1
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Ballal S, Naidu KS, Bareja L, Chahar M, Gupta S, Sameer HN, Yaseen A, Athab ZH, Adil M. Exploring preventive and treatment strategies for oral cancer: Modulation of signaling pathways and microbiota by probiotics. Gene 2025; 952:149380. [PMID: 40089085 DOI: 10.1016/j.gene.2025.149380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/11/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
The evidence suggests that the microbiome plays a crucial role in cancer development. The oral cavity has many microorganisms that can influence oral cancer progression. Understanding the mechanisms and signaling pathways of the oral, gum, and teeth microbiome in tumor progression can lead to new treatment strategies. Probiotics, which are friendly microorganisms, have shown potential as anti-cancer agents. These positive characteristics of probiotic strains make them suitable for cancer prevention or treatment. The oral-gut microbiome axis supports health and homeostasis, and imbalances in the oral microbiome can disrupt immune signaling pathways, epithelial barriers, cell cycles, apoptosis, genomic stability, angiogenesis, and metabolic processes. Changes in the oral microbiome in oral cancer may suggest using probiotics-based treatments for their direct or indirect positive roles in cancer development, progression, and metastasis, specifically oral squamous cell carcinoma (OSCC). Here, reported relationships between probiotics, oral microbiota, and oral cancer are summarized.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003 Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Agrawal R, Al-Hiyari S, Hugh-White R, Hromas R, Patel Y, Williamson EA, Mootor MFE, Gonzalez A, Fu J, Haas R, Jordan M, Wickes BL, Mohammed G, Tian M, Doris MJ, Jobin C, Wernke KM, Pan Y, Yamaguchi TN, Herzon SB, Boutros PC, Liss MA. Colibactin Exerts Androgen-dependent and -independent Effects on Prostate Cancer. Eur Urol Oncol 2025; 8:716-730. [PMID: 39547899 PMCID: PMC12075626 DOI: 10.1016/j.euo.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND AND OBJECTIVE The etiology of prostate cancer (PC) is multifactorial and poorly understood. It has been suggested that colibactin-producing Escherichia coli positive for the pathogenicity island pks (pks+) initiate cancers via induction of genomic instability. In PC, androgens promote oncogenic translocations. Our aim was to investigate the association of pks+E. coli with PC diagnosis and molecular architecture, and its relationship with androgens. METHODS We quantified the association of pks+E. coli with PC diagnosis in a volunteer-sampled 235-person cohort from two institutional practices (UT San Antonio). We then used colibactin 742 and DNA/RNA sequencing to evaluate the effects of colibactin 742, dihydrotestosterone (DHT), and their combination in vitro. KEY FINDINGS AND LIMITATIONS Colibactin exposure was positively associated with PC diagnosis (p = 0.04) in our clinical cohort, and significantly increased replication fork stalling and fusions in vitro (p < 0.01). Combined in vitro exposure to colibactin 742 and DHT induced more somatic mutations of all types than exposure to either alone. The combination also elicited kataegis, with a higher density of somatic point mutations. Laboratory analyses were conducted using a single cell line, which limited our ability to fully recapitulate the complexity of PC etiology. CONCLUSIONS AND CLINICAL IMPLICATIONS Our findings are consistent with synergistic induction of genome instability and kataegis by colibactin 742 and DHT in cell culture. Colibactin-producing pks+ E. coli may plausibly contribute to PC etiology. PATIENT SUMMARY We investigated whether a bacterial toxin that is linked to colon cancer can also cause prostate cancer. Our results support this idea by showing a link between the toxin and prostate cancer diagnosis in a large patient population. We also found that this toxin causes genetic dysfunction in prostate cancer cells when combined with testosterone.
Collapse
Affiliation(s)
- Raag Agrawal
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Sarah Al-Hiyari
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rupert Hugh-White
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Yash Patel
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Mohammed F E Mootor
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Alfredo Gonzalez
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jianmin Fu
- Department of Microbiology and Immunology, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Roni Haas
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Madison Jordan
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Brian L Wickes
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas, San Antonia, TC, USA
| | - Ghouse Mohammed
- Office of Health Informatics and Analytics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Mao Tian
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA
| | - Molly J Doris
- Department of Urology, University of Texas Health-San Antonio, San Antonio, TX, USA
| | - Christian Jobin
- Departments of Medicine, Infectious Diseases and Immunology, and Anatomy and Cell Physiology, University of Florida, Gainesville, FL, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Yu Pan
- Office of Health Informatics and Analytics, University of California-Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California-Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California-Los Angeles, Los Angeles, CA, USA; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Michael A Liss
- Department of Urology, University of Texas Health-San Antonio, San Antonio, TX, USA.
| |
Collapse
|
3
|
Marasco G, Colecchia L, Salvi D, Bruni A, Capelli C, Dajti E, Barbaro MR, Cremon C, Stanghellini V, Barbara G. The Role of Microbiota in Upper Gastrointestinal Cancers. Cancers (Basel) 2025; 17:1719. [PMID: 40427216 PMCID: PMC12110688 DOI: 10.3390/cancers17101719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
The gut microbiota significantly impacts the development and progression of upper gastrointestinal (GI) cancers, including esophageal and gastric cancers. Microbial dysbiosis contributes to carcinogenesis through mechanisms such as inflammation, immune modulation, and direct DNA damage. Techniques for sampling oral, esophageal, and gastric microbiota vary, with standardization being essential for reliable results. Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC) are associated with an enrichment of Gram-negative bacteria, promoting inflammation and cancer progression. Esophageal squamous cell carcinoma (ESCC) also shows distinct microbial patterns, with reduced diversity and increased harmful bacteria like Porphyromonas gingivalis and Fusobacterium nucleatum. In gastric cancer (GC), Helicobacter pylori (HP) and non-HP gastric microbiota play significant roles, with diverse microbial communities contributing to cancer development through nitrate reduction, immune modulation, and inflammation. Emerging evidence highlights the role of non-HP bacteria in promoting carcinogenesis, with specific taxa like Fusobacterium nucleatum and Lactobacillus influencing tumor growth and immune evasion. Further research is needed to elucidate the complex interactions between gut microbiota and upper GI cancers, paving the way for novel diagnostic and therapeutic approaches. Understanding these microbial dynamics offers potential for microbiota-based interventions, improving the early detection, prognosis, and treatment of upper GI cancers. This comprehensive review summarizes the available evidence on the role of microbiota in upper GI oncology and the need for continued exploration in this field.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Luigi Colecchia
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Daniele Salvi
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - Angelo Bruni
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Cecilia Capelli
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Elton Dajti
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (L.C.); (A.B.); (C.C.); (E.D.); (M.R.B.); (C.C.); (V.S.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti, 9, 40138 Bologna, Italy
| |
Collapse
|
4
|
Zhang X, Fam KT, Dai T, Hang HC. Microbiota mechanisms in cancer progression and therapy. Cell Chem Biol 2025; 32:653-677. [PMID: 40334660 DOI: 10.1016/j.chembiol.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/19/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025]
Abstract
The composition of the microbiota in patients has been shown to correlate with cancer progression and response to therapy, highlighting unique opportunities to improve patient outcomes. In this review, we discuss the challenges and advancements in understanding the chemical mechanisms of specific microbiota species, pathways, and molecules involved in cancer progression and treatment. We also describe the modulation of cancer and immunotherapy by the microbiota, along with approaches for investigating microbiota enzymes and metabolites. Elucidating these specific microbiota mechanisms and molecules should offer new opportunities for developing enhanced diagnostics and therapeutics to improve outcomes for cancer patients. Nonetheless, many microbiota mechanisms remain to be determined and require innovative chemical genetic approaches.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Kyong Tkhe Fam
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tingting Dai
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Kim M, Kim J, Lee GS, Olinares PDB, Airan Y, Chow JL, Park J, Jeong Y, Park J, Chait BT, Herzon SB, Kim CS, Kang JY. Structural study on human microbiome-derived polyketide synthases that assemble genotoxic colibactin. Structure 2025:S0969-2126(25)00173-X. [PMID: 40381618 DOI: 10.1016/j.str.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/20/2025]
Abstract
Colibactin, a human microbiome-derived genotoxin, promotes colorectal cancer by damaging the host gut epithelial genomes. While colibactin is synthesized via a hybrid non-ribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway, known as pks or clb, the structural details of its biosynthetic enzymes remain limited, hindering our understanding of its biosynthesis and clinical application. In this study, we report the cryo-EM structures of two colibactin-producing PKS enzymes, ClbC and ClbI, captured in different reaction states using a substrate-mimic crosslinker. Our structural analysis revealed the binding sites of carrier protein (CP) domains of the ClbC and ClbI on their ketosynthase (KS) domains. Further, we identified a novel NRPS-PKS docking interaction between ClbI and its upstream enzyme, ClbH, mediated by the C-terminal peptide ClbH and the dimeric interface of ClbI, establishing a 1:2 stoichiometry. These findings advance our understanding of colibactin assembly line and provide broader insights into NRPS-PKS natural product biosynthesis mechanisms.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gyu Sung Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Yougant Airan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Jasmine L Chow
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Jongseok Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Yujin Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiho Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Department of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Jin Young Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Magdy Wasfy R, Abdoulaye A, Borentain P, Mbaye B, Tidjani Alou M, Caputo A, Andrieu C, Mottola G, Levasseur A, Million M, Gerolami R. Thomasclavelia ramosa and alcohol-related hepatocellular carcinoma: a microbial culturomics study. Gut Pathog 2025; 17:27. [PMID: 40336003 PMCID: PMC12057272 DOI: 10.1186/s13099-025-00703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Gut microbiota alteration is implicated in the pathogenesis of alcoholic liver disease (ALD) and associated hepatocellular carcinoma (HCC). No study has characterized the dysbiosis associated with ALD by microbial culturomics, which certifies viability and allows pathobiont strain candidates to be characterized. METHODS A case-control study (n = 59) was conducted on patients with ALD without HCC (ALD-NoHCC, n = 16), ALD with HCC (ALD-HCC, n = 19) and controls (n = 24) groups. 16 S rRNA amplicon sequencing and microbial culturomics were used as complementary methods for gut microbiome profiling. RESULTS Compared to the control group, Thomasclavelia ramosa and Gemmiger formicilis were significantly increased in the ALD-HCC group and Mediterraneibacter gnavus was significantly increased in the ALD-NoHCC group using 16 S rRNA sequencing. By microbial culturomics, T. ramosa was detected in all ALD samples (100%), and the most enriched since cultivated in only a small proportion of controls (20%, p < 0.001). CONCLUSIONS T. ramosa, identified by culturomics and 16 rRNA sequencing, may be associated with ALD and ALD-HCC. These results highlight the potential role of T. ramosa in liver cancer, in line with its genotoxic properties and its tumor growth-promoting effect in gnotobiotic mice recently reported.
Collapse
Affiliation(s)
- Reham Magdy Wasfy
- IHU Méditerranée Infection, Marseille, France
- MEPHI, Aix-Marseille Université, Marseille, France
| | - Anissa Abdoulaye
- IHU Méditerranée Infection, Marseille, France
- MEPHI, Aix-Marseille Université, Marseille, France
| | - Patrick Borentain
- Unité hépatologie, Hôpital de la Timone, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Babacar Mbaye
- IHU Méditerranée Infection, Marseille, France
- MEPHI, Aix-Marseille Université, Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, Marseille, France
- MEPHI, Aix-Marseille Université, Marseille, France
| | - Aurelia Caputo
- Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Claudia Andrieu
- Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Giovanna Mottola
- Laboratoire de Biochimie, Hôpital de la Timone, APHM, Marseille, 13005, France
- C2VN, INSERM 1263, Aix-Marseille Université, Team 5, Marseille, 1260, 13005, INRAE, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Marseille, France
- MEPHI, Aix-Marseille Université, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France.
- MEPHI, Aix-Marseille Université, Marseille, France.
- Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France.
| | - Rene Gerolami
- IHU Méditerranée Infection, Marseille, France
- MEPHI, Aix-Marseille Université, Marseille, France
- Unité hépatologie, Hôpital de la Timone, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (APHM), Marseille, France
| |
Collapse
|
7
|
Jans M, Vereecke L. Physiological drivers of pks+ E. coli in colorectal cancer. Trends Microbiol 2025:S0966-842X(25)00121-0. [PMID: 40335416 DOI: 10.1016/j.tim.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Colorectal cancer (CRC) is a significant global health challenge, with rising incidence, particularly among individuals under 50. Increasing evidence highlights the gut microbiota as key contributors to CRC development, with certain oncogenic bacteria influencing cancer initiation, progression, and therapy response. Among these is pks+ Escherichia coli, which produces colibactin, a genotoxic compound that induces DNA damage and leaves a distinct mutational signature in healthy individuals and CRC patients. While research has focused on its genotoxic effects, this review examines the kinetics of colibactin-induced mutations and the epithelial and environmental changes that promote E. coli expansion and colibactin exposure. We also explore the broader role of pks+ E. coli in cancer initiation and progression beyond genotoxicity, and discuss potential therapeutic approaches.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, B-9052 Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Laaraj J, Lachance G, Bergeron A, Fradet Y, Robitaille K, Fradet V. New insights into gut microbiota-prostate cancer crosstalk. Trends Mol Med 2025:S1471-4914(25)00087-5. [PMID: 40374457 DOI: 10.1016/j.molmed.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 03/28/2025] [Indexed: 05/17/2025]
Abstract
Recent evidence underscores a reciprocal relationship between the gut microbiota and prostate cancer (PCa). Dysbiosis, often driven by Western dietary habits and antibiotic use, can heighten systemic inflammation and hinder antitumor immunity, thereby fostering PCa onset and progression. Conversely, certain gut microbes and their metabolites may protect against tumor growth by modulating immune and hormonal pathways that impact therapeutic responses, including androgen deprivation therapy (ADT). Emerging evidence links gut microbial shifts to PCa aggressiveness, potentially sustaining local androgen production and promoting resistance. In this review, we explore current understanding of the gut-PCa interplay, highlighting key knowledge gaps and the need for further research to clarify how targeting the microbiome might influence PCa outcomes.
Collapse
Affiliation(s)
- Jalal Laaraj
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada
| | - Gabriel Lachance
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada
| | - Alain Bergeron
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Yves Fradet
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Karine Robitaille
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada
| | - Vincent Fradet
- Oncology Research program, CHU de Québec-Université Laval Research center and Cancer Research Center of Université Laval, Québec, QC, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada; Institute of Nutrition and Functional Foods (INAF) and NUTRISS Center - Nutrition, Health and Society of Université Laval, Québec, QC, Canada.
| |
Collapse
|
9
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1283-1308. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Han B, Zhang Y, Feng X, Yang J, Wang B, Fang J, Wang Z, Zhu J, Niu G, Guo Y. The power of microbes: the key role of gut microbiota in the initiation and progression of colorectal cancer. Front Oncol 2025; 15:1563886. [PMID: 40297806 PMCID: PMC12034544 DOI: 10.3389/fonc.2025.1563886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is ranked as the third most prevalent malignancy and is a leading cause of cancer-related mortality globally, significantly affecting the health and longevity of middle-aged individuals and the elderly. The primary risk factors for CRC are mainly due to unhealthy dietary habits and lifestyle choices, and they have been shown to profoundly influence the composition of the gut microbiota. Given that dietary patterns are critical determinants of gut microbial diversity, a compelling association exists between gut microbiota and the pathogenesis of CRC. Recent research has increasingly focused on the intricate interplay between gut microbiota and CRC, exploring its role in disease initiation, progression, and the modulation of host immune responses. Investigations have demonstrated that certain specific microbial communities can promote inflammation, disrupt metabolic pathways, and produce carcinogenic compounds, thereby contributing to the development of CRC. Conversely, a diverse and balanced gut microbiome may confer protective effects against cancer through mechanisms such as the production of short-chain fatty acids and the enhancement of intestinal barrier integrity. This article provides a comprehensive overview of the characteristics of the gut microbial community and its complex relationship with CRC. It highlights potential mechanisms through which gut microbiota may influence CRC pathogenesis, including chronic inflammation, toxins, metabolites, epigenetic dysregulation, and immune regulatory dysfunction. Additionally, this review summarizes innovative strategies for CRC prevention and treatment, emphasizing the therapeutic potential of probiotics and natural plant extracts. By elucidating these connections, this work aims to enhance the understanding of the gut microbiome's role in CRC.
Collapse
Affiliation(s)
- Bo Han
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Yongfeng Zhang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Xue Feng
- Department of Cardiology, 63650 Military Hospital, Urumqi, China
| | - Jun Yang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Baolin Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jiang Fang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Zhigang Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jun Zhu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Ge Niu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Youxiang Guo
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| |
Collapse
|
11
|
Thakur BK, Malaise Y, Choudhury SR, Neustaeter A, Turpin W, Streutker C, Copeland J, Wong EOY, Navarre WW, Guttman DS, Jobin C, Croitoru K, Martin A. Dietary fibre counters the oncogenic potential of colibactin-producing Escherichia coli in colorectal cancer. Nat Microbiol 2025; 10:855-870. [PMID: 40033140 DOI: 10.1038/s41564-025-01938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Diet, microbiome, inflammation and host genetics have been linked to colorectal cancer development; however, it is not clear whether and how these factors interact to promote carcinogenesis. Here we used Il10-/- mice colonized with bacteria previously associated with colorectal cancer: enterotoxigenic Bacteroides fragilis, Helicobacter hepaticus or colibactin-producing (polyketide synthase-positive (pks+)) Escherichia coli and fed either a low-carbohydrate (LC) diet deficient in soluble fibre, a high-fat and high-sugar diet, or a normal chow diet. Colonic polyposis was increased in mice colonized with pks+ E. coli and fed the LC diet. Mechanistically, mucosal inflammation was increased in the LC-diet-fed mice, leading to diminished colonic PPAR-γ signalling and increased luminal nitrate levels. This promoted both pks+ E. coli growth and colibactin-induced DNA damage. PPAR-γ agonists or supplementation with dietary soluble fibre in the form of inulin reverted inflammatory and polyposis phenotypes. The pks+ E. coli also induced more polyps in mismatch-repair-deficient mice by inducing a senescence-associated secretory phenotype. Moreover, oncogenic effects were further potentiated by inflammatory triggers in the mismatch-repair-deficient model. These data reveal that diet and host genetics influence the oncogenic potential of a common bacterium.
Collapse
Affiliation(s)
| | - Yann Malaise
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Anna Neustaeter
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Williams Turpin
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, Unity Health Toronto, Toronto, Ontario, Canada
| | - Julia Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Erin O Y Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christian Jobin
- Department of Infectious Diseases and Pathology, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| | - Kenneth Croitoru
- Division of Gastroenterology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
13
|
Hohmann M, Iliasov D, Larralde M, Johannes W, Janßen KP, Zeller G, Mascher T, Gulder TAM. Heterologous Expression of a Cryptic BGC from Bilophila sp. Provides Access to a Novel Family of Antibacterial Thiazoles. ACS Synth Biol 2025; 14:967-978. [PMID: 39999339 PMCID: PMC11934131 DOI: 10.1021/acssynbio.5c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Human health is greatly influenced by the gut microbiota and microbiota imbalance can lead to the development of diseases. It is widely acknowledged that the interaction of bacteria within competitive ecosystems is influenced by their specialized metabolites, which act, e.g., as antibacterials or siderophores. However, our understanding of the occurrence and impact of such natural products in the human gut microbiome remains very limited. As arylthiazole siderophores are an emerging family of growth-promoting molecules in pathogenic bacteria, we analyzed a metagenomic data set from the human microbiome and thereby identified the bil-BGC, which originates from an uncultured Bilophila strain. Through gene synthesis and BGC assembly, heterologous expression and mutasynthetic experiments, we discovered the arylthiazole natural products bilothiazoles A-F. While established activities of related molecules indicate their involvement in metal-binding and -uptake, which could promote the growth of pathogenic strains, we also found antibiotic activity for some bilothiazoles. This is supported by biosensor-experiments, where bilothiazoles C and E show PrecA-suppressing activity, while bilothiazole F induces PblaZ, a biosensor characteristic for β-lactam antibiotics. These findings serve as a starting point for investigating the role of bilothiazoles in the pathogenicity of Bilophila species in the gut.
Collapse
Affiliation(s)
- Maximilian Hohmann
- Chair
of Technical Biochemistry, TUD Dresden University
of Technology, Bergstraße 66, 01069 Dresden, Germany
| | - Denis Iliasov
- General
Microbiology, TUD Dresden University of
Technology, Zellescher
Weg 20b, 01217 Dresden, Germany
| | - Martin Larralde
- Leiden
University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Widya Johannes
- Department
of Surgery, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Klaus-Peter Janßen
- Department
of Surgery, School of Medicine and Health, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Georg Zeller
- Leiden
University Center for Infectious Diseases (LUCID) and Center for Microbiome
Analyses and Therapeutics (CMAT), Leiden
University Medical Center, 2333 ZA Leiden, Netherlands
| | - Thorsten Mascher
- General
Microbiology, TUD Dresden University of
Technology, Zellescher
Weg 20b, 01217 Dresden, Germany
| | - Tobias A. M. Gulder
- Chair
of Technical Biochemistry, TUD Dresden University
of Technology, Bergstraße 66, 01069 Dresden, Germany
- Department
of Natural Product Biotechnology, Helmholtz Institute for Pharmaceutical
Research Saarland (HIPS), Helmholtz Centre for Infection Research
(HZI) and Department of Pharmacy, PharmaScienceHub (PSH), Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Taglieri M, Di Gregorio L, Matis S, Uras CRM, Ardy M, Casati S, Marchese M, Poggi A, Raffaghello L, Benelli R. Colorectal Organoids: Models, Imaging, Omics, Therapy, Immunology, and Ethics. Cells 2025; 14:457. [PMID: 40136707 PMCID: PMC11941511 DOI: 10.3390/cells14060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Colorectal epithelium was the first long-term 3D organoid culture established in vitro. Identification of the key components essential for the long-term survival of the stem cell niche allowed an indefinite propagation of these cultures and the modulation of their differentiation into various lineages of mature intestinal epithelial cells. While these methods were eventually adapted to establish organoids from different organs, colorectal organoids remain a pioneering model for the development of new applications in health and disease. Several basic and applicative aspects of organoid culture, modeling, monitoring and testing are analyzed in this review. We also tackle the ethical problems of biobanking and distribution of these precious research tools, frequently confined in the laboratory of origin or condemned to destruction at the end of the project.
Collapse
Affiliation(s)
- Martina Taglieri
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Linda Di Gregorio
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Serena Matis
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Chiara Rosa Maria Uras
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Massimo Ardy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Sara Casati
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “Gaetano Salvatore” CNR, 80131 Naples, Italy;
- Common Service ELSI, BBMRI.it (UNIMIB National Node Headquarter), 20126 Milan, Italy
| | - Monica Marchese
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Alessandro Poggi
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Lizzia Raffaghello
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| | - Roberto Benelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (M.T.); (L.D.G.); (S.M.); (C.R.M.U.); (M.A.); (M.M.); (A.P.); (L.R.)
| |
Collapse
|
15
|
Chan C, Coffey M, Murphy C, McKay I, Abdu J, Paida K, Tam RY, Wrigley-Carr H, Prentice B, Owens L, Belessis Y, Chuang S, Jaffe A, van Dorst J, Ooi CY. The Prevalence of Polyketide Synthase-Positive E. coli in Cystic Fibrosis. Microorganisms 2025; 13:681. [PMID: 40142573 PMCID: PMC11944406 DOI: 10.3390/microorganisms13030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Cystic fibrosis (CF) patients experience higher risks of colorectal cancer but the pathogenesis is unclear. In the general population, polyketide synthase-positive (pks+) E. coli is implicated in intestinal carcinogenesis via the production of colibactin; however, the relevance in CF is unknown. In this study, we investigate pks+E. coli prevalence in CF and potential associations between pks+E. coli, gastrointestinal inflammation, and microbiome dynamics with fecal calprotectin and 16SrRNA gene taxonomic data. Cross-sectional analysis demonstrated no difference in pks+E. coli carriage between CF patients and healthy controls, 21/55 (38%) vs. 26/55 (47%), p = 0.32. Pks+E. coli was not associated with significant differences in mean (SD) calprotectin concentration (124 (154) vs. 158 (268) mg/kg; p = 0.60), microbial richness (159 (76.5) vs. 147 (70.4); p = 0.50) or Shannon diversity index (2.78 (0.77) vs. 2.65 (0.74); p = 0.50) in CF. Additionally, there was no association with exocrine pancreatic status (p = 0.2) or overall antibiotic use (p = 0.6). Longitudinally, CF subjects demonstrated intra-individual variation in pks+E. coli presence but no significant difference in overall prevalence. Future investigation into the effects of repeat exposure on risk profile and analysis of older CF cohorts is necessary to identify if associations with colorectal cancer exist.
Collapse
Affiliation(s)
- Christopher Chan
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Michael Coffey
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Gastroenterology, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Caitlin Murphy
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Isabelle McKay
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Jumaana Abdu
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Keerti Paida
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Rachel Y. Tam
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Hannah Wrigley-Carr
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Bernadette Prentice
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Louisa Owens
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Yvonne Belessis
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Sandra Chuang
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Adam Jaffe
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Respiratory Medicine, Sydney Children’s Hospital, Randwick, NSW 2031, Australia; (L.O.); (Y.B.)
| | - Josie van Dorst
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
| | - Chee Y. Ooi
- School of Clinical Medicine, Discipline of Paediatrics & Child Health, UNSW Medicine & Health, University of New South Wales, Sydney, NSW 2031, Australia; (C.C.); (M.C.); (C.M.); (I.M.); (J.A.); (H.W.-C.); (B.P.); (S.C.); (A.J.); (C.Y.O.)
- Department of Gastroenterology, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
16
|
Lee S, Sfanos K, Singla N. The role of the urinary microbiome in genitourinary cancers. Nat Rev Urol 2025:10.1038/s41585-025-01011-z. [PMID: 40082677 DOI: 10.1038/s41585-025-01011-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Genitourinary cancers account for 20% of cancer instances globally and pose a substantial burden. The microbiome, defined as the ecosystem of organisms that reside within and on the human body, seems to be closely related to multiple cancers. Research on the gut microbiome has yielded substantial insights into the interactions of this entity with the immune system and cancer therapeutic efficacy, whereas the urinary microbiome has been relatively less well-studied. Advances in next-generation sequencing technologies led to new discoveries in the urinary microbiome, which might aid in early detection, risk stratification and personalized treatment strategies in genitourinary cancers. Mechanistic investigations have also suggested a role for the urinary microbiome in modulating the tumour microenvironment and host immune response. For example, distinct urinary microbial signatures have been linked to bladder cancer occurrence and recurrence risk, with specific taxa associated with cytokine production and inflammation. Urinary microbiome signatures have also been explored as potential biomarkers for non-invasive cancer detection. However, challenges remain in standardizing methodologies, validating findings across studies, and establishing causative mechanisms. As investigations into the urinary microbiome continue to evolve, so does the potential for developing microbiome-modulating therapies and enhancing diagnostic capabilities to improve outcomes in patients with genitourinary cancers.
Collapse
Affiliation(s)
- Seoho Lee
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Urology, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirmish Singla
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
- Department of Urology, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
18
|
Chacon J, Faizuddin F, McKee JC, Sheikh A, Vasquez VM, Gadad SS, Mayer G, Siby S, McCabe M, Dhandayuthapani S. Unlocking the Microbial Symphony: The Interplay of Human Microbiota in Cancer Immunotherapy Response. Cancers (Basel) 2025; 17:813. [PMID: 40075661 PMCID: PMC11899421 DOI: 10.3390/cancers17050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION The emergence of cancer immunotherapy has revolutionized cancer treatment, offering remarkable outcomes for patients across various malignancies. However, the heterogeneous response to immunotherapy underscores the necessity of understanding additional factors influencing treatment efficacy. Among these factors, the human microbiota has garnered significant attention for its potential role in modulating immune response. Body: This review explores the intricate relationship between the human microbiota and cancer immunotherapy, highlighting recent advances and potential mechanisms underlying microbial influence on treatment outcomes. CONCLUSION Insights into the microbiome's impact on immunotherapy response not only deepen our understanding of cancer pathogenesis but also hold promise for personalized therapeutic strategies aimed at optimizing patient outcomes.
Collapse
Affiliation(s)
- Jessica Chacon
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Farah Faizuddin
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Jack C. McKee
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Aadil Sheikh
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Victor M. Vasquez
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Shrikanth S. Gadad
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Ghislaine Mayer
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Sharon Siby
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Molly McCabe
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
| | - Subramanian Dhandayuthapani
- Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (F.F.); (J.C.M.); (A.S.); (S.S.G.); (G.M.); (S.S.); (M.M.); (S.D.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
19
|
Kiouri DP, Batsis GC, Mavromoustakos T, Giuliani A, Chasapis CT. Structure-Based Modeling of the Gut Bacteria-Host Interactome Through Statistical Analysis of Domain-Domain Associations Using Machine Learning. BIOTECH 2025; 14:13. [PMID: 40227324 PMCID: PMC11940256 DOI: 10.3390/biotech14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, plays a pivotal role in human health and disease. The gut microbiome's influence extends beyond the digestive system to various organs, and its imbalance is linked to a wide range of diseases, including cancer and neurodevelopmental, inflammatory, metabolic, cardiovascular, autoimmune, and psychiatric diseases. Despite its significance, the interactions between gut bacteria and human proteins remain understudied, with less than 20,000 experimentally validated protein interactions between the host and any bacteria species. This study addresses this knowledge gap by predicting a protein-protein interaction network between gut bacterial and human proteins. Using statistical associations between Pfam domains, a comprehensive dataset of over one million experimentally validated pan-bacterial-human protein interactions, as well as inter- and intra-species protein interactions from various organisms, were used for the development of a machine learning-based prediction method to uncover key regulatory molecules in this dynamic system. This study's findings contribute to the understanding of the intricate gut microbiome-host relationship and pave the way for future experimental validation and therapeutic strategies targeting the gut microbiome interplay.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Georgios C. Batsis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| | - Thomas Mavromoustakos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (G.C.B.)
| |
Collapse
|
20
|
Zhang S, Huang J, Jiang Z, Tong H, Ma X, Liu Y. Tumor microbiome: roles in tumor initiation, progression, and therapy. MOLECULAR BIOMEDICINE 2025; 6:9. [PMID: 39921821 PMCID: PMC11807048 DOI: 10.1186/s43556-025-00248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/10/2025] Open
Abstract
Over the past few years, the tumor microbiome is increasingly recognized for its multifaceted involvement in cancer initiation, progression, and metastasis. With the application of 16S ribosomal ribonucleic acid (16S rRNA) sequencing, the intratumoral microbiome, also referred to as tumor-intrinsic or tumor-resident microbiome, has also been found to play a significant role in the tumor microenvironment (TME). Understanding their complex functions is critical for identifying new therapeutic avenues and improving treatment outcomes. This review first summarizes the origins and composition of these microbial communities, emphasizing their adapted diversity across a diverse range of tumor types and stages. Moreover, we outline the general mechanisms by which specific microbes induce tumor initiation, including the activation of carcinogenic pathways, deoxyribonucleic acid (DNA) damage, epigenetic modifications, and chronic inflammation. We further propose the tumor microbiome may evade immunity and promote angiogenesis to support tumor progression, while uncovering specific microbial influences on each step of the metastatic cascade, such as invasion, circulation, and seeding in secondary sites. Additionally, tumor microbiome is closely associated with drug resistance and influences therapeutic efficacy by modulating immune responses, drug metabolism, and apoptotic pathways. Furthermore, we explore innovative microbe-based therapeutic strategies, such as engineered bacteria, oncolytic virotherapy, and other modalities aimed at enhancing immunotherapeutic efficacy, paving the way for microbiome-centered cancer treatment frameworks.
Collapse
Affiliation(s)
- Shengxin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Zedong Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huan Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yang Liu
- Day Surgery Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
21
|
Dey S, Ghosh M, Dev A. Signalling and molecular pathways, overexpressed receptors of colorectal cancer and effective therapeutic targeting using biogenic silver nanoparticles. Gene 2025; 936:149099. [PMID: 39557372 DOI: 10.1016/j.gene.2024.149099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Increasing morbidity and mortality in CRC is a potential threat to human health. The major challenges for better treatment outcomes are the heterogeneity of CRC cases, complicated molecular pathway cross-talks, the influence of gut dysbiosis in CRC, and the lack of multimodal target-specific drug delivery. The overexpression of many receptors in CRC cells may pave the path for targeting them with multiple ligands. The design of a more target-specific drug-delivery device with multiple ligand-functionalized, green-synthesized silver nanoparticles is highly promising and may also deliver other approved chemotherapeutic agents. This review presents the various aspects of colorectal cancer and over-expressed receptors that can be targeted with appropriate ligands to enhance the specific drug delivery potency of green synthesised silver nanoparticles. This review aims to broaden further research into this multi-ligand functionalised, safer and effective silver nano drug delivery system.
Collapse
Affiliation(s)
- Sandip Dey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Manik Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Jharkhand, India.
| |
Collapse
|
22
|
Liu Y, Geng Y, Jiang Y, Sun J, Li P, Li YZ, Zhang Z. Global biogeography and projection of antimicrobial toxin genes. MICROBIOME 2025; 13:40. [PMID: 39905479 PMCID: PMC11796102 DOI: 10.1186/s40168-025-02038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Antimicrobial toxin genes (ATGs) encode potent antimicrobial weapons in nature that rival antibiotics, significantly impacting microbial survival and offering potential benefits for human health. However, the drivers of their global diversity and biogeography remain unknown. RESULTS Here, we identified 4400 ATG clusters from 149 families by correlating 10,000 samples worldwide with over 200,000 microbial genome data. We demonstrated that global microbial communities universally encode complex and diverse ATGs, with widespread differences across various habitats. Most ATG clusters were rare within habitats but were shared among habitats. Compared with those in animal-associated habitats, ATG clusters in human-associated habitats exhibit greater diversity and a greater proportion of sharing with natural habitats. We generated a global atlas of ATG distribution, identifying anthropogenic factors as crucial in explaining ATG diversity hotspots. CONCLUSIONS Our study provides baseline information on the global distribution of antimicrobial toxins by combining community samples, genome sequences, and environmental constraints. Our results highlight the natural environment as a reservoir of antimicrobial toxins, advance the understanding of the global distribution of these antimicrobial weapons, and aid their application in clinical, agricultural, and industrial fields. Video Abstract.
Collapse
Affiliation(s)
- Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
| | - Yu Geng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yiru Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jingyu Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Peng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
23
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Lowry E, Mitchell A. Colibactin-induced damage in bacteria is cell contact independent. mBio 2025; 16:e0187524. [PMID: 39576109 PMCID: PMC11708049 DOI: 10.1128/mbio.01875-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
The bacterial toxin colibactin, produced primarily by the B2 phylogroup of Escherichia coli, underlies some cases of colorectal cancers. Colibactin crosslinks DNA and induces genotoxic damage in both mammalian and bacterial cells. While the mechanisms facilitating colibactin delivery remain unclear, results from multiple studies supported a delivery model that necessitates cell-cell contact. We directly tested this requirement in bacterial cultures by monitoring the spatiotemporal dynamics of the DNA damage response using a fluorescent transcriptional reporter. We found that in mixed-cell populations, DNA damage saturated within 12 hours and was detectable even in reporter cells separated from colibactin producers by hundreds of microns. Experiments with distinctly separated producer and reporter colonies revealed that the intensity of DNA damage decays similarly with distance regardless of colony contact. Our work reveals that cell contact is inconsequential for colibactin delivery in bacteria and suggests that contact dependence needs to be reexamined in mammalian cells as well. IMPORTANCE Colibactin is a bacteria-produced toxin that binds and damages DNA. It has been widely studied in mammalian cells due to its potential role in tumorigenesis. However, fundamental questions about its impact in bacteria remain underexplored. We used Escherichia coli as a model system to study colibactin toxicity in neighboring bacteria and directly tested if cell-cell contact is required for toxicity, as has previously been proposed. We found that colibactin can induce DNA damage in bacteria hundreds of microns away, and the intensity of DNA damage presents similarly regardless of cell-cell contact. Our work further suggests that the requirement for cell-cell contact for colibactin-induced toxicity also needs to be reevaluated in mammalian cells.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
Kim MJ, Song MH, Ji YS, Park JW, Shin YK, Kim SC, Kim G, Cho B, Park H, Ku JL, Jeong SY. Cell free supernatants of Bifidobacterium adolescentis and Bifidobacterium longum suppress the tumor growth in colorectal cancer organoid model. Sci Rep 2025; 15:935. [PMID: 39762302 PMCID: PMC11704243 DOI: 10.1038/s41598-024-83048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The probiotic gut microbiome and its metabolites are pivotal in regulating host metabolism, inflammation, and immunity. Host genetics, colonization at birth, the host lifestyle, and exposure to diseases and drugs determine microbial composition. Dysbiosis and disruption of homeostasis in the beneficial microbiome have been reported to be involved in the tumorigenesis and progression of colorectal cancer (CRC). However, the influence of bacteria-secreted metabolites on CRC growth is yet to be fully elucidated. In this study, we compared the microbial composition of CRC patients to healthy controls to identify distinct patterns of microbiota-derived metabolites in CRC patients. Metagenomic analysis demonstrated that beneficial bacteria strains; Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum decreased, while Parabacteroides distasonis and Bacteroides ovatus were more prevalent in the CRC patient group. Treatment of cancer organoid lines with microbial culture supernatants from Blautia producta, Bifidobacterium adolescentis, and Bifidobacterium longum showed remarkable inhibition of cancer growth. This study demonstrates that the bacterial metabolites depleted in CRC patients may inhibit cancer growth and highlights the effects of microbiome-derived metabolites on CRC growth.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Myoung-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Yo-Sep Ji
- Holzapfel Effective Microbes (HEM) Pharma, Handong Global University, Pohang, Gyungbuk, Republic of Korea
| | - Ji Won Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Young-Kyoung Shin
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Soon-Chan Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Gihyeon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Beomki Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Ja-Lok Ku
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seung-Yong Jeong
- Department of Surgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
26
|
Dorival J, Yuan H, Walker AS, Tang GL, Eichman BF. Yatakemycin biosynthesis requires two deoxyribonucleases for toxin self-resistance. RSC Chem Biol 2025; 6:94-105. [PMID: 39649339 PMCID: PMC11621827 DOI: 10.1039/d4cb00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024] Open
Abstract
The highly active natural product yatakemycin (YTM) from Streptomyces sp. TP-A0356 is a potent DNA damaging agent with antimicrobial and antitumor properties. The YTM biosynthesis gene cluster (ytk) contains several toxin self-resistance genes. Of these, ytkR2 encodes a DNA glycosylase that is important for YTM production and host survival by excising lethal YTM-adenine lesions from the genome, presumably initiating a base excision repair (BER) pathway. However, the genes involved in repair of the resulting apurinic/apyrimidinic (AP) site as the second BER step have not been identified. Here, we show that ytkR4 and ytkR5 are essential for YTM production and encode deoxyribonucleases related to other known DNA repair nucleases. Purified YtkR4 and YtkR5 exhibit AP endonuclease activity specific for YtkR2-generated AP sites, providing a basis for BER of the toxic AP intermediate produced from YTM-adenine excision and consistent with co-evolution of ytkR2, ytkR4, and ytkR5. YtkR4 and YtkR5 also exhibit 3'-5' exonuclease activity with differing substrate specificities. The YtkR5 exonuclease is capable of digesting through a YTM-DNA lesion and may represent an alternative repair mechanism to BER. We also show that ytkR4 and ytkR5 homologs are often clustered together in putative gene clusters related to natural product production, consistent with non-redundant roles in repair of other DNA adducts derived from genotoxic natural products.
Collapse
Affiliation(s)
- Jonathan Dorival
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
| | - Hua Yuan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Allison S Walker
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
- Department of Chemistry, Vanderbilt University Nashville Tennessee USA
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
- Department of Biochemistry, Vanderbilt University School of Medicine Nashville Tennessee USA
| |
Collapse
|
27
|
Porro N, Spínola-Lasso E, Pastore M, Caligiuri A, di Tommaso L, Marra F, Gentilini A. New Relevant Evidence in Cholangiocarcinoma Biology and Characterization. Cancers (Basel) 2024; 16:4239. [PMID: 39766138 PMCID: PMC11674836 DOI: 10.3390/cancers16244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Among solid tumors, cholangiocarcinoma (CCA) emerges as one of the most difficult to eradicate. The silent and asymptomatic nature of this tumor, particularly in its early stages, as well as the high heterogeneity at genomic, epigenetic, and molecular levels delay the diagnosis, significantly compromising the efficacy of current therapeutic options and thus contributing to a dismal prognosis. Extensive research has been conducted on the molecular pathobiology of CCA, and recent advances have been made in the classification and characterization of new molecular targets. Both targeted therapy and immunotherapy have emerged as effective and safe strategies for various types of cancers, demonstrating potential benefits in advanced CCA. Furthermore, the deeper comprehension of the cellular and molecular components in the tumor microenvironment (TME) has opened up possibilities for new innovative treatment methods. This review discusses recent evidence in the characterization and molecular biology of CCA, highlighting novel possible druggable targets.
Collapse
Affiliation(s)
- Nunzia Porro
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Elena Spínola-Lasso
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Luca di Tommaso
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.P.); (E.S.-L.); (M.P.); (A.C.); (F.M.)
| |
Collapse
|
28
|
Aspesi A, La Vecchia M, Sala G, Ghelardi E, Dianzani I. Study of Microbiota Associated to Early Tumors Can Shed Light on Colon Carcinogenesis. Int J Mol Sci 2024; 25:13308. [PMID: 39769073 PMCID: PMC11677268 DOI: 10.3390/ijms252413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
An increasingly important role for gut microbiota in the initiation and progression of colorectal cancer (CRC) has been described. Even in the early stages of transformation, i.e., colorectal adenomas, changes in gut microbiota composition have been observed, and several bacterial species, such as pks+Escherichia coli and enterotoxigenic Bacteroides fragilis, have been proposed to drive colon tumorigenesis. In recent years, several strategies have been developed to study mucosa-associated microbiota (MAM), which is more closely associated with CRC development than lumen-associated microbiota (LAM) derived from fecal samples. This review summarizes the state of the art about the oncogenic actions of gut bacteria and compares the different sampling strategies to collect intestinal microbiota (feces, biopsies, swabs, brushes, and washing aspirates). In particular, this article recapitulates the current knowledge on MAM in colorectal adenomas and serrated polyps, since studying the intestinal microbiota associated with early-stage tumors can elucidate the molecular mechanisms underpinning CRC carcinogenesis.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Gloria Sala
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa, Italy;
| | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, 28100 Novara, Italy; (A.A.); (M.L.V.); (G.S.)
| |
Collapse
|
29
|
Ma ZS, Li L. Identifications of the potential in-silico biomarkers in lung cancer tissue microbiomes. Comput Biol Med 2024; 183:109231. [PMID: 39432998 DOI: 10.1016/j.compbiomed.2024.109231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
It is postulated that the tumor tissue microbiome is one of the enabling characteristics that can either promote or suppress the ability of tumors to acquire certain hallmarks of cancer. This underscores its critical importance in carcinogenesis, cancer progression, and therapy responses. However, characterizing the tumor microbiomes is extremely challenging because of their low biomass and severe difficulties in controlling laboratory-borne contaminants, which is further aggravated by lack of comprehensively effective computational approaches to identify unique or enriched microbial species associated with cancers. Here we take advantage of a recent computational framework by Ma (2024), termed metagenome comparison (MC) framework (MCF), which can detect treatment-specific, unique or enriched OMUs (operational metagenomic unit), or US/ES (unique/enriched species) when adapted for this study. We apply the MCF to reanalyze four lung cancer tissue microbiome datasets, which include samples from Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), and their adjacent normal tissue (NT) controls. Our analysis is structured around three distinct schemes: Scheme I-separately detecting the US/ES for each of the four lung cancer microbiome datasets; Scheme II-consolidation of the four datasets followed by detection of US/ES in the combined datasets; Scheme III-construction of the union and intersection sets of US/ES derived from the results of the preceding two schemes. The generated lists of US/ES, including enriched microbial phyla, likely hold significant biomedical value for developing diagnostic and prognostic biomarkers for lung cancer risk assessment, improving the efficacy of immunotherapy, and designing novel microbiome-based therapies in lung cancer research.
Collapse
Affiliation(s)
- Zhanshan Sam Ma
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, 02138, USA; Microbiome Medicine and Advanced AI Lab, Cambridge, MA, 02138, USA; Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Lianwei Li
- Computational Biology and Medical Ecology Lab, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
30
|
Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Reigadas E, Del Campo R, Serrano S, Ruiz-Galiana J, Bouza E. Human intestinal microbiome: Role in health and disease. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:438-453. [PMID: 38978509 PMCID: PMC11578434 DOI: 10.37201/req/056.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The study of the microbiota and the microbiome, and specifically the intestinal one, has determined great interest due to the possible association of their alterations with numerous diseases. These include entities as diverse as Crohn's disease, autism, diabetes, cancer or situations as prevalent today as obesity. In view of this situation, different recommendations have been performed regarding the use of probiotics, prebiotics, and postbiotics as modulators of the microbiota and the microbiome, seeking both preventive and therapeutic effects, and faecal material transfer (FMT) is proposed as an alternative. The latter has emerged as the only proven beneficial intervention on the intestinal microbiome, specifically in the treatment of recurrent colitis associated with Clostridioides difficile (R-CDI). In the rest of the entities, the lowering of laboratory costs has favored the study of the microbiome, which is resolved by delivering reports with catalogs of microorganisms, metabolites or supposed biomarkers without consensus on their composition associated with healthy or diseased microbiota and the disease. There is still insufficient evidence in any disease for interventions on the microbiome beyond FMT and R-CDI. Multi- and multi-disciplinary work with extensive research and the application of artificial intelligence in this field may shed light on the questions raised currently. Ethical issues must also be resolved in light of possible interventions within the umbrella of personalized medicine.
Collapse
Affiliation(s)
- R Cantón
- Rafael Cantón. Servicio de Microbiología. Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria. CIBER de Enfermedades Infecciosas (CIBERINFEC). Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jiang H, Li L, Bao Y, Cao X, Ma L. Microbiota in tumors: new factor influencing cancer development. Cancer Gene Ther 2024; 31:1773-1785. [PMID: 39342031 DOI: 10.1038/s41417-024-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Tumor microbiota research is a new field in oncology. With the advancement of high-throughput sequencing, there is growing evidence that a microbial community exists within tumor tissue. How these bacteria access tumor cells varies, including through the invasion of mucous membranes, the bloodstream, or the gut-organ axis. Previous literature has shown that microbes promote the development and progression of cancer through various mechanisms, such as affecting the host's immune system, promoting inflammation, regulating metabolism, and activating invasion and transfer. The study of the tumor microbiota offers a new perspective for the diagnosis and treatment of cancer, and it holds the potential for the development of new diagnostic tools and therapies. The role of the tumor microbiota in the pathogenesis of cancer is becoming increasingly evident, and future research will continue to uncover the specific mechanisms of action of these microbes, potentially shedding light on new strategies and methods for cancer prevention and therapy. This article reviews the latest advancements in this field, including how intratumor microbes migrate, their carcinogenic mechanisms, and the characteristics of different types of tumor microbes as well as the application of relevant methods in tumor microbiota research and the clinical values of targeting tumor microbes in cancer therapy.
Collapse
Affiliation(s)
- Haixia Jiang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Li
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxia Bao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongyue Cao
- Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lifang Ma
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Hemmati MA, Monemi M, Asli S, Mohammadi S, Foroozanmehr B, Haghmorad D, Oksenych V, Eslami M. Using New Technologies to Analyze Gut Microbiota and Predict Cancer Risk. Cells 2024; 13:1987. [PMID: 39682735 PMCID: PMC11640725 DOI: 10.3390/cells13231987] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The gut microbiota significantly impacts human health, influencing metabolism, immunological responses, and disease prevention. Dysbiosis, or microbial imbalance, is linked to various diseases, including cancer. It is crucial to preserve a healthy microbiome since pathogenic bacteria, such as Escherichia coli and Fusobacterium nucleatum, can cause inflammation and cancer. These pathways can lead to the formation of tumors. Recent advancements in high-throughput sequencing, metagenomics, and machine learning have revolutionized our understanding of the role of gut microbiota in cancer risk prediction. Early detection is made easier by machine learning algorithms that improve the categorization of cancer kinds based on microbiological data. Additionally, the investigation of the microbiome has been transformed by next-generation sequencing (NGS), which has made it possible to fully profile both cultivable and non-cultivable bacteria and to understand their roles in connection with cancer. Among the uses of NGS are the detection of microbial fingerprints connected to treatment results and the investigation of metabolic pathways implicated in the development of cancer. The combination of NGS with machine learning opens up new possibilities for creating customized medicine by enabling the development of diagnostic tools and treatments that are specific to each patient's microbiome profile, even in the face of obstacles like data complexity. Multi-omics studies reveal microbial interactions, biomarkers for cancer detection, and gut microbiota's impact on cancer progression, underscoring the need for further research on microbiome-based cancer prevention and therapy.
Collapse
Affiliation(s)
- Mohammad Amin Hemmati
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.A.H.); (B.F.)
| | - Marzieh Monemi
- Department of Basic Science, Faculty of Pharmacy and Pharmaceutical Science, Tehran Medical Science, Islamic Azad University, Tehran 19395-1495, Iran;
| | - Shima Asli
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (S.A.); (S.M.)
| | - Sina Mohammadi
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (S.A.); (S.M.)
| | - Behina Foroozanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran; (M.A.H.); (B.F.)
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Majid Eslami
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
33
|
Heydecke A, Myrelid Å, Normann E, Gullsby K, Tano E, Sütterlin S. Whole-Genome Sequencing of Invasive Neonatal Escherichia coli From Uppsala County, Sweden. J Infect Dis 2024; 230:e1136-e1145. [PMID: 38869193 PMCID: PMC11565901 DOI: 10.1093/infdis/jiae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND This study sought to investigate associations between virulence factors and phylogeny in all neonatal Escherichia coli bloodstream infections from patients admitted to the neonatal intensive care unit at Uppsala University Hospital between 2005 and 2020. METHODS A total of 37 E. coli isolates from 32 neonates were whole-genome sequenced and analyzed for virulence factors related to extraintestinal E. coli; patient-related data were collected retrospectively from the medical records. RESULTS E. coli isolates that belong to phylogroup B2 were associated with mortality (odds ratio [OR], 26; P < .001), extreme prematurity with delivery before gestational week 28 (OR, 9; P < .05), and shock (OR, 9; P < .05) compared with isolates of non-B2 group. Female neonates were more often infected with isolates of phylogroup B2 E. coli compared with male neonates (OR, 7; P = .05). The identification of the genotoxin determinant clb coding for colibactin exhibited strong associations with mortality (OR, 67; P < .005), gestational age (OR, 18; P < .005), and shock (OR, 26; P < .005). DISCUSSION The study highlighted the correlation between neonatal E. coli bacteremia caused by phylogroup B2 and the role of colibactin. Results emphasize difference between male and female neonates in E. coli populations in bloodstream infections.
Collapse
Affiliation(s)
- Anna Heydecke
- Center for Research and Development Gävleborg, Uppsala University, Gävle, Sweden
- Department of Clinical Microbiology, Gävle Hospital, Gävle, Sweden
| | - Åsa Myrelid
- Pediatric Inflammation, Metabolism, and Child Health Research, Department of Women´s and Children´s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Uppsala University Hospital, Uppsala, Sweden
| | - Erik Normann
- Department of Pediatrics, Uppsala University Hospital, Uppsala, Sweden
- Perinatal, Neonatal, and Pediatric Cardiology Research, Department of Women´s and Children´s Health, Uppsala University, Uppsala, Sweden
| | - Karolina Gullsby
- Center for Research and Development Gävleborg, Uppsala University, Gävle, Sweden
- Department of Clinical Microbiology, Gävle Hospital, Gävle, Sweden
| | - Eva Tano
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanne Sütterlin
- Pediatric Inflammation, Metabolism, and Child Health Research, Department of Women´s and Children´s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
34
|
Liping Z, Sheng Y, Yinhang W, Yifei S, Jiaqun H, Xiaojian Y, Shuwen H, Jing Z. Comprehensive retrospect and future perspective on bacteriophage and cancer. Virol J 2024; 21:278. [PMID: 39501333 PMCID: PMC11539450 DOI: 10.1186/s12985-024-02553-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Researchers gradually focus on the relationship between phage and cancer. OBJECTIVE To summarize the research hotspots and trends in the field of bacteriophage and cancer. METHODS The downloaded articles were searched from the Web of Science Core Collection database from January 2008 to June 2023. Bibliometric analysis was carried out through CiteSpace, including the analysis of cooperative networks (country/region, institution, and author), co-citations of references, and key words.Visual analysis of three topics, including gut phage, phage and bacteria, and phage and tumor, was conducted. RESULTS Overall, the United States and China have the most phage-related research. In terms of gut phage, the future research directions are "gut microbiome", "database" and "microbiota". The bursting citations explored the phage-dominated viral genome to discover its diversity and individual specificity and investigated associations among bacteriome, metabolome, and virome. In terms of phage and bacteria, "lipopolysaccharide" and "microbiota" are future research directions. Future research hotspots should mainly concentrate on the further exploration and application of phage properties. As for phages and tumors, the future research directions should be "colorectal cancer", "protein" and "phage therapy". Future directions are likely to focus on the research on phages in cancer mechanisms, cancer diagnosis, and cancer treatment combined with genetic engineering techniques. CONCLUSION Phage therapy would become a hot spot and research direction of tumor and phage research, and the relationship between phage and tumor, especially colorectal cancer (CRC), is expected to be further explored.
Collapse
Affiliation(s)
- Zhong Liping
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Sheng
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Huang Jiaqun
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Xiaojian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
- ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500, Rueil-Malmaison, France.
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
35
|
Chao MR, Chang YJ, Cooke MS, Hu CW. Multi-adductomics: Advancing mass spectrometry techniques for comprehensive exposome characterization. Trends Analyt Chem 2024; 180:117900. [PMID: 39246549 PMCID: PMC11375889 DOI: 10.1016/j.trac.2024.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Adductomics, an emerging field within the 'omics sciences, focuses on the formation and prevalence of DNA, RNA, and protein adducts induced by endogenous and exogenous agents in biological systems. These modifications often result from exposure to environmental pollutants, dietary components, and xenobiotics, impacting cellular functions and potentially leading to diseases such as cancer. This review highlights advances in mass spectrometry (MS) that enhance the detection of these critical modifications and discusses current and emerging trends in adductomics, including developments in MS instrument use, screening techniques, and the study of various biomolecular modifications from mono-adducts to complex hybrid crosslinks between different types of biomolecules. The review also considers challenges, including the need for specialized MS spectra databases and multi-omics integration, while emphasizing techniques to distinguish between exogenous and endogenous modifications. The future of adductomics possesses significant potential for enhancing our understanding of health in relation to environmental exposures and precision medicine.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
36
|
Zhou Q, Zhou L, Chen X, Chen Q, Hao L. Crosstalk Between the Intratumoral Microbiota and the Tumor Microenvironment: New Frontiers in Solid Tumor Progression and Treatment. Cancer Rep (Hoboken) 2024; 7:e70063. [PMID: 39559964 PMCID: PMC11574561 DOI: 10.1002/cnr2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/06/2024] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The microbiota plays a significant role in the tumor microenvironment, and its impact on tumor development and treatment outcome cannot be overlooked. Thus, it is essential to comprehend the interactions between the microbiota and the tumor microenvironment. RECENT FINDINGS With the advent of next-generation sequencing, microbiota research has advanced significantly in recent years. The interaction between the intratumoral microbiota and the tumor microenvironment is an emerging area of research that holds great promise for understanding and treating solid tumor progression. This crosstalk between the intratumoral microbiota and the tumor microenvironment is a complex process that involves a multitude of factors, including the immune system, cellular signaling pathways, and metabolic processes. The origin of the intratumoral microbiota differs between various solid tumor, and the quantity and diversity of intratumoral microbiota also fluctuate significantly within each solid tumor. CONCLUSION The aim of this review is to provide a detailed summary of the intratumoral microbiota in various types of solid tumors. This will include an analysis of their origins, differences, and how they impact the progression of solid tumors. Furthermore, we will emphasize the significant potential that the intratumoral microbiota holds for the diagnosis and treatment of solid tumors.
Collapse
Affiliation(s)
- Qing Zhou
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Lijun Zhou
- Department of Urology, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People's Hospital of Baoan Shenzhen, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| | - Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
37
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
38
|
Chen G, Ren Q, Zhong Z, Li Q, Huang Z, Zhang C, Yuan H, Feng Z, Chen B, Wang N, Feng Y. Exploring the gut microbiome's role in colorectal cancer: diagnostic and prognostic implications. Front Immunol 2024; 15:1431747. [PMID: 39483461 PMCID: PMC11524876 DOI: 10.3389/fimmu.2024.1431747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
The intricate interplay between the gut microbiome and colorectal cancer (CRC) presents novel avenues for early diagnosis and prognosis, crucial for improving patient outcomes. This comprehensive review synthesizes current findings on the gut microbiome's contribution to CRC pathogenesis, highlighting its potential as a biomarker for non-invasive CRC screening strategies. We explore the mechanisms through which the microbiome influences CRC, including its roles in inflammation, metabolism, and immune response modulation. Furthermore, we assess the viability of microbial signatures as predictive tools for CRC prognosis, offering insights into personalized treatment approaches. Our analysis underscores the necessity for advanced metagenomic studies to elucidate the complex microbiome-CRC nexus, aiming to refine diagnostic accuracy and prognostic assessment in clinical settings. This review propels forward the understanding of the microbiome's diagnostic and prognostic capabilities, paving the way for microbiome-based interventions in CRC management.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zilan Zhong
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianfan Li
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Huang
- The First Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hongchao Yuan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zixin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
39
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
40
|
Chen H, Kim S, Ting CP. Total Synthesis of (±)-3-Thiaglutamate. Tetrahedron Lett 2024; 149:155246. [PMID: 39295961 PMCID: PMC11407705 DOI: 10.1016/j.tetlet.2024.155246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The total synthesis of (±)-3-thiaglutamate is reported. Central to our strategy is an thiol addition to an imine to form the thioaminal of the natural product. The resulting thioaminal product is then subjected to triflic acid global deprotection to produce 3-thiaglutamate as a triflate salt. This work constitutes the first total synthesis of 3-thiaglutamate and demonstrates that the hemithioaminal group in 3-thiaglutamate can be stabilized under acidic conditions.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA, 02453, United States
| | - Sohjeong Kim
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA, 02453, United States
| | - Chi P Ting
- Department of Chemistry, Brandeis University, 415 South St. Waltham, MA, 02453, United States
| |
Collapse
|
41
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
42
|
Jian C, Yinhang W, Jing Z, Zhanbo Q, Zefeng W, Shuwen H. Escherichia coli on colorectal cancer: A two-edged sword. Microb Biotechnol 2024; 17:e70029. [PMID: 39400440 PMCID: PMC11472651 DOI: 10.1111/1751-7915.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Escherichia coli (E. coli) is a ubiquitous symbiotic bacterium in the gut, and the diversity of E. coli genes determines the diversity of its functions. In this review, the two-edged sword theory was innovatively proposed. For the question 'how can we harness the ambivalent nature of E. coli to screen and treat CRC?', in terms of CRC screening, the variations in the abundance and subtypes of E. coli across different populations present an opportunity to utilise it as a biomarker, while in terms of CRC treatment, the natural beneficial effect of E. coli on CRC may be limited, and engineered E. coli, particularly certain subtypes with probiotic potential, can indeed play a significant role in CRC treatment. It seems that the favourable role of E. coli as a genetic tool lies not in its direct impact on CRC but its potential as a research platform that can be integrated with various technologies such as nanoparticles, imaging methods, and synthetic biology modification. The relationship between gut microflora and CRC remains unclear due to the complex diversity and interaction of gut microflora. Therefore, the application of E. coli should be based on the 'One Health' view and take the interactions between E. coli and other microorganisms, host, and environmental factors, as well as its own changes into account. In this paper, the two-edged sword role of E. coli in CRC is emphasised to realise the great potential of E. coli in CRC screening and treatment.
Collapse
Affiliation(s)
- Chu Jian
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wu Yinhang
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Zhuang Jing
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Qu Zhanbo
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
| | - Wang Zefeng
- Huzhou UniversityHuzhouZhejiangPeople's Republic of China
| | - Han Shuwen
- Huzhou Central HospitalAffiliated Central Hospital Huzhou UniversityHuzhouZhejiangPeople's Republic of China
- Huzhou Central HospitalFifth Affiliated Clinical Medical College of Zhejiang Chinese Medical UniversityHuzhouZhejiangPeople's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of HuzhouHuzhouZhejiangPeople's Republic of China
- ASIR (Institute ‐ Association of intelligent systems and robotics)Rueil‐MalmaisonFrance
| |
Collapse
|
43
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
44
|
Xu W, Zhang Y, Chen D, Huang D, Zhao Y, Hu W, Lin L, Liu Y, Wang S, Zeng J, Xie C, Chan H, Li Q, Chen H, Liu X, Wong SH, Yu J, Chan FKL, Chan MTV, Ng SC, Wu WKK, Zhang L. Elucidating the genotoxicity of Fusobacterium nucleatum-secreted mutagens in colorectal cancer carcinogenesis. Gut Pathog 2024; 16:50. [PMID: 39334474 PMCID: PMC11438217 DOI: 10.1186/s13099-024-00640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is one of the key tumorigenic bacteria in colorectal cancer (CRC), yet how F. nucleatum is involved in colorectal cancer carcinogenesis remains unknown. RESULTS In the present study, we carried out PathSeq analysis on RNA sequencing data from the 430 primary colon adenocarcinomas in TCGA database to assess the relationship between patients' survival and F. nucleatum abundance. Among patients with cecum and ascending colon tumors, we found that F. nucleatum transcriptome abundance is positively correlated with mutation load. We further demonstrated that patients with both high tumoral abundance of F. nucleatum and high mutation load exhibited poorer survival and DNA damage. We furthermore determined that F. nucleatum-conditioned medium (Fn. CM) induces DNA damage in both in vitro and in vivo studies. In addition, two F. nucleatum-secreted mutagens, namely DL-homocystine and allantoic acid, were identified to lead to DNA damage. CONCLUSIONS Our finding delineates the genotoxicity of F.nucleatum-secreted mutagens, which provides a basis for further work to investigate the role of F. nucleatum in the pathogenicity of CRC.
Collapse
Affiliation(s)
- Wenye Xu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yuchen Zhang
- Obstetrics Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongjiao Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Dan Huang
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yang Zhao
- Department of Pharmacology, Shenzhen People's Hospital, (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ling Lin
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yingzhi Liu
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Shilan Wang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Judeng Zeng
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Chuan Xie
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hung Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Qing Li
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Huarong Chen
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China
| | - Francis K L Chan
- Microbiota I-Center (MagIC), Hong Kong, SAR, China
- Centre for Gut Microbiota Research, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- CUHK Shenzhen Research Institute, Shenzhen, 518172, China.
| | - Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong, SAR, China.
- Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
- State Key Laboratory of Digestive Diseases, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
45
|
Zhang Y, Lin H, Liang L, Jin S, Lv J, Zhou Y, Xu F, Liu F, Feng N. Intratumoral microbiota as a novel prognostic indicator in bladder cancer. Sci Rep 2024; 14:22198. [PMID: 39333148 PMCID: PMC11437234 DOI: 10.1038/s41598-024-72918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Microbes are important components of the tumor microenvironment and have a close relationship with tumors. However, there is still a lack of research on the intratumoral microbiota in bladder cancer and its impact on the tumor immune microenvironment. In this study, we used fluorescence in situ hybridization (FISH) and observed a substantial presence of microbiota in bladder cancer tissues, with greater abundance compared to that in normal bladder tissues. Based on the BIC database, we found that the microbiome of bladder cancer is highly diverse and its structure is significantly different from that of other tumors. To investigate the relationships among the intratumoral microbiota, tumor immunity, and prognosis in bladder cancer patients, we analyzed bladder cancer-specific differentially expressed immune- and antimicrobial-related genes from the ImmPort, TISIDB, and TCGA databases. We identified 11 hub genes and constructed a prognostic risk model. Further analysis revealed differences at the family and genus levels between distinct groups. Using LEfSe analysis, we identified six hub biomarkers and developed a novel microbial-based scoring system. The scoring system allows subgrouping of bladder cancer patients, with significant differences in prognosis, immune cell infiltration, tumor mutation burden, and immune checkpoints among different groups. Further FISH and immunofluorescence co-staining experiments initially verified that the specific distribution of microorganisms and M2 macrophages in bladder cancer may be closely related to the poor prognosis of patients. In conclusion, this study revealed the characteristics of the intratumoral microbiota in bladder cancer and identified potential prognostic targets for clinical application.
Collapse
Affiliation(s)
- Yuwei Zhang
- Medical School of Nantong University, 9 Qiangyuan Road, Nantong, 226019, China
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hao Lin
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Linghui Liang
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China
| | - Shengkai Jin
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Jing Lv
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yuhua Zhou
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Feng Xu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
| | - Fengping Liu
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China.
| | - Ninghan Feng
- Medical School of Nantong University, 9 Qiangyuan Road, Nantong, 226019, China.
- Department of Urology, Jiangnan University Medical Center, No. 1800, Lihu Avenue, Wuxi, 214122, China.
- Department of Urology, Wuxi No.2 Hospital, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
46
|
Lowry E, Wang Y, Dagan T, Mitchell A. Colibactin leads to a bacteria-specific mutation pattern and self-inflicted DNA damage. Genome Res 2024; 34:1154-1164. [PMID: 39152036 PMCID: PMC11444178 DOI: 10.1101/gr.279517.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Colibactin produced primarily by Escherichia coli strains of the B2 phylogroup cross-links DNA and can promote colon cancer in human hosts. Here, we investigate the toxin's impact on colibactin producers and on bacteria cocultured with producing cells. Using genome-wide genetic screens and mutation accumulation experiments, we uncover the cellular pathways that mitigate colibactin damage and reveal the specific mutations it induces. We discover that although colibactin targets A/T-rich motifs, as observed in human colon cells, it induces a bacteria-unique mutation pattern. Based on this pattern, we predict that long-term colibactin exposure will culminate in a genomic bias in trinucleotide composition. We test this prediction by analyzing thousands of E. coli genomes and find that colibactin-producing strains indeed show the predicted skewness in trinucleotide composition. Our work reveals a bacteria-specific mutation pattern and suggests that the resistance protein encoded on the colibactin pathogenicity island is insufficient in preventing self-inflicted DNA damage.
Collapse
Affiliation(s)
- Emily Lowry
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA
| | - Yiqing Wang
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, 24118 Kiel, Germany
| | - Amir Mitchell
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
47
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
48
|
Yang X, Gan Y, Zhang Y, Liu Z, Geng J, Wang W. Microbial genotoxin-elicited host DNA mutations related to mitochondrial dysfunction, a momentous contributor for colorectal carcinogenesis. mSystems 2024; 9:e0088724. [PMID: 39189772 PMCID: PMC11406885 DOI: 10.1128/msystems.00887-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Gut microbe dysbiosis increases repetitive inflammatory responses, leading to an increase in the incidence of colorectal cancer. Recent studies have revealed that specific microbial species directly instigate mutations in the host nucleus DNA, thereby accelerating the progression of colorectal cancer. Given the well-established role of mitochondrial dysfunction in promoting colorectal cancer, it is reasonable to postulate that gut microbes may induce mitochondrial gene mutations, thereby inducing mitochondrial dysfunction. In this review, we focus on gut microbial genotoxins and their known and potential targets in mitochondrial genes. Consequently, we propose that targeted disruption of genotoxin transport pathways may effectively reduce the rate of mitochondrial gene mutations and yield substantial benefits for the prevention of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Xue Yang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuting Zhang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhongjian Liu
- Institute of Basic and Clinical Medicine, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
49
|
Dong W, Fan X, Guo Y, Wang S, Jia S, Lv N, Yuan T, Pan Y, Xue Y, Chen X, Xiong Q, Yang R, Zhao W, Zhu B. An expanded database and analytical toolkit for identifying bacterial virulence factors and their associations with chronic diseases. Nat Commun 2024; 15:8084. [PMID: 39278950 PMCID: PMC11402979 DOI: 10.1038/s41467-024-51864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Virulence factor genes (VFGs) play pivotal roles in bacterial infections and have been identified within the human gut microbiota. However, their involvement in chronic diseases remains poorly understood. Here, we establish an expanded VFG database (VFDB 2.0) consisting of 62,332 nonredundant orthologues and alleles of VFGs using species-specific average nucleotide identity ( https://github.com/Wanting-Dong/MetaVF_toolkit/tree/main/databases ). We further develop the MetaVF toolkit, facilitating the precise identification of pathobiont-carried VFGs at the species level. A thorough characterization of VFGs for 5452 commensal isolates from healthy individuals reveals that only 11 of 301 species harbour these factors. Further analyses of VFGs within the gut microbiomes of nine chronic diseases reveal both common and disease-specific VFG features. Notably, in type 2 diabetes patients, long HiFi sequencing confirms that shared VF features are carried by pathobiont strains of Escherichia coli and Klebsiella pneumoniae. These findings underscore the critical importance of identifying and understanding VFGs in microbiome-associated diseases.
Collapse
Affiliation(s)
- Wanting Dong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyue Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaqiong Guo
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Siyi Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulei Jia
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Yuan
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yuanlong Pan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Xiong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| | - Weigang Zhao
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China.
- Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing, 100101, China.
| |
Collapse
|
50
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|