1
|
Blengini CS, Tang S, Mendola RJ, Garrisi GJ, Swain JE, Schindler K. AURKA controls oocyte spindle assembly checkpoint and chromosome alignment by HEC1 phosphorylation. Life Sci Alliance 2025; 8:e202403146. [PMID: 40328643 PMCID: PMC12056248 DOI: 10.26508/lsa.202403146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
In human oocytes, meiosis I is error-prone, causing early miscarriages and developmental disorders. The Aurora protein kinases are key regulators of chromosome segregation in mitosis and meiosis, and their dysfunction is associated with aneuploidy. Oocytes express three Aurora kinase (AURK) proteins, but only AURKA is necessary and sufficient to support oocyte meiosis in mice. However, the unique molecular contributions to ensuring high egg quality of AURKA remain unclear. Here, using a combination of genetic and pharmacological approaches, we evaluated how AURKA phosphorylation regulates outer kinetochore function during oocyte meiosis. We found that the outer kinetochore protein Ndc80/HEC1 is constitutively phosphorylated at multiple residues by Aurora kinases during meiosis I, but that serine 69 is specifically phosphorylated by AURKA in mouse and human oocytes. We further show that serine 69 phosphorylation contributes to spindle assembly checkpoint activation and chromosome alignment during meiosis I. These results provide a fundamental mechanistic understanding of how AURKA regulates meiosis and kinetochore function to ensure meiosis I fidelity.
Collapse
Affiliation(s)
- Cecilia S Blengini
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Shuang Tang
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| | - Robert J Mendola
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | - G John Garrisi
- CCRM / Institute for Reproductive Medicine and Science (IRMS), Livingston, NJ, USA
| | | | - Karen Schindler
- Department of Genetics; Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
2
|
Shelford J, Burgess SG, Rostkova E, Richards MW, Larocque G, Sampson J, Tiede C, Fielding AJ, Daviter T, Tomlinson DC, Calabrese AN, Pfuhl M, Bayliss R, Royle SJ. Structural characterization and inhibition of the interaction between ch-TOG and TACC3. J Cell Biol 2025; 224:e202407002. [PMID: 40105698 PMCID: PMC11921806 DOI: 10.1083/jcb.202407002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/19/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
The mitotic spindle is a bipolar array of microtubules, radiating from the poles which each contain a centrosome, embedded in pericentriolar material. Two proteins, ch-TOG and TACC3, have multiple functions at the mitotic spindle due to operating either alone, together, or in complex with other proteins. To distinguish these activities, we need new molecular tools to dissect their function. Here, we present the structure of the α-helical bundle domain of ch-TOG that mediates its interaction with TACC3 and a structural model describing the interaction, supported by biophysical and biochemical data. We have isolated Affimer tools to precisely target the ch-TOG-binding site on TACC3 in live cells, which displace ch-TOG without affecting the spindle localization of other protein complex components. Inhibition of the TACC3-ch-TOG interaction led unexpectedly to fragmentation of the pericentriolar material in metaphase cells and delayed mitotic progression, uncovering a novel role of TACC3-ch-TOG in maintaining pericentriolar material integrity during mitosis to ensure timely cell division.
Collapse
Affiliation(s)
- James Shelford
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Selena G. Burgess
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elena Rostkova
- School of Cardiovascular and Metabolic Medicine and Sciences and Randall Centre, King’s College London, Guy’s Campus, London, UK
| | - Mark W. Richards
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Gabrielle Larocque
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| | - Josephina Sampson
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tina Daviter
- Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Darren C. Tomlinson
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antonio N. Calabrese
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Mark Pfuhl
- School of Cardiovascular and Metabolic Medicine and Sciences and Randall Centre, King’s College London, Guy’s Campus, London, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephen J. Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
3
|
Pena GE, Zhou X, Slevin L, Brownlee C, Heald R. The NLS3 Motif in TPX2 Regulates Spindle Architecture in Xenopus Egg Extracts. Cytoskeleton (Hoboken) 2025. [PMID: 40326229 DOI: 10.1002/cm.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet both spindle size and architecture vary dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we characterize a conserved nuclear localization sequence (NLS) motif, 123KKLK126 in Xenopus laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA stimulated spontaneous formation of microtubule asters and increased recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles while still binding to the regulatory transport factor importin α. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.
Collapse
Affiliation(s)
- Guadalupe E Pena
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Xiao Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- AbbVie, South San Francisco, California, USA
| | - Lauren Slevin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Swedish Maternal and Fetal Specialty Center, Seattle, Washington, USA
| | - Christopher Brownlee
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Deparment of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
4
|
Hamzah M, Meitinger F, Ohta M. PLK4: Master Regulator of Centriole Duplication and Its Therapeutic Potential. Cytoskeleton (Hoboken) 2025. [PMID: 40257113 DOI: 10.1002/cm.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Centrosomes catalyze the assembly of a microtubule-based bipolar spindle, essential for the precise chromosome segregation during cell division. At the center of this process lies Polo-Like Kinase 4 (PLK4), the master regulator that controls the duplication of the centriolar core to ensure the correct balance of two centrosomes per dividing cell. Disruptions in centrosome number or function can lead to genetic disorders such as primary microcephaly or drive tumorigenesis via centrosome amplification. In this context, several chemical inhibitors of PLK4 have emerged as promising therapeutic candidates. The inhibition of PLK4 results in the emergence of acentrosomal cells, which undergo prolonged and error-prone mitosis. This aberrant mitotic duration triggers a "mitotic stopwatch" mechanism that activates the tumor suppressor p53, halting cellular proliferation. However, in a multitude of cancers, the efficacy of this mitotic surveillance mechanism is compromised by mutations that incapacitate p53. Recent investigations have unveiled p53-independent vulnerabilities in cancers characterized by chromosomal gain or amplification of 17q23, which encodes for the ubiquitin ligase TRIM37, in response to PLK4 inhibition, particularly in neuroblastoma and breast cancer. This review encapsulates the latest advancements in our understanding of centriole duplication and acentrosomal cell division in the context of TRIM37 amplification, positioning PLK4 as a compelling target for innovative cancer therapeutics.
Collapse
Affiliation(s)
- Muhammad Hamzah
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Franz Meitinger
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Midori Ohta
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
5
|
Ivanova A, Korchivaia E, Semenova M, Lebedev I, Mazunin I, Volodyaev I. The chromosomal challenge of human embryos: Mechanisms and fundamentals. HGG ADVANCES 2025; 6:100437. [PMID: 40211536 PMCID: PMC12050003 DOI: 10.1016/j.xhgg.2025.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
Chromosomal abnormalities in human pre-implantation embryos, originating from either meiotic or mitotic errors, present a significant challenge in reproductive biology. Complete aneuploidy is primarily linked to errors during the resumption of meiosis in oocyte maturation, which increase with maternal age, while mosaic aneuploidies result from mitotic errors after fertilization. The biological causes of these abnormalities are increasingly becoming a topic of interest for research groups and clinical specialists. This review explores the intricate processes of meiotic and early mitotic divisions in embryos, shedding light on the mechanisms that lead to changes in chromosome number in daughter cells. Key factors in meiotic division include difficulties in spindle assembly without centrosomes, kinetochore (KT) orientation disturbances, and inefficient cell-cycle checkpoints. The weakening of cohesion molecules that bind chromosomes, exacerbated by maternal aging, further complicates chromosomal segregation. Mitotic errors in early development are influenced by defects in sperm centrosomes, KT misalignment, and the gradual depletion of maternal regulatory factors. Coupled with the inactive or partially active embryonic genome, this depletion increases the likelihood of chromosomal aberrations. While various theoretical mechanisms for these abnormalities exist, current data remain insufficient to determine their exact contributions. Continued research is essential to unravel these complex processes and improve outcomes in assisted reproductive technologies.
Collapse
Affiliation(s)
- Anna Ivanova
- Faculty of Biology, Moscow State University, Moscow, Russia.
| | | | - Maria Semenova
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Igor Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ilya Mazunin
- Department of Biology and Genetics, Petrovsky Medical University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia
| | - Ilya Volodyaev
- Faculty of Biology, Moscow State University, Moscow, Russia; ICARM (Interdisciplinary Clinical Association for Reproductive Medicine), Moscow, Russia; European Medical Center, Moscow, Russia.
| |
Collapse
|
6
|
Camlin NJ. Protein-targeting reverse genetic approaches: the future of oocyte and preimplantation embryo research. Mol Hum Reprod 2025; 31:gaaf008. [PMID: 40100642 PMCID: PMC12000532 DOI: 10.1093/molehr/gaaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Reverse genetic approaches are the standard in molecular biology to determine a protein's function. Traditionally, nucleic acid targeting via gene knockout (DNA) and knockdown (RNA) has been the method of choice to remove proteins-of-interest. However, the nature of mammalian oocyte maturation and preimplantation embryo development can make nucleic acid-targeting approaches difficult. Gene knockout allows time for compensatory mechanisms and secondary phenotypes to develop which can make interpretation of a protein's function difficult. Furthermore, genes can be essential for animal and/or oocyte survival, and therefore, gene knockout is not always a viable approach to investigate oocyte maturation and preimplantation embryo development. Conversely, RNA-targeting approaches, i.e. RNA interference (RNAi) and morpholinos, rely on protein half-life and therefore are unable to knockdown every protein-of-interest. An increasing number of reverse genetic approaches that directly target proteins have been developed to overcome the limitations of nucleic acid-based approaches, including Trim-Away and auxin-inducible degradation. These protein-targeting approaches give researchers exquisite and fast control of protein loss. This review will discuss how Trim-Away and auxin-inducible degradation can overcome many of the challenges of nucleic acid-based reverse genetic approaches. Furthermore, it highlights the unique research opportunities these approaches afford, such as targeting post-translationally modified proteins.
Collapse
Affiliation(s)
- Nicole J Camlin
- Cell and Molecular Biology, School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
7
|
Skinner MW, Nhan PB, Simington CJ, Jordan PW. Meiotic divisions and round spermatid formation do not require centriole duplication in mice. PLoS Genet 2025; 21:e1011698. [PMID: 40294089 PMCID: PMC12064039 DOI: 10.1371/journal.pgen.1011698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/09/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Centrosomes, composed of centrioles and pericentriolar matrix proteins, are traditionally viewed as essential microtubule-organizing centers (MTOCs) that facilitate bipolar spindle formation and chromosome segregation during spermatogenesis. In this study, we investigated the role of centrioles in male germ cell development by using a murine conditional knockout (cKO) of Sas4, a critical component of centriole biogenesis. We found that while centriole duplication was impaired in Sas4 cKO spermatocytes, these cells were still capable of progressing through meiosis I and II. Chromosome segregation was able to proceed through the formation of a non-centrosomal MTOC, indicating that centrioles are not required for meiotic divisions. However, spermatids that inherited fewer than two centrioles exhibited severe defects in spermiogenesis, including improper manchette formation, constricted perinuclear rings, disrupted acrosome morphology, and failure to form flagella. Consequently, Sas4 cKO males were infertile due to the absence of functional spermatozoa. Our findings demonstrate that while centrioles are dispensable for meiosis in male germ cells, they are essential for spermiogenesis and sperm maturation. This work provides key insights into the role of centrosomes in male fertility and may have implications for understanding certain conditions of male infertility associated with centriole defects.
Collapse
Affiliation(s)
- Marnie W. Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Paula B. Nhan
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Carter J. Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
8
|
Wong SS, Monteiro JM, Chang CC, Peng M, Mohamad N, Steinacker TL, Xiao B, Saurya S, Wainman A, Raff JW. Centrioles generate two scaffolds with distinct biophysical properties to build mitotic centrosomes. SCIENCE ADVANCES 2025; 11:eadq9549. [PMID: 39919171 PMCID: PMC11804907 DOI: 10.1126/sciadv.adq9549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Mitotic centrosomes assemble when centrioles recruit large amounts of pericentriolar material (PCM) around themselves. The PCM comprises hundreds of proteins, and there is much debate about its physical nature. Here, we show that Drosophila Spd-2 (human CEP192) fluxes out from centrioles, recruiting Polo and Aurora A kinases to catalyze the assembly of two distinct mitotic-PCM scaffolds: a Polo-dependent Cnn scaffold, and an Aurora A-dependent TACC scaffold, which exhibit solid- and liquid-like behaviors, respectively. Both scaffolds can independently recruit PCM proteins, but both are required for proper centrosome assembly, with the Cnn scaffold providing mechanical strength, and the TACC scaffold concentrating centriole and centrosome proteins. Recruiting Spd-2 to synthetic beads injected into early embryos reconstitutes key aspects of mitotic centrosome assembly on the bead surface, and this depends on Spd-2's ability to recruit Polo and Aurora A. Thus, Spd-2 orchestrates the assembly of two scaffolds, with distinct biophysical properties, that cooperate to build mitotic centrosomes in flies.
Collapse
Affiliation(s)
- Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- The Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Joao M. Monteiro
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Chia-Chun Chang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Min Peng
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Institute of Biotechnology, National Taiwan University, 106 Taipei, Taiwan
| | - Nada Mohamad
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Thomas L. Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Bocheng Xiao
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
9
|
Li Z, Feng Z, Chen M, Shi X, Cui B, Sun Y, Zhang H, Li Y, Chen C, Feng Y, Han J, Xing X, Liu H, Sun T. Rbfox3 Promotes Transformation of MDSC-Like Tumor Cells to Shape Immunosuppressive Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404585. [PMID: 39777898 PMCID: PMC11848546 DOI: 10.1002/advs.202404585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/30/2024] [Indexed: 01/11/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME) contribute to the malignant progression of tumors by exerting immunosuppressive effects. Bacterial lipopolysaccharides (LPS) have been widely demonstrated in various types of solid tumors. LPS can promote the malignant progression of tumors, which mechanism has not yet been fully elucidated. In this study, a type of MDSC-like tumor cells (MLTCs) is found in tumor tissues induced by low-dose and long-term LPS stimulation. MLTCs can simultaneously express tumor cell and MDSCs markers. Similar to MDSCs, MLTCs can produce arginine, nitric oxide, and reactive oxygen species and inhibit the activity of NK and T cells to promote the formation of an immunosuppressive microenvironment. MLTCs can also promote tumor cell proliferation and vasculogenic mimicry formation. CRISPR-Cas9 activity screening studies identified RNA-binding Fox-1 homolog 3 (Rbfox3) as a critical protein for MLTCs formation after LPS treatment. Rbfox3 can transcriptionally regulate the expression of Ass1 in the form of phase-separated particles. Crocin can inhibit the generation of MLTCs by disrupting phase-separated particles of Rbfox3 and enhance the anti-tumor effects of immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
- Zhiyang Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin International Joint Academy of BiomedicineTianjin300457China
| | - Zhuangzhuang Feng
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Mengzhan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Xinxiu Shi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Bijia Cui
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Yujie Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative DrugsTianjin International Joint Academy of BiomedicineTianjin300457China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Caihong Chen
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Yiqian Feng
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Xuewu Xing
- Department of OrthopedicsTianjin First Central HospitalTianjin300190China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjin300450China
| |
Collapse
|
10
|
Hashimoto S, Gamage U, Inoue Y, Iwata H, Morimoto Y. Nicotinamide mononucleotide boosts the development of bovine oocyte by enhancing mitochondrial function and reducing chromosome lagging. Sci Rep 2025; 15:310. [PMID: 39747142 PMCID: PMC11696260 DOI: 10.1038/s41598-024-81393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Nicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H). The addition of NMN caused an increase in intracellular NAD(H) and nicotinamide adenine dinucleotide phosphate levels, leading to enhanced competence for development to the blastocyst stage after IVF. The increase in intracellular NAD(H) levels led to changes in the expression of mitochondria function-related genes. As a result, NMN supplementation increased the ratio of MitoTracker Orange fluorescence to nonyl acridine orange fluorescence, as well as adenosine triphosphate levels, while decreasing reactive oxygen species levels in the oocytes. NMN also lowered chromosome lagging during anaphase. These results suggest that increased NAD(H) levels in oocytes following NMN treatment enhances post-fertilization developmental competence through improved mitochondrial function.
Collapse
Affiliation(s)
- Shu Hashimoto
- Graduate School of Medicine, Osaka Metropolitan University, Osaka, 545-8585, Japan.
| | | | - Yuki Inoue
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Kanagawa, 243-0034, Japan
| | | |
Collapse
|
11
|
Luo H, Chen J, Li C, Wu T, Yin S, Yang G, Wang Y, Guo Z, Hu S, He Y, Wang Y, Chen Y, Su Y, Miao C, Qian Y, Feng R. Pathogenic variants of TUBB8 cause oocyte spindle defects by disrupting with EB1/CAKP5 interactions and potential treatment targeting microtubule acetylation through HDAC6 inhibition. Clin Transl Med 2025; 15:e70193. [PMID: 39834092 PMCID: PMC11746963 DOI: 10.1002/ctm2.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Numerous pathogenic variants causing human oocyte maturation arrest have been reported on the primate-specific TUBB8 gene. The main etiology is the dramatic reduction of tubulin α/β dimer, but still large numbers of variants remain unexplained. METHODS Using microinjection mRNA and genome engineering to reintroduce the conserved pathogenic missense variants into oocytes or in generating TUBB8 variant knock-in mouse models, we investigated that the human deleterious variants alter microtubule nucleation and spindle assembly during meiosis. Live-cell imaging and immunofluorescence were utilised to track the dynamic expression of microtubule plus end-tracking proteins in vivo and analysed microtubule nucleation or spindle assembly in vitro, respectively. Immunoprecipitation-mass spectrometry and ultramicro-quantitative proteomics were performed to identify the differential abundance proteins and affected interactome of TUBB8 protein. RESULTS First, we observed a significant depletion of the EB1 signal upon microinjection of mutated TUBB8 mRNA (including R262Q, M300I, and D417N missense variants), indicating disruption of microtubule nucleation caused by these introduced TUBB8 missense variants. Mechanically, we demonstrated that the in vivo TUBB8-D417N missense variant diminished the affinity of EB1 and microtubules. It also harmed the interaction between microtubules and CKAP5/TACC3, which are crucial for initiating microtubule nucleation. Attenuated Ran-GTP pathway was also found in TUBB8-D417N oocytes, leading to disrupted spindle assembly. Stable microtubule was largely abolished on the spindle of TUBB8-D417N oocytes, reflected by reduced tubulin acetylation and accumulated HDAC6. More importantly, selective inhibition of HDAC6 by culturing TUBB8-D417N oocytes with Tubacin or Tubastatin A showed morphologically normal spindle and drastically recovered polar-body extrusion rate. These rescue results shed light on the strategy to treat meiotic defects in a certain group of TUBB8 mutated patients. CONCLUSION Our study provides a comprehensive mechanism elucidating how TUBB8 missense variants cause oocyte maturation arrest and offers new therapeutic avenues for treating female infertility in the clinic.
Collapse
Affiliation(s)
- Hui Luo
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Jianhua Chen
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Cao Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Tian Wu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Siyue Yin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Guangping Yang
- Yangzhou Maternal and Child Health Care Hospital Affiliated to Yangzhou UniversityYangzhouChina
| | - Yipin Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Zhihan Guo
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Saifei Hu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yanni He
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yingnan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yao Chen
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoChina
| | - Congxiu Miao
- Department of Reproductive GeneticsHeping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health CommitteeChangzhiChina
| | - Yun Qian
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ruizhi Feng
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
- Clinical Center of Reproductive MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Reproductive GeneticsHeping Hospital of Changzhi Medical College, Key Laboratory of Reproduction Engineer of Shanxi Health CommitteeChangzhiChina
- Innovation Center of Suzhou Nanjing Medical UniversityNanjing Medical UniversitySuzhouChina
| |
Collapse
|
12
|
Bellou E, Zielinska AP, Mönnich EU, Schweizer N, Politi AZ, Wellecke A, Sibold C, Tandler-Schneider A, Schuh M. Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis. Nat Commun 2024; 15:10713. [PMID: 39715766 PMCID: PMC11666783 DOI: 10.1038/s41467-024-54659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Aneuploidy in eggs is a leading cause of miscarriages or viable developmental syndromes. Aneuploidy rates differ between individual chromosomes. For instance, chromosome 21 frequently missegregates, resulting in Down Syndrome. What causes chromosome-specific aneuploidy in meiosis is unclear. Chromosome 21 belongs to the class of acrocentric chromosomes, whose centromeres are located close to the chromosome end, resulting in one long and one short chromosome arm. We demonstrate that acrocentric chromosomes are generally more often aneuploid than metacentric chromosomes in porcine eggs. Kinetochores of acrocentric chromosomes are often partially covered by the short chromosome arm during meiosis I in human and porcine oocytes and orient less efficiently toward the spindle poles. These partially covered kinetochores are more likely to be incorrectly attached to the spindle. Additionally, sister chromatids of acrocentric chromosomes are held together by lower levels of cohesin, making them more vulnerable to age-dependent cohesin loss. Chromosome architecture and low cohesion therefore bias acrocentric chromosomes toward aneuploidy during mammalian meiosis.
Collapse
Affiliation(s)
- Eirini Bellou
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agata P Zielinska
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Eike Urs Mönnich
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Schweizer
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Antonio Z Politi
- Facility for Light Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Antonina Wellecke
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | | | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
13
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
14
|
Cheng S, Schuh M. Two mechanisms repress cyclin B1 translation to maintain prophase arrest in mouse oocytes. Nat Commun 2024; 15:10044. [PMID: 39567493 PMCID: PMC11579420 DOI: 10.1038/s41467-024-54161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
In mammals, oocytes are arrested in prophase of meiosis I for long periods of time. Prophase arrest is critical for reproduction because it allows oocytes to grow to their full size to support meiotic maturation and embryonic development. Prophase arrest requires the inhibitory phosphorylation of the mitotic kinase CDK1. Whether prophase arrest is also regulated at the translational level is unknown. Here, we show that prophase arrest is regulated by translational control of dormant cyclin B1 mRNAs. Using Trim-Away, we identify two mechanisms that maintain cyclin B1 dormancy and thus prophase arrest. First, a complex of the RNA-binding proteins DDX6, LSM14B and CPEB1 directly represses cyclin B1 translation through interacting with its 3'UTR. Second, cytoplasmic poly(A)-binding proteins (PABPCs) indirectly repress the translation of cyclin B1 and other poly(A)-tail-less or short-tailed mRNAs by sequestering the translation machinery on long-tailed mRNAs. Together, we demonstrate how RNA-binding proteins coordinately regulate prophase arrest, and reveal an unexpected role for PABPCs in controlling mRNA dormancy.
Collapse
Affiliation(s)
- Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, 430072, Wuhan, China
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
15
|
Sun S, Yang Y, Zhou J, Liu P. Liquid-liquid phase separation of microtubule-binding proteins in the regulation of spindle assembly. Cell Prolif 2024; 57:e13649. [PMID: 38736355 PMCID: PMC11471393 DOI: 10.1111/cpr.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Cell division is a highly regulated process essential for the accurate segregation of chromosomes. Central to this process is the assembly of a bipolar mitotic spindle, a highly dynamic microtubule (MT)-based structure responsible for chromosome movement. The nucleation and dynamics of MTs are intricately regulated by MT-binding proteins. Over the recent years, various MT-binding proteins have been reported to undergo liquid-liquid phase separation, forming either single- or multi-component condensates on MTs. Herein, we provide a comprehensive summary of the phase separation characteristics of these proteins. We underscore their critical roles in MT nucleation, spindle assembly and kinetochore-MT attachment during the cell division process. Furthermore, we discuss the current challenges and various remaining unsolved problems, highlights the ongoing research efforts aimed at a deeper understanding of the role of the phase separation process during spindle assembly and orientation. Our review aims to contribute to the collective knowledge in this area and stimulate further investigations that will enhance our comprehension of the intricate mechanisms governing cell division.
Collapse
Affiliation(s)
- Shuang Sun
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| | - Yang Yang
- Translational Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life SciencesNankai UniversityTianjinChina
| | - Peiwei Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
16
|
Chen H, Liu Y, Huang Y, Zhang P, Du D, Yu W, Wu C, Ruan H, Zhou P, Ding Z, Xiang H. Bisphenol M inhibits mouse oocyte maturation in vitro by disrupting cytoskeleton architecture and cell cycle processes. Reprod Toxicol 2024; 129:108667. [PMID: 39059776 DOI: 10.1016/j.reprotox.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol M (BPM), an alternative to bisphenol A (BPA), is commonly utilized in various industrial applications. However, BPM does not represent a safe substitute for BPA due to its detrimental effects on living beings. This research aimed to assess the influence of BPM exposure on the in vitro maturation of mouse oocytes. The findings revealed that BPM exposure had a notable impact on the germinal vesicle breakdown (GVBD) rate and polar body extrusion (PBE) rate throughout the meiotic progression of mouse oocytes, ultimately resulting in meiotic arrest. Investigations demonstrated that oocytes exposure to BPM led to continued activation of spindle assembly checkpoint. Further studies revealed that securin and cyclin B1 could not be degraded in BPM-exposed oocytes, and meiosis could not realize the transition from the MI to the AI stage. Mechanistically, BPM exposure resulted in abnormal spindle assembly and disrupted chromosome alignment of oocytes. Additionally, abnormal positioning of microtubule organizing center-associated proteins implied that MTOC may be dysfunctional. Furthermore, an elevation in the acetylation level of α-tubulin in oocytes was observed after BPM treatment, leading to decreased microtubule stability. In addition to its impact on microtubules, BPM exposure led to a reduction in the expression of the actin, signifying the disruption of actin assembly. Further research indicated a heightened incidence of DNA damage in oocytes following BPM exposure. Besides, BPM exposure induced alterations in histone modifications. The outcomes of this experiment demonstrate that BPM exposure impairs oocyte quality and inhibits meiotic maturation of mouse oocytes.
Collapse
Affiliation(s)
- Huilei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Yang Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Yue Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Pin Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Danli Du
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Wenhua Yu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical University, No.287 Changhuai Road, Bengbu 233000, China
| | - Caiyun Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Hongzhen Ruan
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Zhiming Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No.81 Meishan Road, Hefei 230032, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No.81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No.81 Meishan Road, Hefei 230032, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No.81 Meishan Road, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, No.81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
17
|
Zhang X, Huang G, Jiang T, Meng L, Li T, Zhang G, Wu N, Chen X, Zhao B, Li N, Wu S, Guo J, Zheng R, Ji Z, Xu Z, Wang Z, Deng D, Tan Y, Xu W. CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice. Nat Commun 2024; 15:8465. [PMID: 39349455 PMCID: PMC11443074 DOI: 10.1038/s41467-024-52705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Spermiogenesis, the complex transformation of haploid spermatids into mature spermatozoa, relies on precise spatiotemporal regulation of gene expression at the post-transcriptional level. The mechanisms underlying this critical process remain incompletely understood. Here, we identify centrosomal protein 112 (CEP112) as an essential regulator of mRNA translation during this critical developmental process. Mutations in CEP112 are discovered in oligoasthenoteratospermic patients, and Cep112-deficient male mice recapitulate key phenotypes of human asthenoteratozoospermia. CEP112 localizes to the neck and atypical centrioles of mature sperm and forms RNA granules during spermiogenesis, enriching target mRNAs such as Fsip2, Cfap61, and Cfap74. Through multi-omics analyses and the TRICK reporter assay, we demonstrate that CEP112 orchestrates the translation of target mRNAs. Co-immunoprecipitation and mass spectrometry identify CEP112's interactions with translation-related proteins, including hnRNPA2B1, EEF1A1, and EIF4A1. In vitro, CEP112 undergoes liquid-liquid phase separation, forming condensates that recruit essential proteins and mRNAs. Moreover, variants in patient-derived CEP112 disrupt phase separation and impair translation efficiency. Our results suggest that CEP112 mediates the assembly of RNA granules through liquid-liquid phase separation to control the post-transcriptional expression of fertility-related genes. This study not only clarifies CEP112's role in spermatogenesis but also highlights the role of phase separation in translational regulation, providing insights into male infertility and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Xueguang Zhang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Gelin Huang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Ting Jiang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China
| | - Tongtong Li
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, 610041, Chengdu, China
| | - Nan Wu
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Sixian Wu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Junceng Guo
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Rui Zheng
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueqiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China.
| | - Wenming Xu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
18
|
Blengini CS, Schindler K. Genetic interaction mapping of Aurora protein kinases in mouse oocytes. Front Cell Dev Biol 2024; 12:1455280. [PMID: 39386021 PMCID: PMC11461192 DOI: 10.3389/fcell.2024.1455280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The Aurora Kinases (AURKs) are a family of serine-threonine protein kinases critical for cell division. Somatic cells express only AURKA and AURKB. However, mammalian germ cells and some cancer cells express all three isoforms. A major question in the field has been determining the molecular and cellular changes when cells express three instead of two aurora kinases. Using a systematic genetic approach involving different Aurora kinase oocyte-specific knockout combinations, we completed an oocyte-AURK genetic interaction map and show that one genomic copy of Aurka is necessary and sufficient to support female fertility and oocyte meiosis. We further confirm that AURKB and AURKC alone cannot compensate for AURKA. These results highlight the importance of AURKA in mouse oocytes, demonstrating that it is required for spindle formation and proper chromosome segregation. Surprisingly, a percentage of oocytes that lack AURKB can complete meiosis I, but the quality of those eggs is compromised, suggesting a role in AURKB to regulate spindle assembly checkpoint or control the cell cycle. Together with our previous studies, we wholly define the genetic interplay among the Aurora kinases and reinforce the importance of AURKA expression in oocyte meiosis.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Human Genetics Institute of New Jersey, New Brunswick, NJ, United States
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Human Genetics Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Asai K, Zhou Y, Takenouchi O, Kitajima TS. Artificial kinetochore beads establish a biorientation-like state in the spindle. Science 2024; 385:1366-1375. [PMID: 39298589 DOI: 10.1126/science.adn5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/24/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024]
Abstract
Faithful chromosome segregation requires biorientation, where the pair of kinetochores on the chromosome establish bipolar microtubule attachment. The integrity of the kinetochore, a macromolecular complex built on centromeric DNA, is required for biorientation, but components sufficient for biorientation remain unknown. Here, we show that tethering the outer kinetochore heterodimer NDC80-NUF2 to the surface of apolar microbeads establishes their biorientation-like state in mouse cells. NDC80-NUF2 microbeads align at the spindle equator and self-correct alignment errors. The alignment is associated with stable bipolar microtubule attachment and is independent of the outer kinetochore proteins SPC24-SPC25, KNL1, the Mis12 complex, inner kinetochore proteins, and Aurora. Larger microbeads align more rapidly, suggesting a size-dependent biorientation mechanism. This study demonstrates a biohybrid kinetochore design for synthetic biorientation of microscale particles in cells.
Collapse
Affiliation(s)
- Kohei Asai
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuanzhuo Zhou
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Osamu Takenouchi
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Wu T, Luo Y, Zhang M, Chen B, Du X, Gu H, Xie S, Pan Z, Yu R, Hai R, Niu X, Hao G, Jin L, Shi J, Sun X, Kuang Y, Li W, Sang Q, Wang L. Mechanisms of minor pole-mediated spindle bipolarization in human oocytes. Science 2024; 385:eado1022. [PMID: 39172836 DOI: 10.1126/science.ado1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process. We found that the minor poles formed in multiple kinetochore clusters contribute to the generation of multipolar intermediates. We further determined the essential roles of HAUS6, KIF11, and KIF18A in spindle bipolarization and identified mutations in these genes in infertile patients characterized by oocyte or embryo defects. These results provide insights into the physiological and pathological mechanisms of spindle bipolarization in human oocytes.
Collapse
Affiliation(s)
- Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Yuxi Luo
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Meiling Zhang
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 200032, China
| | - Xingzhu Du
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Siyuan Xie
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Zhiqi Pan
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ran Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Ruiqi Hai
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530029, China
| | - Guimin Hao
- Hebei Clinical Research Center for Birth Defects, Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Liping Jin
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Juanzi Shi
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an 710003, China
| | - Xiaoxi Sun
- Shanghai JIAI Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wen Li
- Center for Reproductive Medicine and Fertility Preservation Program, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Blengini CS, Vaskovicova M, Schier J, Drutovic D, Schindler K. Spatio-temporal requirements of Aurora kinase A in mouse oocyte meiotic spindle building. iScience 2024; 27:110451. [PMID: 39081293 PMCID: PMC11284559 DOI: 10.1016/j.isci.2024.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Meiotic spindles are critical to ensure chromosome segregation during gamete formation. Oocytes lack centrosomes and use alternative microtubule-nucleation mechanisms for spindle building. How these mechanisms are regulated is still unknown. Aurora kinase A (AURKA) is essential for mouse oocyte meiosis because in pro-metaphase I it triggers microtubule organizing-center fragmentation and its expression compensates for the loss of the two other Aurora kinases (AURKB/AURKC). Although knockout mouse models were useful for foundational studies, AURK spatial and temporal functions are not yet resolved. We provide high-resolution analyses of AURKA/AURKC requirements during meiotic spindle-building and identify the subcellular populations that carry out these functions: 1) AURKA is required in early spindle assembly and later for spindle stability, whereas 2) AURKC is required in late pro-metaphase, and 3) Targeted AURKA constructs expressed in triple AURK knockout oocytes reveal that spindle pole-localized AURKA is the most important population controlling spindle building and stability mechanisms.
Collapse
Affiliation(s)
- Cecilia S. Blengini
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Michaela Vaskovicova
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Schier
- The Czech Academy of Sciences, Institute of Information Theory and Automation, Piscataway, NJ 08854, USA
| | - David Drutovic
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Skinner MW, Simington CJ, López-Jiménez P, Baran KA, Xu J, Dayani Y, Pryzhkova MV, Page J, Gómez R, Holland AJ, Jordan PW. Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure. EMBO Rep 2024; 25:3373-3405. [PMID: 38943004 PMCID: PMC11316026 DOI: 10.1038/s44319-024-00187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Centrosomes are the canonical microtubule organizing centers (MTOCs) of most mammalian cells, including spermatocytes. Centrosomes comprise a centriole pair within a structurally ordered and dynamic pericentriolar matrix (PCM). Unlike in mitosis, where centrioles duplicate once per cycle, centrioles undergo two rounds of duplication during spermatogenesis. The first duplication is during early meiotic prophase I, and the second is during interkinesis. Using mouse mutants and chemical inhibition, we have blocked centriole duplication during spermatogenesis and determined that non-centrosomal MTOCs (ncMTOCs) can mediate chromosome segregation. This mechanism is different from the acentriolar MTOCs that form bipolar spindles in oocytes, which require PCM components, including gamma-tubulin and CEP192. From an in-depth analysis, we identified six microtubule-associated proteins, TPX2, KIF11, NuMA, and CAMSAP1-3, that localized to the non-centrosomal MTOC. These factors contribute to a mechanism that ensures bipolar MTOC formation and chromosome segregation during spermatogenesis when centriole duplication fails. However, despite the successful completion of meiosis and round spermatid formation, centriole inheritance and PLK4 function are required for normal spermiogenesis and flagella assembly, which are critical to ensure fertility.
Collapse
Affiliation(s)
- Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carter J Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo López-Jiménez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
| | - Kerstin A Baran
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jingwen Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yaron Dayani
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesús Page
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Rocío Gómez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
23
|
Cantwell H, Nguyen H, Kettenbach A, Heald R. Spindle morphology changes between meiosis and mitosis driven by CK2 regulation of the Ran pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605073. [PMID: 39211121 PMCID: PMC11361180 DOI: 10.1101/2024.07.25.605073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The transition from meiotic divisions in the oocyte to embryonic mitoses is a critical step in animal development. Despite negligible changes to cell size and shape, following fertilization the small, barrel-shaped meiotic spindle is replaced by a large zygotic spindle that nucleates abundant astral microtubules at spindle poles. To probe underlying mechanisms, we applied a drug screening approach using Ciona eggs and found that inhibition of Casein Kinase 2 (CK2) caused a shift from meiotic to mitotic-like spindle morphology with nucleation of robust astral microtubules, an effect reproduced in cytoplasmic extracts prepared from Xenopus eggs. In both species, CK2 activity decreased at fertilization. Phosphoproteomic differences between Xenopus meiotic and mitotic extracts that also accompanied CK2 inhibition pointed to RanGTP-regulated factors as potential targets. Interfering with RanGTP-driven microtubule formation suppressed astral microtubule growth caused by CK2 inhibition. These data support a model in which CK2 activity attenuation at fertilization leads to activation of RanGTP-regulated microtubule effectors that induce mitotic spindle morphology.
Collapse
|
24
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
25
|
Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J, Wang S. Physiological and pathological effects of phase separation in the central nervous system. J Mol Med (Berl) 2024; 102:599-615. [PMID: 38441598 PMCID: PMC11055734 DOI: 10.1007/s00109-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China.
| | - Ruijia Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Qian Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Haoliang Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Jin Hu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
26
|
Zaffagnini G, Cheng S, Salzer MC, Pernaute B, Duran JM, Irimia M, Schuh M, Böke E. Mouse oocytes sequester aggregated proteins in degradative super-organelles. Cell 2024; 187:1109-1126.e21. [PMID: 38382525 DOI: 10.1016/j.cell.2024.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Oocytes are among the longest-lived cells in the body and need to preserve their cytoplasm to support proper embryonic development. Protein aggregation is a major threat for intracellular homeostasis in long-lived cells. How oocytes cope with protein aggregation during their extended life is unknown. Here, we find that mouse oocytes accumulate protein aggregates in specialized compartments that we named endolysosomal vesicular assemblies (ELVAs). Combining live-cell imaging, electron microscopy, and proteomics, we found that ELVAs are non-membrane-bound compartments composed of endolysosomes, autophagosomes, and proteasomes held together by a protein matrix formed by RUFY1. Functional assays revealed that in immature oocytes, ELVAs sequester aggregated proteins, including TDP-43, and degrade them upon oocyte maturation. Inhibiting degradative activity in ELVAs leads to the accumulation of protein aggregates in the embryo and is detrimental for embryo survival. Thus, ELVAs represent a strategy to safeguard protein homeostasis in long-lived cells.
Collapse
Affiliation(s)
- Gabriele Zaffagnini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Marion C Salzer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Barbara Pernaute
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Manuel Duran
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
27
|
Simerly C, Robertson E, Harrison C, Ward S, George C, Deleon J, Hartnett C, Schatten G. Male meiotic spindle poles are stabilized by TACC3 and cKAP5/chTOG differently from female meiotic or somatic mitotic spindles in mice. Sci Rep 2024; 14:4808. [PMID: 38413710 PMCID: PMC10899211 DOI: 10.1038/s41598-024-55376-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Transforming acidic acid coiled-coil protein 3 (TACC3) and cytoskeleton associated protein 5 (cKAP5; or colonic hepatic tumor overexpressed gene, chTOG) are vital for spindle assembly and stabilization initiated through TACC3 Aurora-A kinase interaction. Here, TACC3 and cKAP5/chTOG localization with monospecific antibodies is investigated in eGFP-centrin-2- expressing mouse meiotic spermatocytes. Both proteins bind spermatocyte spindle poles but neither kinetochore nor interpolar microtubules, unlike in mitotic mouse fibroblasts or female meiotic oocyte spindles. Spermatocytes do not display a liquid-like spindle domain (LISD), although fusing them into maturing oocytes generates LISD-like TACC3 condensates around sperm chromatin but sparse microtubule assembly. Microtubule inhibitors do not reduce TACC3 and cKAP5/chTOG spindle pole binding. MLN 8237 Aurora-A kinase inhibitor removes TACC3, not cKAP5/chTOG, disrupting spindle organization, chromosome alignment, and impacting spindle pole γ-tubulin intensity. The LISD disruptor 1,6-hexanediol abolished TACC3 in spermatocytes, impacting spindle bipolarity and chromosome organization. Cold microtubule disassembly and rescue experiments in the presence of 1,6-hexanediol reinforce the concept that spermatocyte TACC3 spindle pole presence is not required for spindle pole microtubule assembly. Collectively, meiotic spermatocytes without a LISD localize TACC3 and cKAP5/chTOG exclusively at spindle poles to support meiotic spindle pole stabilization during male meiosis, different from either female meiosis or mitosis.
Collapse
Affiliation(s)
- Calvin Simerly
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Emily Robertson
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Caleb Harrison
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Sydney Ward
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Charlize George
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Jasmine Deleon
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Carrie Hartnett
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - Gerald Schatten
- Departments of Cell Biology, Ob-Gyn-Repro Sci, and Bioengineering, Pittsburgh Development Center of Magee-Womens Research Institute, University of Pittsburgh Medical Center, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
28
|
Pena GE, Zhou X, Slevin L, Brownlee C, Heald R. Identification of a motif in TPX2 that regulates spindle architecture in Xenopus egg extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579770. [PMID: 38370704 PMCID: PMC10871311 DOI: 10.1101/2024.02.10.579770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet spindle size and architecture varies dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we identify a conserved nuclear localization sequence (NLS) motif, 123 KKLK 126 in X. laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA dramatically increased spontaneous formation of microtubule asters and recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the recruitment and activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.
Collapse
|
29
|
Liu Y, He M, Ke X, Chen Y, Zhu J, Tan Z, Chen J. Centrosome amplification-related signature correlated with immune microenvironment and treatment response predicts prognosis and improves diagnosis of hepatocellular carcinoma by integrating machine learning and single-cell analyses. Hepatol Int 2024; 18:108-130. [PMID: 37154991 DOI: 10.1007/s12072-023-10538-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Centrosome amplification is a well-recognized oncogenic driver of tumor initiation and progression across a variety of malignancies and has been linked with tumor aggressiveness, metastasis, and adverse prognosis. Nevertheless, the significance of centrosome amplification in HCC is not well understood. METHODS The TCGA dataset was downloaded for centrosome amplification-related signature construction using the LASSO-penalized Cox regression algorithm, while the ICGC dataset was obtained for signature validation. Single-cell RNA sequencing from GSE149614 was analyzed to profile gene expression and the liver tumor niche. RESULTS A total of 134 centrosome amplification-related prognostic genes in HCC were detected and 6 key prognostic genes (SSX2IP, SPAG4, SAC3D1, NPM1, CSNK1D, and CEP55) among them were screened out to construct a signature with both high sensitivity and specificity in diagnosis and prognosis of HCC patients. The signature, as an independent factor, was associated with frequent recurrences, high mortality rates, advanced clinicopathologic features, and high vascular invasions. Moreover, the signature was intimately associated with cell cycle-related pathways and TP53 mutation profile, suggesting its underlying role in accelerating cell cycle progression and leading to liver cancer development. Meanwhile, the signature was also closely correlated with immunosuppressive cell infiltration and immune checkpoint expression, making it a vital immunosuppressive factor in the tumor microenvironment. Upon single-cell RNA sequencing, SSX2IP and SAC3D1 were found to be specially expressed in liver cancer stem-like cells, where they promoted cell cycle progression and hypoxia. CONCLUSIONS This study provided a direct molecular link of centrosome amplification with clinical characteristics, tumor microenvironment, and clinical drug-response, highlighting the critical role of centrosome amplification in liver cancer development and therapy resistance, thereby providing valuable insights into prognostic prediction and therapeutic response of HCC.
Collapse
Affiliation(s)
- Yanli Liu
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Min He
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Xinrong Ke
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Yuting Chen
- State Key Laboratory of Respiratory Disease, The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jie Zhu
- State Key Laboratory of Respiratory Disease, The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Ziqing Tan
- State Key Laboratory of Respiratory Disease, The Second Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Jingqi Chen
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology & Translational Medicine Center, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
30
|
Biswas L, Schindler K. Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:1-22. [PMID: 39030352 DOI: 10.1007/978-3-031-55163-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA.
- Human Genetics Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
31
|
Volkov VA, Akhmanova A. Phase separation on microtubules: from droplet formation to cellular function? Trends Cell Biol 2024; 34:18-30. [PMID: 37453878 DOI: 10.1016/j.tcb.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Microtubules are cytoskeletal polymers that play important roles in numerous cellular processes, ranging from the control of cell shape and polarity to cell division and intracellular transport. Many of these roles rely on proteins that bind to microtubule ends and shafts, carry intrinsically disordered regions, and form complex multivalent interaction networks. A flurry of recent studies demonstrated that these properties allow diverse microtubule-binding proteins to undergo liquid-liquid phase separation (LLPS) in vitro. It is proposed that LLPS could potentially affect multiple microtubule-related processes, such as microtubule nucleation, control of microtubule dynamics and organization, and microtubule-based transport. Here, we discuss the evidence in favor and against the occurrence of LLPS and its functional significance for microtubule-based processes in cells.
Collapse
Affiliation(s)
- Vladimir A Volkov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
32
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
33
|
Shi S, Guo D, Ye L, Li T, Fei Q, Lin M, Yu X, Jin K, Wu W. Knockdown of TACC3 inhibits tumor cell proliferation and increases chemosensitivity in pancreatic cancer. Cell Death Dis 2023; 14:778. [PMID: 38012214 PMCID: PMC10682013 DOI: 10.1038/s41419-023-06313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant digestive tract tumor with limited clinical treatments. Transforming acidic coiled-coil-containing protein 3 (TACC3) is a component of the centrosome axis and a member of the TACC family, which affect mitosis and regulate chromosome stability and are involved in tumor development and progression. However, the role of TACC3 in PDAC remains elusive. In this study, by exploiting the TCGA database, we found that high TACC3 expression in PDAC is associated with poor prognosis. shRNA-mediated TACC3 knockdown caused S phase arrest of the cell cycle and inhibited proliferation in PDAC cell lines. Through RNA sequencing and protein co-immunoprecipitation combined with mass spectrometry, KIF11 was identified as a protein that interacts with TACC3. TACC3 stabilizes and regulates KIF11 protein expression levels in PDAC cells through physical interaction. Knockdown of TACC3 or KIF11 resulted in abnormal spindle formation during cell division both in vitro and in vivo. Pharmacological inhibition of TACC3 or KIF11 can suppress tumor cell proliferation and promote apoptosis. Our studies further demonstrated that high expression of TACC3 and KIF11 mediated the resistance of PDAC to gemcitabine, and deficiency of TACC3 or KIF11 increased the sensitivity of PDAC cells to chemotherapy. In conclusion, our study reveals the fundamental role of TACC3 expression in PDAC cell proliferation and chemoresistance, suggesting that TACC3 can be used as a molecular marker to evaluate the prognosis of PDAC.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Duancheng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qinglin Fei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Mengxiong Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
34
|
Fan H, Zhou Z, Zheng W, Guan Y, Meng Q, Wang W, Dong J, Wan L, Zhu J, Zeng Y, Liu R, Gu H, Lin G, Chen B, Sang Q, Wang L. Homozygous variants in CDC23 cause female infertility characterized by oocyte maturation defects. Hum Genet 2023; 142:1621-1631. [PMID: 37768355 DOI: 10.1007/s00439-023-02606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Oocyte maturation defects are major phenotypes resulting in female infertility. Although many genetic factors have been found to be responsible for these phenotypes, the underlying pathogenic genes and variants remain to be identified. The anaphase promoting complex or cyclosome (APC/C) is known to be essential in the metaphase-to-anaphase transition. In this study, we identified two homozygous missense variants (c.986A > G, p.Y329C and c.988C > T, p.R330C) in CDC23 that are responsible for female infertility characterized by oocyte maturation defects in three infertile individuals. CDC23 (cell division cycle 23) is one of the core subunits of the APC/C. In vitro experiments showed that the variant c.986A > G (p.Y329C) led to a decrease in CDC23 protein level and the variant c.988C > T (p.R330C) changed the localization of CDC23 in HeLa cells and mouse oocytes. In vivo studies showed that Cdc23Y329C/Y329C mice successfully mimicked the patients' phenotype by causing low expression of CDC23 and APC4 and the accumulation of securin and cyclin B1 in oocytes. AZ3146 treatment was able to rescue the phenotype. Taken together, our findings reveal the important roles of CDC23 in human oocyte maturation and provide a new genetic marker for female infertility.
Collapse
Affiliation(s)
- Huizhen Fan
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Yichun Guan
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qingxia Meng
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Liuxia Wan
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiawei Zhu
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215000, China
| | - Yang Zeng
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Ruyi Liu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Hao Gu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Institutes of Biomedical Sciences, the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
35
|
Guo Y, Sun H, Chen H, Yang G, Wang J, Qi Z, Pang W, Chu G, Gao L. Vitrification induces a focused spindle pole in mouse MI oocytes. Theriogenology 2023; 211:232-240. [PMID: 37660475 DOI: 10.1016/j.theriogenology.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Immature oocyte (germinal vesicle stage, GV) vitrification can avoid a cycle of ovarian stimulation, which is friendly to patients with hormone-sensitive tumors. However, the in vitro maturation of vitrification-thawed GV oocyte usually results in aneuploidy, and the underlying mechanism remains unclear. Stable spindle poles are important for accurate chromosome segregation. Acentriolar microtubule-organizing centers (aMTOCs) undergo fragmentation and reaggregation to form spindle poles. Microtubule nucleation is facilitated via the perichromosome Ran after GVBD, which plays an important role in aMTOCs fragmentation. This study showed that vitrification may reduce microtubule density by decreasing perichromosomal Ran levels, which reduced the localization of pKIF11, thereby decreased the fragmentation of aMTOCs and formed a more focused spindle pole, ultimately resulted in aneuploidy. This study revealed the mechanism of abnormal spindle pole formation in vitrified oocytes and offered a theoretical support to further improve the quality of vitrified oocytes.
Collapse
Affiliation(s)
- Yaoyao Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haowei Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Hui Chen
- Animal Husbandry Industry Test and Demonstration Center of Shaanxi Province, Jingyang, 713708, Shaanxi, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jialun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhengjun Qi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Kraus J, Alfaro-Aco R, Gouveia B, Petry S. Microtubule nucleation for spindle assembly: one molecule at a time. Trends Biochem Sci 2023; 48:761-775. [PMID: 37482516 PMCID: PMC10789498 DOI: 10.1016/j.tibs.2023.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023]
Abstract
The cell orchestrates the dance of chromosome segregation with remarkable speed and fidelity. The mitotic spindle is built from scratch after interphase through microtubule (MT) nucleation, which is dependent on the γ-tubulin ring complex (γ-TuRC), the universal MT template. Although several MT nucleation pathways build the spindle framework, the question of when and how γ-TuRC is targeted to these nucleation sites in the spindle and subsequently activated remains an active area of investigation. Recent advances facilitated the discovery of new MT nucleation effectors and their mechanisms of action. In this review, we illuminate each spindle assembly pathway and subsequently consider how the pathways are merged to build a spindle.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
37
|
Niu H, An X, Wang X, Yang M, Cheng F, Lei A, Luo J. Dynamic role of Scd1 gene during mouse oocyte growth and maturation. Int J Biol Macromol 2023; 247:125307. [PMID: 37315672 DOI: 10.1016/j.ijbiomac.2023.125307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/07/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Mammalian reproductive ability is regulated by many factors, among which the fatty acid metabolism network provides energy for oocyte growth and primordial follicle formation during early mouse oogenesis. But the mechanism behind that is still unknown. Stearoyl-CoA desaturase 1 (Scd1) gene expression is increased during the oogenesis process, supporting the oocyte's healthy growth. Taking advantage of gene-edited mice lacking stearoyl-Coenzyme A desaturase 1 gene (Scd1-/-), we analyzed relative gene expression in perinatal ovaries from wildtype, and Scd1-/- mice. Scd1 deficiency dysregulates expression of meiosis-related genes (e.g., Sycp1, Sycp2, Sycp3, Rad51, Ddx4) and a variety of genes (e.g., Nobox, Lhx8, Bmp15, Ybx2, Dppa3, Oct4, Sohlh1, Zp3) associated with oocyte growth and differentiation, leading to a lower oocyte maturation rate. The absence of Scd1 significantly impedes meiotic progression, causes DNA damage, and inhibits damage repair in Scd1-/- ovaries. Moreover, we find that Scd1 absense dramatically disrupts the abundance of fatty acid metabolism genes (e.g., Fasn, Srebp1, Acaca) and the lipid droplet content. Thus, our findings substantiate a major role for Scd1 as a multifunctional regulator of fatty acid networks necessary for oocyte maintenance and differentiation during early follicular genesis.
Collapse
Affiliation(s)
- Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuetong An
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xinpei Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anmin Lei
- Institute of Shaanxi Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
38
|
Valdez VA, Neahring L, Petry S, Dumont S. Mechanisms underlying spindle assembly and robustness. Nat Rev Mol Cell Biol 2023; 24:523-542. [PMID: 36977834 PMCID: PMC10642710 DOI: 10.1038/s41580-023-00584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/30/2023]
Abstract
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
Collapse
Affiliation(s)
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA
| | - Sabine Petry
- Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
39
|
Dong J, Wu T, Sang Q, Wang L. Human oocyte microtubule organizing center: a newly identified driver for meiotic spindle assembly in female oocytes. LIFE MEDICINE 2023; 2:lnad016. [PMID: 39872299 PMCID: PMC11749342 DOI: 10.1093/lifemedi/lnad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/25/2023] [Indexed: 01/30/2025]
Affiliation(s)
- Jie Dong
- Department of Reproductive Medical Center, Jinling Hospital, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Tianyu Wu
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
He S, Gillies JP, Zang JL, Córdoba-Beldad CM, Yamamoto I, Fujiwara Y, Grantham J, DeSantis ME, Shibuya H. Distinct dynein complexes defined by DYNLRB1 and DYNLRB2 regulate mitotic and male meiotic spindle bipolarity. Nat Commun 2023; 14:1715. [PMID: 36973253 PMCID: PMC10042829 DOI: 10.1038/s41467-023-37370-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Spindle formation in male meiosis relies on the canonical centrosome system, which is distinct from acentrosomal oocyte meiosis, but its specific regulatory mechanisms remain unknown. Herein, we report that DYNLRB2 (Dynein light chain roadblock-type-2) is a male meiosis-upregulated dynein light chain that is indispensable for spindle formation in meiosis I. In Dynlrb2 KO mouse testes, meiosis progression is arrested in metaphase I due to the formation of multipolar spindles with fragmented pericentriolar material (PCM). DYNLRB2 inhibits PCM fragmentation through two distinct pathways; suppressing premature centriole disengagement and targeting NuMA (nuclear mitotic apparatus) to spindle poles. The ubiquitously expressed mitotic counterpart, DYNLRB1, has similar roles in mitotic cells and maintains spindle bipolarity by targeting NuMA and suppressing centriole overduplication. Our work demonstrates that two distinct dynein complexes containing DYNLRB1 or DYNLRB2 are separately used in mitotic and meiotic spindle formations, respectively, and that both have NuMA as a common target.
Collapse
Affiliation(s)
- Shuwen He
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Juliana L Zang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Io Yamamoto
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Yasuhiro Fujiwara
- Institute for Quantitative Biosciences, University of Tokyo, 1-1-1 Yayoi, Tokyo, 113-0032, Japan
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41390, Gothenburg, Sweden
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-41390, Gothenburg, Sweden.
| |
Collapse
|
41
|
Qiao FX, Sun MX, Xu ZR, Liu YC, Chen YZ, Wang HL, Qi ZQ, Xu CL, Liu Y. Chloroacetonitrile exposure induces endoplasmic reticulum stress and affects spindle assembly in mouse oocytes. Food Chem Toxicol 2023; 176:113736. [PMID: 36940772 DOI: 10.1016/j.fct.2023.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023]
Abstract
Chloroacetonitrile (CAN) is a halogenated acetonitrile often produced while disinfecting drinking water. Previous studies have shown that maternal exposure to CAN interferes with fetal development; however, the adverse effects on maternal oocytes remain unknown. In this study, in vitro exposure of mouse oocytes to CAN reduced maturation significantly. Transcriptomics analysis showed that CAN altered the expression of multiple oocyte genes, especially those associated with the protein folding process. CAN exposure induced reactive oxygen species production, accompanied by endoplasmic reticulum (ER) stress and increased glucose regulated protein 78, C/EBP homologous protein and activating transcription factor 6 expression. Moreover, our results indicated that spindle morphology was impaired after CAN exposure. CAN disrupted polo-like kinase 1, pericentrin and p-Aurora A distribution, which may be an origin inducer that disrupts spindle assemble. Furthermore, exposure to CAN in vivo impaired follicular development. Taken together, our findings indicate that CAN exposure induces ER stress and affects spindle assembly in mouse oocytes.
Collapse
Affiliation(s)
- Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China.
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
42
|
Lei P, Zhang M, Li Y, Wang Z. High GTSE1 expression promotes cell proliferation, metastasis and cisplatin resistance in ccRCC and is associated with immune infiltrates and poor prognosis. Front Genet 2023; 14:996362. [PMID: 36999057 PMCID: PMC10043236 DOI: 10.3389/fgene.2023.996362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Clear cell renal cell carcinoma is the most common and fatal form of kidney cancer, accounting for 80% of new cases. Although it has been reported that GTSE1 is highly expressed in a variety of tumors and associated with malignant progression and poor clinical prognosis, its clinical significance, correlations with immune cell infiltration and biological function in ccRCC are still poorly understood.Methods: The gene expression, clinicopathological features, and clinical significance of GTSE1 were analyzed using multiple databases, including TCGA, GEO, TIMER, and UALCAN Kaplan–Meier survival analysis, gene set enrichment analysis gene ontology enrichment Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed. Tumor-infiltrating immune cells and immunomodulators were extracted and analyzed using TCGA-KIRC profiles. Protein‒protein interactions were built using the STRING website. The protein level of GTSE1 in ccRCC patients was detected by immunohistochemistry using a ccRCC tissue chip. Finally, MTT assays, colony-formation assays, cell flow cytometry analyses, EdU-staining assays, wound-healing assays, and transwell migration and invasion assays were conducted to assess the biological function of GTSE1 in vitro.Results: GTSE1 was overexpressed in ccRCC tissues and cells, and GTSE1 overexpression was associated with adverse clinical-pathological factors and poor clinical prognosis. Meanwhile, the functional enrichment analysis indicated that GTSE1 and its coexpressed genes were mainly related to the cell cycle, DNA replication, and immunoreaction, such as T-cell activation and innate immune response, through multiple signaling pathways, including the P53 signaling pathway and T-cell receptor signaling pathway. Furthermore, we observed a significant relationship between GTSE1 expression and the levels of infiltrating immune cells in ccRCC. Biological functional studies demonstrated that GTSE1 could promote the malignant progression of ccRCC by promoting cell proliferation, cell cycle transition, migration, and invasion capacity and decreasing the sensitivity of ccRCC cells to cisplatin.Conclusion: Our results indicate that GTSE1, serving as a potential oncogene, can promote malignant progression and cisplatin resistance in ccRCC. Additionally, high GTSE1 expression contributes to an increased level of immune cell infiltration and is associated with a worse prognosis, providing a potential target for tumor therapy in ccRCC.
Collapse
Affiliation(s)
- Pu Lei
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
- Department of Urology, Yulin City No. 2 Hospital, Yulin, Shaanxi, China
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ziming Wang
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
- *Correspondence: Ziming Wang,
| |
Collapse
|
43
|
Biomolecular condensation involving the cytoskeleton. Brain Res Bull 2023; 194:105-117. [PMID: 36690162 DOI: 10.1016/j.brainresbull.2023.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Biomolecular condensation of proteins contributes to the organization of the cytoplasm and nucleoplasm. A number of condensation processes appear to be directly involved in regulating the structure, function and dynamics of the cytoskeleton. Liquid-liquid phase separation of cytoskeleton proteins, together with polymerization modulators, promotes cytoskeletal fiber nucleation and branching. Furthermore, the attachment of protein condensates to the cytoskeleton can contribute to cytoskeleton stability and organization, regulate transport, create patterns of functional reaction containers, and connect the cytoskeleton with membranes. Surface-bound condensates can exert and buffer mechanical forces that give stability and flexibility to the cytoskeleton, thus, may play a large role in cell biology. In this review, we introduce the concept and role of cellular biomolecular condensation, explain its special function on cytoskeletal fiber surfaces, and point out potential definition and experimental caveats. We review the current literature on protein condensation processes related to the actin, tubulin, and intermediate filament cytoskeleton, and discuss some of them in the context of neurobiology. In summary, we provide an overview about biomolecular condensation in relation to cytoskeleton structure and function, which offers a base for the exploration and interpretation of cytoskeletal condensates in neurobiology.
Collapse
|
44
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
45
|
Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat Cell Biol 2023; 25:439-452. [PMID: 36732633 PMCID: PMC10014578 DOI: 10.1038/s41556-022-01082-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Accurate chromosome segregation during meiosis is crucial for reproduction. Human and porcine oocytes transiently cluster their chromosomes before the onset of spindle assembly and subsequent chromosome segregation. The mechanism and function of chromosome clustering are unknown. Here we show that chromosome clustering is required to prevent chromosome losses in the long gap phase between nuclear envelope breakdown and the onset of spindle assembly, and to promote the rapid capture of all chromosomes by the acentrosomal spindle. The initial phase of chromosome clustering is driven by a dynamic network of Formin-2- and Spire-nucleated actin cables. The actin cables form in the disassembling nucleus and migrate towards the nuclear centre, moving the chromosomes centripetally by interacting with their arms and kinetochores as they migrate. A cage of stable microtubule loops drives the late stages of chromosome clustering. Together, our data establish a crucial role for chromosome clustering in accurate progression through meiosis.
Collapse
|
46
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
47
|
Kalous J, Aleshkina D. Multiple Roles of PLK1 in Mitosis and Meiosis. Cells 2023; 12:cells12010187. [PMID: 36611980 PMCID: PMC9818836 DOI: 10.3390/cells12010187] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Cells are equipped with a diverse network of signaling and regulatory proteins that function as cell cycle regulators and checkpoint proteins to ensure the proper progression of cell division. A key regulator of cell division is polo-like kinase 1 (PLK1), a member of the serine/threonine kinase family that plays an important role in regulating the mitotic and meiotic cell cycle. The phosphorylation of specific substrates mediated by PLK1 controls nuclear envelope breakdown (NEBD), centrosome maturation, proper spindle assembly, chromosome segregation, and cytokinesis. In mammalian oogenesis, PLK1 is essential for resuming meiosis before ovulation and for establishing the meiotic spindle. Among other potential roles, PLK1 regulates the localized translation of spindle-enriched mRNAs by phosphorylating and thereby inhibiting the translational repressor 4E-BP1, a downstream target of the mTOR (mammalian target of rapamycin) pathway. In this review, we summarize the functions of PLK1 in mitosis, meiosis, and cytokinesis and focus on the role of PLK1 in regulating mRNA translation. However, knowledge of the role of PLK1 in the regulation of meiosis remains limited.
Collapse
|
48
|
Harvey AM, Chuang CH, Sumiyoshi E, Bowerman B. C. elegans XMAP215/ZYG-9 and TACC/TAC-1 act at multiple times during oocyte meiotic spindle assembly and promote both spindle pole coalescence and stability. PLoS Genet 2023; 19:e1010363. [PMID: 36608115 PMCID: PMC9851561 DOI: 10.1371/journal.pgen.1010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/19/2023] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The conserved two-component XMAP215/TACC modulator of microtubule stability is required in multiple animal phyla for acentrosomal spindle assembly during oocyte meiotic cell division. In C. elegans, XMAP215/zyg-9 and TACC/tac-1 mutant oocytes exhibit multiple and indistinguishable oocyte spindle assembly defects beginning early in meiosis I. To determine if these defects represent one or more early requirements with additional later and indirect consequences, or multiple temporally distinct and more direct requirements, we have used live cell imaging and fast-acting temperature-sensitive zyg-9 and tac-1 alleles to dissect their requirements at high temporal resolution. Temperature upshift and downshift experiments indicate that the ZYG-9/TAC-1 complex has multiple temporally distinct and separable requirements throughout oocyte meiotic cell division. First, we show that during prometaphase ZYG-9 and TAC-1 promote the coalescence of early pole foci into a bipolar structure, stabilizing pole foci as they grow and limiting their growth rate, with these requirements being independent of an earlier defect in microtubule organization that occurs upon nuclear envelope breakdown. Second, during metaphase, ZYG-9 and TAC-1 maintain spindle bipolarity by suppressing ectopic pole formation. Third, we show that ZYG-9 and TAC-1 also are required for spindle assembly during meiosis II, independently of their meiosis I requirements. The metaphase pole stability requirement appears to be important for maintaining chromosome congression, and we discuss how negative regulation of microtubule stability by ZYG-9/TAC-1 during oocyte meiotic cell division might account for the observed defects in spindle pole coalescence and stability.
Collapse
Affiliation(s)
- Austin M. Harvey
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Eisuke Sumiyoshi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
49
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
50
|
Zhang Y, Fan B, Li X, Tang Y, Shao J, Liu L, Ren Y, Yang Y, Xu B. Phosphorylation of adducin-1 by TPX2 promotes interpolar microtubule homeostasis and precise chromosome segregation in mouse oocytes. Cell Biosci 2022; 12:205. [PMID: 36539904 PMCID: PMC9769001 DOI: 10.1186/s13578-022-00943-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND ADD1 (adducin-1) and TPX2 (targeting protein for Xklp2) are centrosomal proteins and regulate mitotic spindle assembly. Mammalian oocytes that segregate homologous chromosomes in Meiosis I and sister chromatids in Meiosis II with a spindle lacking centrosomes are more prone to chromosome segregation errors than in mitosis. However, the regulatory mechanisms of oocyte spindle assembly and the functions of ADD1 and TPX2 in this process remain elusive. RESULT We found that the expression levels and localization of ADD1, S726 phosphorylated ADD1 (p-ADD1), and TPX2 proteins exhibited spindle assembly-dependent dynamic changes during mouse oocyte meiosis. Taxol treatment, which stabilizes the microtubule polymer and protects it from disassembly, made the signals of ADD1, p-ADD1, and TPX2 present in the microtubule organizing centers of small asters and spindles. Knockdown of approximately 60% of ADD1 protein levels destabilized interpolar microtubules in the meiotic spindle, resulting in aberrant chromosome alignment, reduced first polar body extrusion, and increased aneuploidy in metaphase II oocytes, but did not affect K-fiber homeostasis and the expression and localization of TPX2. Strikingly, TPX2 deficiency caused increased protein content of ADD1, but decreased expression and detachment of p-ADD1 from the spindle, thereby arresting mouse oocytes at the metaphase I stage with collapsed spindles. CONCLUSION Phosphorylation of ADD1 at S726 by TPX2 mediates acentriolar spindle assembly and precise chromosome segregation in mouse oocytes.
Collapse
Affiliation(s)
- Ying Zhang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Bingfeng Fan
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Xiaoxia Li
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China ,College of Animal Science and Technology, Jilin Agriculture Science and Technology University, Jilin, China
| | - Yu Tang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Jing Shao
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Lixiang Liu
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Yuhe Ren
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China
| | - Yifeng Yang
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| | - Baozeng Xu
- grid.410727.70000 0001 0526 1937Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, #4899 Juye Street, Jingyue District, Changchun, 130112 Jilin China ,grid.410727.70000 0001 0526 1937State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin China
| |
Collapse
|