSs promoted cell proliferation at a rate of 43%. Accordingly, the mouse wound healing experiments further indicated that they could accelerate the healing of skin wounds in mice that were continuously moving. Therefore, SF-based piezoelectric nanofibrous scaffolds exhibit potential for use in rapid wound healing and this sheds light on smart treatment for tissue engineering in biomedicine.
Collapse
Affiliation(s)
- Xiaoyang Yue
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zengkai Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongrong Wu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Yonghai Feng
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Liang Yuan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaolu Song
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
42
|
Sánchez ML, Valdez H, Conde M, Viaña-Mendieta P, Boccaccini AR. Polymers and Bioactive Compounds with a Macrophage Modulation Effect for the Rational Design of Hydrogels for Skin Regeneration. Pharmaceutics 2023; 15:1655. [PMID: 37376103 DOI: 10.3390/pharmaceutics15061655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The development of biomaterial platforms for dispensing reagents of interest such as antioxidants, growth factors or antibiotics based on functional hydrogels represents a biotechnological solution for many challenges that the biomedicine field is facing. In this context, in situ dosing of therapeutic components for dermatological injuries such as diabetic foot ulcers is a relatively novel strategy to improve the wound healing process. Hydrogels have shown more comfort for the treatment of wounds due to their smooth surface and moisture, as well as their structural affinity with tissues in comparison to hyperbaric oxygen therapy, ultrasound, and electromagnetic therapies, negative pressure wound therapy or skin grafts. Macrophages, one of the most important cells of the innate immune system, have been described as the key not only in relation to the host immune defense, but also in the progress of wound healing. Macrophage dysfunction in chronic wounds of diabetic patients leads to a perpetuating inflammatory environment and impairs tissue repair. Modulating the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) could be a strategy for helping to improve chronic wound healing. In this regard, a new paradigm is found in the development of advanced biomaterials capable of inducing in situ macrophage polarization to offer an approach to wound care. Such an approach opens a new direction for the development of multifunctional materials in regenerative medicine. This paper surveys emerging hydrogel materials and bioactive compounds being investigated to induce the immunomodulation of macrophages. We propose four potential functional biomaterials for wound healing applications based on novel biomaterial/bioactive compound combination that are expected to show synergistic beneficial outcomes for the local differentiation of macrophages (M1-M2) as a therapeutic strategy for chronic wound healing improvement.
Collapse
Affiliation(s)
- Mirna L Sánchez
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Hugo Valdez
- Laboratorio de Microbiología Celular e Inmunomecanismos, CINDEFI|Centro de Investigación y Desarrollo en Fermentaciones Industriales Facultad de Ciencias Exactas, La Plata B1900AJL, Argentina
| | - Micaela Conde
- Laboratorio de Farmacología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal B1876, Argentina
| | - Pamela Viaña-Mendieta
- Tecnologico de Monterrey, Instituto para la Investigación en Obesidad, Monterrey 64849, Mexico
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
43
|
Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio 2023; 19:100579. [PMID: 36880084 PMCID: PMC9984687 DOI: 10.1016/j.mtbio.2023.100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Tissue injury is a common clinical problem, which may cause great burden on patients' life. It is important to develop functional scaffolds to promote tissue repair and regeneration. Due to their unique composition and structure, microneedles have attracted extensive attention in various tissues regeneration, including skin wound, corneal injury, myocardial infarction, endometrial injury, and spinal cord injury et al. Microneedles with micro-needle structure can effectively penetrate the barriers of necrotic tissue or biofilm, therefore improving the bioavailability of drugs. The use of microneedles to deliver bioactive molecules, mesenchymal stem cells, and growth factors in situ allows for targeted tissue and better spatial distribution. At the same time, microneedles can also provide mechanical support or directional traction for tissue, thus accelerating tissue repair. This review summarized the research progress of microneedles for in situ tissue regeneration over the past decade. At the same time, the shortcomings of existing researches, future research direction and clinical application prospect were also discussed.
Collapse
Affiliation(s)
- Linyu Long
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410009, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
44
|
Cheng B, Li C, Zhang B, Liu J, Lu Z, Zhang P, Wei H, Yu Y. Customizable Low-Friction Tough Hydrogels for Potential Cartilage Tissue Engineering by a Rapid Orthogonal Photoreactive 3D-Printing Design. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36893430 DOI: 10.1021/acsami.3c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels have demonstrated wide applications in tissue engineering, but it is still challenging to develop strong, customizable, low-friction artificial scaffolds. Here, we report a rapid orthogonal photoreactive 3D-printing (ROP3P) strategy to achieve the design of high-performance hydrogels in tens of minutes. The orthogonal ruthenium chemistry enables the formation of multinetworks in hydrogels via phenol-coupling reaction and traditional radical polymerization. Further Ca2+-cross-linking treatment greatly improves their mechanical properties (6.4 MPa at a critical strain of 300%) and toughness (10.85 MJ m-3). The tribological investigation reveals that the high elastic moduli of the as-prepared hydrogels improve their lubrication (∼0.02) and wear-resistance performances. These hydrogels are biocompatible and nontoxic and promote bone marrow mesenchymal stem cell adhesion and propagation. The introduction of 1-hydroxy-3-(acryloylamino)-1,1-propanediylbisphosphonic acid units can greatly enhance their antibacterial property to kill typical Escherichia coli and Staphylococcus aureus. Moreover, the rapid ROP3P can achieve hydrogel preparation in several seconds and is readily compatible with making artificial meniscus scaffolds. The printed meniscus-like materials are mechanically stable and can maintain their shape under long-term gliding tests. It is anticipated that these high-performance customizable low-friction tough hydrogels and the highly efficient ROP3P strategy could promote further development and practical applications of hydrogels in biomimetic tissue engineering, materials chemistry, bioelectronics, and so on.
Collapse
Affiliation(s)
- Bo Cheng
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China
| | - Chengpeng Li
- School of Mechanical Engineering, North University of China, Taiyuan 030051, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610017, China
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Zhe Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Hongqiu Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
45
|
Ghimire U, Kandel R, Shrestha S, Moon JY, Jang SR, Shrestha BK, Park CH, Kim CS. L-cysteine aided polyaniline capped SrO 2 nanoceramics: Assessment of MC3T3-E1-arbitrated osteogenesis and anti-bactericidal efficacy on the polyurethane 2D nanofibrous substrate. Colloids Surf B Biointerfaces 2023; 223:113152. [PMID: 36739675 DOI: 10.1016/j.colsurfb.2023.113152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Fabricating bioartificial bone graft ceramics retaining structural, mechanical, and bone induction properties akin to those of native stem-cell niches is a major challenge in the field of bone tissue engineering and regenerative medicine. Moreover, the developed materials are susceptible to microbial invasion leading to biomaterial-centered infections which might limit their clinical translation. Here, we successfully developed biomimetic porous scaffolds of polyurethane-reinforcedL-cysteine-anchored polyaniline capped strontium oxide nanoparticles to improve the scaffold's biocompatibility, osteo-regeneration, mechanical, and antibacterial properties. The engineered nanocomposite substrate PU/L-Cyst-SrO2 @PANI (0.4 wt%) significantly promotes bone repair and regeneration by modulating osteolysis and osteogenesis. ALP activity, collagen-I, ARS staining, as well as biomineralization of MC3T3-E1 cells, were used to assess the biocompatibility and cytocompatibility of the developed scaffolds in vitro, confirming that the scaffold provided a favorable microenvironment with a prominent effect on cell growth, proliferation, and differentiation. Furthermore, osteogenic protein markers were studied using qRT-PCR with expression levels of runt-related transcription factor 2 (RUNX2), secreted phosphoprotein 1 (Spp-I), and collagen type I (Col-I). The overall results suggest that PU/L-Cyst-SrO2 @PANI (0.4 wt%) scaffolds showed superior interfacial biocompatibility, antibacterial properties, load-bearing ability, and osteoinductivity as compared to pristine PU. Thus, prepared bioactive nanocomposite scaffolds perform as a promising biomaterial substrate for bone tissue regeneration.
Collapse
Affiliation(s)
- Upasana Ghimire
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Rupesh Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Joon Yeon Moon
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Se Rim Jang
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, the Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, the Republic of Korea.
| |
Collapse
|
46
|
Wu Y, Yazdani SK, Bolander JEM, Wagner WD. Syndecan-4 and stromal cell-derived factor-1 alpha functionalized endovascular scaffold facilitates adhesion, spreading and differentiation of endothelial colony forming cells and functions under flow and shear stress conditions. J Biomed Mater Res B Appl Biomater 2023; 111:538-550. [PMID: 36208170 PMCID: PMC10092721 DOI: 10.1002/jbm.b.35170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
Acellular vascular scaffolds with capture molecules have shown great promise in recruiting circulating endothelial colony forming cells (ECFCs) to promote in vivo endothelialization. A microenvironment conducive to cell spreading and differentiation following initial cell capture are key to the eventual formation of a functional endothelium. In this study, syndecan-4 and stromal cell-derived factor-1 alpha were used to functionalize an elastomeric biomaterial composed of poly(glycerol sebacate), Silk Fibroin and Type I Collagen, termed PFC, to enhance ECFC-material interaction. Functionalized PFC (fPFC) showed significantly greater ECFCs capture capability under physiological flow. Individual cell spreading area on fPFC (1474 ± 63 μm2 ) was significantly greater than on PFC (1187 ± 54 μm2 ) as early as 2 h, indicating enhanced cell-material interaction. Moreover, fPFC significantly upregulated the expression of endothelial cell specific markers such as platelet endothelial cell adhesion molecule (24-fold) and Von Willebrand Factor (11-fold) compared with tissue culture plastic after 7 days, demonstrating differentiation of ECFCs into endothelial cells. fPFC fabricated as small diameter conduits and tested using a pulsatile blood flow bioreactor were stable and maintained function. The findings suggest that the new surface functionalization strategy proposed here results in an endovascular material with enhanced endothelialization.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.,Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University School, Winston-Salem, North Carolina, USA
| | - Saami K Yazdani
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Johanna Elin Marie Bolander
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - William D Wagner
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.,Biomedical Engineering and Sciences, Virginia Tech - Wake Forest University School, Winston-Salem, North Carolina, USA.,Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina, USA
| |
Collapse
|
47
|
Qiu J, Liu XJ, You BA, Ren N, Liu H. Application of Nanomaterials in Stem Cell-Based Therapeutics for Cardiac Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206487. [PMID: 36642861 DOI: 10.1002/smll.202206487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.
Collapse
Affiliation(s)
- Jie Qiu
- Medical Research Institute, Jinan Nanjiao Hospital, Jinan, 250002, P. R. China
| | - Xiang-Ju Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Bei-An You
- Department of Cardiovascular Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Jinan, 266035, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
48
|
Maduka CV, Alhaj M, Ural E, Kuhnert MM, Habeeb OM, Schilmiller AL, Hankenson KD, Goodman SB, Narayan R, Contag CH. Stereochemistry Determines Immune Cellular Responses to Polylactide Implants. ACS Biomater Sci Eng 2023; 9:932-943. [PMID: 36634351 DOI: 10.1021/acsbiomaterials.2c01279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Repeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1β, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.
Collapse
Affiliation(s)
- Chima V Maduka
- Comparative Medicine & Integrative Biology, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Mohammed Alhaj
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Evran Ural
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Maxwell M Kuhnert
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Oluwatosin M Habeeb
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kurt D Hankenson
- Department of Orthopedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, Stanford, California 94063, United States.,Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Ramani Narayan
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
49
|
Yao D, Guo J, Qin T, Chen H, Jin S. Effect of Alleviating Fibrosis with EGCG-Modified Bone Graft in Murine Model Depended on Less Accumulation of Inflammatory Macrophage. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9466110. [PMID: 36820222 PMCID: PMC9938781 DOI: 10.1155/2023/9466110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
In response to current trends in the modification of guided bone regeneration (GBR) materials, we aimed to build upon our previous studies on epigallocatechin-3-gallate (EGCG) by immersing a commonly used bone graft primarily composed of hydroxyapatite (HA) in EGCG solution, expecting to obtain superior bone material integration after implantation. Bone grafts are commonly used for bone repair, in which the bone extracellular matrix is stimulated to promote osteogenesis. However, due to its profibrosis effect, this osteoconductive material commonly exhibits implant failure. In addition to providing a basic release profile of EGCG-modified bone graft (E-HA) to clarify the relationship between this material and the environment, we have examined the integration effect via subcutaneous implantation experiments. In this manner, we have assessed the aggregation of proinflammatory macrophages, the formation of fibrous capsules, and an enhanced cell viability observed in cultured RAW 264.7 cells. Among these results, we focus on proinflammatory macrophages due to their close relationship with fibrosis, which is the most important process in the immune response. Immunofluorescent staining results showed that E-HA substantially compromised the formation of fibrous capsules in hematoxylin-eosin-stained sections, which exhibited less proinflammatory macrophage recruitment; meanwhile, the cell viability was improved. This work lays the foundation for future studies on GBR.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiang Guo
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tianyu Qin
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Haibao Chen
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Song Jin
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
50
|
A biomaterial infused into the bloodstream repairs inflamed tissue. Nat Biomed Eng 2023; 7:92-93. [PMID: 36627365 DOI: 10.1038/s41551-022-00983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|