1
|
Bahadur J, Sharma SK, Kancharlapalli S, Mor J, Armstrong J, Sen D. Competitive Host-Guest and Guest-Guest Interaction Dependent Flexibility of Crystal-Size-Engineered ZIF-8: An Inelastic Neutron Scattering Study. J Phys Chem Lett 2025:5496-5505. [PMID: 40424089 DOI: 10.1021/acs.jpclett.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Metal-organic frameworks (MOFs) exhibit remarkable structural flexibility, influenced by factors such as crystal size and guest molecule interactions. Here, we investigate the crystal-size-dependent flexibility of ZIF-8 by using inelastic neutron scattering (INS). Our study provides direct experimental evidence of reduced flexibility in small ZIF-8 crystals, underscoring the importance of crystal-size-engineering in modulating MOF properties. The enhanced stiffness observed in smaller ZIF-8 crystals can be attributed to the reduction in the unit cell size, which leads to increased rotational hindrance of the framework. While gas-adsorption-induced flexibility in MOFs is widely reported, the influence of competitive host-guest and guest-guest interactions on framework flexibility remains poorly understood. Through INS experiments, we uncovered a nonmonotonic flexibility behavior in nanosized ZIF-8 upon CO2 exposure, indicating intricate molecular dynamics. We observed a hindrance of methyl rotation (40 cm-1) at low CO2 dosing, attributed to host-guest interactions, followed by a resurgence at higher dosing levels, suggesting enhanced guest-guest interactions. Density functional theory calculations and Grand Canonical Monte Carlo simulations provided mechanistic insights, revealing an enhancement in guest-guest interaction energy and a reduction in host-guest interaction energy with dosing. Phonon calculations for both pure and CO2-adsorbed ZIF-8 were performed by using density functional perturbation theory. This approach allowed for a detailed analysis of vibrational properties and the impact of CO2 adsorption on the framework dynamics. In the minimum energy structure, CO2 was found to adsorb near the cavity opening, where it can interact with three methyl groups through its oxygen atom. The INS and DFT data confirmed that the suppressed mode at ∼40 cm-1 in INS spectra at low CO2 dosing in nanosized ZIF-8-s was caused by blocking of methyl rotation due to its strong affinity for the CO2 molecule. Our findings shed light on the complex interplay between crystal size, guest molecule interactions, and framework flexibility in MOFs, offering valuable insights in designing tailored porous materials for different applications.
Collapse
Affiliation(s)
- Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Sandeep K Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Srinivasu Kancharlapalli
- Chemsity Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Jaideep Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Jeff Armstrong
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX110QX, U.K
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Wang J, Ren Y, Wang Y, Li Z, Song Z, Zhao Q, Zhao M, Liu H, Ma H, Wang J, Dong Y, Li Y, He G, Jiang Z. Sub-Minute Fabrication of Metal Organic Framework Membranes via Additive-Accelerated Electrodeposition. Angew Chem Int Ed Engl 2025; 64:e202502862. [PMID: 40016155 DOI: 10.1002/anie.202502862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Efficient fabrication of metal organic framework (MOF) membranes is important for their broad applications in molecular separations. However, current approaches for MOF membrane fabrication are usually time-consuming due to the slow, random nucleation and crystal growth, particularly the lack of in-situ defect healing ability. Here, we report an additive-accelerated electrodeposition method, which allows ultrafast fabrication of MOF membranes through the synergy of electric field and catecholamine additives. The strong electric field facilitates the directed nucleation of MOF on the substrates while the multifunctional additives accelerate the MOF crystallization, growth and grain-boundary defect healing. Consequently, we fabricate well-intergrown, uniform MOF (ZIF-8) membranes with an ultrathin thickness of ∼180 nm in 30 s, which is the most rapid fabrication of MOF membranes till now. The membranes exhibit superior C3H6/C3H8 separation performance with a C3H6 permeance of 145 GPU and a C3H6/C3H8 separation factor of 151, as well as good stability at high pressure of 7 bar, and the ultrafast membrane fabrication can be achieved on commercial ceramic substrates, exhibiting the potential for practical applications. This work may establish a platform for fast and controllable fabrication of MOF membranes as well as many other membranes based on metal-coordination chemistry.
Collapse
Affiliation(s)
- Jianyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yifan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhenyang Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Ziheng Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Quan Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Mingang Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Heyang Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Hanze Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Jinyue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yuao Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
3
|
Liu X, Wei T, Englhard J, Barr M, Hirsch A, Bachmann J. Chemical Vapor Deposition Strategy of Fe-N-C Nanotubes for the Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413035. [PMID: 40231576 PMCID: PMC12120779 DOI: 10.1002/advs.202413035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/22/2025] [Indexed: 04/16/2025]
Abstract
The conversion of metal-nitrogen-carbon (M-N-C) nanoparticles derived from conventional metal-organic frameworks (MOFs) into self-supporting and well-defined metal-nitrogen-carbon (M-N-C) superstructures is essential for various functional applications but remains a significant challenge. In this study, a versatile chemical vapor deposition (CVD) strategy is developed for solvent-free synthesis of self-supporting carbonaceous nanotubes doped with metal and nitrogen (MNCT). The stable carbonaceous nanotubes doped with Fe and N (FeNCT) fabricated here exhibit excellent electrocatalytic performances for the oxygen evolution reaction (OER) and outperform the carbonaceous film doped with Fe and N grown on carbon foil directly (FeNC/CF), which demonstrates the advantages of the superstructure of FeNCT. This strategy also provides a way to tailor the metal-nitrogen-carbon nanotubes (MNCT) catalyst according to the feature of the reactor and exhibits many advantages, such as wide applicability and facile scalability.
Collapse
Affiliation(s)
- Xin Liu
- Chemistry of Thin Film MaterialsSection Materials ChemistryDepartment of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)IZNF, Cauerstr. 391058ErlangenGermany
| | - Tao Wei
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐Nürnberg (FAU)Nikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Jonas Englhard
- Chemistry of Thin Film MaterialsSection Materials ChemistryDepartment of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)IZNF, Cauerstr. 391058ErlangenGermany
| | - Maïssa Barr
- Chemistry of Thin Film MaterialsSection Materials ChemistryDepartment of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)IZNF, Cauerstr. 391058ErlangenGermany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP)Friedrich‐Alexander University of Erlangen‐Nürnberg (FAU)Nikolaus‐Fiebiger‐Strasse 1091058ErlangenGermany
| | - Julien Bachmann
- Chemistry of Thin Film MaterialsSection Materials ChemistryDepartment of Chemistry and PharmacyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)IZNF, Cauerstr. 391058ErlangenGermany
| |
Collapse
|
4
|
Lee S, Jeong H, Jung S, Kim Y, Cho E, Nam J, ChangMo Yang D, Shin DY, Lee JH, Oh H, Choe W. Data-Driven Search Algorithm for Discovery of Synthesizable Zeolitic Imidazolate Frameworks. JACS AU 2025; 5:1460-1470. [PMID: 40151239 PMCID: PMC11938011 DOI: 10.1021/jacsau.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Zeolitic imidazolate frameworks (ZIFs), metal-organic analogues of zeolites, hold great potential for carbon-neutral applications due to their exceptional stability and porosity. However, ZIF discovery has been hindered by the limited topologies resulting from a mismatch between numerous predicted and few synthesized zeolitic networks. To address this, we propose a data-driven search algorithm using structural descriptors of known materials as a screening tool. From over 4 million zeolite structures, we identified potential ZIF candidates based on O-T-O angle differences, vertex symbols, and T-O-T angles. Energy calculations facilitated the ranking of ZIFs by their synthesizability, leading to the successful synthesis of three ZIFs with two novel topologies: UZIF-31 (uft1) and UZIF-32, -33 (uft2). Notably, UZIF-33 exhibited remarkable CO2 selective adsorption. This study highlights the synergistic potential of combining structural predictions with chemical intuition to advance material discovery.
Collapse
Affiliation(s)
- Soochan Lee
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Hyein Jeong
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Sungyeop Jung
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Yeongjin Kim
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Eunchan Cho
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Joohan Nam
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - D. ChangMo Yang
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Dong Yun Shin
- Computational
Science Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung-Hoon Lee
- Computational
Science Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic
of Korea
| | - Hyunchul Oh
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Wonyoung Choe
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Graduate
School of Carbon Neutrality, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Graduate
School of Artificial Intelligence, Ulsan
National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department
of Mechanical Engineering, Ulsan National
Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Yu K, Ji T, Wu M, Chen S, Gao Y, Yan J, Meng S, Hu W, Fan X, Dong W, Yin J, Liu Y. Supercritical Ethane Processing of ZIF-8 Membranes towards Pressure-Resistant C 3H 6/C 3H 8 Separation. Angew Chem Int Ed Engl 2025; 64:e202422709. [PMID: 39673716 DOI: 10.1002/anie.202422709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
ZIF-8 membranes have shown great promise in industrial-scale C3H6/C3H8 separation. Nonetheless, sustainable preparation of pressure-resistant ZIF-8 membranes remains a grand challenge. In this study, we pioneered the use of supercritical ethane (scC2H6) as reaction medium for preparing pressure-resistant ZIF-8 membranes. Membrane growth in neutral organic environment was proven to have less disturbance to structure integrity compared with supercritical CO2 (scCO2). Gas permeation results indicated that obtained ZIF-8 membrane exhibited an ideal C3H6/C3H8 selectivity of 172.1 with C3H6 permeance of 5.9×10-9 mol ⋅ m-2 ⋅ s-1 ⋅ Pa-1. Of particular note, the membrane maintained stable C3H6/C3H8 selectivity of ~150 with C3H6 flux of ~1.6×10-3 mol ⋅ m-2 ⋅ s-1 at operation pressure of 6 bar, which was significantly different from ZIF-8 membranes obtained from scCO2 reaction medium. Through combining with advantages of zero pollutant discharge and full ligand recovery, our protocol holds great promise in sustainable preparation of pressure-resistant ZIF-8 membranes towards practical application in high-purity C3H6 production.
Collapse
Affiliation(s)
- Kunpeng Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Mingming Wu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Shengyan Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Wenjing Hu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Xiao Fan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Wenwen Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
| | - Jianzhong Yin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road NO. 2, Ganjingzi District, Dalian, 116024, China
- Dalian Key Laboratory of Membrane Materials and Membrane, Processes, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- Dalian Key Laboratory of Membrane Materials and Membrane, Processes, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Ali H, Orooji Y, Alzahrani AYA, Hassan HMA, Ajmal Z, Yue D, Hayat A. Advanced Porous Aromatic Frameworks: A Comprehensive Overview of Emerging Functional Strategies and Potential Applications. ACS NANO 2025; 19:7482-7545. [PMID: 39965777 DOI: 10.1021/acsnano.4c16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon-carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon-carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.
Collapse
Affiliation(s)
- Hamid Ali
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Resources and Environment, Shensi Lab, University of Electronic Science and Technology of China, Chengdu, 611731,China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, 72345, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Asif Hayat
- Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
7
|
Mahdavi H, Olorunyomi JF, Eden NT, Doherty CM, Acharya D, Smith SJ, Mulet X, Hill MR. Design and Development of a Self-Supporting ZIF-62 Glass MOF Membrane with Enhanced Molecular Sieving for High H 2 Separation Efficiency. ACS OMEGA 2025; 10:7441-7451. [PMID: 40028122 PMCID: PMC11865976 DOI: 10.1021/acsomega.5c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
The purpose of this study was to design and develop a self-supporting glass MOF membrane (GMM) including its design, fabrication under different heat treatment temperatures, analysis of its physical-chemical properties, and assessment of its separation performance. Glass MOFs preserve metal-ligand bonding structures similar to their crystalline counterparts, providing intrinsic gas separation properties alongside the benefits of amorphous materials, including reduced grain boundaries and ease of processing. In this work, ZIF-62 was melted and then cooled to fabricate GMMs using vitrification to enhance molecular sieving. This study systematically examines the impact of varying thermal treatment temperatures (400-475 °C) on the physical and chemical transformations of GMMs, revealing their effects on the porosity, defect formation, and molecular sieving performance through advanced characterization techniques (e.g., solid-state nuclear magnetic resonance (13C NMR), X-ray photoelectron spectroscopy (XPS), He pycnometry, and positron annihilation lifetime spectroscopy (PALS)). The optimal GMM exhibits an impressive separation performance, particularly for H2 separation. The GMM at 4 bar and 25 °C exhibited He, H2, CO2, N2, and CH4 gas permeations of 576.37, 509.23, 146.07, 3.45, and 2.28 barrer, respectively. The ideal selectivities of H2/CH4, CO2/N2, CO2/CH4, H2/N2, and H2/CO2 gas pairs were 223.47, 42.37, 64.10, 147.71, and 3.49, respectively, which significantly exceed earlier reported values for ZIF-62 membranes, demonstrating the significant potential for GMMs as high-performance molecular sieve membranes, particularly for H2 separation. This work by optimizing the vitrification process through systematic temperature control highlights GMM's ability to achieve high selectivity and permeability, positioning it as a promising candidate for industrial gas separation applications.
Collapse
Affiliation(s)
- Hamidreza Mahdavi
- Department
of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Joseph F. Olorunyomi
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Applied Chemistry
and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nathan T. Eden
- Department
of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Cara M. Doherty
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Durga Acharya
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Stefan J.D. Smith
- Department
of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Xavier Mulet
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Applied Chemistry
and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Matthew R. Hill
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Li S, Ma C, Hou J, Yu S, Chen A, Du J, Chater PA, Keeble DS, Qiao Z, Zhong C, Keen DA, Liu Y, Bennett TD. Highly porous metal-organic framework glass design and application for gas separation membranes. Nat Commun 2025; 16:1622. [PMID: 39948062 PMCID: PMC11825956 DOI: 10.1038/s41467-025-56295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Crystalline metal-organic frameworks (MOFs) exhibit enormous potential application in gas separation, thanks to their highly porous structures and precise pore size distributions. Nevertheless, the inherent limitations in mechanical stability of crystalline MOFs cause challenges in processing MOF powders into bulky structures, particularly for membrane filtrations. Melt-quenched MOF glasses boast excellent processability due to liquid-like properties. However, the melting process diminishes the inherent porosity, leading to reduced gas adsorption capacities and lower gas diffusion coefficients. In this work, we demonstrated that enhancing the porosity of MOF glasses is achievable through topological engineering on the crystalline precursors. Crystalline zeolitic imidazolate frameworks (ZIFs) with large 12-membered rings pores, including AFI and CAN topology, were synthesized by using both structure-directing agents and mixed organic ligands. The large pores are partially preserved in the melt-quenched glass as evidenced by high-pressure CO2 absorption at 3000 kPa. The agAFI-[Zn(Im)1.68(bIm)0.32] glass was then fabricated into self-supported membranes, which shows high gas separation performance, for example, CO2 permeance of 3.7 × 104 GPU with a CO2/N2 selectivity of 14.8.
Collapse
Affiliation(s)
- Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China.
| | - Chao Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Brisbane, Australia
| | - Shuwen Yu
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, Australia
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Brisbane, Australia
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Dean S Keeble
- Diamond Light Source Ltd, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire, UK
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon, UK
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Zhang L, Zheng L, Song Y, Huang J, Ning H, Wang L, Ma J, Jie K. Molecular-Squeeze Triggers Guest Desorption from Sponge-Like Macrocycle Crystals. Angew Chem Int Ed Engl 2025; 64:e202420048. [PMID: 39625827 DOI: 10.1002/anie.202420048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 12/14/2024]
Abstract
Desorption in conventional porous sorbents often employ external forces including inert gas blowing, heating, vacuum treatment to trigger guest release. We here report an unprecedented molecular-squeeze triggered guest release behavior from sponge-like macrocycle crystals. The crystals function as typical sponge to include guest molecules within their microscopic voids that are adaptively formed, thus acting as adsorbents for toluene/pyridine separations. Intriguingly, vaporized ethyl acetate (EA) molecules trigger the guest release from the crystals without entering the pores or voids of the crystals to replace the guests. Instead, they work as external forces applied directly onto the crystals themselves, ''squeezing" the materials to close the voids through supramolecular interactions between EA and macrocycles on the crystal surface and release the guest molecules. Various experimental techniques as well as molecular dynamics simulations reveal the mechanism of the molecular-squeeze induced guest release procedure. The EA-regenerated crystals can be recycled multiple times without the loss of separation performance. Compared with conventional guest release procedure, this method is manipulated in a mild condition, showing the potential in saving cost and energy.
Collapse
Affiliation(s)
- Linnan Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Lifeng Zheng
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yingying Song
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingwei Huang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing Ma
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Hu L, Lee WI, Chen K, Roy S, Fung K, Kisslinger K, Deng E, Ding Y, Ajayan PM, Nam CY, Lin H. Atomically Fine-Tuning Organic-Inorganic Carbon Molecular Sieve Membranes for Hydrogen Production. ACS NANO 2025; 19:4663-4671. [PMID: 39831883 DOI: 10.1021/acsnano.4c15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Polymeric membranes with great processability are attractive for the H2/CO2 separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H2 from CO2. Herein, we demonstrate a scalable way of carbonizing polybenzimidazole (PBI) at low temperatures, followed by vapor phase infiltration (VPI) to atomically narrow ultramicropores throughout the films, forming hybrid organic-inorganic carbon molecular sieves (CMSs). One VPI cycle (100 s) for the PBI carbonized at 500 °C remarkably increases H2/CO2 selectivity from 9.6 to 83 at 100 °C, surpassing Robeson's upper bound. The CMS demonstrates a stable H2/CO2 separation performance when challenged with simulated syngas streams and can be fabricated into thin-film composite membranes, outperforming state-of-the-art membranes. The scalable approach can be ubiquitous to molecularly fine-tune ultramicropores of leading polymeric membranes to further improve their size-sieving ability and thus separation efficiency.
Collapse
Affiliation(s)
- Leiqing Hu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Won-Il Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Kai Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Kieran Fung
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Erda Deng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yifu Ding
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Chang-Yong Nam
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Xiao Y, Yu Y, Huang X, Chen D, Li W. Directly Gel-Thermal Processing of Linker-Mixed Crystal-Glass Composite Membranes for Sorption-Preferential Gas Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413942. [PMID: 39664014 PMCID: PMC11791987 DOI: 10.1002/advs.202413942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Indexed: 12/13/2024]
Abstract
Membrane processes are promising for energy-saving industrial applications. However, efficient separation for some valuable gas mixtures with similar characteristics, such as CH4/N2 and O2/N2, remains extremely challenging. Metal-organic framework (MOF) membranes have been attracting intensive attention for gas sieving, but it is difficult to manufacture MOF membranes in scalability and precisely tune their transport property. In this study, Gel-thermal processing of linker-mixed MOF crystal-glass composite membranes is reported directly, with the mechanism of adjusting metal-linker bond strengths and angles to disrupt long-range periodicity of MOFs and promote glass phase formation, for sharply sorption-preferential gas separation. This strategy can be realized by using a simple, solvent/precursor-less, and cost-effective gel-thermal approach with two steps of gel coating and thermal conversion, thereby constructing crystal-glass composite membranes in a controllable, processable, versatile, and environmentally friendly route. Moreover, the mixed linkers enable preferential gas affinities and the ultramicroporous glasses can eliminate any membrane defects. The membranes exhibit outstanding gas separation performance for the challenging systems of CH4/N2 and O2/N2, with mixture selectivities up to 9.3 and 9.6, respectively, far exceeding those of polymer, MOF, and mixed-matrix membranes. The study provides an available route for architecting high-performance membranes for gas separations.
Collapse
Affiliation(s)
- Yihao Xiao
- College of Environment and ClimateJinan UniversityNo. 855, East Xingye Avenue, Panyu DistrictGuangzhou511443China
| | - Yanqing Yu
- College of Environment and ClimateJinan UniversityNo. 855, East Xingye Avenue, Panyu DistrictGuangzhou511443China
| | - Xinxi Huang
- College of Environment and ClimateJinan UniversityNo. 855, East Xingye Avenue, Panyu DistrictGuangzhou511443China
| | - Da Chen
- College of Environment and ClimateJinan UniversityNo. 855, East Xingye Avenue, Panyu DistrictGuangzhou511443China
| | - Wanbin Li
- College of Environment and ClimateJinan UniversityNo. 855, East Xingye Avenue, Panyu DistrictGuangzhou511443China
| |
Collapse
|
12
|
Lee DT, Ahmad M, Corkery P, Anibal Boscoboinik J, Fairbrother DH, Tsapatsis M. Modification of ZIF-8 Membranes for Gas Separation Using X-ray Radiation. Angew Chem Int Ed Engl 2025; 64:e202419532. [PMID: 39479993 DOI: 10.1002/anie.202419532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
We report an X-ray radiation-induced modification of the structure and gas permeation behavior of ZIF-8 membranes. With 300 min irradiation time, CO2 permeance decreases by only 9 %, while N2 and CH4 permeances reduce by 75 and 65 %, respectively, leading to 3.7- and 2.6-fold enhancements in ideal selectivity for CO2/N2 and CO2/CH4.
Collapse
Affiliation(s)
- Dennis T Lee
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mueed Ahmad
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - J Anibal Boscoboinik
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11790, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - D Howard Fairbrother
- Department of Chemistry, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University 3400 N. Charles Street, Baltimore, MD 21218, USA
- Applied Physics Laboratory, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, MD 20723, USA
| |
Collapse
|
13
|
Guan J, Du J, Sun Q, He W, Ma J, Hassan SUI, Wu J, Zhang H, Zhang S, Liu J. Metal-organic cages improving microporosity in polymeric membrane for superior CO 2 capture. SCIENCE ADVANCES 2025; 11:eads0583. [PMID: 39841833 PMCID: PMC11753381 DOI: 10.1126/sciadv.ads0583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.
Collapse
Affiliation(s)
- Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shabi UI Hassan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
14
|
Zhang Z, Zhu H, Jin H, Cao Y, Fang W, Zhang Z, Ma Q, Choi J, Li Y. Restricting Linker Rotation in Nanocages of ZIF-8 Membranes using Crown Ether "Molecular Locks" for Enhanced Propylene/Propane Separation. Angew Chem Int Ed Engl 2025; 64:e202415023. [PMID: 39324847 DOI: 10.1002/anie.202415023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
ZIF-8 membranes have long been prized for their exceptional C3H6/C3H8 separation performance. On the other hand, ZIF-8 has structural flexibility, where the external pressure triggers channel expansion, potentially deteriorating the molecular sieving ability. Here, we demonstrate a reliable strategy to fine-tune the flexible pore structure of ZIF-8 by embedding crown ether within a ZIF-8 membrane. Benzo-15-crown-5 (15C5) was selected as the cavity occupant and perfectly confined in the sodalite (SOD) cage of ZIF-8. The 15C5 molecules, which have a size comparable to the nanocage, impose a spatial constraint on linker rotation, enabling the phase transition to a rigid structure in the flexible ZIF-8. The corresponding 15C5@ZIF-8 membranes achieve an ultrahigh C3H6/C3H8 selectivity of 220, outperforming that of most membranes. Unlike their flexible counterparts, the resulting membranes manifest a positive increase in the C3H6/C3H8 separation factor with elevated pressure, securing a record-high C3H6/C3H8 separation factor of 331 under 7 bar. More importantly, extraordinary separation stability was demonstrated with continuous measurement, which is highly desirable for practical applications.
Collapse
Affiliation(s)
- Zinan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Han Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hua Jin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yi Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wei Fang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
15
|
Song S, Liu Q, Swathilakshmi S, Chi HY, Zhou Z, Goswami R, Chernyshov D, Agrawal KV. High-performance H 2/CO 2 separation from 4-nm-thick oriented Zn 2(benzimidazole) 4 films. SCIENCE ADVANCES 2024; 10:eads6315. [PMID: 39671495 PMCID: PMC11641003 DOI: 10.1126/sciadv.ads6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
High-performance membrane-based H2/CO2 separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H2/CO2 selectivity under pressurized conditions due to defective transport pathways. Here, we introduce a simple, eco-friendly synthesis of ultrathin, intergrown Zn2(benzimidazole)4 films, as thin as 4 nm. These films are prepared at room temperature using water as the solvent, with a synthesis time of just 10 minutes. By using ultradilute precursor solutions, nucleation is delayed, promoting rapid in-plane growth on a smooth graphene substrate and eliminating defects. These membranes exhibit excellent H2 permselectivity under pressurized conditions. The combination of rapid, green synthesis and high-performance separation makes these membranes highly attractive for precombustion applications.
Collapse
Affiliation(s)
- Shuqing Song
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Qi Liu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - S. Swathilakshmi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Zongyao Zhou
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Ranadip Goswami
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Dmitry Chernyshov
- Swiss-Norwegian Beam Lines at European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| |
Collapse
|
16
|
Ebrahim MZA, Rahmanian V, Abdelmigeed M, Pirzada T, Khan SA. Designing a MOF-functionalized Nanofibrous Aerogel via Vapor-Phase Synthesis. SMALL METHODS 2024; 8:e2400596. [PMID: 38822424 PMCID: PMC11671861 DOI: 10.1002/smtd.202400596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/03/2024]
Abstract
Designing 3D mechanically robust and high-surface-area substrates for uniform and high-density deposition of metal-organic frameworks (MOFs) provide a promising strategy to enhance surface accessibility and application of these highly functional materials. Nanofibrous aerogel (NFA) with its highly porous self-supported structure composed of interconnected nanofibrous network offers an ideal platform in this regard. Herein, a facile one-pot strategy is introduced, which utilizes direct deposition of MOF on the nanofibrous surface of the NFAs. NFAs are synthesized using electrospun polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) polymer nanofibers containing zinc acetate (Zn(Ac)2), which are subjected to freeze drying and thermal treatment. The latter converts Zn(Ac)2 to zinc oxide (ZnO), providing the sites for MOF growth while also adding mechanical integrity to the NFAs through cyclization of the PAN. Exposure of the NFA to the vapor-phase of organic ligand, 2-methylimidazole (2-MeIm) enables in situ growth of zeolitic imidazolate framework-8 (ZIF-8) MOF on the NFA. ZIF-8 loading on the NFAs is further improved by more than tenfold by synthesizing ZnO nanorods/protrusions on the nanofibers, which enables more sites for MOF growth. These findings underscore a significant advancement in designing MOF-based hybrid aerogels, offering a streamlined approach for their use in diverse applications, from catalysis to sensing and water purification.
Collapse
Affiliation(s)
| | - Vahid Rahmanian
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Mai Abdelmigeed
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Tahira Pirzada
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| | - Saad A. Khan
- Department of Chemical & Biomolecular EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
17
|
Shang R, Deng Y, Bao W, Cai X, Cao L, Liu Y, Cong F, Zhang H, Wang X, Yan X, Xie J. Diffusion Behavior and Kinetics for the Vapor Phase Infiltration of Trimethylaluminum in Poly(ethylene oxide): An In Situ Quartz Crystal Microgravimetry Study. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64907-64915. [PMID: 39535500 DOI: 10.1021/acsami.4c16107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vapor phase infiltration (VPI) facilitates the incorporation of inorganic components into organic polymers, emerging as an effective technique for fabricating organic-inorganic hybrid materials. However, the complexity of diffusion behavior during the VPI process presents challenges in studying diffusion kinetics, particularly for highly reactive precursor-polymer systems such as trimethylaluminum (TMA) and poly(ethylene oxide) (PEO). In this study, we investigate the VPI process of TMA in PEO using in situ quartz crystal microgravimetry (QCM), which enables measurement of diffusion behavior and kinetics with high precision due to its high temporal resolution. Our results indicate that the VPI process consists of two main regions: a rapid diffusion process, corresponding to the initial penetration of the precursor into the film, followed by a slower relaxation process, attributed to the ongoing chemical reaction. The equivalent diffusion coefficient (De) was estimated to be on the order of 10-9 cm2/s and decreased with increasing aluminum content. Using energy application as a proof-of-concept, when optimized, VPI-modified PEO films were successfully utilized as solid polymer electrolytes (SPEs) for lithium metal batteries (LMBs), showcasing superior performance in mitigating lithium dendrite growth. This study offers valuable insights into the VPI process for PEO-TMA systems and provides guidance for optimizing VPI conditions to enhance the performance of advanced materials.
Collapse
Affiliation(s)
- Rongliang Shang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yingdong Deng
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Wenda Bao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xincan Cai
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Lei Cao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Yixiao Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Fufei Cong
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Haoye Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xingzhi Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao Yan
- Zhijiang College, Zhejiang University of Technology, Shaoxing, 312030, China
| | - Jin Xie
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
18
|
Bi W, Han L, Liu Y, Li L. The Key to MOF Membrane Fabrication and Application: the Trade-off between Crystallization and Film Formation. Chemistry 2024; 30:e202401868. [PMID: 39136607 DOI: 10.1002/chem.202401868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), owing the merits of ordered and tailored channel structures in the burgeoning crystalline porous materials, have demonstrated significant promise in construction of high-performance separation membranes. However, precisely because this crystal structure with strong molecular interaction in their lattice provides robust structural integrity and resistance to chemical and thermal degradation, crystalline MOFs typically exhibit insolubility, infusibility, stiffness and brittleness, and therefore their membrane-processing properties are far inferior to the flexible amorphous polymers and hinder their subsequent storage, transportation, and utilization. Hence, focusing on film-formation and crystallization is the foundation for exploring the fabrication and application of MOF membranes. In this review, the film-forming properties of crystalline MOFs are fundamentally analyzed from their inherent characteristics and compared with those of amorphous polymers, influencing factors of polycrystalline MOF membrane formation are summarized, the trade-off relationship between crystallization and membrane formation is discussed, and the strategy solving the film formation of crystalline MOFs in recent years are systematically reviewed, in anticipation of realizing the goal of preparing crystalline membranes with optimized processability and excellent performance.
Collapse
Affiliation(s)
- Wendie Bi
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Linxuan Han
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yutao Liu
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Libo Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030024, China
| |
Collapse
|
19
|
Dong X, Shao Y, Ping H, Tong X, Wu Y, Zhang Y, Wang M, Zheng Z, Zhao J, Wang J, Guo Z, Zhuang L, Xu Y. Effect of Metal Oxide Deposition on the Sensitivity and Resolution of E-Beam Photoresist. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39353141 DOI: 10.1021/acsami.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Organic-inorganic hybrid resists offer a solution to the issue of low sensitivity in organic photoresists like poly(methyl methacrylate) (PMMA). In this study, an organic-inorganic hybrid resist (PMMA-Al2O3) with high sensitivity and resolution was prepared by depositing metal oxides into PMMA using sequential infiltration synthesis (SIS). PMMA-Al2O3 was prepared by precisely controlling the number of SIS cycles (<23) in various atomic layer deposition (ALD) processes to facilitate the growth of metal oxides within PMMA pores. The impact of different metal oxide contents and distributions on the sensitivity and resolution of electron beam exposure was investigated. Numerical simulations of the deposit formation within the PMMA pores were performed by solving the pore-scale ALD governing equations fed by the reactor-scale boundary conditions. The gradual pore constriction with SIS cycles was predicted and validated by the experimental charaterizations. The results demonstrated that PMMA-Al2O3 was prepared using 20 SIS cycles, which corresponds to the numerically predicted occurrence of the pore blockage at the upper region of the PMMA layer, exhibiting optimal electron beam (e-beam) resolution while enabling line exposure with a width of 50 nm. While the corresponding sensitivity was lower than those of the samples prepared using 5 and 10 SIS cycles, the degradation of the PMMA structure was affected under exposure. The pattern transfer results showed that the line width was well retained for 20 cycles of deposition because of the high etching resistance of Al2O3. This research is expected to provide an effective approach to developing next-generation high-performance photoresists.
Collapse
Affiliation(s)
- Xianguo Dong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Shanghai 200237, P. R. China
| | - Yu'ang Shao
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huihui Ping
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaojing Tong
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue Wu
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yunfan Zhang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mingxi Wang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiyuan Zheng
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Jie Wang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Shanghai 200237, P. R. China
| | - Liwei Zhuang
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yisheng Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Shanghai 200237, P. R. China
- Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
20
|
Wang T, Lin Z, Mazaheri O, Chen J, Xu W, Pan S, Kim CJ, Zhou J, Richardson JJ, Caruso F. Crystalline Metal-Organic Framework Coatings Engineered via Metal-Phenolic Network Interfaces. Angew Chem Int Ed Engl 2024; 63:e202410043. [PMID: 38922736 DOI: 10.1002/anie.202410043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Crystalline metal-organic frameworks (MOFs) have garnered extensive attention owing to their highly ordered porous structure and physicochemical properties. However, their practical application often requires their integration with various substrates, which is challenging because of their weakly adhesive nature and the diversity of substrates that exhibit different properties. Herein, we report the use of amorphous metal-phenolic network coatings to facilitate the growth of crystalline MOF coatings on various particle and planar substrates. Crystalline MOFs with different metal ions and morphologies were successfully deposited on substrates (13 types) of varying sizes, shapes, and surface chemistries. Furthermore, the physicochemical properties of the coated crystalline MOFs (e.g., composition, thickness) could be tuned using different synthesis conditions. The engineered MOF-coated membranes demonstrated excellent liquid and gas separation performance, exhibiting a high H2 permeance of 63200 GPU and a H2/CH4 selectivity of 10.19, likely attributable to the thin nature of the coating (~180 nm). Considering the vast array of MOFs available (>90,000) and the diversity of substrates, this work is expected to pave the way for creating a wide range of MOF composites and coatings with potential applications in diverse fields.
Collapse
Affiliation(s)
- Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
21
|
Xing Q, Xu X, Li H, Cui Z, Chu B, Xie N, Wang Z, Bai P, Guo X, Lyu J. Fabrication Methods of Continuous Pure Metal-Organic Framework Membranes and Films: A Review. Molecules 2024; 29:3885. [PMID: 39202964 PMCID: PMC11356928 DOI: 10.3390/molecules29163885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) have drawn intensive attention as a class of highly porous, crystalline materials with significant potential in various applications due to their tunable porosity, large internal surface areas, and high crystallinity. This paper comprehensively reviews the fabrication methods of pure MOF membranes and films, including in situ solvothermal synthesis, secondary growth, electrochemical deposition, counter diffusion growth, liquid phase epitaxy and solvent-free synthesis in the category of different MOF families with specific metal species, including Zn-based, Cu-based, Zr-based, Al-based, Ni-based, and Ti-based MOFs.
Collapse
Affiliation(s)
- Qinglei Xing
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Xiangyou Xu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Haoqian Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Zheng Cui
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Binrui Chu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Nihao Xie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Ziying Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
- Department of Catalytic Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Peng Bai
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Department of Catalytic Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianghai Guo
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiafei Lyu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Zheng J, Chen L, Kuang Y, Ouyang G. Universal Strategy for Metal-Organic Framework Growth: From Cascading-Functional Films to MOF-on-MOFs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307976. [PMID: 38462955 DOI: 10.1002/smll.202307976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Transformation of metal-organic framework (MOF) particles into thin films is urgently needed for the persistent development of well-applicable devices, and recently emerging functional-integrated hybrid frameworks. Although some flexible polymers and exclusive modification approaches have been proposed, the additive-free and widely applicable strategy has not been reported, hampering the deep investigation of the structure-performance relationship. A universal strategy for the in situ growth of large-area and continuous MOF films with controllable microstructures is introduced, through the modification of multi-scale and multi-structure substrates with poly(4-vinylpyridine) as the anchor to capture metal ions via Coulomb attraction. Based on the clarified structure-adsorption-separation mechanisms, the customized devices fabricated by in situ growth can achieve highly selective adsorption and excellently synergetic separation of various industrially relevant isomers. In addition, this strategy is also feasible for the construction of MOF-on-MOFs with varied lattice parameters. This strategy is easy to implement and will be widely applicable to the surface growth of diverse MOFs on desired substrates, and provides a new concept for developing hybrid MOFs integrating with customized functionalities.
Collapse
Affiliation(s)
- Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Luyi Chen
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University, Guangzhou, 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| |
Collapse
|
23
|
Xie S, Tan X, Xue Z, Geysens P, Pan H, Guo W, Zhou Z, Zhang X, Vankelecom IFJ, Fransaer J. Cathodic Deposition-Assisted Synthesis of Thin Glass MOF Films for High-Performance Gas Separations. Angew Chem Int Ed Engl 2024; 63:e202401817. [PMID: 38652758 DOI: 10.1002/anie.202401817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Glass metal-organic framework (MOF) films can be fabricated from their crystalline counterparts through a melt-quenching process and are prospective candidates for gas separation because of the elimination of the grain boundaries in crystalline MOF films. However, current techniques are limited to producing glass MOF films with a thickness of tens of micrometers, which leads to ultralow gas permeances. Here, we report a novel cathodic deposition-assisted synthesis of glass ZIF-62 films with a thickness as low as ~1 μm. Electrochemical analyses and deposition experiments suggest that the cathodic deposition can lead to pure crystalline ZIF-62 films with a controllable thickness of ~2 μm to ~15 μm. Accordingly, glass ZIF-62 films with a thickness of ~1 μm to ~10 μm can be obtained after a thermal treatment. The fabricated defect-free glass ZIF-62 film measuring 2 μm in thickness shows a remarkable CO2/N2 and CO2/CH4 selectivity of 31.4 and 33.4, respectively, with a CO2 permeance which is over 30 times higher than the best-performing glass ZIF-62 films in literature.
Collapse
Affiliation(s)
- Sijie Xie
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001, Heverlee, Belgium
| | - Xiaoyu Tan
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Zhenhong Xue
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001, Heverlee, Belgium
| | - Pieter Geysens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P.O. box 2404, B-3001, Leuven, Belgium
| | - Hui Pan
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001, Heverlee, Belgium
| | - Wei Guo
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001, Heverlee, Belgium
| | - Zhenyu Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, P.R. China
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001, Heverlee, Belgium
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, P.R. China
| | - Ivo F J Vankelecom
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, B-3001, Heverlee, Belgium
| |
Collapse
|
24
|
Arshad N, Batool SR, Razzaq S, Arshad M, Rasheed A, Ashraf M, Nawab Y, Nazeer MA. Recent advancements in polyurethane-based membranes for gas separation. ENVIRONMENTAL RESEARCH 2024; 252:118953. [PMID: 38636643 DOI: 10.1016/j.envres.2024.118953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Collapse
Affiliation(s)
- Noureen Arshad
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Liberty Mills Limited, Karachi, 75700, Pakistan.
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Sadia Razzaq
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Mubeen Arshad
- Department of Prosthodontics, Baqai Medical University, Karachi, 74600, Pakistan
| | - Abher Rasheed
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan
| | - Munir Ashraf
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Functional Textile Research Group, National Textile University, Faisalabad, 37610, Pakistan
| | - Yasir Nawab
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; National Center for Composite Materials, National Textile University, Faisalabad, 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- School of Engineering and Technology, National Textile University, Faisalabad, 37610, Pakistan; Biomaterials and Tissue Engineering Research Laboratory, National Textile University, Faisalabad, 37610, Pakistan.
| |
Collapse
|
25
|
Huang X, Wu K, Li W. Biomimetic nanoporous oxygenation membranes with high hemocompatibility and fast gas transport property. J Colloid Interface Sci 2024; 674:370-378. [PMID: 38941931 DOI: 10.1016/j.jcis.2024.06.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Membrane technology holds great potential for separation applications and also finds critical needs in biomedical fields, such as blood oxygenation. However, the bottlenecks in gas permeation, plasma leakage, and especially hemocompatibility hamper the development of membrane oxygenation. It remains extremely challenging to design efficient membranes and elucidate underlying principles. In this study, we report biomimetic decoration of asymmetric nanoporous membranes by ultrathin FeIII-tannic acid metal-ligand networks to realize fast gas exchange with on plasma leakage and substantially enhance hemocompatibility. Because the intrinsic nanopores facilitate gas permeability and the FeIII-catechol layers enable superior hydrophilicity and electronegativity to original surfaces, the modified membranes exhibit high transport properties for gases and great resistances to protein adsorption, platelet activation, coagulation, thrombosis, and hemolysis. Molecular docking and density functional theory simulations indicate that more preferential adsorption of metal-ligand networks with water molecules than proteins is critical to anticoagulation. Moreover, benefiting from the better antiaging property gave by biomimetic decoration, the membranes after four-month aging present gas permeances similar to or even larger than those of pristine ones, despite the initial permeation decline. Importantly, for blood oxygenation, the designed membranes after aging show fast O2 and CO2 exchange processes with rates up to 28-17 and 97-47 mL m-2 min-1, respectively, accompanied with no detectable thrombus and plasma leakage. We envisage that the biomimetic decoration of nanoporous membranes provide a feasible route to achieve great biocompatibility and transport capability for various applications.
Collapse
Affiliation(s)
- Xinxi Huang
- School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Kaier Wu
- School of Environment, Jinan University, Guangzhou 511443, PR China
| | - Wanbin Li
- School of Environment, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
26
|
Ahmad M, Patel R, Lee DT, Corkery P, Kraetz A, Prerna, Tenney SA, Nykypanchuk D, Tong X, Siepmann JI, Tsapatsis M, Boscoboinik JA. ZIF-8 Vibrational Spectra: Peak Assignments and Defect Signals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27887-27897. [PMID: 38753657 DOI: 10.1021/acsami.4c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Zeolitic imidazolate framework (ZIF-8) is a promising material for gas separation applications. It also serves as a prototype for numerous ZIFs, including amorphous ones, with a broader range of possible applications, including sensors, catalysis, and lithography. It consists of zinc coordinated with 2-methylimidazolate (2mIm) and has been synthesized with methods ranging from liquid-phase to solvent-free synthesis, which aim to control its crystal size and shape, film thickness and microstructure, and incorporation into nanocomposites. Depending on the synthesis method and postsynthesis treatments, ZIF-8 materials may deviate from the nominal defect-free ZIF-8 crystal structure due to defects like missing 2mIm, missing zinc, and physically adsorbed 2mIm trapped in the ZIF-8 pores, which may alter its performance and stability. Infrared (IR) spectroscopy has been used to assess the presence of defects in ZIF-8 and related materials. However, conflicting interpretations by various authors persist in the literature. Here, we systematically investigate ZIF-8 vibrational spectra by combining experimental IR spectroscopy and first-principles molecular dynamics simulations, focusing on assigning peaks and elucidating the spectroscopic signals of putative defects present in the ZIF-8 material. We attempt to resolve conflicting assignments from the literature and to provide a comprehensive understanding of the vibrational spectra of ZIF-8 and its defect-induced variations, aiming toward more precise quality control and design of ZIF-8-based materials for emerging applications.
Collapse
Affiliation(s)
- Mueed Ahmad
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Roshan Patel
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Dennis T Lee
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Peter Corkery
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Andrea Kraetz
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
| | - Prerna
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - J Ilja Siepmann
- Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218-2625, United States
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723, United States
| | - J Anibal Boscoboinik
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-0701, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
27
|
Mohamed AMO, Economou IG, Jeong HK. Coarse-grained force field for ZIF-8: A study on adsorption, diffusion, and structural properties. J Chem Phys 2024; 160:204706. [PMID: 38785289 DOI: 10.1063/5.0202961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Metal-organic frameworks (MOFs) are revolutionizing a spectrum of industries, from groundbreaking gas storage solutions to transformative biological system applications. The intricate architecture of these materials necessitates the use of advanced computational techniques for a comprehensive understanding of their molecular structure and prediction of their physical properties. Coarse-grained (CG) simulations shine a spotlight on the often-neglected influences of defects, pressure effects, and spatial disorders on the performance of MOFs. These simulations are not just beneficial but indispensable for high-demand applications, such as mixed matrix membranes and intricate biological system interfaces. In this work, we propose an optimized CG force field tailored for ZIF-8. Our work provides a deep dive into sorption isotherms and diffusion coefficients of small molecules. We demonstrate the structural dynamics of ZIF-8, particularly how it responds to pressurization, which affects its crystal structure and leads to local changes in aperture size and area. Emphasizing the game-changing potential of CG simulations, we explore the characteristics of amorphization in ZIF-8. Through computational exploration, we aim to bridge the knowledge gap, enhancing the potential applications of nanoporous materials for various applications.
Collapse
Affiliation(s)
- Amro M O Mohamed
- Chemical Engineering Program, Texas A&M University at Qatar, PO Box 23874 Doha, Qatar
| | - Ioannis G Economou
- Chemical Engineering Program, Texas A&M University at Qatar, PO Box 23874 Doha, Qatar
| | - Hae-Kwon Jeong
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843, USA
| |
Collapse
|
28
|
Liang Y, Zhang Z, Chen A, Yu C, Sun Y, Du J, Qiao Z, Wang Z, Guiver MD, Zhong C. Large-Area Ultrathin Metal-Organic Framework Membranes Fabricated on Flexible Polymer Supports for Gas Separations. Angew Chem Int Ed Engl 2024; 63:e202404058. [PMID: 38528771 DOI: 10.1002/anie.202404058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Ultrathin continuous metal-organic framework (MOF) membranes have the potential to achieve high gas permeance and selectivity simultaneously for otherwise difficult gas separations, but with few exceptions for zeolitic-imidazolate frameworks (ZIF) membranes, current methods cannot conveniently realize practical large-area fabrication. Here, we propose a ligand back diffusion-assisted bipolymer-directed metal ion distribution strategy for preparing large-area ultrathin MOF membranes on flexible polymeric support layers. The bipolymer directs metal ions to form a cross-linked two-dimensional (2D) network with a uniform distribution of metal ions on support layers. Ligand back diffusion controls the feed of ligand molecules available for nuclei formation, resulting in the continuous growth of large-area ultrathin MOF membranes. We report the practical fabrication of three representative defect-free MOF membranes with areas larger than 2,400 cm2 and ultrathin selective layers (50-130 nm), including ZIFs and carboxylate-linker MOFs. Among these, the ZIF-8 membrane displays high gas permeance of 3,979 GPU for C3H6, with good mixed gas selectivity (43.88 for C3H6/C3H8). To illustrate its scale-up practicality, MOF membranes were prepared and incorporated into spiral-wound membrane modules with an active area of 4,800 cm2. The ZIF-8 membrane module presents high gas permeance (3,930 GPU for C3H6) with acceptable ideal gas selectivity (37.45 for C3H6/C3H8).
Collapse
Affiliation(s)
- Yueyao Liang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, China
| | - Caijiao Yu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang, 050018, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| | - Zhi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
29
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
30
|
Xu T, Jiang W, Tao Y, Abdellatief M, Cordova KE, Zhang YB. Popping and Locking: Balanced Rigidity and Porosity of Zeolitic Imidazolate Frameworks for High-Productivity Methane Purification. J Am Chem Soc 2024. [PMID: 38602012 DOI: 10.1021/jacs.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO2/CH4 separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO2 capture capacity and CH4 purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol-1, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO2 capture capacity (up to 18.6 mmol g-1) and CH4 purification productivity (up to 7.6 mmol g-1) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Tao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Mahmoud Abdellatief
- Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Kyle E Cordova
- Integrated Materials Systems (iMS) Research Unit, Advanced Research Center, Royal Scientific Society, Amman 11941, Jordan
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
31
|
Cong S, Zhou Y, Luo C, Wang C, Wang J, Wang Z, Liu X. Designing Metal-Organic Framework (MOF) Membranes for Isomer Separation. Angew Chem Int Ed Engl 2024; 63:e202319894. [PMID: 38265268 DOI: 10.1002/anie.202319894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/25/2024]
Abstract
Membrane-based separation has the merit of low carbon footprint. In this study, the pore size of metal-organic framework (MOF) membranes is rationally designed for discriminating various pairs of hydrocarbon isomers. Specifically, Zr-MOF UiO-66 (UiO stands for University of Oslo) membranes are developed for separating p/o-xylene due to their proper pore size. For n-hexane/2-methylpentane separation, the functional groups and proportion of the ligands in UiO-66 are gradually adjusted to effectively regulate the pore size, and UiO-66-33Br membranes are constructed. In addition, relying on the utilization of ligands with shorter length, MOF-801 membranes with smaller pore size are fabricated for n/i-butane separation.
Collapse
Affiliation(s)
- Shenzhen Cong
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Yunqi Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Chenglian Luo
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Jixiao Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhi Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinlei Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Haihe Laboratory of Sustainable Chemical Transformations, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
32
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
33
|
Hua Y, Mohamed AMO, Choi GM, Cho KY, Economou IG, Jeong HK. Unexpectedly High Propylene/Propane Separation Performance of Asymmetric Mixed-Matrix Membranes through Additive-Assisted In Situ ZIF-8 Filler Formation: Experimental and Computational Studies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15273-15285. [PMID: 38482600 PMCID: PMC10982995 DOI: 10.1021/acsami.3c19491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Zeolitic-imidazolate framework-8 (ZIF-8), composed of a zinc center tetrahedrally coordinated with 2-methylimidazolate linkers, has garnered extensive attention as a selective filler for propylene-selective mixed-matrix membranes (MMMs). Recently, we reported an innovative and scalable MMM fabrication approach, termed "phase-inversion in sync with in situ MOF formation" (PIMOF), aimed at addressing the prevailing challenges in MMM processing. In this study, we intend to investigate the effect of additives, specifically sodium formate and 1,4-butanediol, on the modification of ZIF-8 filler formation within the polymer matrix in order to further improve the separation performance of the asymmetric MMMs prepared by the PIMOF. Remarkably, MMMs prepared with sodium formate as an additive in the coagulation bath exhibited an unprecedented C3H6/C3H8 separation factor of 222.5 ± 1.8 with a C3H6 permeance of 10.1 ± 0.3 GPU, surpassing that of MMMs prepared without additives (a C3 separation factor of 57.7 ± 11.2 with a C3 permeance of 22.5 ± 4.5 GPU). Our computational work complements the experimental investigation by studying the effect of ZIF-8 nanoparticle size on the specific surface interaction energy and apertures of ZIF-8. Calculations indicate that by having smaller ZIF-8 nanoparticles, stronger interactions are present with the polymer affecting the aperture of ZIF-8 nanoparticles. This reduction in aperture size is expected to improve selectivity toward propylene by reducing the permeability of propylene. These results represent a significant advancement, surpassing the performance of all previously reported propylene-selective MMMs and most high-quality polycrystalline ZIF-8 membranes. The notably enhanced separation performance primarily arises from the formation of exceedingly small ZIF-8-like particles with an amorphous or poorly crystalline structure, corroborated by our computational work.
Collapse
Affiliation(s)
- Yinying Hua
- Artie
McFerrin Department of Chemical Engineering and Department of Materials Science
and Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843-3122, United States
| | - Amro M. O. Mohamed
- Chemical
Engineering Program, Texas A&M University
at Qatar, PO Box 23874, Doha 23874, Qatar
| | - Gyeong Min Choi
- Department
of Industrial Chemistry, Pukyong National
University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Kie Yong Cho
- Department
of Industrial Chemistry, Pukyong National
University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Ioannis G. Economou
- Chemical
Engineering Program, Texas A&M University
at Qatar, PO Box 23874, Doha 23874, Qatar
| | - Hae-Kwon Jeong
- Artie
McFerrin Department of Chemical Engineering and Department of Materials Science
and Engineering, Texas A&M University, 3122 TAMU, College Station, Texas 77843-3122, United States
| |
Collapse
|
34
|
Wang T, Liu LA, Wu H, Zhang J, Feng Z, Yan X, Wang X, Han G, Feng X, Ren L, Guo X. Fabrication of a ZIF-on-lamella-zeolite architecture as a highly efficient catalyst for aldol condensation. Dalton Trans 2024; 53:5212-5221. [PMID: 38390646 DOI: 10.1039/d4dt00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Designing composite catalysts that harness the strengths of individual components while mitigating their limitations is a fascinating yet challenging task in catalyst engineering. In this study, we aimed to enhance the catalytic performance by anchoring ZIF-67 nanoparticles of precise sizes onto lamella Si-MWW zeolite surfaces through a stepwise regrowth process. Co ions were initially grafted onto the zeolite surface using ultrasonication, followed by a seed-assisted secondary growth method. Si-MWW proved to be the ideal zeolite support due to its thin layered structure, large external surface area and substantial lateral dimensions. The abundant Si-OH groups on its surface played a crucial role in securely binding Co ions, limiting size growth and preventing undesirable ZIF-67 aggregation. The resulting ZIF-67/MWW composite with finely dispersed nano-scale ZIF-67 particles exhibited a remarkable catalytic performance and stability in the aldol condensation reactions involving acetone and various aldehydes. This approach holds promise for designing MOF/zeolite composite catalysts.
Collapse
Affiliation(s)
- Tianlong Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Lin-An Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Huifang Wu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Jiaxing Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Ziyi Feng
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Xin Yan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Xinyu Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Guoying Han
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Xiao Feng
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Limin Ren
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
35
|
Chen J, Zhang W, Yang W, Xi F, He H, Liang M, Dong Q, Hou J, Wang M, Yu G, Zhou J. Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals. Nat Commun 2024; 15:1260. [PMID: 38341431 DOI: 10.1038/s41467-024-45592-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The combination of macrocyclic chemistry with co-crystal engineering has promoted the development of materials with vapochromic behaviors in supramolecular science. Herein, we develop a macrocycle co-crystal based on hybrid[4]arene and 1,2,4,5-tetracyanobenzene that is able to construct vapochromic materials. After the capture of benzene and toluene vapors, activated hybrid[4]arene-based co-crystal forms new structures, accompanied by color changes from brown to yellow. However, when hybrid[4]arene-based co-crystal captures cyclohexane and pyridine, neither structures nor colors change. Interestingly, hybrid[4]arene-based co-crystal can separate benzene from a benzene/cyclohexane equal-volume mixture and allow toluene to be removed from a toluene/ pyridine equal-volume mixture with purities reaching 100%. In addition, the process of adsorptive separation can be visually monitored. The selectivity of benzene from a benzene/cyclohexane equal-volume mixture and toluene from a toluene/ pyridine equal-volume mixture is attributed to the different changes in the charge-transfer interaction between hybrid[4]arene and 1,2,4,5-tetracyanobenzene when hybrid[4]arene-based co-crystal captures different vapors. Moreover, hybrid[4]arene-based co-crystal can be reused without losing selectivity and performance. This work constructs a vapochromic material for hydrocarbon separation.
Collapse
Affiliation(s)
- Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenjie Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wenzhi Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Fengcheng Xi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Hongyi He
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Minghao Liang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Qian Dong
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiawang Hou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Mengbin Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, PR China.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, PR China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
36
|
Liu L, Yu R, Yin L, Zhang N, Zhu G. Porous organic framework membranes based on interface-induced polymerisation: design, synthesis and applications. Chem Sci 2024; 15:1924-1937. [PMID: 38332830 PMCID: PMC10848777 DOI: 10.1039/d3sc05787a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024] Open
Abstract
Porous organic frameworks (POFs) are novel porous materials that have attracted much attention due to their extraordinary properties, such as high specific surface area, tunable pore size, high stability and ease of functionalisation. However, conventional synthesised POFs are mostly large-sized particles or insoluble powders, which are difficult to recycle and have low mass transfer efficiencies, limiting the development of their cutting-edge applications. Therefore, processing POF materials into membrane structures is of great significance. In recent years, interface engineering strategies have proved to be efficient methods for the formation of POF membranes. In this perspective, recent advances in the use of interfaces to prepare POF membranes are reviewed. The challenges of this strategy and the potential applications of the formed POF membranes are discussed.
Collapse
Affiliation(s)
- Lin Liu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Ruihe Yu
- Department of Chemistry, Northeast Normal University Changchun China
| | - Liying Yin
- Department of Chemistry, Northeast Normal University Changchun China
- School of Chemistry and Life Science, Changchun University of Technology Changchun China
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University Changchun China
| | - Guangshan Zhu
- Department of Chemistry, Northeast Normal University Changchun China
| |
Collapse
|
37
|
Wang Z, Sun B, Liao J, Cao S, Li L, Wang Q, Guo C. In-situ growth of electrically conductive MOFs in wood cellulose scaffold for flexible, robust and hydrophobic membranes with improved electrochemical performance. Int J Biol Macromol 2024; 255:127989. [PMID: 37977469 DOI: 10.1016/j.ijbiomac.2023.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Electrically conductive metal-organic frameworks (EC-MOFs) have attracted great attentions in electrochemical fields, but their practical application is limited by their hard-to-shape powder form. The aims was to integrate continuously nucleated EC-MOFs on natural wood cellulose scaffold to develop biobased EC-MOFs membrane with robust flexibility and improved electrochemical performance for wearable supercapacitors. EC-MOF materials (NiCAT or CuCAT) were successfully incorporated onto porous tempo-oxidized wood (TOW) scaffold to create ultrathin membranes through electrostatic force-mediated interfacial growth and simple room-temperature densification. The studies demonstrated the uniform and continuous EC-MOFs nanolayer on TOW scaffold and the interfacial bonding between EC-MOF and TOW. The densification of EC-MOF@TOW bulk yielded highly flexible ultrathin membranes (about 0.3 mm) with high tensile stress exceeding 180 MPa. Moreover, the 50 %-NiCAT@TOW membrane demonstrated high electrical conductivity (4.227 S·m-1) and hydrophobicity (contact angle exceeding 130°). Notably, these properties remained stable even after twisting or bending deformation. Furthermore, the electrochemical performance of EC-MOF@TOW membrane with hierarchical pores outperformed the EC-MOF powder electrode. This study innovatively anchored EC-MOFs onto wood through facile process, yielding highly flexible membranes with exceptional performance that outperforms most of reported conductive wood-based membranes. These findings would provide some references for flexible and functional EC-MOF/wood membranes for wearable devices.
Collapse
Affiliation(s)
- Zhinan Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Borong Sun
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Junqi Liao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Shuqi Cao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Qingwen Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Chuigen Guo
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
38
|
Sabzehmeidani MM, Kazemzad M. Recent advances in surface-mounted metal-organic framework thin film coatings for biomaterials and medical applications: a review. Biomater Res 2023; 27:115. [PMID: 37950330 PMCID: PMC10638836 DOI: 10.1186/s40824-023-00454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
Coatings of metal-organic frameworks (MOFs) have potential applications in surface modification for medical implants, tissue engineering, and drug delivery systems. Therefore, developing an applicable method for surface-mounted MOF engineering to fabricate protective coating for implant tissue engineering is a crucial issue. Besides, the coating process was desgined for drug infusion and effect opposing chemical and mechanical resistance. In the present review, we discuss the techniques of MOF coatings for medical application in both in vitro and in vivo in various systems such as in situ growth of MOFs, dip coating of MOFs, spin coating of MOFs, Layer-by-layer methods, spray coating of MOFs, gas phase deposition of MOFs, electrochemical deposition of MOFs. The current study investigates the modification in the implant surface to change the properties of the alloy surface by MOF to improve properties such as reduction of the biofilm adhesion, prevention of infection, improvement of drugs and ions rate release, and corrosion resistance. MOF coatings on the surface of alloys can be considered as an opportunity or a restriction. The presence of MOF coatings in the outer layer of alloys would significantly demonstrate the biological, chemical and mechanical effects. Additionally, the impact of MOF properties and specific interactions with the surface of alloys on the anti-microbial resistance, anti-corrosion, and self-healing of MOF coatings are reported. Thus, the importance of multifunctional methods to improve the adhesion of alloy surfaces, microbial and corrosion resistance and prospects are summarized.
Collapse
Affiliation(s)
- Mohammad Mehdi Sabzehmeidani
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| |
Collapse
|
39
|
Guo W, Zhang W, Han N, Xie S, Zhou Z, Monnens W, Martinez Mora O, Xue Z, Zhang X, Zhang X, Fransaer J. Electrosynthesis of Metal-Organic Framework Films with Well-Defined Facets. Chemistry 2023; 29:e202302338. [PMID: 37556185 DOI: 10.1002/chem.202302338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
The deposition of metal-organic framework (MOF) films with defined exposed facets is important to enhance the performance of these films for, for example, catalysis or separations. In this work, MOF films with specific exposed facets are electrodeposited anodically on various substrates (e. g. on copper-sputtered Si wafers, copper meshes, copper foams, and polypropylene membranes). The influence of the deposition parameters, including the pH of the solution, current density, concentration of linker, and solvent, on the exposed facets of the deposited MOFs was investigated. The results suggest that precise control over the supersaturation during anodic deposition is a possible strategy for synthesizing MOF crystals with well-defined exposed facets. This approach provides a powerful toolbox for various applications requiring crystal facet control of MOF films.
Collapse
Affiliation(s)
- Wei Guo
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Sijie Xie
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Zhenyu Zhou
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Wouter Monnens
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | | | - Zhenhong Xue
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Xueliang Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
40
|
Liu Q, Miao Y, Villalobos LF, Li S, Chi HY, Chen C, Vahdat MT, Song S, Babu DJ, Hao J, Han Y, Tsapatsis M, Agrawal KV. Unit-cell-thick zeolitic imidazolate framework films for membrane application. NATURE MATERIALS 2023; 22:1387-1393. [PMID: 37735526 PMCID: PMC10627807 DOI: 10.1038/s41563-023-01669-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) are a subset of metal-organic frameworks with more than 200 characterized crystalline and amorphous networks made of divalent transition metal centres (for example, Zn2+ and Co2+) linked by imidazolate linkers. ZIF thin films have been intensively pursued, motivated by the desire to prepare membranes for selective gas and liquid separations. To achieve membranes with high throughput, as in ångström-scale biological channels with nanometre-scale path lengths, ZIF films with the minimum possible thickness-down to just one unit cell-are highly desired. However, the state-of-the-art methods yield membranes where ZIF films have thickness exceeding 50 nm. Here we report a crystallization method from ultradilute precursor mixtures, which exploits registry with the underlying crystalline substrate, yielding (within minutes) crystalline ZIF films with thickness down to that of a single structural building unit (2 nm). The film crystallized on graphene has a rigid aperture made of a six-membered zinc imidazolate coordination ring, enabling high-permselective H2 separation performance. The method reported here will probably accelerate the development of two-dimensional metal-organic framework films for efficient membrane separation.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yurun Miao
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA
| | - Shaoxian Li
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mohammad Tohidi Vahdat
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Shuqing Song
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Deepu J Babu
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
- Materials Science and Metallurgical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Jian Hao
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations, École Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
| |
Collapse
|
41
|
Sun Y, Hu S, Yan J, Ji T, Liu L, Wu M, Guo X, Liu Y. Oriented Ultrathin π-complexation MOF Membrane for Ethylene/Ethane and Flue Gas Separations. Angew Chem Int Ed Engl 2023; 62:e202311336. [PMID: 37670537 DOI: 10.1002/anie.202311336] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
Rational design and engineering of high-performance molecular sieve membranes towards C2 H4 /C2 H6 and flue gas separations remain a grand challenge to date. In this study, through combining pore micro-environment engineering with meso-structure manipulation, highly c-oriented sub-100 nm-thick Cu@NH2 -MIL-125 membrane was successfully prepared. Coordinatively unsaturated Cu ions immobilized in the NH2 -MIL-125 framework enabled high-affinity π-complexation interactions with C2 H4 , resulting in an C2 H4 /C2 H6 selectivity approaching 13.6, which was 9.4 times higher than that of pristine NH2 -MIL-125 membrane; moreover, benefiting from π-complexation interactions between CO2 and Cu(I) sites, our membrane displayed superior CO2 /N2 selectivity of 43.2 with CO2 permeance of 696 GPU, which far surpassed the benchmark of other pure MOF membranes. The above multi-scale structure optimization strategy is anticipated to present opportunities for significantly enhancing the separation performance of diverse molecular sieve membranes.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Shen Hu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Sinopec Nanjing catalyst co., ltd., Nanjing, 210000, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Liangliang Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Mingming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
42
|
Wang Y, Ban Y, Hu Z, Yang W. Energy-efficient extraction of linear alkanes from various isomers using structured metal-organic framework membrane. Nat Commun 2023; 14:6617. [PMID: 37857644 PMCID: PMC10587105 DOI: 10.1038/s41467-023-42397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Extraction of low concentration linear alkanes (C5-C7) from various isomers is critical for the petrochemical industry. At present, the separation of alkane isomers is mainly accomplished by distillation, which results in substantial energy expenditure. Metal-organic frameworks (MOFs) with well-tailored nanopores have been demonstrated to be capable of realizing molecule-level separation. In this study, oriented HKUST-1 membranes are formulated according to the morphology-biased principle and finally realized with a low dose synthesis method for terminating undesired crystal nucleation and growth. The fully exposed triangular sieving pore array of the membrane induces configuration entropic diffusion to split linear alkanes from mono-branched and di-branched isomers as well as their cyclical counterparts. Typically, the current separation technique consumes 91% less energy than vacuum distillation. Furthermore, our membranes can realize one-step extraction of normal-pentane, normal-hexane and normal-heptane from a ten-component alkane isomer solution that mimics light naphtha.
Collapse
Affiliation(s)
- Yuecheng Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, P. R. China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, P. R. China.
| | - Ziyi Hu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, P. R. China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, P. R. China.
| |
Collapse
|
43
|
Qiang Z, Yi Z, Wang JW, Khandge RS, Ma X. Fabrication of Polycrystalline Zeolitic Imidazolate Framework Membranes by a Vapor-Phase Seeding Method. MEMBRANES 2023; 13:782. [PMID: 37755204 PMCID: PMC10538002 DOI: 10.3390/membranes13090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
The reliable fabrication of polycrystalline zeolitic imidazolate framework (ZIF) membranes continues to pose challenges for their industrial applications. Here, we present a vapor-phase seeding approach that integrates atomic layer deposition (ALD) with ligand vapor treatment to synthesize ZIF membranes with high propylene/propane separation performance. This method began with depositing a ZnO coating onto the support surface via ALD. The support underwent treatment with 2-methylimidazole vapor to transform ZnO to ZIF-8, forming the seed layer. Subsequent secondary growth was employed at near-room temperature, allowing the seeds to grow into a continuous membrane. ZIF-8 membranes made on macroporous ceramic support by this method consistently demonstrated propylene permeances above 1 × 10-8 mol Pa-1 m-2 s-1 and a propylene/propane separation factor exceeding 50. Moreover, we demonstrated the effectiveness of the vapor-phase seeding method in producing the ZIF-67 membrane.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoli Ma
- Department of Materials Science and Engineering, University of Wisconsin—Milwaukee, Milwaukee, WI 53201, USA; (Z.Q.); (Z.Y.); (J.-W.W.); (R.S.K.)
| |
Collapse
|
44
|
Liu X, Li Y, Chen Z, Yang H, Wang S, Tang Z, Wang X. Recent progress of covalent organic frameworks membranes: Design, synthesis, and application in water treatment. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:117-130. [PMID: 38074995 PMCID: PMC10702902 DOI: 10.1016/j.eehl.2023.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 01/19/2024]
Abstract
To date, significant efforts have been devoted to eliminating hazardous components to purify wastewater through the development of various nanomaterials. Covalent organic frameworks (COFs), an important branch of the porous crystalline family, possess the peculiarity of ultrahigh surface area, adjustable pore size, and facile functionality. Exciting studies from design fabrication to potential applications in water treatment by COF-based membranes (COMs) have emerged. This review summarizes various preparation strategies and synthesis mechanisms for COMs, including layer-by-layer stacking, in situ growth, interfacial polymerization, and electrochemical synthesis, and briefly describes the advanced characterization techniques for COMs. Moreover, the application of COMs in heavy metal removal, dye separation, purification of radionuclides, pollutant detection, sea water desalination, and so on, is described and discussed. Finally, the perspectives on future opportunities for designing COMs in water purification have been proposed.
Collapse
Affiliation(s)
- Xiaolu Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
45
|
Chen G, Liu G, Pan Y, Liu G, Gu X, Jin W, Xu N. Zeolites and metal-organic frameworks for gas separation: the possibility of translating adsorbents into membranes. Chem Soc Rev 2023. [PMID: 37377411 DOI: 10.1039/d3cs00370a] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Zeolites and metal-organic frameworks (MOFs) represent an attractive class of crystalline porous materials that possesses regular pore structures. The inherent porosity of these materials has led to an increasing focus on gas separation applications, encompassing adsorption and membrane separation techniques. Here, a brief overview of the critical properties and fabrication approaches for zeolites and MOFs as adsorbents and membranes is given. The separation mechanisms, based on pore sizes and the chemical properties of nanochannels, are explored in depth, considering the distinct characteristics of adsorption and membrane separation. Recommendations for judicious selection and design of zeolites and MOFs for gas separation purposes are emphasized. By examining the similarities and differences between the roles of nanoporous materials as adsorbents and membranes, the feasibility of zeolites and MOFs from adsorption separation to membrane separation is discussed. With the rapid development of zeolites and MOFs towards adsorption and membrane separation, challenges and perspectives of this cutting-edge area are also addressed.
Collapse
Affiliation(s)
- Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| | - Xuehong Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
- Suzhou Laboratory, Suzhou 215125, China
| |
Collapse
|
46
|
Chang CK, Ko TR, Lin TY, Lin YC, Yu HJ, Lee JS, Li YP, Wu HL, Kang DY. Mixed-linker strategy for suppressing structural flexibility of metal-organic framework membranes for gas separation. Commun Chem 2023; 6:118. [PMID: 37301865 DOI: 10.1038/s42004-023-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Structural flexibility is a critical issue that limits the application of metal-organic framework (MOF) membranes for gas separation. Herein we propose a mixed-linker approach to suppress the structural flexibility of the CAU-10-based (CAU = Christian-Albrechts-University) membranes. Specifically, pure CAU-10-PDC membranes display high separation performance but at the same time are highly unstable for the separation of CO2/CH4. A partial substitution (30 mol.%) of the linker PDC with BDC significantly improves its stability. Such an approach also allows for decreasing the aperture size of MOFs. The optimized CAU-10-PDC-H (70/30) membrane possesses a high separation performance for CO2/CH4 (separation factor of 74.2 and CO2 permeability of 1,111.1 Barrer under 2 bar of feed pressure at 35°C). A combination of in situ characterization with X-ray diffraction (XRD) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, as well as periodic density functional theory (DFT) calculations, unveils the origin of the mixed-linker approach to enhancing the structural stability of the mixed-linker CAU-10-based membranes during the gas permeation tests.
Collapse
Affiliation(s)
- Chung-Kai Chang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ting-Rong Ko
- Center for Condensed Matter Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Tsai-Yu Lin
- Center for Condensed Matter Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yen-Chun Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hyun Jung Yu
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea.
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
- Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
47
|
Zhu Z, Yang L, Xiong Z, Liu D, Hu B, Wang N, Ola O, Zhu Y. SiC@FeZnZiF as a Bifunctional Catalyst with Catalytic Activating PMS and Photoreducing Carbon Dioxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101664. [PMID: 37242081 DOI: 10.3390/nano13101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Herein, we encapsulated modified silicon carbide nanoparticles utilizing a metal-organic backbone. E-SiC-FeZnZIF composites were successfully prepared via Fe doping. The catalysis activity of this bifunctional composite material was evaluated by the degradation of tetracycline (THC) and carbamazepine (CBZ) and the reduction of carbon dioxide (CO2). Nano SiC has received widespread attention in advanced oxidation applications, especially in the catalytic activation of peroxymonosulfate (PMS). However, the inferior activity of SiC has severely restricted its practical use. In this study of dual functional composite materials, nano SiC was firstly etched under aqueous alkali. Then, zeolite imidazolate frame-8 (ZIF-8) was used for immobilization. The filling of the etched nano SiC with FeZnZiF was confirmed by SEM, XRD, FTIR, BET, and XPS analyses. In addition, E-SiC-FeZnZIF exhibited excellent catalytic activation of peroxymonosulfate (PMS) to oxidize water pollutants, which can degrade tetracycline hydrochloride (THC), achieving a removal rate of 72% within 60 min. Moreover, E-SiC-FeZnZIF exhibited a relatively high CO2 reduction rate with H2O. The yields of CO and CH4 were 0.085 and 0.509 μmol g-1, respectively, after 2 h, which are higher than that of 50 nm of commercial SiC (CO: 0.084 μmol g-1; CH4: 0.209 μmol g-1). This work provides a relatively convenient synthesis path for constructing metal skeleton composites for advanced oxidation and photocatalytic applications. This will have practical significance in protecting water bodies and reducing CO2, which are vital not only for maintaining the natural ecological balance and negative feedback regulation, but also for creating a new application carrier based on nano silicon carbide.
Collapse
Affiliation(s)
- Zhiqi Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Liaoliao Yang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhaodong Xiong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Daohan Liu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Binbin Hu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, College of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Oluwafunmilola Ola
- Advanced Materials Group, Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Yanqiu Zhu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| |
Collapse
|
48
|
Wang M, Zhao H, Du B, Lu X, Ding S, Hu X. Functions and applications of emerging metal-organic-framework liquids and glasses. Chem Commun (Camb) 2023. [PMID: 37191098 DOI: 10.1039/d3cc00834g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Traditional metal-organic-frameworks (MOFs) have been extensively studied and applied in various fields across chemistry, biology and engineering in the past decades. Recently, a family of emerging MOF liquids and glasses have gained ever-growing research interests owing to their fascinating phase transitions and unique functions. To date, a growing number of MOF crystals have been found to be capable of transforming into liquid and glassy states under external stimuli, which overcomes the limitations of MOF crystals by introducing functional disorder in a controlled manner and offering some desirable properties. This review is dedicated to compiling recent advances in the fundamental understanding of the phase and structure evolution during crystal melting and glass formation in order to give insights into the underlying conversion mechanism. Benefiting from the disordered metal-ligand arrangement and free grain boundaries, various functional properties of liquid and glassy MOFs including porosity, ionic conductivity, and optical/mechanical properties are summarized and evaluated in detail, accompanied by the structure-property correlation. At the same time, their potential applications are further assessed from a developmental perspective according to their unique functions. Finally, we summarize the current progress in the development of liquid/glassy MOFs and point out the serious challenges as well as the potential solutions. This work provides perspectives on the functional applications of liquid/glassy MOFs and highlights the future research directions for the advancement of MOF liquids and glasses.
Collapse
Affiliation(s)
- Mingyue Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Hongyang Zhao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Bowei Du
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Xuan Lu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shujiang Ding
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
| | - Xiaofei Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State key laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Engineering Research Center of Energy Storage Materials and Devices (Ministry of Education), Xi'an 710049, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Yang Z, Belmabkhout Y, McHugh LN, Ao D, Sun Y, Li S, Qiao Z, Bennett TD, Guiver MD, Zhong C. ZIF-62 glass foam self-supported membranes to address CH 4/N 2 separations. NATURE MATERIALS 2023:10.1038/s41563-023-01545-w. [PMID: 37169976 DOI: 10.1038/s41563-023-01545-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Membranes with ultrahigh permeance and practical selectivity could greatly decrease the cost of difficult industrial gas separations, such as CH4/N2 separation. Advanced membranes made from porous materials, such as metal-organic frameworks, can achieve a good gas separation performance, although they are typically formed on support layers or mixed with polymeric matrices, placing limitations on gas permeance. Here an amorphous glass foam, agfZIF-62, wherein a, g and f denote amorphous, glass and foam, respectively, was synthesized by a polymer-thermal-decomposition-assisted melting strategy, starting from a crystalline zeolitic imidazolate framework, ZIF-62. The thermal decomposition of incorporated low-molecular-weight polyethyleneimine evolves CO2, NH3 and H2O gases, creating a large number and variety of pores. This greatly increases pore interconnectivity but maintains the crystalline ZIF-62 ultramicropores, allowing ultrahigh gas permeance and good selectivity. A self-supported circular agfZIF-62 with a thickness of 200-330 µm and area of 8.55 cm2 was used for membrane separation. The membranes perform well, showing a CH4 permeance of 30,000-50,000 gas permeance units, approximately two orders of magnitude higher than that of other reported membranes, with good CH4/N2 selectivity (4-6).
Collapse
Affiliation(s)
- Zibo Yang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Youssef Belmabkhout
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE) and Technology Development Cell (TechCell), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - De Ao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Yuxiu Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Zhihua Qiao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, China.
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, China.
| | - Chongli Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, China.
| |
Collapse
|
50
|
Liu G, Guo Y, Chen C, Lu Y, Chen G, Liu G, Han Y, Jin W, Xu N. Eliminating lattice defects in metal-organic framework molecular-sieving membranes. NATURE MATERIALS 2023:10.1038/s41563-023-01541-0. [PMID: 37169972 DOI: 10.1038/s41563-023-01541-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Metal-organic framework (MOF) membranes are energy-efficient candidates for molecular separations, but it remains a considerable challenge to eliminate defects at the atomic scale. The enlargement of pores due to defects reduces the molecular-sieving performance in separations and hampers the wider application of MOF membranes, especially for liquid separations, owing to insufficient stability. Here we report the elimination of lattice defects in MOF membranes based on a high-probability theoretical coordination strategy that creates sufficient chemical potential to overcome the steric hindrance that occurs when completely connecting ligands to metal clusters. Lattice defect elimination is observed by real-space high-resolution transmission electron microscopy and studied with a mathematical model and density functional theory calculations. This leads to a family of high-connectivity MOF membranes that possess ångström-sized lattice apertures that realize high and stable separation performance for gases, water desalination and an organic solvent azeotrope. Our strategy could enable a platform for the regulation of nanoconfined molecular transport in MOF pores.
Collapse
Affiliation(s)
- Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Lu
- Department of Mathematics, Nanjing University, Nanjing, China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
- Suzhou Laboratory, Suzhou, China
| |
Collapse
|