1
|
Zha CJ, Zhang HS, He S, Zhao N, He L, Yang N, Ying ZM. RT-RPA-assisted scaffold RNA transcription amplification activation Cas12a trans-cleavage strategy for one-pot miRNA detection. Talanta 2025; 293:128049. [PMID: 40179681 DOI: 10.1016/j.talanta.2025.128049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Split crRNA is utilized in the CRISPR system as a highly specific and sensitive tool for nucleic acid identification in molecular diagnostics. Here, we introduce a novel one-pot RT-RPA-assisted Scaffold RNA Transcription Amplification Activation Cas12a Trans-cleavage (ScRNA-TAAT) strategy for miRNA detection. Capable of completing miRNA detection in 50 min with a detection limit of 2.66 aM. The miRNA was amplified into double-stranded DNA amplicons with a T7 promoter using RT-RPA, which is subsequently transcribed into RNA trigger. A split T7 promoter extension sequence with template binds to the RNA trigger, assembly a three-way linker to initiate transcription of the scaffold RNA. The three-way linker with sticky ends joins to its RNA products, assembling a DNA-RNA complex that acts as both a spacer RNA and an activator. Simultaneously, the DNA-RNA hybrid complexes and scaffold RNA could replace the split crRNA and combined with Cas12a, forming an active ribonucleoprotein (RNP) complex with trans-cleavage activity comparable to that of the wild-type Cas12a RNP. Furthermore, we have successfully integrated the ScRNA-TAAT strategy into lateral flow analysis, enabling the visual detection of miRNAs. The assay's exceptional specificity and universality are highlighted by its application to complex biological matrices, including serum and cell lysates. The simplicity, sensitivity, and adaptability of the ScRNA TAAT assay render it a promising candidate for point-of-care testing and high sensitivity in molecular diagnostics.
Collapse
Affiliation(s)
- Cheng-Jun Zha
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Hong-Shuai Zhang
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Sheng He
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Na Zhao
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Liang He
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Nan Yang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
2
|
Moyo B, Brown LBC, Khondaker II, Bao G. Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing. Biomaterials 2025; 321:123314. [PMID: 40203649 DOI: 10.1016/j.biomaterials.2025.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The recent approval of the first gene editing therapy for sickle cell disease and transfusion-dependent beta-thalassemia by the U.S. Food and Drug Administration (FDA) demonstrates the immense potential of CRISPR (clustered regularly interspaced short palindromic repeats) technologies to treat patients with genetic disorders that were previously considered incurable. While significant advancements have been made with ex vivo gene editing approaches, the development of in vivo CRISPR/Cas gene editing therapies has not progressed as rapidly due to significant challenges in achieving highly efficient and specific in vivo delivery. Adeno-associated viral (AAV) vectors have shown great promise in clinical trials as vehicles for delivering therapeutic transgenes and other cargos but currently face multiple limitations for effective delivery of gene editing machineries. This review elucidates these challenges and highlights the latest engineering strategies aimed at improving the efficiency, specificity, and safety profiles of AAV-packaged CRISPR/Cas systems (AAV-CRISPR) to enhance their clinical utility.
Collapse
Affiliation(s)
- Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Lucas B C Brown
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77030, USA
| | - Ishika I Khondaker
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Gupta MK, Gouda G, Moazzam-Jazi M, Vadde R, Nagaraju GP, El-Rayes BF. CRISPR/Cas9-directed epigenetic editing in colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189338. [PMID: 40315964 DOI: 10.1016/j.bbcan.2025.189338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/21/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related illness and death worldwide, arising from a complex interplay of genetic predisposition, environmental influences, and epigenetic dysregulation. Among these factors, epigenetic modifications-reversible and heritable changes in gene expression-serve as crucial regulators of CRC progression. Understanding these modifications is essential for identifying potential biomarkers for early diagnosis and developing targeted therapeutic strategies. Epigenetic drugs (epidrugs) such as DNA methyltransferase inhibitors (e.g., decitabine) and bromodomain inhibitors (e.g., JQ1) have shown promise in modulating aberrant epigenetic changes in CRC. However, challenges such as drug specificity, delivery, and safety concerns limit their clinical application. Advances in CRISPR-Cas9-based epigenetic editing offer a more precise approach to modifying specific epigenetic markers, presenting a potential breakthrough in CRC treatment. Despite its promise, CRISPR-based epigenome editing may result in unintended genetic modifications, necessitating stringent regulations and safety assessments. Beyond pharmacological interventions, lifestyle factors-including diet and gut microbiome composition-play a significant role in shaping the epigenetic landscape of CRC. Nutritional and microbiome-based interventions have shown potential in preventing CRC development by maintaining intestinal homeostasis and reducing tumor-promoting epigenetic changes. This review provides a comprehensive overview of epigenetic alterations in CRC, exploring their implications for diagnosis, prevention, and treatment. By integrating multi-omics approaches, single-cell technologies, and model organism studies, future research can enhance the specificity and efficacy of epigenetic-based therapies. Shortly, a combination of advanced gene-editing technologies, targeted epidrugs, and lifestyle interventions may pave the way for more effective and personalized CRC treatment strategies.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Gayatri Gouda
- ICAR-National Rice Research Institute, Cuttack 753 006, Odisha, India
| | - Maryam Moazzam-Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Division of Hematology & Oncology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
4
|
Capelli L, Marzari S, Spezzani E, Bertucci A. Synthetic CRISPR Networks Driven by Transcription Factors via Structure-Switching DNA Translators. J Am Chem Soc 2025. [PMID: 40491004 DOI: 10.1021/jacs.5c06913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
CRISPR-Cas systems have advanced many domains in life sciences, enabling diverse applications in gene editing, diagnostics, and biosensing. Here, we introduce a platform that leverages transcription factors (TFs) to regulate CRISPR-Cas12a trans-cleavage activity via engineered DNA translators. These dynamic DNA structures respond to TF binding by switching conformations, modulating Cas12a activity. Using TATA-binding protein and Myc-Max as TF models, we optimized DNA translators for precise and tunable control with rapid response kinetics. We demonstrated the platform's specificity and versatility by integrating TF-induced regulation into synthetic biology networks, including the activation of a fluorogenic RNA aptamer (Mango III) and the creation of an artificial multimolecular communication pathway between Cas12a and Cas13a. This work establishes TFs as effective regulators of CRISPR-Cas systems, enabling novel protein-nucleic acid communication channels, showing potential for novel synthetic biology applications.
Collapse
Affiliation(s)
- Luca Capelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, Parma 43124, Italy
| | - Sofia Marzari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, Parma 43124, Italy
| | - Elena Spezzani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, Parma 43124, Italy
| | - Alessandro Bertucci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, Parma 43124, Italy
| |
Collapse
|
5
|
Lobel JH, Ingolia NT. Precise measurement of molecular phenotypes with barcode-based CRISPRi systems. Genome Biol 2025; 26:142. [PMID: 40414878 DOI: 10.1186/s13059-025-03610-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 05/07/2025] [Indexed: 05/27/2025] Open
Abstract
Genome-wide CRISPR-Cas9 screens have untangled regulatory networks driving diverse biological processes. Their success relies on interrogating specific molecular phenotypes and distinguishing key regulators from background effects. Here, we realize these goals by optimizing CRISPR interference with barcoded expression reporter sequencing (CiBER-seq) to dramatically improve the sensitivity and scope of genome-wide screens. We systematically address technical factors that distort phenotypic measurements by normalizing expression reporters against closely matched promoters. We use our improved CiBER-seq to accurately capture known components of well-studied RNA and protein quality control systems. These results demonstrate the precision and versatility of CiBER-seq for dissecting cellular pathways.
Collapse
Affiliation(s)
- Joseph H Lobel
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Ye J, Shen Y, Lin Z, Xu L, Wang L, Lin X, Huang B, Ma Z, Yu Z, Lin D, Chen W, Feng S. A CRISPR/Cas12a-Assisted SERS Nanosensor for Highly Sensitive Detection of HPV DNA. ACS Sens 2025. [PMID: 40384639 DOI: 10.1021/acssensors.5c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The lack of timely and effective screening and diagnosis is a major contributing factor to the high mortality rate of cervical cancer in low-income countries and resource-limited regions. Therefore, the development of a rapid, sensitive, and easily deployable diagnostic tool for HPV DNA is of critical importance. In this study, we present a novel high-sensitivity and high-specificity detection method for HPV16 and HPV18 by integrating the CRISPR/Cas12a system with surface-enhanced Raman scattering (SERS) technology. This method leverages the trans-cleavage activity of the CRISPR/Cas12a system, which cleaves biotin-modified spherical nucleic acids (Biotin-SNA) in the presence of target DNA, releasing free Biotin-DNA. The released Biotin-DNA preferentially binds to streptavidin-modified magnetic beads (SAV-MB), reducing the capture of Biotin-SNA by SAV-MB and thereby significantly enhancing detection sensitivity. This method offers the potential for point-of-care diagnostics as it operates efficiently at 37 °C without the need for thermal cycling. Using standard DNA samples, we demonstrated that this biosensor achieved detection limits as low as 209 copies/μL and 444 copies/μL within 95 min. When combined with recombinase polymerase amplification (RPA), the sensor demonstrated enhanced sensitivity, enabling detection of target DNA at concentrations as low as 1 copy/μL within approximately 50 min. Furthermore, validation with clinical samples confirmed the feasibility and practical applicability of this method. This novel SERS-based sensor offers a new and effective tool in the prevention and detection of cervical cancer.
Collapse
Affiliation(s)
- Jianqing Ye
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Yongshi Shen
- Department of Intensive Care Unit, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Zhizhong Lin
- Department of Radiation Oncology, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Luyun Xu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Lingna Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Xueliang Lin
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Institute for Photonics Technology, Quanzhou Normal University, Quanzhou 362000, China
| | - Baoxing Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Zhiqing Ma
- Fujian Provincial Normal University Hospital, Fujian Normal University, Fuzhou 350007, PR China
| | - Zongyang Yu
- Pulmonary and Critical Care Medicine, Fuzhou General Hospital of Fujian Medical University, Dongfang Hospital of Xiamen University, The 900th Hospital of the Joint Logistic Support Force, PLA, Fuzhou 350122, PR China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
| | - Wenjuan Chen
- Department of Radiation Oncology, Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, PR China
| | - Shangyuan Feng
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350117, PR China
- Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices, Institute for Photonics Technology, Quanzhou Normal University, Quanzhou 362000, China
| |
Collapse
|
7
|
Hegeman CV, Elsharkasy OM, Driedonks TAP, Friesen KRJ, Vader P, de Jong OG. Modulating binding affinity of aptamer-based loading constructs enhances extracellular vesicle-mediated CRISPR/Cas9 delivery. J Control Release 2025; 384:113853. [PMID: 40393529 DOI: 10.1016/j.jconrel.2025.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 04/07/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The CRISPR/Cas9 toolbox consists of modular nucleases that can be employed to efficiently modify genomic sequences with high specificity. However, delivery of the large Cas9-sgRNA ribonucleoprotein (RNP) complexes remains challenging due to their immunogenicity, size, and overall negative charge. An approach to overcome these limitations is the use of extracellular vesicles (EVs) as intracellular delivery vehicles. EVs exhibit the natural ability to carry and deliver RNA and proteins across biological barriers, and can be engineered to load and deliver a variety of biotherapeutic molecules. Previous studies have shown that efficient EV-mediated cargo delivery does not only require active loading strategies, but also benefits from strategies to release cargo from the EV membrane. Here, we load Cas9 RNP complexes into EVs by expressing sgRNAs containing MS2 aptamers (MS2-sgRNAs), alongside Cas9 and a fusion protein of CD63 and tandem MS2 coat proteins (MCPs). We demonstrate that efficient Cas9 RNP delivery can also be facilitated by modulating the binding affinity between MS2 aptamers and the MCPs. To study the effect of altering the binding affinity between the MS2 hairpin and the MCP on Cas9 RNP delivery, various mutations affecting the binding affinity were made in both the interacting MS2-hairpin and the RNA-binding domain of the MCPs. Comparing Cas9 RNP delivery of the modulated MS2-sgRNAs revealed that adapting binding affinity highly affects functional RNP delivery. Mutations resulting in high affinity did not facilitate efficient RNP delivery unless combined with a photo-inducible release strategy, showing that cargo release was a limiting factor in RNP delivery. Mutations that decreased affinity resolved this issue, resulting in Cas9 RNP delivery without the requirement of additional release strategies. However, further decreasing affinity resulted in decreased Cas9 gene-editing efficiency due to decreased levels of Cas9 RNP loading into EVs. A similar effect on functional delivery was seen after modification of the RNA-binding domain of the MCPs. Our results demonstrate that EVs are capable of functional Cas9-sgRNA complex delivery, and that modulation of binding affinity can be used to increase efficient functional delivery with non-covalent loading constructs, without the need for additional engineering strategies for cargo release.
Collapse
Affiliation(s)
- Charlotte V Hegeman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Omnia M Elsharkasy
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tom A P Driedonks
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kate R J Friesen
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands; CDL Research, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Öktem M, Nguyen TH, Bosman EDC, Fens MHAM, Caiazzo M, Mastrobattista E, Lei Z, de Jong OG. Lipopeptide-mediated delivery of CRISPR/Cas9 ribonucleoprotein complexes for gene editing and correction. J Control Release 2025; 383:113854. [PMID: 40389165 DOI: 10.1016/j.jconrel.2025.113854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/31/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
CRISPR/Cas gene editing is a highly promising technology for the treatment and even potential cure of genetic diseases. One of the major challenges for its therapeutic use is finding safe and effective vehicles for intracellular delivery of the CRISPR/Cas9 ribonucleoprotein (RNP) complex. In this study, we tested and characterized a series of novel fatty acid-modified versions of a previously reported Cas9 RNP carrier, consisting of a complex of the cell-penetrating peptide (CPP) LAH5 with Cas9 RNP and homology-directed DNA repair templates. Comparative experiments demonstrated that RNP/peptide nanocomplexes showed various improvements depending on the type of fatty acid modification. These improvements included enhanced stability in serum, improved membrane disruption capability and increased transfection efficacy. Cas9 RNP/oleic acid LAH5 peptide nanocomplexes showed the overall best performance for both gene editing and correction. Moreover, Cas9 RNP/oleic acid LAH5 nanocomplexes significantly protected the Cas9 protein cargo from enzymatic protease digestion. In addition, in vivo testing demonstrated successful gene editing after intramuscular administration. Despite the inherent barriers of the tightly organized muscle tissues, we achieved approximately 10 % gene editing in the skeletal muscle tissues when targeting the CAG-tdTomato locus in the transgenic Ai9 Cre-LoxP reporter mouse strain and 7 % gene editing when targeting the Ccr5 gene, without any observable short-term toxicity. In conclusion, the oleic acid-modified LAH5 peptide is an effective delivery platform for direct Cas9/RNP delivery, and holds great potential for the development of new CRISPR/Cas9-based therapeutic applications for the treatment of genetic diseases.
Collapse
Affiliation(s)
- Mert Öktem
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Thai Hoang Nguyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Esmeralda D C Bosman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, 80131, Italy
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands
| | - Zhiyong Lei
- CDL Research, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands.
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht 3584 CG, the Netherlands.
| |
Collapse
|
9
|
Qiu Z. Advancements in autism spectrum disorder research --from mechanisms to interventions. Curr Opin Neurobiol 2025; 93:103048. [PMID: 40359648 DOI: 10.1016/j.conb.2025.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025]
Abstract
This review summarizes recent advancements in the research of autism spectrum disorders (ASD), emphasizing genetic underpinnings and their implications for neurodevelopment and cognitive functions. It explores both syndromic and nonsyndromic ASD, highlighting the discovery of critical ASD-related genes and their mechanistic roles as revealed by studies using genetically engineered mouse and non-human primate models. While these models have shed light on the potential of synaptic dysfunction to disrupt brain development, they also underscore the challenges of replicating complex cognitive dysfunctions observed in ASD. Recent successes in gene therapy, particularly through innovative approaches like gene replacement and base editing, offer promising pathways for addressing genetic anomalies in ASD. These therapeutic strategies, underscored by clinical trials and cutting-edge genetic manipulation techniques, pave the way for potential interventions that could profoundly impact ASD management and treatment.
Collapse
Affiliation(s)
- Zilong Qiu
- Department of Neurology, Songjiang Hospital, Songjiang Research Institute, MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Morán Torres JP, Lyu J, Chen X, Klaas AM, Vonk PJ, Lugones LG, de Cock H, Wösten HAB. Single and combinatorial gene inactivation in Aspergillus niger using selected as well as genome-wide gRNA library pools. Microbiol Res 2025; 298:128204. [PMID: 40359875 DOI: 10.1016/j.micres.2025.128204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Aspergillus niger is a saprotroph, a pathogen, an endophyte, a food spoiler and an important cell factory. Only a minor fraction of its genes has been experimentally characterized. We here set up a CRISPR/Cas9 mutagenesis screen for functional gene analysis using co-transformation of a pool of gene editing plasmids that are maintained under selection pressure and that each contain a gRNA. First, a pool of gRNA vectors was introduced in A. niger targeting five genes with easy selectable phenotypes. Transformants were obtained with all possible single, double, triple, quadruple and quintuple gene inactivation phenotypes. Their genotypes were confirmed using the gRNA sequences in the transforming vector as barcodes. Next, a gRNA library was introduced in A. niger targeting > 9600 genes. Gene nsdC was identified as a sporulation gene using co-transformation conditions that favored uptake of one or two gRNA construct(s) from the genome-wide vector pool. Together, CRISPR/Cas9 vectors with a (genome-wide) pool of gRNAs can be used for functional analysis of genes in A. niger with phenotypes that are the result of the inactivation of a single or multiple genes.
Collapse
Affiliation(s)
- Juan Pablo Morán Torres
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Jun Lyu
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Xiaoyi Chen
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Antonia M Klaas
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Peter Jan Vonk
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Luis G Lugones
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Hans de Cock
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands
| | - Han A B Wösten
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, the Netherlands.
| |
Collapse
|
11
|
Suboktagin S, Ullah MW, Sethupathy S, Keerio HA, Alabbosh KF, Khan KA, Zhu D. Microbial cell factories for bioconversion of lignin to vanillin - Challenges and opportunities: A review. Int J Biol Macromol 2025; 309:142805. [PMID: 40187450 DOI: 10.1016/j.ijbiomac.2025.142805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The bioconversion of lignin into vanillin via microbial cell factories offers a promising and sustainable route for producing high-value aromatic compounds from the abundant and underutilized byproducts of plant biomass. This review comprehensively explores the synthesis, structural characteristics, and diverse industrial applications of lignin, while addressing the inherent challenges posed by its complex structure in bioconversion processes. It examines the potential of microbial cell factories for lignin degradation, emphasizing the latest advancements in genetic engineering and metabolic optimization strategies that enhance microbial efficiency in lignin degradation and vanillin biosynthesis. It further assesses the economic feasibility of lignin-to-vanillin conversion by discussing key factors influencing cost-effectiveness and scalability, highlighting the transformative potential for producing high-value aromatic compounds in an environmentally sustainable manner. The review also highlights ongoing research efforts to develop robust microbial strains and optimize metabolic pathways for improved vanillin yield. By integrating multidisciplinary approaches, this review highlights the transformative potential of microbial cell factories to valorize lignin, offering a sustainable pathway for the production of vanillin and related aromatic compounds.
Collapse
Affiliation(s)
- Sultan Suboktagin
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hareef Ahmed Keerio
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
12
|
Sui A, Guo X. Histone demethylase KDM6B promotes glioma cell proliferation by increasing PDGFRA expression via chromatin loop formation. Neurol Res 2025; 47:364-372. [PMID: 40134212 DOI: 10.1080/01616412.2025.2480326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVES Changes in gene expression pattern play an essential role in promoting the process of cancer. For example, platelet-derived growth factor receptor alpha (PDGFRA) is overexpressed in many cancers, including gliomas. Abnormal histone methylation is a typical characteristics of glioma, and our previous studies have shown that histone lysine demethylase 6B (KDM6B) is involved in glioma development by regulating the expression of specific oncogenes. In this study, the regulatory effect and underlying mechanism of KDM6B on PDGFRA expression were investigated. METHODS The expression information of KDM6B and PDGFRA in patients with glioma was analyzed in GEPIA database. The expression or activity of KDM6B was regulated with CRISPR interference/activation (CRISPRi/a) assays, gene knockdown and specific inhibitor. Cell proliferation was determined using cell counting kit assay. Chromatin immunoprecipitation assay (ChIP) and ChIP-loop assays were used to determine the H3K27me3 status in the PDGFRA promoter and DNA-DNA interactions mediated by KDM6B. RESULTS The expression of KDM6B and PDGFRA expression is positively correlated in gliomas. CRISPRi/a assays indicated that KDM6B has a positive regulatory role in PDGFRA expression in glioma cells and can promote glioma cell proliferation. KDM6B knockdown and inhibitor assays further proved that KDM6B promotes PDGFRA expression. ChIP assays indicated KDM6B reduces H3K27me3 level in the PDGFRA promoter. The ChIP-loop assays showed KDM6B increases the formation of chromatin loops, which facilitates the proximity of enhancer and promoter. CONCLUSION This study reveals a new epigenetic mechanism of PDGFRA overexpression in glioma cells, that is, KDM6B catalyzes the demethylation of H3K27me3 and induces chromatin loop formation to activate PDGFRA expression. This study is of great significance for the understanding of glioma development and the application of new treatment strategies, such as radiation therapy combined with epigenetic therapy.
Collapse
Affiliation(s)
- Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoqiang Guo
- Department of Kinesiology, Hebei Sport University, Shijiazhuang, China
| |
Collapse
|
13
|
Xiao G, Shi H, Liu M, Huang M, Li S, Zhou X, Li H, Zhang G. Trans-cleavage activity of Cas12a effectors can be unleashed by both double-stranded DNA and single-stranded RNA targeting in absence of PAM. Int J Biol Macromol 2025; 309:142992. [PMID: 40222509 DOI: 10.1016/j.ijbiomac.2025.142992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
CRISPR-Cas12a is a powerful tool in nucleic acid detection, but the relationship between its trans-cleavage activity and protospacer adjacent motif (PAM) sequences remains incompletely understood. In this study, we synthesized diverse PAM-sequence substrates and conducted systematic cis-cleavage and trans-cleavage experiments with three Cas12a orthologs. We found that double-stranded DNA (dsDNA) can activate Cas12a's trans-cleavage activity even without PAM and this activation occurring independently of cis-cleavage. Notably, our results also revealed that single-stranded RNA (ssRNA) can directly initiate the trans-cleavage activity of Cas12a.We also experimentally validated the feasibility of CRISPR-Cas12a in detecting target dsDNA lacking PAM sequences, including identifying mutated sites in clinical samples. Structural prediction using AlphaFold 3 revealed the potential mechanism of Cas12a's PAM-independent trans-cleavage. Our research expands the understanding of Cas12a's trans-cleavage mechanism and demonstrates its potential for nucleic acid detection beyond PAM-dependent targets. This discovery broadens the application scope of Cas12a, providing new opportunities for developing highly sensitive and versatile diagnostic platforms.
Collapse
Affiliation(s)
- Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Hongyu Shi
- School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Meixia Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Min Huang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Siqi Li
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xuefeng Zhou
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Hengfei Li
- Department of Infectious Diseases, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, China; School of Clinical Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
14
|
Mansouri M, Mansouri K, Taheri Z, Hossaini Alhashemi S, Dehshahri A. The Fomivirsen, Patisiran, and Givosiran Odyssey: How the Success Stories May Pave the Way for Future Clinical Translation of Nucleic Acid Drugs. BioDrugs 2025; 39:359-371. [PMID: 40186723 DOI: 10.1007/s40259-025-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Over the past 25 years, the approval of several nucleic acid-based drugs by the US Food and Drug Administration (FDA) has marked a significant milestone, establishing nucleic acid drugs as a viable therapeutic modality. These groundbreaking discoveries are the result of some crucial points in the timeline of nucleic acid drug development. The inventions used in fomivirsen (Vitravene; Isis Pharmaceuticals) development paved the road for structural backbone modifications as well as nucleobase and sugar modifications. The approval of patisiran (Onpattro; Alnylam) demonstrated an effective and safe delivery system for small interfering RNA (siRNA), extending potential applications to other nucleic acids such as messenger RNA (mRNA). Givosiran (Givlaari; Alnylam) further revolutionized the field with a carrier-free, targeted platform, utilizing N-Acetylgalactosamine (GalNAc)-siRNA conjugates to enable efficient delivery, expanding therapeutic applications beyond rare genetic disorders to more common conditions such as hyperlipidemia and hypertension. In this review paper, we highlight the evolution of nucleic acid-based drug development, focusing on the pioneering agents fomivirsen, patisiran, and givosiran, and discuss the ongoing challenges in advancing these therapeutics and vaccines.
Collapse
Affiliation(s)
- Mona Mansouri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Mansouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Sitara A, Hocq R, Lu AJ, Pflügl S. Hi-TARGET: a fast, efficient and versatile CRISPR type I-B genome editing tool for the thermophilic acetogen Thermoanaerobacter kivui. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:49. [PMID: 40307869 PMCID: PMC12044746 DOI: 10.1186/s13068-025-02647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Due to its ability to grow fast on CO2, CO and H2 at high temperatures and with high energy efficiency, the thermophilic acetogen Thermoanaerobacter kivui could become an attractive host for industrial biotechnology. In a circular carbon economy, diversification and upgrading of C1 platform feedstocks into value-added products (e. g., ethanol, acetone and isopropanol) could become crucial. To that end, genetic and bioprocess engineering tools are required to facilitate the development of bioproduction scenarios. Currently, the genome editing tools available for T. kivui present some limitations in speed and efficiency, thus restricting the development of a powerful strain chassis for industrial applications. RESULTS In this study, we developed the versatile genome editing tool Hi-TARGET, based on the endogenous CRISPR Type I-B system of T. kivui. Hi-TARGET demonstrated 100% efficiency for gene knock-out (from both purified plasmid and cloning mixture) and knock-in, and 49% efficiency for creating point mutations. Furthermore, we optimized the transformation and plating protocol and increased transformation efficiency by 245-fold to 1.96 × 104 ± 8.7 × 103 CFU μg-1. Subsequently, Hi-TARGET was used to demonstrate gene knock-outs (pyrE, rexA, hrcA), a knock-in (ldh::pFAST), a single nucleotide mutation corresponding to PolCC629Y, and knock-down of the fluorescent protein pFAST. Analysis of the ∆rexA deletion mutant created with Hi-TARGET revealed that the transcriptional repressor rexA is likely involved in the regulation of the expression of lactate dehydrogenase (ldh). Following genome engineering, an optimized curing procedure for edited strains was devised. In total, the time required from DNA to a clean, edited strain is 12 days, rendering Hi-TARGET a fast, robust and complete method for engineering T. kivui. CONCLUSIONS The CRISPR-based genome editing tool Hi-TARGET developed for T. kivui can be used for scarless deletion, insertion, point mutation and gene knock-down, thus fast-tracking the generation of industrially-relevant strains for the production of carbon-negative chemicals and fuels as well as facilitating studies of acetogen metabolism and physiology.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Rémi Hocq
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Alexander Jiwei Lu
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
16
|
Zeng Y, Tan X, Xiao P, Gao P, Wang L, Zhang A. Natronobacterium gregoryi Argonaute inhibits class 1 integron integrase-mediated excision and integration. Nucleic Acids Res 2025; 53:gkaf248. [PMID: 40266686 PMCID: PMC12016799 DOI: 10.1093/nar/gkaf248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 03/13/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025] Open
Abstract
Argonaute (Ago) proteins, ubiquitous in all domains of life, serve as key components in defense against foreign nucleic acids. While eukaryotic Agos (eAgos) are well characterized for guide RNA-mediated RNA targeting, prokaryotic Agos (pAgos) exhibit diverse functions, particularly in protecting bacteria from invasive DNA. The previous study identified Class 1 integron integrase (IntI-1), a tyrosine site-specific recombinase involved in horizontal transfer of antibiotic resistance genes, as a potential interaction partner of Natronobacterium gregoryi Argonaute (NgAgo), a member of pAgos. Here, we demonstrated that this interaction was direct, depended on the PIWI domain, and was independent of the catalytic activity of NgAgo. Notably, no interaction occurred between NgAgo and Cre (another tyrosine site-specific recombinase), highlighting the specificity of NgAgo-IntI-1 interaction. Furthermore, NgAgo could inhibit binding of IntI-1 to its target DNA, and then impede IntI-1-mediated integration and excision. Consistent with the above finding, few pAgos could be found in prokaryotic genomes containing IntI, whereas IntI showed significant co-occurrence with another bacterial defense system, CRISPR-Cas. In summary, our study elucidated a novel defense mechanism of pAgos through interaction with IntI-1 for inhibiting IntI-1-mediated gene excision/integration process.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peiying Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Libo Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products (Ministry of Agriculture), International Research Center for Animal Disease (Ministry of Science and Technology), Wuhan, Hubei 430070, China
| |
Collapse
|
17
|
Liu X, Zhou E, Qi Q, Xiong W, Tian T, Zhou X. Innovative Chemical Strategies for Advanced CRISPR Modulation. Acc Chem Res 2025; 58:1262-1274. [PMID: 40173086 DOI: 10.1021/acs.accounts.5c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
ConspectusOver the past decade, RNA-guided gene editing technologies, particularly those derived from CRISPR systems, have revolutionized life sciences and opened unprecedented opportunities for therapeutic innovation. Despite their transformative potential, achieving precise control over the activity and specificity of these molecular tools remains a formidable challenge, requiring advanced and innovative regulatory strategies. We and others have developed new approaches that integrate chemical ingenuity with bioorthogonal techniques to achieve remarkable precision in CRISPR regulation. One key innovation lies in the chemical modulation of guide RNA (gRNA), significantly expanding the CRISPR toolkit. Strategies such as CRISPR-ON and CRISPR-OFF switches rely on selective chemical masking and demasking of gRNA. These approaches use either bulky chemical groups to preemptively mask RNA or minor, less obstructive groups to fine-tune its function, followed by bioorthogonal reactions to restore or suppress activity. These methodologies have proven to be pivotal for controlled gene editing and expression, addressing the challenges of precision, reversibility, and dynamic regulation.Parallel to these advances, the development of mesoporous metal-organic frameworks (MOFs) has emerged as a promising solution for RNA deprotection and activation. By serving as catalytic tools, MOFs enhance the versatility and efficiency of CRISPR systems, pushing their applications beyond the conventional boundaries. In addition, the synthesis of novel small molecules for regulating CRISPR-Cas9 activity marks a critical milestone in the evolution of gene therapy protocols. Innovative RNA structural control strategies have also emerged, particularly through the engineering of G-quadruplex (G4) motifs and G-G mismatches. These methods exploit the structural propensities of engineered gRNAs, employing small-molecule ligands to induce specific conformational changes that modulate the CRISPR activity. Whether stabilizing G4 formation or promoting G-G mismatches, these strategies demonstrate the precision and sophistication required for the molecular-level control of gene editing.Further enhancing these innovations, techniques like host-guest chemistry and conditional diacylation cross-linking have been developed to directly alter gRNA structure and function. These approaches provide nuanced, reversible, and safe control over CRISPR systems, advancing both the precision and reliability of gene editing technologies. In conclusion, this body of work highlights the convergence of chemistry, materials science, and molecular biology to create integrative solutions for gene editing. By combination of bioorthogonal chemistry, RNA engineering, and advanced materials, these advancements offer unprecedented accuracy and control for both fundamental research and therapeutic applications. These innovations not only advance genetic research but also contribute to developing safer and more effective gene editing strategies, moving us closer to realizing the full potential of these technologies.
Collapse
Affiliation(s)
- Xingyu Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Enyi Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Qianqian Qi
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Wei Xiong
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Tian Tian
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Navarro C, Díaz MP, Duran P, Castro A, Díaz A, Cano C, Carbonell-Zabaleta AK, Solano-Jimenez DS, Rivera-Porras D, Contreras-Velásquez JC, Bermúdez V. CRISPR-Cas Systems: A Functional Perspective and Innovations. Int J Mol Sci 2025; 26:3645. [PMID: 40332149 PMCID: PMC12026748 DOI: 10.3390/ijms26083645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 05/08/2025] Open
Abstract
Adaptation is a fundamental tenet of evolutionary biology and is essential for the survival of all organisms, including prokaryotes. The evolution of clustered regularity exemplifies this principle of interspaced short palindromic repeats (CRISPR) and associated proteins (Cas), an adaptive immune system that confers resistance to viral infections. By integrating short segments of viral genomes into their own, bacteria and archaea develop a molecular memory that enables them to mount a rapid and targeted response upon subsequent viral challenges. The fortuitous discovery of this immune mechanism prompted many studies and introduced researchers to novel tools that could potentially be developed from CRISPR-Cas and become clinically relevant as biotechnology rapidly advances in this area. Thus, a deeper understanding of the underpinnings of CRISPR-Cas and its possible therapeutic applications is required. This review analyses the mechanism of action of the CRISPR-Cas systems in detail and summarises the advances in developing biotechnological tools based on CRISPR, opening the field for further research.
Collapse
Affiliation(s)
- Carla Navarro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - María P. Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Ana Castro
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Andrea Díaz
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 40001, Venezuela; (M.P.D.); (P.D.); (A.C.); (A.D.); (C.C.)
| | - Ana-Karina Carbonell-Zabaleta
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Programa de Medicina, Barranquilla 080001, Colombia; (A.-K.C.-Z.); (D.-S.S.-J.)
| | - Donny-Sabrith Solano-Jimenez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Programa de Medicina, Barranquilla 080001, Colombia; (A.-K.C.-Z.); (D.-S.S.-J.)
| | - Diego Rivera-Porras
- Universidad de la Costa, Departamento de Productividad e Innovación, Barranquilla 080001, Atlántico, Colombia; (D.R.-P.); (J.C.C.-V.)
| | - Julio César Contreras-Velásquez
- Universidad de la Costa, Departamento de Productividad e Innovación, Barranquilla 080001, Atlántico, Colombia; (D.R.-P.); (J.C.C.-V.)
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Centro de Investigaciones en Ciencias de la Vida, Barranquilla 080001, Colombia
| |
Collapse
|
19
|
Xiang Z, Mei H, Wang H, Yao X, Rao J, Zhang W, Xu A, Lu L. Cuproptosis and its potential role in musculoskeletal disease. Front Cell Dev Biol 2025; 13:1570131. [PMID: 40292330 PMCID: PMC12022686 DOI: 10.3389/fcell.2025.1570131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Cuproptosis, a recently identified form of copper-dependent cell death, arises from intracellular copper dyshomeostasis. As an essential trace element, copper plays a critical role in bioenergetic metabolism, redox regulation, and synaptic transmission. However, excessive copper exerts cytotoxic effects through multiple pathways, including increased reactive oxygen species (ROS) production, apoptotic cascade activation, necrotic membrane rupture, inflammatory responses, and mitochondrial dysfunction. Distinct from other cell death mechanisms, cuproptosis is characterized by copper ion binding to acetylated mitochondrial respiratory chain proteins, leading to pathogenic protein aggregation, iron-sulfur cluster depletion, and cellular collapse. Emerging evidence underscores aberrant copper accumulation and resultant proteotoxic stress as pivotal contributors to the pathogenesis of multiple musculoskeletal pathologies, including osteoporosis, osteoarthritis, sarcopenia, osteosarcoma, intervertebral disc degeneration, spinal cord injury, and biofilm-associated orthopedic infections. Understanding the spatiotemporal regulation of cuproptosis may provide novel opportunities for advancing diagnostic and therapeutic approaches in orthopedic medicine. This review synthesizes current insights into the molecular mechanisms of cuproptosis, its pathogenic role in musculoskeletal diseases, and the potential for biomarker-driven therapeutic interventions.
Collapse
Affiliation(s)
- Ziyang Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiling Mei
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglin Wang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Yao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji Rao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wentao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Yang X, Shi X, Lv C, Liu W, Zhang F, Liu B. Integrating CRISPR-Cas12a with Aptamer as a Logic Gate Biosensing Platform for the Detection of CD33 and CD123. ACS OMEGA 2025; 10:13634-13644. [PMID: 40224444 PMCID: PMC11983205 DOI: 10.1021/acsomega.5c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Molecular logic gates, as biomolecule-based computational systems, are highly suitable for multitarget detection due to their programmability and modularity. However, existing systems are primarily limited to nucleic acid detection and have not been widely applied to disease-related sensing, particularly for disease antigens. CD33 and CD123 are critical biomarkers for acute myeloid leukemia (AML), yet conventional detection methods rely on expensive equipment and complex procedures, limiting their accessibility and practicality. This study designs a DNA logic gate system integrating nucleic acid aptamers, catalytic hairpin assembly (CHA), and CRISPR-Cas12a, pioneering its use for AML antigen detection. The system comprises three modules: input recognition, signal amplification, and signal transduction. Nucleic acid aptamers specifically identify CD33 and CD123, while CHA enables efficient signal amplification and CRISPR-Cas12a generates a fluorescent output via trans-cleavage activity. The system operates stably at room temperature and implements multiple logic gate models, including YES, OR, AND, NOR, and INHIBIT, enabling the simultaneous detection of CD33 and CD123. Experimental results are visually distinguishable under blue light, and the system requires only standard fluorescence detection instruments. In serum samples, it exhibits excellent selectivity and stability, with a detection limit of 0.5 ng/mL. This study pioneers the application of logic gate technology for disease antigen detection, addressing a critical gap in AML biomarker sensing. Our study indicates that this logic detection platform, characterized by its simplicity in operation, high sensitivity, and versatility in logic functions, holds promise as a potent sensing system for the intelligent multiplex target detection of disease antigens, environmental pollutants, and heavy metals.
Collapse
Affiliation(s)
- Xinyi Yang
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
| | - Xiaolong Shi
- Institution
of Computational Science and Technology, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Chenyu Lv
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
| | - Wenbin Liu
- Institution
of Computational Science and Technology, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Fengyue Zhang
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
- College
of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun
Street, Beijing 100081, PR China
| | - Bo Liu
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
| |
Collapse
|
21
|
Huang Z, Zhu J, Bu X, Lu S, Luo Y, Liu T, Duan N, Wang W, Wang Y, Wang X. Probiotics and prebiotics: new treatment strategies for oral potentially malignant disorders and gastrointestinal precancerous lesions. NPJ Biofilms Microbiomes 2025; 11:55. [PMID: 40199865 PMCID: PMC11978799 DOI: 10.1038/s41522-025-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025] Open
Abstract
Oral potentially malignant disorders (OPMDs) and gastrointestinal precancerous lesions (GPLs) are major public health concerns because of their potential to progress to cancer. Probiotics, prebiotics, and engineered probiotics can positively influence the prevention and management of OPMDs and GPLs. This review aims to comprehensively review the application status of probiotics, prebiotics and engineered probiotics in OPMDs and GPLs, explore their potential mechanisms of action, and anticipate their future clinical use.
Collapse
Affiliation(s)
- Zhuwei Huang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Jiaye Zhu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Xiangwen Bu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Shulai Lu
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yixian Luo
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ting Liu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ning Duan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| | - Xiang Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
22
|
Zainab R, Mukhtar A, Saleem Z, Kaul H, Ahmad A, Majeed M. Editing gliA, gliP and gliZ of Aspergillus fumigatus Using CRISPR/Cas System Renders Fungus Incapable to Produce Gliotoxin. Mol Biotechnol 2025:10.1007/s12033-025-01429-1. [PMID: 40186064 DOI: 10.1007/s12033-025-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/07/2025]
Abstract
Aspergillus fumigatus is a saprophytic fungus that causes respiratory infections in human, animals, and birds. This fungus produces gliotoxin which is a secondary metabolite that triggers pathogenicity. Gliotoxin is encoded by a 13-gene cluster including gliA, gliP and gliZ. The purpose of this study was to determine whether the fungus produces gliotoxin after these genes are edited using CRISPR/Cas system. For this, crRNAs for gliA, gliP and gliZ were designed using EuPaGDT, while tracrRNA and Cas9 protein were purchased ready-made. These crRNAs were individually annealed with the tracrRNA to make three gRNAs which were then individually combined with the Cas9 to make three ribonucleoprotein (RNP) complexes. A. fumigatus protoplasts were enzymatically generated and transfected with each of the RNP complexes (group 1) in PEGylated conditions. Non-treated protoplasts were simultaneously run as control (group 2). Transfected protoplasts showed reduced growth on SDA plates as compared to their control. Gliotoxin extraction through thin-layer chromatography was carried out for both the groups which showed the absence of gliotoxin in group 1. Sequencing results confirmed the indels in target genes which shows that the CRISPR/Cas9 system effectively targeted A. fumigatus' gliotoxin-related genes that rendered fungus incapable to produce gliotoxin. This work may pave the way to develop effective strategies to control the infections caused by A. fumigatus.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Animal Breeding and Genetics (Section Genetics), University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Arsh Mukhtar
- Department of Animal Breeding and Genetics (Section Genetics), University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zakia Saleem
- Department of Animal Breeding and Genetics (Section Genetics), University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haiba Kaul
- Department of Animal Breeding and Genetics (Section Genetics), University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Majeed
- Department of Animal Breeding and Genetics (Section Genetics), University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
23
|
Parikh SJ, Terron HM, Burgard LA, Maranan DS, Butler DD, Wiseman A, LaFerla FM, Lane S, Leissring MA. Targeted Control of Gene Expression Using CRISPR-Associated Endoribonucleases. Cells 2025; 14:543. [PMID: 40214496 PMCID: PMC11988398 DOI: 10.3390/cells14070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
CRISPR-associated endoribonucleases (Cas RNases) cleave single-stranded RNA in a highly sequence-specific manner by recognizing and binding to short RNA sequences known as direct repeats (DRs). Here, we investigate the potential of exploiting Cas RNases for the regulation of target genes with one or more DRs introduced into the 3' untranslated region, an approach we refer to as DREDGE (direct repeat-enabled downregulation of gene expression). The DNase-dead version of Cas12a (dCas12a) was identified as the most efficient among five different Cas RNases tested and was subsequently evaluated in doxycycline-regulatable systems targeting either stably expressed fluorescent proteins or an endogenous gene. DREDGE performed superbly in stable cell lines, resulting in up to 90% downregulation with rapid onset, notably in a fully reversible and highly selective manner. Successful control of an endogenous gene with DREDGE was demonstrated in two formats, including one wherein both the DR and the transgene driving expression of dCas12a were introduced in one step by CRISPR-Cas. Our results establish DREDGE as an effective method for regulating gene expression in a targeted, highly selective, and fully reversible manner, with several advantages over existing technologies.
Collapse
Affiliation(s)
- Sagar J. Parikh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Heather M. Terron
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Luke A. Burgard
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Derek S. Maranan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Dylan D. Butler
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Abigail Wiseman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Shelley Lane
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Knight AL, Lisi GP. Spy-ing on nucleic acids: Atomic resolution of the S. pyogenes CRISPR-Cas9 surveillance state. Structure 2025; 33:636-638. [PMID: 40185080 DOI: 10.1016/j.str.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/07/2025]
Abstract
In a recent issue of Cell Chemical Biology, De Paula et al.1 report an extensive methyl-TROSY solution NMR study of the CRISPR-Cas9 holoenzyme. Studying millisecond-to-second protein dynamics using individual domain constructs of Cas9 coupled to structural interrogations of the full-length enzyme, the authors describe the Cas9 "surveillance state," a molecular mechanism driving the discrimination between on- and off-target DNA.
Collapse
Affiliation(s)
- Alexa L Knight
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA; Brown University RNA Center, Providence, RI, USA.
| |
Collapse
|
25
|
Prasetia IGNJA, Kurniati NF, Riani C, Mudhakir D. Design of lipid nanoparticle (LNP) containing genetic material CRISPR/Cas9 for familial hypercholesterolemia. NARRA J 2025; 5:e2217. [PMID: 40352243 PMCID: PMC12059878 DOI: 10.52225/narra.v5i1.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Familial hypercholesterolemia is a genetic disorder caused by mutations in the low- density lipoprotein receptor gene (LDLR) and the current treatment still focuses on symptom management. The aim of this study was to develop a lipid nanoparticle (LNP)- based delivery system for the CRISPR/Cas9 component in correcting LDLR gene mutations. LNPs were prepared using an ultrasonic-solvent emulsification technique by varying the surfactant: oil ratio (SOR), homogenization speed and time, and sonication time. Next, the LNP surface was modified by adding DSPE-PEG2000-NH2 and polyethyleneimine. The next stage is to design the single guide RNA (sgRNA) and Donor DNA wildtype (Donor DNA wt). This genetic material was complexed with LNP and then transfected into Hepa1-6 LDLR mt cells, an in vitro representation of cells suffering from familial hypercholesterolemia. This optimization process produced LNPs with a particle size of 118.6 ± 0.8 nm and a polydispersity index of 0.34 ± 0.03. The LNP surface modification resulted in a zeta potential of +7.5 mV. A transmission electron microscope (TEM) analysis showed spherical morphology with size distribution following a regular pattern. LNP cell viability tests showed good biocompatibility at concentrations <15 mM with a half-maximal inhibitory concentration (IC50) value of 27.7 mM. The dominant cellular uptake mechanism of LNP was through the clathrin-mediated endocytosis (CME) pathway. The Hepa1-6 LDLR mt cell model was successfully produced with the transfecting agent Lipofectamine 3000 by homology-directed repair (HDR) mechanism. The LNP-genetic material complex with a ratio of sgRNA:Cas9:Donor DNA wt (1:1:0.04) showed an increase in LDLR gene expression of 3.3 ± 0.2 times and LDLR protein levels reached 12.95 ± 0.25 ng/mL on day 4 after transfection. The results of this study indicate that the developed LNP-based delivery system has the potential for gene therapy applications in familial hypercholesterolemia.
Collapse
Affiliation(s)
- I GNJA. Prasetia
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
- Pharmacist Profession Study Program, Faculty of Math and Natural Sciences, Universitas Udayana, Bali, Indonesia
| | - Neng F. Kurniati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Catur Riani
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| | - Diky Mudhakir
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung, Indonesia
| |
Collapse
|
26
|
Zhao W, Zhu X, Huang G, Gu H, Bi Y, Tang D, Ren H. Application of Multiple Base-Editing Mediated by Polycistronic tRNA-gRNA-Processing System in Pig Cells. Biotechnol Bioeng 2025; 122:779-791. [PMID: 39844444 DOI: 10.1002/bit.28931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Gene edited pigs have extensive and important application value in the fields of agriculture and biomedicine. With the increasing demand in medical research and agricultural markets, more and more application scenarios require gene edited pigs to possess two or even more advantageous phenotypes simultaneously. The current production of multi gene edited pigs is inefficient, time-consuming, and costly, and there is an urgent need to develop efficient and accurate multi gene editing application technologies. The polycistronic tRNA-gRNA-processing system (PTG), developed based on endogenous tRNA self-processing systems, has been shown to exhibit efficient multi gene editing in plants. This study aims to combine a PTG strategy with multiple gRNA production functions with an adenine base editor (ABE) to test its feasibility for efficient and precise multi gene base editing in pig cells. The results indicate that the PTG based integrated ABE plasmid can perform efficient base editing at multiple gene loci in pig cells. And while the gene editing efficiency was significantly improved, no indel and sgRNA dependent off target effects caused by DSB were detected. This work permit will provide a solid foundation for the production of multi gene edited pigs with agricultural and medical applications.
Collapse
Affiliation(s)
- Wudi Zhao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Guobin Huang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
27
|
Zhang H, Xie L, Gao H, Pan H. Application of pre-amplification-based CRISPR-Cas nanostructured biosensors for bacterial detection. Nanomedicine (Lond) 2025; 20:903-915. [PMID: 40052226 PMCID: PMC11988256 DOI: 10.1080/17435889.2025.2476384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Bacterial infections are one of the primary triggers of global disease outbreaks. Traditional detection methods, such as bacterial culture and PCR, while reliable, are limited by their time-consuming procedures and operational complexity. In recent years, the CRISPR-Cas system has demonstrated significant potential in gene editing and diagnostics due to its high specificity and precision, offering innovative solutions for bacterial detection. By integrating pre-amplification techniques, the CRISPR-Cas system has substantially enhanced detection sensitivity, particularly excelling in detecting low-concentration target bacteria. This review summarizes the principles and application examples of CRISPR-Cas-based fluorescence, electrochemical, lateral flow, and colorimetric nanostructured biosensors developed over the past three years, categorizing them according to their recognition methods (e.g. bacterial genomes, aptamers, antibodies). It systematically explores the broad application prospects of these sensors in medical diagnostics, environmental monitoring, and food safety assessment. Additionally, this review discusses future research directions and potential development prospects, providing new insights and technical support for the rapid diagnosis and treatment of bacterial infections.
Collapse
Affiliation(s)
- Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Xie
- Foreign Language School, Shanghai Dianji University, Shanghai, China
| | - Hongmin Gao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
28
|
Kim HK, Cheong H, Kim MY, Jin HE. Therapeutic Targeting in Ovarian Cancer: Nano-Enhanced CRISPR/Cas9 Gene Editing and Drug Combination Therapy. Int J Nanomedicine 2025; 20:3907-3931. [PMID: 40191042 PMCID: PMC11970428 DOI: 10.2147/ijn.s507688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Ovarian cancer is the third most common gynecological cancer worldwide. Due to the high recurrence rate of advanced-stage ovarian cancer, often resulting from drug-resistant and refractory disease, various treatment strategies are under investigation. Genome editing of therapeutic target genes holds promise in enhancing cancer treatment efficacy by elucidating gene functions and mechanisms involved in cancer progression. The CRISPR/Cas9 system, in particular, shows great potential in ovarian cancer gene therapy and drug development. Targeting therapeutic genes such as BRCA1/2, P53, Snai1 etc, could improve the therapeutic strategy in ovarian cancer. CRISPR/Cas9 is a powerful gene-editing tool that there are many on-going clinical trials to treat various diseases including cancer. Nano-based delivery systems for CRISPR/Cas9 offer further therapeutic benefits, leveraging the unique properties of nanoparticles to improve delivery efficiency. Nano-based delivery systems could enhance the stability of CRISPR/Cas9 delivery formats (such as plasmid, mRNA, etc) and improve the delivery precision of delivery to target tumors. Additionally, combining CRISPR/Cas9 with targeted drug treatments, especially those aimed at genes associated with drug resistance, may significantly improve therapeutic outcomes in ovarian cancer. In this review, we discuss therapeutic target genes and their mechanisms in ovarian cancer, advances in nano-based CRISPR/Cas9 delivery, and the therapeutic potential of combining CRISPR/Cas9 with drug treatments for ovarian cancer.
Collapse
Affiliation(s)
- Hong-Kook Kim
- AI-Super Convergence KIURI Translational Research Center, Ajou University, Suwon, 16499, Republic of Korea
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Heedon Cheong
- Department of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Moo-Yeon Kim
- Department of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Hyo-Eon Jin
- Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
- Department of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
29
|
Aris KDP, Cofsky JC, Shi H, Al-Sayyad N, Ivanov IE, Balaji A, Doudna JA, Bryant Z. Dynamic basis of supercoiling-dependent DNA interrogation by Cas12a via R-loop intermediates. Nat Commun 2025; 16:2939. [PMID: 40133266 PMCID: PMC11937380 DOI: 10.1038/s41467-025-57703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
The sequence specificity and programmability of DNA binding and cleavage have enabled widespread applications of CRISPR-Cas12a in genetic engineering. As an RNA-guided CRISPR endonuclease, Cas12a engages a 20-base pair (bp) DNA segment by forming a three-stranded R-loop structure in which the guide RNA hybridizes to the DNA target. Here we use single-molecule torque spectroscopy to investigate the dynamics and mechanics of R-loop formation of two widely used Cas12a orthologs at base-pair resolution. We directly observe kinetic intermediates corresponding to a ~5 bp initial RNA-DNA hybridization and a ~17 bp intermediate preceding R-loop completion, followed by transient DNA unwinding that extends beyond the 20 bp R-loop. The complex multistate landscape of R-loop formation is ortholog-dependent and shaped by target sequence, mismatches, and DNA supercoiling. A four-state kinetic model captures essential features of Cas12a R-loop dynamics and provides a biophysical framework for understanding Cas12a activity and specificity.
Collapse
Affiliation(s)
- Kevin D P Aris
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Honglue Shi
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Noor Al-Sayyad
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Ivan E Ivanov
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ashwin Balaji
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Structural Biology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
30
|
O’Donohue AK, Ginn SL, Burgio G, Berman Y, Dabscheck G, Schindeler A. The evolving landscape of NF gene therapy: Hurdles and opportunities. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102475. [PMID: 40034205 PMCID: PMC11872496 DOI: 10.1016/j.omtn.2025.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neurofibromatosis type 1 (NF1)- and NF2-related schwannomatosis are rare autosomal dominant monogenic disorders characterized by a predisposition for nerve-associated tumors. Current treatments focus on symptomatic management, but advancements in the gene therapy field present unique opportunities to treat the genetic underpinnings and develop curative therapies for NF. Approaches such as nonsense suppression agents and oligonucleotide therapies are becoming more mature and have emerging preclinical data in the context of NF. Furthermore, there has been progress in developing gene therapy vectors that can be delivered locally into tumors to ablate or shrink their size. While still a nascent research area, gene addition and gene repair strategies hold tremendous promise for the prevention and treatment of NF-related tumors. These technologies will also require parallel development of delivery vectors able to target the Schwann cells from which tumors most commonly arise. This review seeks to contextualize these advancements and which hurdles remain for their clinical adoption.
Collapse
Affiliation(s)
- Alexandra K. O’Donohue
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Gaetan Burgio
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, VIC 3050, Australia
| | - Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
31
|
Chenal M, Rivera-Millot A, Harrison LB, Khairalla AS, Nieves C, Bernet È, Esmaili M, Belkhir M, Perreault J, Veyrier FJ. Discovery of the widespread site-specific single-stranded nuclease family Ssn. Nat Commun 2025; 16:2388. [PMID: 40064889 PMCID: PMC11893778 DOI: 10.1038/s41467-025-57514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Site-specific endonucleases that exclusively cut single-stranded DNA have hitherto never been described and constitute a barrier to the development of ssDNA-based technologies. We identify and characterize one such family, from the GIY-YIG superfamily, of widely distributed site-specific single-stranded nucleases (Ssn) exhibiting unique ssDNA cleavage properties. By first comprehensively studying the Ssn homolog from Neisseria meningitidis, we demonstrate that it interacts specifically with a sequence (called NTS) present in hundreds of copies and surrounding important genes in pathogenic Neisseria. In this species, NTS/Ssn interactions modulate natural transformation and thus constitute an additional mechanism shaping genome dynamics. We further identify thousands of Ssn homologs and demonstrate, in vitro, a range of Ssn nuclease specificities for their corresponding sequence. We demonstrate proofs of concept for applications including ssDNA detection and digestion of ssDNA from RCA. This discovery and its applications set the stage for the development of innovative ssDNA-based molecular tools and technologies.
Collapse
Affiliation(s)
- Martin Chenal
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Luke B Harrison
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Ahmed S Khairalla
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
- Department of Biology, University of Regina, Regina, SK, Canada
| | - Cecilia Nieves
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Ève Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Mansoore Esmaili
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | - Manel Belkhir
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada
| | | | - Frédéric J Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, Canada.
| |
Collapse
|
32
|
Brant E, Zuniga‐Soto E, Altpeter F. RNAi and genome editing of sugarcane: Progress and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70048. [PMID: 40051334 PMCID: PMC11886501 DOI: 10.1111/tpj.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Sugarcane, which provides 80% of global table sugar and 40% of biofuel, presents unique breeding challenges due to its highly polyploid, heterozygous, and frequently aneuploid genome. Significant progress has been made in developing genetic resources, including the recently completed reference genome of the sugarcane cultivar R570 and pan-genomic resources from sorghum, a closely related diploid species. Biotechnological approaches including RNA interference (RNAi), overexpression of transgenes, and gene editing technologies offer promising avenues for accelerating sugarcane improvement. These methods have successfully targeted genes involved in important traits such as sucrose accumulation, lignin biosynthesis, biomass oil accumulation, and stress response. One of the main transformation methods-biolistic gene transfer or Agrobacterium-mediated transformation-coupled with efficient tissue culture protocols, is typically used for implementing these biotechnology approaches. Emerging technologies show promise for overcoming current limitations. The use of morphogenic genes can help address genotype constraints and improve transformation efficiency. Tissue culture-free technologies, such as spray-induced gene silencing, virus-induced gene silencing, or virus-induced gene editing, offer potential for accelerating functional genomics studies. Additionally, novel approaches including base and prime editing, orthogonal synthetic transcription factors, and synthetic directed evolution present opportunities for enhancing sugarcane traits. These advances collectively aim to improve sugarcane's efficiency as a crop for both sugar and biofuel production. This review aims to discuss the progress made in sugarcane methodologies, with a focus on RNAi and gene editing approaches, how RNAi can be used to inform functional gene targets, and future improvements and applications.
Collapse
Affiliation(s)
- Eleanor Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Evelyn Zuniga‐Soto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| |
Collapse
|
33
|
Feng J, Ma Y, Zhang D, Wang Y. High-Efficiency Genome Editing in Naturally Isolated Aeromonas hydrophila and Edwardsiella Piscicida Using the CRISPR-Cas9 System. Biotechnol Bioeng 2025; 122:606-614. [PMID: 39609710 DOI: 10.1002/bit.28889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024]
Abstract
Aeromonas hydrophila and Edwardsiella piscicida are significant bacterial pathogens in aquaculture, causing severe diseases and tremendous economic losses worldwide. Additionally, both of them can act as opportunistic pathogens in humans, leading to severe infections. Efficient genome editing tools for these pathogens are essential for understanding their pathogenic mechanisms and physiological behaviors, enabling the development of targeted strategies to control and mitigate their effects. In this study, we adapted the CRISPR-Cas9 system for high-efficiency, marker-less genome editing in multiple naturally isolated strains of these two aquaculture pathogens. We developed a streamlined procedure that successfully generated deletion mutants of the aerA gene (encoding for aerolysin, a pore-forming toxin that plays a critical role in the pathogenicity) and the gfp insertion mutants in three naturally isolated A. hydrophila strains. Additionally, we deleted five putative hemolysin-encoding genes in both A. hydrophila ML10-51K and its ∆aerA derivative. The same system was also applied to the naturally isolated E. piscicida S11-285 strain, successfully deleting the ssaV gene (a component of the Type III Secretion System-a critical virulence mechanism in many pathogenic bacteria). The methodologies developed herein could be broadly applied to other pathogenic strains from natural environments, providing valuable tools for studying bacterial pathogenesis and aiding in the development of effective control strategies.
Collapse
Affiliation(s)
- Jun Feng
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yuechao Ma
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Dunhua Zhang
- Aquatic Animal Health Research Unit, Agricultural Research Service, USDA, Auburn, Alabama, USA
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
34
|
Zhou Q, Gao Q, Gao Y, Zhang Y, Chen Y, Li M, Wei P, Yue Z. BES-Designer: A Web Tool to Design Guide RNAs for Base Editing to Simplify Library. Interdiscip Sci 2025; 17:134-139. [PMID: 39466357 DOI: 10.1007/s12539-024-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
CRISPR/Cas base editors offer precise conversion of single nucleotides without inducing double-strand breaks. This technology finds extensive applications in gene therapy, gene function analysis, and other domains. However, a crucial challenge lies in selecting the appropriate guide RNAs (gRNAs) for base editing. Although various gRNAs design tools exist, creating a simplified base-editing library with diverse protospacer adjacent motifs (PAM) sequences for gRNAs screening remains a challenge. We present a user-friendly web tool, BES-Designer ( https://bes-designer.aielab.net ), for gRNAs design based on base editors, aimed at streamlining the creation of a base-editing library. BES-Designer incorporates our proposed rules for target sequence simplification, helping researchers narrow down the scope of biological experiments in the lab. It allows users to design target sequences with various PAMs and editing types simultaneously, and prioritize them in the simplified base-editing library. This tool has been experimentally proven to achieve a 30% simplification efficiency on the base-editing-library.
Collapse
Affiliation(s)
- Qian Zhou
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Qian Gao
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Yujia Gao
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Zhang
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China
| | - Yanjun Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Min Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Pengcheng Wei
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| | - Zhenyu Yue
- School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
35
|
Kadowaki A, Wheeler MA, Li Z, Andersen BM, Lee HG, Illouz T, Lee JH, Ndayisaba A, Zandee SEJ, Basu H, Chao CC, Mahler JV, Klement W, Neel D, Bergstresser M, Rothhammer V, Lipof G, Srun L, Soleimanpour SA, Chiu I, Prat A, Khurana V, Quintana FJ. CLEC16A in astrocytes promotes mitophagy and limits pathology in a multiple sclerosis mouse model. Nat Neurosci 2025; 28:470-486. [PMID: 40033124 PMCID: PMC12039076 DOI: 10.1038/s41593-025-01875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/20/2024] [Indexed: 03/05/2025]
Abstract
Astrocytes promote neuroinflammation and neurodegeneration in multiple sclerosis (MS) through cell-intrinsic activities and their ability to recruit and activate other cell types. In a genome-wide CRISPR-based forward genetic screen investigating regulators of astrocyte proinflammatory responses, we identified the C-type lectin domain-containing 16A gene (CLEC16A), linked to MS susceptibility, as a suppressor of nuclear factor-κB (NF-κB) signaling. Gene and small-molecule perturbation studies in mouse primary and human embryonic stem cell-derived astrocytes in combination with multiomic analyses established that CLEC16A promotes mitophagy, limiting mitochondrial dysfunction and the accumulation of mitochondrial products that activate NF-κB, the NLRP3 inflammasome and gasdermin D. Astrocyte-specific Clec16a inactivation increased NF-κB, NLRP3 and gasdermin D activation in vivo, worsening experimental autoimmune encephalomyelitis, a mouse model of MS. Moreover, we detected disrupted mitophagic capacity and gasdermin D activation in astrocytes in samples from individuals with MS. These findings identify CLEC16A as a suppressor of astrocyte pathological responses and a candidate therapeutic target in MS.
Collapse
MESH Headings
- Animals
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mitophagy/physiology
- Mitophagy/genetics
- Astrocytes/metabolism
- Astrocytes/pathology
- Mice
- Multiple Sclerosis/pathology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/genetics
- Humans
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Monosaccharide Transport Proteins/genetics
- Monosaccharide Transport Proteins/metabolism
- Disease Models, Animal
- Mice, Inbred C57BL
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Inflammasomes/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- NF-kappa B/metabolism
- Mitochondria/metabolism
- Female
Collapse
Affiliation(s)
- Atsushi Kadowaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Graduate School of Medicine, Faculty of Medicine, The University of Osaka, Suita, Japan
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian M Andersen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, VA Medical Center, Boston, MA, USA
| | - Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alain Ndayisaba
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Himanish Basu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao V Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy Klement
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Dylan Neel
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Lipof
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Isaac Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, CRCHUM and Department of Neuroscience, Faculty of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Vikram Khurana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
36
|
He Y, Liu Q, He Y, Deng S, Guo J. Engineering live cell surfaces with polyphenol-functionalized nanoarchitectures. Chem Sci 2025; 16:3774-3787. [PMID: 39975767 PMCID: PMC11833234 DOI: 10.1039/d4sc07198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Cell surface functionalization has emerged as a powerful strategy for modulating cellular behavior and expanding cellular capabilities beyond their intrinsic biological limits. Natural phenolic molecules present as 'green' and versatile building blocks for constructing cell-based biomanufacturing and biotherapeutic platforms. Due to the abundant catechol or galloyl groups, phenolic molecules can dynamically and reversibly bind to versatile substrates via multiple molecular interactions. A range of self-assembled cytoadhesive polyphenol-functionalized nanoarchitectures (cytoPNAs) can be formed via metal coordination or macromolecular self-assembly that can rapidly attach to cell surfaces in a cell-agnostic manner. Additionally, the cytoPNAs attached on the cell surface can also provide active sites for the conjunction of bioactive payloads, further expanding the structural repertoire and properties of engineered cells. This Perspective introduces the wide potential of cytoPNA-mediated cell engineering in three key applications: (1) creating inorganic-organic biohybrids as cell factories for efficient production of high-value chemicals, (2) constructing engineered cells for cell-based therapies with enhanced targeting specificity and nano-bio interactions, and (3) encapsulating microbes as biotherapeutics for the treatment of gastrointestinal tract-related diseases. Collectively, the rapid, versatile, and modular nature of cytoPNAs presents a promising platform for next-generation cell engineering and beyond.
Collapse
Affiliation(s)
- Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Qinling Liu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University Chengdu Sichuan 611130 China
| | - Yuanmeng He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Siqi Deng
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia Vancouver BC V6T 1Z4 Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
37
|
Singh MA, Chang MM, Wang Q, Rodgers C, Lutz BR, Olanrewaju AO. Rapid Enzymatic Assay for Antiretroviral Drug Monitoring Using CRISPR-Cas12a-Enabled Readout. ACS Synth Biol 2025; 14:510-519. [PMID: 39933068 PMCID: PMC11852202 DOI: 10.1021/acssynbio.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Maintaining the efficacy of human immunodeficiency virus (HIV) medications is challenging among children because of dosing difficulties, the limited number of approved drugs, and low rates of medication adherence. Drug level feedback (DLF) can support dose optimization and timely interventions to prevent treatment failure, but current tests are heavily instrumented and centralized. We developed the REverse transcriptase ACTivity crispR (REACTR) for rapid measurement of HIV drugs based on the extent of DNA synthesis by HIV reverse transcriptase. CRISPR-Cas enzymes bind to the synthesized DNA, triggering collateral cleavage of quenched reporters and generating fluorescence. We measured azidothymidine triphosphate (AZT-TP), a key drug in pediatric HIV treatment, and investigated the impact of assay time and DNA template length on REACTR's sensitivity. REACTR selectively measured clinically relevant AZT-TP concentrations in the presence of genomic DNA and peripheral blood mononuclear cell lysate. REACTR has the potential to enable rapid point-of-care HIV DLF to improve pediatric HIV care.
Collapse
Affiliation(s)
- Maya A. Singh
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Megan M. Chang
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Qin Wang
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Catherine Rodgers
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Barry R. Lutz
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Ayokunle O. Olanrewaju
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Mechanical Engineering, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
38
|
De Paula VS, Dubey A, Arthanari H, Sgourakis NG. Dynamic sampling of a surveillance state enables DNA proofreading by Cas9. Cell Chem Biol 2025; 32:267-279.e5. [PMID: 39471812 PMCID: PMC12051036 DOI: 10.1016/j.chembiol.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled in vitro, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this "surveillance state" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.
Collapse
Affiliation(s)
- Viviane S De Paula
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6059, USA.
| | - Abhinav Dubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
39
|
Yang Z, Ha B, Wu Q, Ren F, Yin Z, Zhang H. Expanding the horizon of CAR T cell therapy: from cancer treatment to autoimmune diseases and beyond. Front Immunol 2025; 16:1544532. [PMID: 40046061 PMCID: PMC11880241 DOI: 10.3389/fimmu.2025.1544532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has garnered significant attention for its transformative impact on the treatment of hematologic malignancies such as leukemia and lymphoma. Despite its remarkable success, challenges such as resistance, limited efficacy in solid tumors, and adverse side effects remain prominent. This review consolidates recent advancements in CAR-T-cell therapy and explores innovative engineering techniques and strategies to overcome the immunosuppressive tumor microenvironment (TME). We also discuss emerging applications beyond cancer, including autoimmune diseases and chronic infections. Future perspectives highlight the development of more potent CAR-T cells with increased specificity and persistence and reduced toxicity, providing a roadmap for next-generation immunotherapies.
Collapse
Affiliation(s)
- Zishan Yang
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bingjun Ha
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinhan Wu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Ren
- Henan International Joint Laboratory of Immunity and Targeted Therapy for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Hongru Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, College of Life Sciences, Nankai University, Tianjin, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Li Y, Hu Q, Bai M, Qing M, Bai L. CrRNA Conformation-Engineered CRISPR-Cas12a System for Robust and Ultrasensitive Nucleic Acid Detection. Anal Chem 2025; 97:3617-3624. [PMID: 39912765 DOI: 10.1021/acs.analchem.4c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Despite the widespread application of the CRISPR-Cas12a system in vitro diagnostics due to its high programmability and distinctive trans-cleavage activity, the susceptibility of its crRNA component to degradation and sensitivity to storage and working conditions poses a significant challenge to improving the practical efficacy of these diagnostic systems. Here, we show that engineered crRNA with a covalently closed circular structure (C-crRNA) can replace traditional linear crRNA to form functional complexes with Cas12a protein, significantly enhancing the anti-interference ability of the CRISPR-Cas12a system while maintaining its sensitivity and specificity. Based on this finding, a circular crRNA-mediated CRISPR molecular diagnostic (CRCD) toolkit is developed and successfully integrated with a standard nucleic acid amplification technique to detect synthesized Human Papillomavirus type 16 (HPV-16) plasmids down to 10 aM sensitivity levels. Furthermore, the CRCD system is applied for ultrasensitive detection of 40 HPV-16 and 40 influenza A viruses in clinical samples, with results consistent with those from PANTHER detection and quantitative real-time polymerase chain reaction (qRT-PCR). In conclusion, this strategy introduces a novel paradigm for engineering crRNA to program Cas12a, which has the potential to revolutionize the use of crRNA in CRISPR-based molecular diagnostics.
Collapse
Affiliation(s)
- Yueyuan Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qianfang Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Meiqi Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Min Qing
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
41
|
Wang K, Ji Y, Peng C, Wang X, Yang L, Lan H, Xu J, Chen X. A Novel Quantification Method for Gene-Edited Animal Detection Based on ddPCR. BIOLOGY 2025; 14:203. [PMID: 40001971 PMCID: PMC11852154 DOI: 10.3390/biology14020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
As gene-editing technologies continue to evolve, gene-edited products are making significant strides. These products have already been commercialized in the United States and Japan, prompting global attention to their safety and regulatory oversight. However, the detection of gene editing still relies on qPCR, and there is a lack of quantitative detection methods to quantify gene-editing components in products. To ensure consumer safety and transparency, we developed a novel droplet digital PCR (ddPCR)-based detection method for gene-edited products. Primers and probes were designed targeting the editing sites of MSTN-edited cattle, and the method was evaluated for specificity, sensitivity, real sample testing, and detection thresholds. Our results demonstrate that this ddPCR method is highly specific, with a detection limit of 5 copies/µL, and it successfully detected MSTN edits in all 11 tested samples. Tests using both actual gene-edited cattle samples and plasmid DNA at concentrations of 5%, 1%, and 0.01% yielded consistent results, indicating the method's suitability for real-world applications. This ddPCR assay provides a sensitive and specific tool for detecting MSTN gene-edited cattle and determining the presence of gene-edited products, offering crucial support for regulatory monitoring of gene-edited animal-derived foods.
Collapse
Affiliation(s)
- Kaili Wang
- School of Food Science and Engineering, Ningbo University, Ningbo 215211, China;
| | - Yi Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangzhen Lan
- School of Food Science and Engineering, Ningbo University, Ningbo 215211, China;
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China; (Y.J.); (C.P.); (X.W.); (L.Y.)
- Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
42
|
Allen A, Cooper BH, Singh J, Rohs R, Qin PZ. PAM-adjacent DNA flexibility tunes CRISPR-Cas12a off-target binding. Sci Rep 2025; 15:4930. [PMID: 39929897 PMCID: PMC11811290 DOI: 10.1038/s41598-025-87565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Cas12a is a class 2 type V CRISPR-associated nuclease that uses an effector complex comprised of a single protein activated by a CRISPR-encoded small RNA to cleave double-stranded DNA at specific sites. Cas12a processes unique features as compared to other CRISPR effector nucleases such as Cas9, and has been demonstrated as an effective tool for manipulating complex genomes. Prior studies have indicated that DNA flexibility at the region adjacent to the protospacer-adjacent-motif (PAM) contributes to Cas12a target recognition. Here, we adapted a SELEX-seq approach to further examine the connection between PAM-adjacent DNA flexibility and off-target binding by Cas12a. A DNA library containing DNA-DNA mismatches at PAM + 1 to + 6 positions was generated and subjected to binding in vitro with FnCas12a in the absence of pairing between the RNA guide and DNA target. The bound and unbound populations were sequenced to determine the propensity for off-target binding for each of the individual sequences. Analyzing the position and nucleotide dependency of the DNA-DNA mismatches showed that PAM-dependent Cas12a off-target binding requires unpairing of the protospacer at PAM + 1 and increases with unpairing at PAM + 2 and + 3. This revealed that PAM-adjacent DNA flexibility can tune Cas12a off-target binding. The work adds support to the notion that physical properties of the DNA modulate Cas12a target discrimination, and has implications on Cas12a-based applications.
Collapse
Affiliation(s)
- Aleique Allen
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Brendon H Cooper
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Beckman Coulter, 1584 Enterprise Blvd, West Sacramento, CA, 95691, USA
| | - Jaideep Singh
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
| | - Remo Rohs
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, 3430 S Vermont Ave., Los Angeles, CA, 90089, USA.
| |
Collapse
|
43
|
Grimm MS, Myhrvold C. Using CRISPR for viral nucleic acid detection. Methods Enzymol 2025; 712:245-275. [PMID: 40121076 DOI: 10.1016/bs.mie.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Pathogenic microorganisms, such as viruses, have threatened human health and will continue to contribute to future epidemics and pandemics, highlighting the importance of developing effective diagnostics. To contain viral outbreaks within populations, fast and early diagnosis of infected individuals is essential. Although current standard methods are highly sensitive and specific, like RT-qPCR, some can have slow turnaround times, which can hinder the prevention of viral transmission. The discovery of CRISPR-Cas systems in bacteria and archaea initially revolutionized the world of genome editing. Intriguingly, CRISPR-Cas enzymes also have the ability to detect nucleic acids with high sensitivity and specificity, which sparked the interest of researchers to also explore their potential in diagnosis of viral pathogens. In particular, the CRISPR-Cas13 system has been used as a tool for detecting viral nucleic acids. Cas13's capability to detect both target RNA and non-specific RNAs has led to the development of detection methods that leverage these characteristics through designing specific detection read-outs. Optimization of viral sample collection, amplification steps and the detection process within the Cas13 detection workflow has resulted in assays with high sensitivity, rapid turnaround times and the capacity for large-scale implementation. This review focuses on the significant innovations of various CRISPR-Cas13-based viral nucleic acid detection methods, comparing their strengths and weaknesses while highlighting Cas13's great potential as a tool for viral diagnostics.
Collapse
Affiliation(s)
- Maaike S Grimm
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, United States; Department of Chemistry, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
44
|
Huang L, Zhang W, Liu M, Gong Y, Tang Q, Wang K, Liao X, Zhang K, Wei J. Entropy-driven amplification reaction and the CRISPR/Cas12a system form the basis of an electrochemical biosensor for E.coli-specific detection. Bioelectrochemistry 2025; 161:108815. [PMID: 39305726 DOI: 10.1016/j.bioelechem.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 12/08/2024]
Abstract
We present an innovative biosensor designed for the precise identification of Escherichia coli (E.coli), a predominant pathogen responsible for gastrointestinal infections. E.coli is prevalent in environments characterized by substandard water quality and can lead to severe diarrhea, especially in hospital settings. The device employs entropy-driven reactions to synthesize copious amounts of double-stranded DNA (dsDNA), which, upon binding with crRNA, triggers the CRISPR/Cas12a system's cleavage mechanism. This process results in the separation of a ferrocene (Fc)-tagged DNA strand from the electrode, enhancing the electrochemical signal for E.coli's rapid and accurate detection. Our tests confirm the biosensor's ability to quantify E.coli across a dynamic range from 100 to 10 million CFU/mL, achieving a detection threshold of just over 5 CFU/mL. The development of this electrochemical biosensor highlights its exceptional selectivity, high sensitivity, and user-friendly interface for E.coli detection. It stands as a significant step forward in pathogen detection technology, promising new directions for identifying various bacterial infections through the CRISPR/Cas mechanism.
Collapse
Affiliation(s)
- Longjian Huang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China; West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Wenzhao Zhang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Mingxuan Liu
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Kaihua Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530001, China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| | - Kai Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology. Nanjing, 210044, China.
| | - Jihua Wei
- Guangxi Key Laboratory for Preclinical and Translational Research on Bone and Joint Degenerative Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China.
| |
Collapse
|
45
|
Gridina M, Orlova P, Serov O. Targeted correction of megabase-scale CNTN6 duplication in induced pluripotent stem cells and impacts on gene expression. PeerJ 2025; 13:e18567. [PMID: 39850828 PMCID: PMC11756360 DOI: 10.7717/peerj.18567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/31/2024] [Indexed: 01/25/2025] Open
Abstract
Copy number variations of the human CNTN6 gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human CNTN6 gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family. Previously, we obtained a set of induced pluripotent stem cell lines derived from a patient with a CNTN6 gene duplication and from two healthy donors. Our findings demonstrated that CNTN6 expression in neurons carrying the duplication was significantly reduced. Additionally, the expression from the CNTN6 duplicated allele was markedly lower compared to the wild-type allele. Here, we first introduce a system for correcting megabase-scale duplications in induced pluripotent stem cells and secondly analyze the impact of this correction on CNTN6 gene expression. We showed that the deletion of one copy of the CNTN6 duplication did not affect the expression levels of the remaining allele in the neuronal cells.
Collapse
Affiliation(s)
- Maria Gridina
- Genomic Mechanisms of Ontogenesis, Institute of Cytology and Genetics, Novosibirsk, Novosibirsk, Russia
- Ontogenetics, Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
- Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Polina Orlova
- Genomic Mechanisms of Ontogenesis, Institute of Cytology and Genetics, Novosibirsk, Novosibirsk, Russia
- Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg Serov
- Genomic Mechanisms of Ontogenesis, Institute of Cytology and Genetics, Novosibirsk, Novosibirsk, Russia
| |
Collapse
|
46
|
Frango A, Chen Q, Zhang H, Liu Z. Rapid and Specific Colorimetric Assay for Detecting CRISPR-Cas9 in Genome-Edited Plants Using Loop-Mediated Isothermal Amplification. FOOD ANAL METHOD 2025. [DOI: 10.1007/s12161-024-02754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 05/14/2025]
|
47
|
Hayat U, Ke C, Wang L, Zhu G, Fang W, Wang X, Chen C, Li Y, Wu J. Using Quantitative Trait Locus Mapping and Genomic Resources to Improve Breeding Precision in Peaches: Current Insights and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2025; 14:175. [PMID: 39861529 PMCID: PMC11768884 DOI: 10.3390/plants14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Modern breeding technologies and the development of quantitative trait locus (QTL) mapping have brought about a new era in peach breeding. This study examines the complex genetic structure that underlies the morphology of peach fruits, paying special attention to the interaction between genome editing, genomic selection, and marker-assisted selection. Breeders now have access to precise tools that enhance crop resilience, productivity, and quality, facilitated by QTL mapping, which has significantly advanced our understanding of the genetic determinants underlying essential traits such as fruit shape, size, and firmness. New technologies like CRISPR/Cas9 and genomic selection enable the development of cultivars that can withstand climate change and satisfy consumer demands with unprecedented precision in trait modification. Genotype-environment interactions remain a critical challenge for modern breeding efforts, which can be addressed through high-throughput phenotyping and multi-environment trials. This work shows how combining genome-wide association studies and machine learning can improve the synthesis of multi-omics data and result in faster breeding cycles while preserving genetic diversity. This study outlines a roadmap that prioritizes the development of superior cultivars utilizing cutting-edge methods and technologies in order to address evolving agricultural and environmental challenges.
Collapse
Affiliation(s)
- Umar Hayat
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China
| | - Cao Ke
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China
| | - Lirong Wang
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong Li
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- The Key Laboratory of the Gene Resources Evaluation and Utilization of Horticultural Crop [Fruit Tree], Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
48
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Li X, Wei Y, Wang SY, Wang SG, Xia PF. One-for-all gene inactivation via PAM-independent base editing in bacteria. J Biol Chem 2025; 301:108113. [PMID: 39706269 PMCID: PMC11782819 DOI: 10.1016/j.jbc.2024.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Base editing is preferable for bacterial gene inactivation without generating double-strand breaks, requiring homology recombination, or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif. Herein, we report an unconstrained base-editing system to enable the inactivation of any genes of interest in bacteria. We employed a dCas9 derivative, dSpRY, and activation-induced cytidine deaminase to build a protospacer adjacent motif-independent base editor. Then, we programmed the base editor to exclude the START codon of a gene of interest instead of introducing premature STOP codons to obtain a universal approach for gene inactivation, namely XSTART, with an overall efficiency approaching 100%. By using XSTART, we successfully manipulated the amino acid metabolisms in Escherichia coli, generating glutamine, arginine, and aspartate auxotrophic strains. While we observed a high frequency of off-target events as a trade-off for increased efficiency, refining the regulatory system of XSTART to limit expression levels reduced off-target events by over 60% without sacrificing efficiency, aligning our results with previously reported levels. Finally, the effectiveness of XSTART was also demonstrated in probiotic E. coli Nissle 1917 and photoautotrophic cyanobacterium Synechococcus elongatus, illustrating its potential in reprogramming diverse bacteria.
Collapse
Affiliation(s)
- Xin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Ying Wei
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Yan Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai, China
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao, China.
| |
Collapse
|
50
|
Robertson CD, Richardson RR, Steyert M, Martin CA, Flynn C, Poulopoulos A. Prime Editing of Mouse Primary Neurons. Methods Mol Biol 2025; 2910:69-84. [PMID: 40220094 DOI: 10.1007/978-1-0716-4446-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Prime editing is a hybrid genome editing technology that introduces small edits on the genome with high precision. It combines nickase Cas9 with reverse transcriptase to prime and synthesizes edited DNA from RNA, reducing unintended insertions and deletions on the genome. This protocol describes the design of prime editing guide RNAs (pegRNAs), cloning of plasmids, nucleofection of mouse primary neurons, and preparation for next-generation sequencing. Directions are given for pegRNA and PE3b gRNA design and construction using PegAssist, a publicly available webtool and plasmid set. Prime editing in neurons allows genome manipulation while maintaining endogenous gene expression, making it ideal for studying protein structure/function relationships and pathogenic variants in a native neuronal context.
Collapse
Affiliation(s)
- Colin D Robertson
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ryan R Richardson
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn Steyert
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Corinne A Martin
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Alexandros Poulopoulos
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|