1
|
Carasso S, Keshet-David R, Zhang J, Hajjo H, Kadosh-Kariti D, Gefen T, Geva-Zatorsky N. Bacteriophage-driven DNA inversions shape bacterial functionality and long-term co-existence in Bacteroides fragilis. Gut Microbes 2025; 17:2501492. [PMID: 40350564 PMCID: PMC12068327 DOI: 10.1080/19490976.2025.2501492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Bacterial genomic DNA inversions, which govern molecular phase-variations, provide the bacteria with functional plasticity and phenotypic diversity. These targeted rearrangements enable bacteria to respond to environmental challenges, such as bacteriophage predation, evading immune detection or gut colonization. This study investigated the short- and long-term effects of the lytic phage Barc2635 on the functional plasticity of Bacteroides fragilis, a gut commensal. Germ-free mice were colonized with B. fragilis and exposed to Barc2635 to identify genomic alterations driving phenotypic changes. Phage exposure triggered dynamic and prolonged bacterial responses, including significant shifts in phase-variable regions (PVRs), particularly in promoter orientations of polysaccharide biosynthesis loci. These shifts coincided with increased entropy in PVR inversion ratios, reflecting heightened genomic variability. In contrast, B. fragilis in control mice exhibited stable genomic configurations after gut adaptation. The phase-variable Type 1 restriction-modification system, which affects broad gene expression patterns, showed variability in both groups. However, phage-exposed bacteria displayed more restrained variability, suggesting phage-derived selection pressures. Our findings reveal that B. fragilis employs DNA inversions to adapt rapidly to phage exposure and colonization, highlighting a potential mechanism by which genomic variability contributes to its response to phage. This study demonstrates gut bacterial genomic and phenotypic plasticity upon exposure to the mammalian host and to bacteriophages.
Collapse
Affiliation(s)
- Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Roni Keshet-David
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Jia Zhang
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Dana Kadosh-Kariti
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa, Israel
- CIFAR Humans & the Microbiome Program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Ni M, Fan Y, Liu Y, Li Y, Qiao W, Davey LE, Zhang XS, Ksiezarek M, Mead EA, Tourancheau A, Jiang W, Blaser MJ, Valdivia RH, Fang G. Epigenetic phase variation in the gut microbiome enhances bacterial adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632565. [PMID: 39829898 PMCID: PMC11741434 DOI: 10.1101/2025.01.11.632565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The human gut microbiome within the gastrointestinal tract continuously adapts to variations in diet, medications, and host physiology. A strategy for bacterial genetic adaptation is epigenetic phase variation (ePV) mediated by bacterial DNA methylation, which can regulate gene expression, enhance clonal heterogeneity, and enable a single bacterial strain to exhibit variable phenotypic states. Genome-wide and site-specific ePVs have been characterized in human pathogens' antigenic variation and virulence factor production. However, the role of ePV in facilitating adaptation within the human microbiome remains poorly understood. Here, we comprehensively cataloged genome-wide and site-specific ePV in human infant and adult gut microbiomes. First, using long-read metagenomic sequencing, we detected genome-wide ePV mediated by complex structural variations of DNA methyltransferases, highlighting those associated with antibiotics or fecal microbiota transplantation. Second, we analyzed a collection of public short-read metagenomic sequencing datasets, uncovering a great prevalence of genome-wide ePV in the human gut microbiome. Third, we quantitatively detected site-specific ePVs using single-molecule methylation analysis to identify dynamic variation associated with antibiotic treatment or probiotic engraftment. Finally, we performed an in-depth assessment of an Akkermansia muciniphila isolate from an infant, highlighting that ePVs can regulate gene expression and enhance the bacterial adaptive capacity by employing a bet-hedging strategy to increase tolerance to differing antibiotics. Our findings indicate that epigenetic modifications are a common strategy used by gut bacteria to adapt to the fluctuating environment.
Collapse
Affiliation(s)
- Mi Ni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Fan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yujie Liu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yangmei Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wanjin Qiao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren E. Davey
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Magdalena Ksiezarek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edward A. Mead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan Tourancheau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenyan Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| | - Raphael H. Valdivia
- Department of Integrative Immunobiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Luna MJ, Oluoch PO, Miao J, Culviner P, Papavinasasundaram K, Jaecklein E, Shell SS, Ioerger TR, Fortune SM, Farhat MR, Sassetti CM. Frequently arising ESX-1-associated phase variants influence Mycobacterium tuberculosis fitness in the presence of host and antibiotic pressures. mBio 2025; 16:e0376224. [PMID: 39873486 PMCID: PMC11898584 DOI: 10.1128/mbio.03762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Mycobacterium tuberculosis (Mtb) exhibits an impressive ability to adapt to rapidly changing environments, despite its genome's apparent stability. Recently, phase variation through indel formation in homopolymeric tracts (HT) has emerged as a potentially important mechanism promoting adaptation in Mtb. This study examines the impact of common phase variants associated with the ESX-1 type VII secretion system, focusing on a highly variable HT upstream of the ESX-1 regulatory factor, espR. By engineering this frequently observed indel into an isogenic background, we demonstrate that a single nucleotide insertion in the espR 5'UTR causes post-transcriptional upregulation of EspR protein abundance and corresponding alterations in the EspR regulon. Consequently, this mutation increases the expression of ESX-1 components in the espACD operon and enhances ESX-1 substrate secretion. We find that this indel specifically increases isoniazid resistance without impacting the effectiveness of other drugs tested. Furthermore, we show that two distinct observed HT indels that regulate either espR translation or espACD transcription increase bacterial fitness in a mouse infection model. The presence of multiple ESX-1-associated HTs provides a mechanism to combinatorially tune protein secretion, drug sensitivity, and host-pathogen interactions. More broadly, these findings support emerging data that Mtb utilizes HT-mediated phase variation to direct genetic variation to certain sites across the genome in order to adapt to changing pressures. IMPORTANCE Mycobacterium tuberculosis (Mtb) is responsible for more deaths worldwide than any other single infectious agent. Understanding how this pathogen adapts to the varied environmental pressures imposed by host immunity and antibiotics has important implications for the design of more effective therapies. In this work, we show that the genome of Mtb contains multiple contingency loci that control the activity of the ESX-1 secretion system, which is critical for interactions with the host. These loci consist of homopolymeric DNA tracts in gene regulatory regions that are subject to high-frequency reversible variation and act to tune the activity of ESX-1. We find that variation at these sites increases the fitness of Mtb in the presence of antibiotic and/or during infection. These findings indicate that Mtb has the ability to diversify its genome in specific sites to create subpopulations of cells that are preadapted to new conditions.
Collapse
Affiliation(s)
- Michael J. Luna
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Peter O. Oluoch
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Jiazheng Miao
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Culviner
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Eleni Jaecklein
- Department of Microbiology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Scarlet S. Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Maha R. Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
- Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Jin X, Cheng AG, Chanin RB, Yu FB, Dimas A, Jasper M, Weakley A, Yan J, Bhatt AS, Pollard KS. Comprehensive profiling of genomic invertons in defined gut microbial community reveals associations with intestinal colonization and surface adhesion. MICROBIOME 2025; 13:71. [PMID: 40059174 PMCID: PMC11892184 DOI: 10.1186/s40168-025-02052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/31/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND Bacteria use invertible genetic elements known as invertons to generate heterogeneity among a population and adapt to new and changing environments. In human gut bacteria, invertons are often found near genes associated with cell surface modifications, suggesting key roles in modulating dynamic processes such as surface adhesion and intestinal colonization. However, comprehensive testing of this hypothesis across complex bacterial communities like the human gut microbiome remains challenging. Metagenomic sequencing holds promise for detecting inversions without isolation and culturing, but ambiguity in read alignment limits the accuracy of the resulting inverton predictions. RESULTS Here, we developed a customized bioinformatic workflow-PhaseFinderDC-to identify and track invertons in metagenomic data. Applying this method to a defined yet complex gut community (hCom2) across different growth environments over time using both in vitro and in vivo metagenomic samples, we detected invertons in most hCom2 strains. These include invertons whose orientation probabilities change over time and are statistically associated with environmental conditions. We used motif enrichment to identify putative inverton promoters and predict genes regulated by inverton flipping during intestinal colonization and surface adhesion. Analysis of inverton-proximal genes also revealed candidate invertases that may regulate flipping of specific invertons. CONCLUSIONS Collectively, these findings suggest that surface adhesion and intestinal colonization in complex gut communities directly modulate inverton dynamics, offering new insights into the genetic mechanisms underlying these processes. Video Abstract.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, USA
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada
| | - Alice G Cheng
- Department of Gastroenterology, Stanford School of Medicine, Stanford, USA
- Section of Gastroenterology, University of Chicago, Chicago, USA
| | - Rachael B Chanin
- Division of Hematology, Stanford School of Medicine, Stanford, USA
| | | | - Alejandra Dimas
- Sarafan ChEM-H Institute, Stanford University, Stanford, USA
| | - Marissa Jasper
- Sarafan ChEM-H Institute, Stanford University, Stanford, USA
| | - Allison Weakley
- Sarafan ChEM-H Institute, Stanford University, Stanford, USA
| | - Jia Yan
- Sarafan ChEM-H Institute, Stanford University, Stanford, USA
- Chan Zuckerberg Biohub SF, San Francisco, USA
| | - Ami S Bhatt
- Division of Hematology, Stanford School of Medicine, Stanford, USA
- Department of Genetics, Stanford University, Stanford, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, USA.
- Chan Zuckerberg Biohub SF, San Francisco, USA.
- University of California San Francisco, San Francisco, USA.
| |
Collapse
|
5
|
Hall B, Jiang X. Bacterial intragenic inversions: a new layer of diversity. Trends Genet 2025; 41:183-184. [PMID: 39706706 DOI: 10.1016/j.tig.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
DNA inversions in bacteria were known to create diversity through intergenic or partial intergenic changes. Now, Chanin, West, et al. reveal intragenic inversions, enabling single genes to encode multiple protein variants via sequence recoding or truncation - an unexpected mechanism for expanding protein diversity without increasing genome size.
Collapse
Affiliation(s)
- Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA; Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Bayliss CD, Clark JL, van der Woude MW. 100+ years of phase variation: the premier bacterial bet-hedging phenomenon. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001537. [PMID: 40014379 PMCID: PMC11868660 DOI: 10.1099/mic.0.001537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Stochastic, reversible switches in the expression of Salmonella flagella variants were first described by Andrewes in 1922. Termed phase variation (PV), subsequent research found that this phenomenon was widespread among bacterial species and controlled expression of major determinants of bacterial-host interactions. Underlying mechanisms were not discovered until the 1970s/1980s but were found to encompass intrinsic aspects of DNA processes (i.e. DNA slippage and recombination) and DNA modifications (i.e. DNA methylation). Despite this long history, discoveries are ongoing with expansions of the phase-variable repertoire into new organisms and novel insights into the functions of known loci and switching mechanisms. Some of these discoveries are somewhat controversial as the term 'PV' is being applied without addressing key aspects of the phenomenon such as whether mutations or epigenetic changes are reversible and generated prior to selection. Another 'missing' aspect of PV research is the impact of these adaptive switches in real-world situations. This review provides a perspective on the historical timeline of the discovery of PV, the current state-of-the-art, controversial aspects of classifying phase-variable loci and possible 'missing' real-world effects of this phenomenon.
Collapse
Affiliation(s)
- Christopher D. Bayliss
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Jack L. Clark
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Marjan W. van der Woude
- Hull York Medical School and the York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
7
|
Saba J, Flores K, Marshall B, Engstrom MD, Peng Y, Garje AS, Comstock LE, Landick R. Bacteroides expand the functional versatility of a conserved transcription factor and transcribed DNA to program capsule diversity. Nat Commun 2024; 15:10862. [PMID: 39738018 PMCID: PMC11685472 DOI: 10.1038/s41467-024-55215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
The genomes of human gut bacteria in the genus Bacteroides include numerous operons for biosynthesis of diverse capsular polysaccharides (CPSs). The first two genes of each CPS operon encode a locus-specific paralog of transcription elongation factor NusG (called UpxY), which enhances transcript elongation, and a UpxZ protein that inhibits noncognate UpxYs. This process, together with promoter inversions, ensures that a single CPS operon is transcribed in most cells. Here, we use in-vivo nascent-RNA sequencing and promoter-less in-vitro transcription (PIVoT) to show that UpxY recognizes a paused RNA polymerase via sequences in both the exposed non-template DNA and the upstream duplex DNA. UpxY association is aided by 'pause-then-escape' nascent RNA hairpins. UpxZ binds non-cognate UpxYs to directly inhibit UpxY association. This UpxY-UpxZ hierarchical regulatory program allows Bacteroides to generate subpopulations of cells producing diverse CPSs for optimal fitness.
Collapse
Affiliation(s)
- Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Katia Flores
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Bailey Marshall
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael D Engstrom
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yikai Peng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Atharv S Garje
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laurie E Comstock
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Liu C, Xing B, Li Z, Li J, Xiao M. A roadmap of isolating and investigating bacteriophage infecting human gut anaerobes. Essays Biochem 2024; 68:593-605. [PMID: 39611592 DOI: 10.1042/ebc20240116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Bacteriophages, viruses that infect bacteria, play a crucial role in manipulating the gut microbiome, with implications for human health and disease. Despite the vast amount of data available on the human gut virome, the number of cultured phages that infect human gut bacteria-particularly obligate anaerobes-remains strikingly limited. Here, we summarize the resources and basic characteristics of phages that infect the human gut obligate anaerobe. We review various methods for isolating these phages and suggest a strategy for their isolation. Additionally, we outline their impact on the field of viral biology, their interactions with bacteria and humans, and their potential for disease intervention. Finally, we discuss the value and prospects of research on these phages, providing a comprehensive 'Roadmap' that sheds light on the 'dark matter' of phages that infect human gut obligate anaerobes.
Collapse
Affiliation(s)
- Cong Liu
- BGI Research, Shenzhen 518083, China
| | - Bo Xing
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Li
- BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Li
- BGI Research, Belgrade 11000, Serbia
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | | |
Collapse
|
9
|
Wen J, Zhang H, Chu D, Chen X, Feng J, Wang Y, Liu G, Zhang Y, Li Y, Ning K. Deep learning revealed the distribution and evolution patterns for invertible promoters across bacterial lineages. Nucleic Acids Res 2024; 52:12817-12830. [PMID: 39460615 PMCID: PMC11602134 DOI: 10.1093/nar/gkae966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Invertible promoters (invertons) are crucial regulatory elements in bacteria, facilitating gene expression changes under stress. Despite their importance, their prevalence and the range of regulated gene functions are largely unknown. We introduced DeepInverton, a deep learning model that identifies invertons across a broad phylogenetic spectrum without using sequencing reads. By analyzing 68 733 bacterial genomes and 9382 metagenomes, we have uncovered over 200 000 nonredundant invertons and have also highlighted their abundance in pathogens. Additionally, we identified a post-Cambrian Explosion increase of invertons, paralleling species diversification. Furthermore, we revealed that invertons regulate diverse functions, including antimicrobial resistance and biofilm formation, underscoring their role in environmental adaptation. Notably, the majority of inverton identifications by DeepInverton have been confirmed by the in vitro experiments. The comprehensive inverton profiles have deepened our understanding of invertons at pan-genome and pan-metagenome scales, enabling a broad spectrum of applications in microbial ecology and synthetic biology.
Collapse
Affiliation(s)
- Jiejie Wen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haobo Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dongliang Chu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoke Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jingru Feng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yucen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guanxi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuhao Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yuxue Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
10
|
Sherry J, Rego EH. Phenotypic Heterogeneity in Pathogens. Annu Rev Genet 2024; 58:183-209. [PMID: 39083846 DOI: 10.1146/annurev-genet-111523-102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Pathogen diversity within an infected organism has traditionally been explored through the lens of genetic heterogeneity. Hallmark studies have characterized how genetic diversity within pathogen subpopulations contributes to treatment escape and infectious disease progression. However, recent studies have begun to reveal the mechanisms by which phenotypic heterogeneity is established within genetically identical populations of invading pathogens. Furthermore, exciting new work highlights how these phenotypically heterogeneous subpopulations contribute to a pathogen population better equipped to handle the complex and fluctuating environment of a host organism. In this review, we focus on how bacterial pathogens, including Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, and Mycobacterium tuberculosis, establish and maintain phenotypic heterogeneity, and we explore recent work demonstrating causative links between this heterogeneity and infection outcome.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA; ,
| |
Collapse
|
11
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
12
|
Chanin RB, West PT, Wirbel J, Gill MO, Green GZM, Park RM, Enright N, Miklos AM, Hickey AS, Brooks EF, Lum KK, Cristea IM, Bhatt AS. Intragenic DNA inversions expand bacterial coding capacity. Nature 2024; 634:234-242. [PMID: 39322669 DOI: 10.1038/s41586-024-07970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Bacterial populations that originate from a single bacterium are not strictly clonal and often contain subgroups with distinct phenotypes1. Bacteria can generate heterogeneity through phase variation-a preprogrammed, reversible mechanism that alters gene expression levels across a population1. One well-studied type of phase variation involves enzyme-mediated inversion of specific regions of genomic DNA2. Frequently, these DNA inversions flip the orientation of promoters, turning transcription of adjacent coding regions on or off2. Through this mechanism, inversion can affect fitness, survival or group dynamics3,4. Here, we describe the development of PhaVa, a computational tool that identifies DNA inversions using long-read datasets. We also identify 372 'intragenic invertons', a novel class of DNA inversions found entirely within genes, in genomes of bacterial and archaeal isolates. Intragenic invertons allow a gene to encode two or more versions of a protein by flipping a DNA sequence within the coding region, thereby increasing coding capacity without increasing genome size. We validate ten intragenic invertons in the gut commensal Bacteroides thetaiotaomicron, and experimentally characterize an intragenic inverton in the thiamine biosynthesis gene thiC.
Collapse
Affiliation(s)
- Rachael B Chanin
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Patrick T West
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Jakob Wirbel
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Matthew O Gill
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gabriella Z M Green
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Ryan M Park
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nora Enright
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Arjun M Miklos
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Angela S Hickey
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Erin F Brooks
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Krystal K Lum
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ami S Bhatt
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Chang CC, Jenq RR. Jekyll and Hyde flip of the script when bacteria invert gene sequences. Nature 2024; 634:42-43. [PMID: 39322694 DOI: 10.1038/d41586-024-02807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
|
14
|
Nhu NTQ, Lin H, Pigli Y, Sia JK, Kuhn P, Snitkin ES, Young V, Kamboj M, Pamer EG, Rice PA, Shen A, Dong Q. Flagellar switch inverted repeat impacts flagellar invertibility and varies Clostridioides difficile RT027/MLST1 virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546185. [PMID: 39386689 PMCID: PMC11463649 DOI: 10.1101/2023.06.22.546185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Clostridioides difficile RT027 strains cause infections that vary in severity from asymptomatic to lethal, but the molecular basis for this variability is poorly understood. Through comparative analyses of RT027 clinical isolates, we determined that isolates that exhibit greater variability in their flagellar gene expression exhibit greater virulence in vivo. C. difficile flagellar genes are phase-variably expressed due to the site-specific inversion of the flgB 5'UTR region, which reversibly generates ON vs. OFF orientations for the flagellar switch. We found that longer inverted repeat (IR) sequences in this switch region correlate with greater disease severity, with RT027 strains carrying 6A/6T IR sequences exhibiting greater phenotypic heterogeneity in flagellar gene expression (60%-75% ON) and causing more severe disease than those with shorter IRs (> 99% ON or OFF). Taken together, our results reveal that phenotypic heterogeneity in flagellar gene expression may contribute to the variable disease severity observed in C. difficile patients.
Collapse
Affiliation(s)
- Nguyen T. Q. Nhu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Ying Pigli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jonathan K. Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Pola Kuhn
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Evan S. Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Gory R, Personnic N, Blaha D. Unravelling the Roles of Bacterial Nanomachines Bistability in Pathogens' Life Cycle. Microorganisms 2024; 12:1930. [PMID: 39338604 PMCID: PMC11434070 DOI: 10.3390/microorganisms12091930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial nanomachines represent remarkable feats of evolutionary engineering, showcasing intricate molecular mechanisms that enable bacteria to perform a diverse array of functions essential to persist, thrive, and evolve within ecological and pathological niches. Injectosomes and bacterial flagella represent two categories of bacterial nanomachines that have been particularly well studied both at the molecular and functional levels. Among the diverse functionalities of these nanomachines, bistability emerges as a fascinating phenomenon, underscoring their dynamic and complex regulation as well as their contribution to shaping the bacterial community behavior during the infection process. In this review, we examine two closely related bacterial nanomachines, the type 3 secretion system, and the flagellum, to explore how the bistability of molecular-scale devices shapes the bacterial eco-pathological life cycle.
Collapse
Affiliation(s)
- Romain Gory
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Nicolas Personnic
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| | - Didier Blaha
- Group Persistence and Single-Cell Dynamics of Respiratory Pathogens, CIRI-Centre International de Recherche en Infectiologie, CNRS, INSERM, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 50 avenue Tony Garnier, 69007 Lyon, France
| |
Collapse
|
16
|
Eren AM, Banfield JF. Modern microbiology: Embracing complexity through integration across scales. Cell 2024; 187:5151-5170. [PMID: 39303684 PMCID: PMC11450119 DOI: 10.1016/j.cell.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Microbes were the only form of life on Earth for most of its history, and they still account for the vast majority of life's diversity. They convert rocks to soil, produce much of the oxygen we breathe, remediate our sewage, and sustain agriculture. Microbes are vital to planetary health as they maintain biogeochemical cycles that produce and consume major greenhouse gases and support large food webs. Modern microbiologists analyze nucleic acids, proteins, and metabolites; leverage sophisticated genetic tools, software, and bioinformatic algorithms; and process and integrate complex and heterogeneous datasets so that microbial systems may be harnessed to address contemporary challenges in health, the environment, and basic science. Here, we consider an inevitably incomplete list of emergent themes in our discipline and highlight those that we recognize as the archetypes of its modern era that aim to address the most pressing problems of the 21st century.
Collapse
Affiliation(s)
- A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129 Oldenburg, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany; Marine Biological Laboratory, Woods Hole, MA, USA; Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA; Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; Department of Environmental Science Policy, and Management, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
17
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. eLife 2024; 13:e93146. [PMID: 39240756 PMCID: PMC11379459 DOI: 10.7554/elife.93146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
When examining bacterial genomes for evidence of past selection, the results depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed by dN/dS, the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with opposite implications for dynamical intuition and applications of dN/dS. Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain the dN/dS decay given only dozens of locally fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values of dN/dS obtained from long timescales with caution as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short timescales.
Collapse
Affiliation(s)
- Paul A Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
18
|
Wang Z, Li S, Zhang S, Zhang T, Wu Y, Liu A, Wang K, Ji X, Cao H, Zhang Y, Tan EK, Wang Y, Wang Y, Liu W. Hosts manipulate lifestyle switch and pathogenicity heterogeneity of opportunistic pathogens in the single-cell resolution. eLife 2024; 13:RP96789. [PMID: 39190452 PMCID: PMC11349298 DOI: 10.7554/elife.96789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Host-microbe interactions are virtually bidirectional, but how the host affects their microbiome is poorly understood. Here, we report that the host is a critical modulator to regulate the lifestyle switch and pathogenicity heterogeneity of the opportunistic pathogens Serratia marcescens utilizing the Drosophila and bacterium model system. First, we find that Drosophila larvae efficiently outcompete S. marcescens and typically drive a bacterial switch from pathogenicity to commensalism toward the fly. Furthermore, Drosophila larvae reshape the transcriptomic and metabolic profiles of S. marcescens characterized by a lifestyle switch. More importantly, the host alters pathogenicity and heterogeneity of S. marcescens in the single-cell resolution. Finally, we find that larvae-derived AMPs are required to recapitulate the response of S. marcescens to larvae. Altogether, our findings provide an insight into the pivotal roles of the host in harnessing the life history and heterogeneity of symbiotic bacterial cells, advancing knowledge of the reciprocal relationships between the host and pathogen.
Collapse
Affiliation(s)
- Ziguang Wang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
- College of Life Sciences, Nankai UniversityTianjinChina
- First Clinical Medical College, Mudanjiang Medical CollegeMudanjiangChina
| | - Shuai Li
- Bioinformatics Center, College of Biology, Hunan UniversityChangshaChina
| | - Sheng Zhang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang UniversityHangzhouChina
| | - Yujie Wu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Anqi Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Kui Wang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaowen Ji
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Haiqun Cao
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yinglao Zhang
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| | - Eng King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital CampusSingaporeSingapore
| | | | - Yirong Wang
- Bioinformatics Center, College of Biology, Hunan UniversityChangshaChina
| | - Wei Liu
- School of Plant Protection; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
19
|
Curry KD, Yu FB, Vance SE, Segarra S, Bhaya D, Chikhi R, Rocha EPC, Treangen TJ. Reference-free structural variant detection in microbiomes via long-read co-assembly graphs. Bioinformatics 2024; 40:i58-i67. [PMID: 38940156 PMCID: PMC11211843 DOI: 10.1093/bioinformatics/btae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
MOTIVATION The study of bacterial genome dynamics is vital for understanding the mechanisms underlying microbial adaptation, growth, and their impact on host phenotype. Structural variants (SVs), genomic alterations of 50 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to the absence of clear reference genomes and the presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing all metagenomic samples in a series (time or other metric) into a single co-assembly graph. The log fold change in graph coverage between successive samples is then calculated to call SVs that are thriving or declining. RESULTS We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, particularly as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between successive time and temperature samples, suggesting host advantage. Our approach leverages previous work in assembly graph structural and coverage patterns to provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial gene flux. AVAILABILITY AND IMPLEMENTATION rhea is open source and available at: https://github.com/treangenlab/rhea.
Collapse
Affiliation(s)
- Kristen D Curry
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX 77005, United States
- Department of Genomes and Genetics, Microbial Evolutionary Genomics, Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Paris 75015, France
| | | | - Summer E Vance
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, United States
| | - Santiago Segarra
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, United States
| | - Rayan Chikhi
- Department of Computational Biology, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Eduardo P C Rocha
- Department of Genomes and Genetics, Microbial Evolutionary Genomics, Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Paris 75015, France
| | - Todd J Treangen
- Department of Computer Science, Rice University, 6100 Main St., Houston, TX 77005, United States
| |
Collapse
|
20
|
Saba J, Flores K, Marshall B, Engstrom MD, Peng Y, Garje AS, Comstock L, Landick R. Bacteroides expand the functional versatility of a universal transcription factor and transcribed DNA to program capsule diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599965. [PMID: 38948710 PMCID: PMC11213015 DOI: 10.1101/2024.06.21.599965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Human gut Bacteroides species encode numerous (eight or more) tightly regulated capsular polysaccharides (CPS). Specialized paralogs of the universal transcription elongation factor NusG, called UpxY (Y), and an anti-Y UpxZ (Z) are encoded by the first two genes of each CPS operon. The Y-Z regulators combine with promoter inversions to limit CPS transcription to a single operon in most cells. Y enhances transcript elongation whereas Z inhibits noncognate Ys. How Y distinguishes among cognate CPS operons and how Z inhibits only noncognate Ys are unknown. Using in-vivo nascent-RNA sequencing and promoter-less in vitro transcription (PIVoT), we establish that Y recognizes a paused RNA polymerase via sequences in both the exposed non-template DNA and the upstream duplex DNA. Y association is aided by novel 'pause-then-escape' nascent RNA hairpins. Z binds non-cognate Ys to directly inhibit Y association. This Y-Z hierarchical regulatory program allows Bacteroides to create CPS subpopulations for optimal fitness.
Collapse
Affiliation(s)
- Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katia Flores
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Bailey Marshall
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael D Engstrom
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yikai Peng
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Atharv S Garje
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Genetics Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Laurie Comstock
- Department of Microbiology, University of Chicago, Chicago, IL, 60637, USA
- Duchossois Family Institute, University of Chicago, Chicago, IL 60637, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
21
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557751. [PMID: 37745437 PMCID: PMC10515931 DOI: 10.1101/2023.09.14.557751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
When examining bacterial genomes for evidence of past selection, the results obtained depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed byd N / d S , the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale-dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with exactly opposite implications for dynamical intuition and applications ofd N / d S . Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain thed N / d S decay given only dozens of locally-fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values ofd N / d S obtained from long-time scales with caution, as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short time scales.
Collapse
Affiliation(s)
- Paul A. Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Villalba de la Peña M, Kronholm I. Antimicrobial resistance in the wild: Insights from epigenetics. Evol Appl 2024; 17:e13707. [PMID: 38817397 PMCID: PMC11134192 DOI: 10.1111/eva.13707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Spreading of bacterial and fungal strains that are resistant to antimicrobials poses a serious threat to the well-being of humans, animals, and plants. Antimicrobial resistance has been mainly investigated in clinical settings. However, throughout their evolutionary history microorganisms in the wild have encountered antimicrobial substances, forcing them to evolve strategies to combat antimicrobial action. It is well known that many of these strategies are based on genetic mechanisms, but these do not fully explain important aspects of the antimicrobial response such as the rapid development of resistance, reversible phenotypes, and hetero-resistance. Consequently, attention has turned toward epigenetic pathways that may offer additional insights into antimicrobial mechanisms. The aim of this review is to explore the epigenetic mechanisms that confer antimicrobial resistance, focusing on those that might be relevant for resistance in the wild. First, we examine the presence of antimicrobials in natural settings. Then we describe the documented epigenetic mechanisms in bacteria and fungi associated with antimicrobial resistance and discuss innovative epigenetic editing techniques to establish causality in this context. Finally, we discuss the relevance of these epigenetic mechanisms on the evolutionary dynamics of antimicrobial resistance in the wild, emphasizing the critical role of priming in the adaptation process. We underscore the necessity of incorporating non-genetic mechanisms into our understanding of antimicrobial resistance evolution. These mechanisms offer invaluable insights into the dynamics of antimicrobial adaptation within natural ecosystems.
Collapse
Affiliation(s)
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
23
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. Cell Host Microbe 2024; 32:739-754.e4. [PMID: 38565143 PMCID: PMC11081829 DOI: 10.1016/j.chom.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to the insertion of "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota, and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain-level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M Kirsch
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Andrew J Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA; Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
24
|
Zeng L, Du H, Lin X, Liao R, Man Y, Fang H, Yang Y, Tao R. Isolation, identification and whole-genome analysis of an Achromobacter strain with a novel sulfamethazine resistance gene and sulfamethazine degradation gene cluster. BIORESOURCE TECHNOLOGY 2024; 399:130598. [PMID: 38493935 DOI: 10.1016/j.biortech.2024.130598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
A sulfamethazine (SM2) degrading strain, Achromobacter mucicolens JD417, was isolated from sulfonamide-contaminated sludge using gradient acclimation. Optimal SM2 degradation conditions were pH 7, 36 °C, and 5 % inoculum, achieving a theoretical maximum degradation rate of 48 % at 50 ppm SM2. Cell growth followed the Haldane equation across different SM2 concentrations. Whole-genome sequencing of the strain revealed novel functional annotations, including a sulfonamide resistance gene (sul4) encoding dihydropteroate synthase, two flavin-dependent monooxygenase genes (sadA and sadB) crucial for SM2 degradation, and unique genomic islands related to metabolism, pathogenicity, and resistance. Comparative genomics analysis showed good collinearity and homology with other Achromobacter species exhibiting organics resistance or degradation capabilities. This study reveals the novel molecular resistance and degradation mechanisms and genetic evolution of an SM2-degrading strain, providing insights into the bioremediation of sulfonamide-contaminated environments.
Collapse
Affiliation(s)
- Luping Zeng
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China; The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Hongwei Du
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Xianke Lin
- Guangdong Eco-engineering Polytechnic, Guangzhou 510520, Guangdong, China
| | - Ruomei Liao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Ying Man
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Huaiyang Fang
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, No. 18 Ruihe Road, Guangzhou, 510530, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China.
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Ryan D, Bornet E, Prezza G, Alampalli SV, Franco de Carvalho T, Felchle H, Ebbecke T, Hayward RJ, Deutschbauer AM, Barquist L, Westermann AJ. An expanded transcriptome atlas for Bacteroides thetaiotaomicron reveals a small RNA that modulates tetracycline sensitivity. Nat Microbiol 2024; 9:1130-1144. [PMID: 38528147 PMCID: PMC10994844 DOI: 10.1038/s41564-024-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/07/2024] [Indexed: 03/27/2024]
Abstract
Plasticity in gene expression allows bacteria to adapt to diverse environments. This is particularly relevant in the dynamic niche of the human intestinal tract; however, transcriptional networks remain largely unknown for gut-resident bacteria. Here we apply differential RNA sequencing (RNA-seq) and conventional RNA-seq to the model gut bacterium Bacteroides thetaiotaomicron to map transcriptional units and profile their expression levels across 15 in vivo-relevant growth conditions. We infer stress- and carbon source-specific transcriptional regulons and expand the annotation of small RNAs (sRNAs). Integrating this expression atlas with published transposon mutant fitness data, we predict conditionally important sRNAs. These include MasB, which downregulates tetracycline tolerance. Using MS2 affinity purification and RNA-seq, we identify a putative MasB target and assess its role in the context of the MasB-associated phenotype. These data-publicly available through the Theta-Base web browser ( http://micromix.helmholtz-hiri.de/bacteroides/ )-constitute a valuable resource for the microbiome community.
Collapse
Affiliation(s)
- Daniel Ryan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Elise Bornet
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Shuba Varshini Alampalli
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Taís Franco de Carvalho
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Hannah Felchle
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Department of Radiation Oncology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Titus Ebbecke
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Regan J Hayward
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research, Würzburg, Germany.
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
26
|
Campbell DE, Baldridge MT. A new piece of the microbiota pie: Mining 'omics for DNA inversion states. Cell Host Microbe 2024; 32:293-295. [PMID: 38484706 DOI: 10.1016/j.chom.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 03/19/2024]
Abstract
In this issue of Cell Host & Microbe, Carasso et al. survey invertible DNA sites in Bacteroidales from patients with inflammatory bowel disease (IBD) and healthy control individuals. They identify complex functional interactions between Bacteroides fragilis, an invertible promoter, a capsular polysaccharide, a bacteriophage, and the human host. The establishment of 'omics approaches to characterizing genomic targets and functional roles is still required.
Collapse
Affiliation(s)
- Danielle E Campbell
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Carasso S, Zaatry R, Hajjo H, Kadosh-Kariti D, Ben-Assa N, Naddaf R, Mandelbaum N, Pressman S, Chowers Y, Gefen T, Jeffrey KL, Jofre J, Coyne MJ, Comstock LE, Sharon I, Geva-Zatorsky N. Inflammation and bacteriophages affect DNA inversion states and functionality of the gut microbiota. Cell Host Microbe 2024; 32:322-334.e9. [PMID: 38423015 PMCID: PMC10939037 DOI: 10.1016/j.chom.2024.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Reversible genomic DNA inversions control the expression of numerous gut bacterial molecules, but how this impacts disease remains uncertain. By analyzing metagenomic samples from inflammatory bowel disease (IBD) cohorts, we identified multiple invertible regions where a particular orientation correlated with disease. These include the promoter of polysaccharide A (PSA) of Bacteroides fragilis, which induces regulatory T cells (Tregs) and ameliorates experimental colitis. The PSA promoter was mostly oriented "OFF" in IBD patients, which correlated with increased B. fragilis-associated bacteriophages. Similarly, in mice colonized with a healthy human microbiota and B. fragilis, induction of colitis caused a decline of PSA in the "ON" orientation that reversed as inflammation resolved. Monocolonization of mice with B. fragilis revealed that bacteriophage infection increased the frequency of PSA in the "OFF" orientation, causing reduced PSA expression and decreased Treg cells. Altogether, we reveal dynamic bacterial phase variations driven by bacteriophages and host inflammation, signifying bacterial functional plasticity during disease.
Collapse
Affiliation(s)
- Shaqed Carasso
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Rawan Zaatry
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Haitham Hajjo
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Dana Kadosh-Kariti
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Nadav Ben-Assa
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Rawi Naddaf
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Noa Mandelbaum
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Sigal Pressman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa 3109601, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus, Haifa 3109601, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa 3109601, Israel; Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Tal Gefen
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel
| | - Kate L Jeffrey
- Moderna, Inc., Cambridge, MA 02139, USA; Center for the Study of Inflammatory Bowel Disease, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Jofre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, Avda. Diagonal 643 08028, Barcelona, Spain
| | - Michael J Coyne
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Laurie E Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Itai Sharon
- Migal-Galilee Research Institute, P.O. Box 831, Kiryat Shmona 11016, Israel; Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee 1220800, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Technion Integrated Cancer Center (RTICC), Haifa 32000, Israel; CIFAR, MaRS Centre, West Tower 661, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
28
|
Kirsch JM, Hryckowian AJ, Duerkop BA. A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561241. [PMID: 37873088 PMCID: PMC10592638 DOI: 10.1101/2023.10.06.561241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Insertion sequence (IS) elements are mobile genetic elements in bacterial genomes that support adaptation. We developed a database of IS elements coupled to a computational pipeline that identifies IS element insertions in the microbiota. We discovered that diverse IS elements insert into the genomes of intestinal bacteria regardless of human host lifestyle. These insertions target bacterial accessory genes that aid in their adaptation to unique environmental conditions. Using IS expansion in Bacteroides, we show that IS activity leads to insertion "hot spots" in accessory genes. We show that IS insertions are stable and can be transferred between humans. Extreme environmental perturbations force IS elements to fall out of the microbiota and many fail to rebound following homeostasis. Our work shows that IS elements drive bacterial genome diversification within the microbiota and establishes a framework for understanding how strain level variation within the microbiota impacts human health.
Collapse
Affiliation(s)
- Joshua M. Kirsch
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| | - Andrew J. Hryckowian
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado - Anschutz Medical Campus, School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
29
|
Wong DPGH, Good BH. Quantifying the adaptive landscape of commensal gut bacteria using high-resolution lineage tracking. Nat Commun 2024; 15:1605. [PMID: 38383538 PMCID: PMC10881964 DOI: 10.1038/s41467-024-45792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Gut microbiota can adapt to their host environment by rapidly acquiring new mutations. However, the dynamics of this process are difficult to characterize in dominant gut species in their complex in vivo environment. Here we show that the fine-scale dynamics of genome-wide transposon libraries can enable quantitative inferences of these in vivo evolutionary forces. By analyzing >400,000 lineages across four human Bacteroides strains in gnotobiotic mice, we observed positive selection on thousands of cryptic variants - most of which were unrelated to their original gene knockouts. The spectrum of fitness benefits varied between species, and displayed diverse tradeoffs over time and in different dietary conditions, enabling inferences of their underlying function. These results suggest that within-host adaptations arise from an intense competition between numerous contending variants, which can strongly influence their emergent evolutionary tradeoffs.
Collapse
Affiliation(s)
- Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
30
|
Poret AJ, Schaefers M, Merakou C, Mansour KE, Lagoudas GK, Cross AR, Goldberg JB, Kishony R, Uluer AZ, McAdam AJ, Blainey PC, Vargas SO, Lieberman TD, Priebe GP. De novo mutations mediate phenotypic switching in an opportunistic human lung pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579193. [PMID: 38370793 PMCID: PMC10871308 DOI: 10.1101/2024.02.06.579193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bacteria evolving within human hosts encounter selective tradeoffs that render mutations adaptive in one context and deleterious in another. Here, we report that the cystic fibrosis-associated pathogen Burkholderia dolosa overcomes in-human selective tradeoffs by acquiring successive point mutations that alternate phenotypes. We sequenced the whole genomes of 931 respiratory isolates from two recently infected patients and an epidemiologically-linked, chronically-infected patient. These isolates are contextualized using 112 historical genomes from the same outbreak strain. Within both newly infected patients, diverse parallel mutations that disrupt O-antigen expression quickly arose, comprising 29% and 63% of their B. dolosa communities by 3 years. The selection for loss of O-antigen starkly contrasts with our previous observation of parallel O-antigen-restoring mutations after many years of chronic infection in the historical outbreak. Experimental characterization revealed that O-antigen loss increases uptake in immune cells while decreasing competitiveness in the mouse lung. We propose that the balance of these pressures, and thus whether O-antigen expression is advantageous, depends on tissue localization and infection duration. These results suggest that mutation-driven alternation during infection may be more frequent than appreciated and is underestimated without dense temporal sampling.
Collapse
Affiliation(s)
- Alexandra J. Poret
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Department of Biological Engineering, Massachusetts Institute of Technology
| | - Matthew Schaefers
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Christina Merakou
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Kathryn E. Mansour
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
| | - Georgia K. Lagoudas
- Department of Biological Engineering, Massachusetts Institute of Technology
- Broad Institute of MIT and Harvard
| | - Ashley R. Cross
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine
| | - Roy Kishony
- Faculty of Biology and Faculty of Computer Science, Technion Israel
| | - Ahmet Z. Uluer
- Department of Pediatrics, Division of Respiratory Diseases, Boston Children’s Hospital
- Adult CF Program, Brigham and Women’s Hospital
- Department of Pediatrics, Harvard Medical School
| | - Alexander J. McAdam
- Department of Laboratory Medicine, Boston Children’s Hospital
- Department of Pathology, Harvard Medical School
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology
- Broad Institute of MIT and Harvard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Sara O. Vargas
- Department of Pathology, Harvard Medical School
- Department of Pathology, Boston Children’s Hospital
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
| | - Gregory P. Priebe
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital
- Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital
| |
Collapse
|
31
|
Curry KD, Yu FB, Vance SE, Segarra S, Bhaya D, Chikhi R, Rocha EP, Treangen TJ. Reference-free Structural Variant Detection in Microbiomes via Long-read Coassembly Graphs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577285. [PMID: 38352454 PMCID: PMC10862772 DOI: 10.1101/2024.01.25.577285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Bacterial genome dynamics are vital for understanding the mechanisms underlying microbial adaptation, growth, and their broader impact on host phenotype. Structural variants (SVs), genomic alterations of 10 base pairs or more, play a pivotal role in driving evolutionary processes and maintaining genomic heterogeneity within bacterial populations. While SV detection in isolate genomes is relatively straightforward, metagenomes present broader challenges due to absence of clear reference genomes and presence of mixed strains. In response, our proposed method rhea, forgoes reference genomes and metagenome-assembled genomes (MAGs) by encompassing a single metagenome coassembly graph constructed from all samples in a series. The log fold change in graph coverage between subsequent samples is then calculated to call SVs that are thriving or declining throughout the series. We show rhea to outperform existing methods for SV and horizontal gene transfer (HGT) detection in two simulated mock metagenomes, which is particularly noticeable as the simulated reads diverge from reference genomes and an increase in strain diversity is incorporated. We additionally demonstrate use cases for rhea on series metagenomic data of environmental and fermented food microbiomes to detect specific sequence alterations between subsequent time and temperature samples, suggesting host advantage. Our innovative approach leverages raw read patterns rather than references or MAGs to include all sequencing reads in analysis, and thus provide versatility in studying SVs across diverse and poorly characterized microbial communities for more comprehensive insights into microbial genome dynamics.
Collapse
Affiliation(s)
- Kristen D. Curry
- Rice University, Department of Computer Science, Houston, TX 77005, United States
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | | | - Summer E. Vance
- University of California, Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, United States
| | - Santiago Segarra
- Rice University, Department of Electrical and Computer Engineering, Houston, TX 77005, United States
| | - Devaki Bhaya
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, United States
| | - Rayan Chikhi
- Institut Pasteur, Université Paris Cité, Sequence Bioinformatics unit, 75015 Paris, France
| | - Eduardo P.C. Rocha
- Institut Pasteur, Université Paris Cité, CNRS, UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - Todd J. Treangen
- Rice University, Department of Computer Science, Houston, TX 77005, United States
| |
Collapse
|
32
|
Abstract
Bacterial pathogens undergo remarkable adaptive change in response to the selective forces they encounter during host colonization and infection. Studies performed over the past few decades have demonstrated that many general evolutionary processes can be discerned during the course of host adaptation, including genetic diversification of lineages, clonal succession events, convergent evolution, and balanced fitness trade-offs. In some cases, elevated mutation rates resulting from mismatch repair or proofreading deficiencies accelerate evolution, and active mobile genetic elements or phages may facilitate genome plasticity. The host immune response provides another critical component of the fitness landscapes guiding adaptation, and selection operating on pathogens at this level may lead to immune evasion and the establishment of chronic infection. This review summarizes recent advances in this field, with a special focus on different forms of bacterial genome plasticity in the context of infection, and considers clinical consequences of adaptive changes for the host.
Collapse
Affiliation(s)
- John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Vill AC, Rice EJ, De Vlaminck I, Danko CG, Brito IL. Precision run-on sequencing (PRO-seq) for microbiome transcriptomics. Nat Microbiol 2024; 9:241-250. [PMID: 38172625 PMCID: PMC11059318 DOI: 10.1038/s41564-023-01558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Bacteria respond to environmental stimuli through precise regulation of transcription initiation and elongation. Bulk RNA sequencing primarily characterizes mature transcripts, so to identify actively transcribed loci we need to capture RNA polymerase (RNAP) complexed with nascent RNA. However, such capture methods have only previously been applied to culturable, genetically tractable organisms such as E. coli and B. subtilis. Here we apply precision run-on sequencing (PRO-seq) to profile nascent transcription in cultured E. coli and diverse uncultured bacteria. We demonstrate that PRO-seq can characterize the transcription of small, structured, or post-transcriptionally modified RNAs, which are often absent from bulk RNA-seq libraries. Applying PRO-seq to the human microbiome highlights taxon-specific RNAP pause motifs and pause-site distributions across non-coding RNA loci that reflect structure-coincident pausing. We also uncover concurrent transcription and cleavage of CRISPR guide RNAs and transfer RNAs. We demonstrate the utility of PRO-seq for exploring transcriptional dynamics in diverse microbial communities.
Collapse
Affiliation(s)
- Albert C Vill
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward J Rice
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Charles G Danko
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Cortés-Martín A, Denise R, Guerin E, Stockdale SR, Draper LA, Ross RP, Shkoporov AN, Hill C. Isolation and characterization of a novel lytic Parabacteroides distasonis bacteriophage φPDS1 from the human gut. Gut Microbes 2024; 16:2298254. [PMID: 38178369 PMCID: PMC10773633 DOI: 10.1080/19490976.2023.2298254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
The human gut microbiome plays a significant role in health and disease. The viral component (virome) is predominantly composed of bacteriophages (phages) and has received significantly less attention in comparison to the bacteriome. This knowledge gap is largely due to challenges associated with the isolation and characterization of novel gut phages, and bioinformatic hurdles such as the lack of a universal phage marker gene and the absence of sufficient numbers of homologs in viral databases. Here, we describe the isolation from human feces of a novel lytic phage with siphovirus morphology, φPDS1, infecting Parabacteroides distasonis APCS2/PD, and classified within a newly proposed Sagittacolavirus genus. In silico and biological characterization of this phage is presented in this study. Key to the isolation of φPDS1 was the antibiotic-driven selective enrichment of the bacterial host in a fecal fermenter. Despite producing plaques and lacking genes associated with lysogeny, φPDS1 demonstrates the ability to coexist in liquid culture for multiple days without affecting the abundance of its host. Multiple studies have shown that changes in Parabacteroides distasonis abundance can be linked to various disease states, rendering this novel phage-host pair and their interactions of particular interest.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Rémi Denise
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Emma Guerin
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Stephen R. Stockdale
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Lorraine A. Draper
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey N. Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
35
|
Kim K, Kang M, Cho BK. Systems and synthetic biology-driven engineering of live bacterial therapeutics. Front Bioeng Biotechnol 2023; 11:1267378. [PMID: 37929193 PMCID: PMC10620806 DOI: 10.3389/fbioe.2023.1267378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
The past decade has seen growing interest in bacterial engineering for therapeutically relevant applications. While early efforts focused on repurposing genetically tractable model strains, such as Escherichia coli, engineering gut commensals is gaining traction owing to their innate capacity to survive and stably propagate in the intestine for an extended duration. Although limited genetic tractability has been a major roadblock, recent advances in systems and synthetic biology have unlocked our ability to effectively harness native gut commensals for therapeutic and diagnostic purposes, ranging from the rational design of synthetic microbial consortia to the construction of synthetic cells that execute "sense-and-respond" logic operations that allow real-time detection and therapeutic payload delivery in response to specific signals in the intestine. In this review, we outline the current progress and latest updates on microbial therapeutics, with particular emphasis on gut commensal engineering driven by synthetic biology and systems understanding of their molecular phenotypes. Finally, the challenges and prospects of engineering gut commensals for therapeutic applications are discussed.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minjeong Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
36
|
Chanin RB, West PT, Park RM, Wirbel J, Green GZM, Miklos AM, Gill MO, Hickey AS, Brooks EF, Bhatt AS. Intragenic DNA inversions expand bacterial coding capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532203. [PMID: 36945655 PMCID: PMC10028968 DOI: 10.1101/2023.03.11.532203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Bacterial populations that originate from a single bacterium are not strictly clonal. Often, they contain subgroups with distinct phenotypes. Bacteria can generate heterogeneity through phase variation: a preprogrammed, reversible mechanism that alters gene expression levels across a population. One well studied type of phase variation involves enzyme-mediated inversion of specific intergenic regions of genomic DNA. Frequently, these DNA inversions flip the orientation of promoters, turning ON or OFF adjacent coding regions within otherwise isogenic populations. Through this mechanism, inversion can affect fitness, survival, or group dynamics. Here, we develop and apply bioinformatic approaches to discover thousands of previously undescribed phase-variable regions in prokaryotes using long-read datasets. We identify 'intragenic invertons', a surprising new class of invertible elements found entirely within genes, in bacteria and archaea. To date, inversions within single genes have not been described. Intragenic invertons allow a gene to encode two or more versions of a protein by flipping a DNA sequence within the coding region, thereby increasing coding capacity without increasing genome size. We experimentally characterize specific intragenic invertons in the gut commensal Bacteroides thetaiotaomicron, presenting a 'roadmap' for investigating this new gene-diversifying phenomenon.
Collapse
Affiliation(s)
- Rachael B. Chanin
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Patrick T. West
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Ryan M. Park
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Jakob Wirbel
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Gabriella Z. M. Green
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Arjun M. Miklos
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | | | | | - Erin F. Brooks
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
| | - Ami S. Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation); Stanford, USA
- Department of Genetics, Stanford University; Stanford, USA
| |
Collapse
|
37
|
Lan F, Saba J, Qian Y, Ross T, Landick R, Venturelli OS. Single-cell analysis of multiple invertible promoters reveals differential inversion rates as a strong determinant of bacterial population heterogeneity. SCIENCE ADVANCES 2023; 9:eadg5476. [PMID: 37540747 PMCID: PMC10403206 DOI: 10.1126/sciadv.adg5476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
Population heterogeneity can promote bacterial fitness in response to unpredictable environmental conditions. A major mechanism of phenotypic variability in the human gut symbiont Bacteroides spp. involves the inversion of promoters that drive the expression of capsular polysaccharides, which determine the architecture of the cell surface. High-throughput single-cell sequencing reveals substantial population heterogeneity generated through combinatorial promoter inversion regulated by a broadly conserved serine recombinase. Exploiting control over population diversification, we show that populations with different initial compositions converge to a similar composition over time. Combining our data with stochastic computational modeling, we demonstrate that the differential rates of promoter inversion are a major mechanism shaping population dynamics. More broadly, our approach could be used to interrogate single-cell combinatorial phase variable states of diverse microbes including bacterial pathogens.
Collapse
Affiliation(s)
- Freeman Lan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, WI 53726, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yili Qian
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Tyler Ross
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, WI 53726, USA
| | - Ophelia S. Venturelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, WI 53726, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison 53706, WI, USA
| |
Collapse
|
38
|
Tisza MJ, Smith DDN, Clark AE, Youn JH, Khil PP, Dekker JP. Roving methyltransferases generate a mosaic epigenetic landscape and influence evolution in Bacteroides fragilis group. Nat Commun 2023; 14:4082. [PMID: 37429841 DOI: 10.1038/s41467-023-39892-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Three types of DNA methyl modifications have been detected in bacterial genomes, and mechanistic studies have demonstrated roles for DNA methylation in physiological functions ranging from phage defense to transcriptional control of virulence and host-pathogen interactions. Despite the ubiquity of methyltransferases and the immense variety of possible methylation patterns, epigenomic diversity remains unexplored for most bacterial species. Members of the Bacteroides fragilis group (BFG) reside in the human gastrointestinal tract as key players in symbiotic communities but also can establish anaerobic infections that are increasingly multi-drug resistant. In this work, we utilize long-read sequencing technologies to perform pangenomic (n = 383) and panepigenomic (n = 268) analysis of clinical BFG isolates cultured from infections seen at the NIH Clinical Center over four decades. Our analysis reveals that single BFG species harbor hundreds of DNA methylation motifs, with most individual motif combinations occurring uniquely in single isolates, implying immense unsampled methylation diversity within BFG epigenomes. Mining of BFG genomes identified more than 6000 methyltransferase genes, approximately 1000 of which were associated with intact prophages. Network analysis revealed substantial gene flow among disparate phage genomes, implying a role for genetic exchange between BFG phages as one of the ultimate sources driving BFG epigenome diversity.
Collapse
Affiliation(s)
- Michael J Tisza
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiol, Baylor College of Medicine, Houston, TX, USA
| | - Derek D N Smith
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Wildlife Toxicology Research Section, Ottawa, ON, Canada
| | - Andrew E Clark
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jung-Ho Youn
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, LCIM, NIAID, NIH, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
39
|
Tawk C, Lim B, Bencivenga-Barry NA, Lees HJ, Ramos RJF, Cross J, Goodman AL. Infection leaves a genetic and functional mark on the gut population of a commensal bacterium. Cell Host Microbe 2023; 31:811-826.e6. [PMID: 37119822 PMCID: PMC10197903 DOI: 10.1016/j.chom.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/04/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Gastrointestinal infection changes microbiome composition and gene expression. In this study, we demonstrate that enteric infection also promotes rapid genetic adaptation in a gut commensal. Measurements of Bacteroides thetaiotaomicron population dynamics within gnotobiotic mice reveal that these populations are relatively stable in the absence of infection, and the introduction of the enteropathogen Citrobacter rodentium reproducibly promotes rapid selection for a single-nucleotide variant with increased fitness. This mutation promotes resistance to oxidative stress by altering the sequence of a protein, IctA, that is essential for fitness during infection. We identified commensals from multiple phyla that attenuate the selection of this variant during infection. These species increase the levels of vitamin B6 in the gut lumen. Direct administration of this vitamin is sufficient to significantly reduce variant expansion in infected mice. Our work demonstrates that a self-limited enteric infection can leave a stable mark on resident commensal populations that increase fitness during infection.
Collapse
Affiliation(s)
- Caroline Tawk
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Bentley Lim
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Natasha A Bencivenga-Barry
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hannah J Lees
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruben J F Ramos
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
40
|
Ryan D, Bornet E, Prezza G, Alampalli SV, de Carvalho TF, Felchle H, Ebbecke T, Hayward R, Deutschbauer AM, Barquist L, Westermann AJ. An integrated transcriptomics-functional genomics approach reveals a small RNA that modulates Bacteroides thetaiotaomicron sensitivity to tetracyclines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528795. [PMID: 36824877 PMCID: PMC9949090 DOI: 10.1101/2023.02.16.528795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Gene expression plasticity allows bacteria to adapt to diverse environments, tie their metabolism to available nutrients, and cope with stress. This is particularly relevant in a niche as dynamic and hostile as the human intestinal tract, yet transcriptional networks remain largely unknown in gut Bacteroides spp. Here, we map transcriptional units and profile their expression levels in Bacteroides thetaiotaomicron over a suite of 15 defined experimental conditions that are relevant in vivo , such as variation of temperature, pH, and oxygen tension, exposure to antibiotic stress, and growth on simple carbohydrates or on host mucin-derived glycans. Thereby, we infer stress- and carbon source-specific transcriptional regulons, including conditional expression of capsular polysaccharides and polysaccharide utilization loci, and expand the annotation of small regulatory RNAs (sRNAs) in this organism. Integrating this comprehensive expression atlas with transposon mutant fitness data, we identify conditionally important sRNAs. One example is MasB, whose inactivation led to increased bacterial tolerance of tetracyclines. Using MS2 affinity purification coupled with RNA sequencing, we predict targets of this sRNA and discuss their potential role in the context of the MasB-associated phenotype. Together, this transcriptomic compendium in combination with functional sRNA genomics-publicly available through a new iteration of the 'Theta-Base' web browser (www.helmholtz-hiri.de/en/datasets/bacteroides-v2)-constitutes a valuable resource for the microbiome and sRNA research communities alike.
Collapse
|
41
|
Giacone L, Cameranesi MM, Sanchez RI, Limansky AS, Morán-Barrio J, Viale AM. Dynamic state of plasmid genomic architectures resulting from XerC/D-mediated site-specific recombination in Acinetobacter baumannii Rep_3 superfamily resistance plasmids carrying blaOXA-58 - and Tn aphA6-resistance modules. Front Microbiol 2023; 14:1057608. [PMID: 36846794 PMCID: PMC9947245 DOI: 10.3389/fmicb.2023.1057608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
The acquisition of bla OXA genes encoding different carbapenem-hydrolyzing class-D β-lactamases (CHDL) represents a main determinant of carbapenem resistance in the nosocomial pathogen Acinetobacter baumannii. The blaOXA-58 gene, in particular, is generally embedded in similar resistance modules (RM) carried by plasmids unique to the Acinetobacter genus lacking self-transferability. The ample variations in the immediate genomic contexts in which blaOXA-58 -containing RMs are inserted among these plasmids, and the almost invariable presence at their borders of non-identical 28-bp sequences potentially recognized by the host XerC and XerD tyrosine recombinases (pXerC/D-like sites), suggested an involvement of these sites in the lateral mobilization of the gene structures they encircle. However, whether and how these pXerC/D sites participate in this process is only beginning to be understood. Here, we used a series of experimental approaches to analyze the contribution of pXerC/D-mediated site-specific recombination to the generation of structural diversity between resistance plasmids carrying pXerC/D-bounded bla OXA-58- and TnaphA6-containing RM harbored by two phylogenetically- and epidemiologically-closely related A. baumannii strains of our collection, Ab242 and Ab825, during adaptation to the hospital environment. Our analysis disclosed the existence of different bona fide pairs of recombinationally-active pXerC/D sites in these plasmids, some mediating reversible intramolecular inversions and others reversible plasmid fusions/resolutions. All of the identified recombinationally-active pairs shared identical GGTGTA sequences at the cr spacer separating the XerC- and XerD-binding regions. The fusion of two Ab825 plasmids mediated by a pair of recombinationally-active pXerC/D sites displaying sequence differences at the cr spacer could be inferred on the basis of sequence comparison analysis, but no evidence of reversibility could be obtained in this case. The reversible plasmid genome rearrangements mediated by recombinationally-active pairs of pXerC/D sites reported here probably represents an ancient mechanism of generating structural diversity in the Acinetobacter plasmid pool. This recursive process could facilitate a rapid adaptation of an eventual bacterial host to changing environments, and has certainly contributed to the evolution of Acinetobacter plasmids and the capture and dissemination of bla OXA-58 genes among Acinetobacter and non-Acinetobacter populations co-residing in the hospital niche.
Collapse
Affiliation(s)
| | | | - Rocío I. Sanchez
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Adriana S. Limansky
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | | | | |
Collapse
|
42
|
Hefetz I, Israeli O, Bilinsky G, Plaschkes I, Hazkani-Covo E, Hayouka Z, Lampert A, Helman Y. A reversible mutation in a genomic hotspot saves bacterial swarms from extinction. iScience 2023; 26:106043. [PMID: 36824284 PMCID: PMC9941203 DOI: 10.1016/j.isci.2023.106043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Microbial adaptation to changing environmental conditions is frequently mediated by hypermutable sequences. Here we demonstrate that such a hypermutable hotspot within a gene encoding a flagellar unit of Paenibacillus glucanolyticus generated spontaneous non-swarming mutants with increased stress resistance. These mutants, which survived conditions that eliminated wild-type cultures, could be carried by their swarming siblings when the colony spread, consequently increasing their numbers at the spreading edge. Of interest, the hypermutable nature of the aforementioned sequence enabled the non-swarming mutants to serve as "seeds" for a new generation of wild-type cells through reversion of the mutation. Using a mathematical model, we examined the survival dynamics of P. glucanolyticus colonies under fluctuating environments. Our experimental and theoretical results suggest that the non-swarming, stress-resistant mutants can save the colony from extinction. Notably, we identified this hypermutable sequence in flagellar genes of additional Paenibacillus species, suggesting that this phenomenon could be wide-spread and ecologically important.
Collapse
Affiliation(s)
- Idan Hefetz
- Department of Biotechnology, Institute for Biological Research, Ness-Ziona, Israel,Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ofir Israeli
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Biology, Institute for Biological Research, Ness-Ziona, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra’anana, Israel
| | - Zvi Hayouka
- Department of Biochemistry, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adam Lampert
- Institute of Environmental Sciences (IES), Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| | - Yael Helman
- Department of Plant Pathology and Microbiology, IES, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,Corresponding author
| |
Collapse
|
43
|
Milman O, Yelin I, Kishony R. Systematic identification of gene-altering programmed inversions across the bacterial domain. Nucleic Acids Res 2023; 51:553-573. [PMID: 36617974 PMCID: PMC9881135 DOI: 10.1093/nar/gkac1166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Programmed chromosomal inversions allow bacteria to generate intra-population genotypic and functional heterogeneity, a bet-hedging strategy important in changing environments. Some programmed inversions modify coding sequences, producing different alleles in several gene families, most notably in specificity-determining genes such as Type I restriction-modification systems, where systematic searches revealed cross phylum abundance. Yet, a broad, gene-independent, systematic search for gene-altering programmed inversions has been absent, and little is known about their genomic sequence attributes and prevalence across gene families. Here, identifying intra-species variation in genomes of over 35 000 species, we develop a predictive model of gene-altering inversions, revealing key attributes of their genomic sequence attributes, including gene-pseudogene size asymmetry and orientation bias. The model predicted over 11,000 gene-altering loci covering known targeted gene families, as well as novel targeted families including Type II restriction-modification systems, a protein of unknown function, and a fusion-protein containing conjugative-pilus and phage tail domains. Publicly available long-read sequencing datasets validated representatives of these newly predicted inversion-targeted gene families, confirming intra-population genetic heterogeneity. Together, these results reveal gene-altering programmed inversions as a key strategy adopted across the bacterial domain, and highlight programmed inversions that modify Type II restriction-modification systems as a possible new mechanism for maintaining intra-population heterogeneity.
Collapse
Affiliation(s)
- Oren Milman
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Idan Yelin
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Roy Kishony
- To whom correspondence should be addressed. Tel: +972 4 8293737;
| |
Collapse
|
44
|
Conway C, Beckett MC, Dorman CJ. The DNA relaxation-dependent OFF-to-ON biasing of the type 1 fimbrial genetic switch requires the Fis nucleoid-associated protein. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001283. [PMID: 36748578 PMCID: PMC9993118 DOI: 10.1099/mic.0.001283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structural genes expressing type 1 fimbriae in Escherichia coli alternate between expressed (phase ON) and non-expressed (phase OFF) states due to inversion of the 314 bp fimS genetic switch. The FimB tyrosine integrase inverts fimS by site-specific recombination, alternately connecting and disconnecting the fim operon, encoding the fimbrial subunit protein and its associated secretion and adhesin factors, to and from its transcriptional promoter within fimS. Site-specific recombination by the FimB recombinase becomes biased towards phase ON as DNA supercoiling is relaxed, a condition that occurs when bacteria approach the stationary phase of the growth cycle. This effect can be mimicked in exponential phase cultures by inhibiting the negative DNA supercoiling activity of DNA gyrase. We report that this bias towards phase ON depends on the presence of the Fis nucleoid-associated protein. We mapped the Fis binding to a site within the invertible fimS switch by DNase I footprinting. Disruption of this binding site by base substitution mutagenesis abolishes both Fis binding and the ability of the mutated switch to sustain its phase ON bias when DNA is relaxed, even in bacteria that produce the Fis protein. In addition, the Fis binding site overlaps one of the sites used by the Lrp protein, a known directionality determinant of fimS inversion that also contributes to phase ON bias. The Fis–Lrp relationship at fimS is reminiscent of that between Fis and Xis when promoting DNA relaxation-dependent excision of bacteriophage λ from the E. coli chromosome. However, unlike the co-binding mechanism used by Fis and Xis at λ attR, the Fis–Lrp relationship at fimS involves competitive binding. We discuss these findings in the context of the link between fimS inversion biasing and the physiological state of the bacterium.
Collapse
Affiliation(s)
- Colin Conway
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland.,Present address: Technical University of the Atlantic, Galway, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Javkar K, Rand H, Strain E, Pop M. PRAWNS: compact pan-genomic features for whole-genome population genomics. Bioinformatics 2022; 39:6965020. [PMID: 36579850 PMCID: PMC9825322 DOI: 10.1093/bioinformatics/btac844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Scientists seeking to understand the genomic basis of bacterial phenotypes, such as antibiotic resistance, today have access to an unprecedented number of complete and nearly complete genomes. Making sense of these data requires computational tools able to perform multiple-genome comparisons efficiently, yet currently available tools cannot scale beyond several tens of genomes. RESULTS We describe PRAWNS, an efficient and scalable tool for multiple-genome analysis. PRAWNS defines a concise set of genomic features (metablocks), as well as pairwise relationships between them, which can be used as a basis for large-scale genotype-phenotype association studies. We demonstrate the effectiveness of PRAWNS by identifying genomic regions associated with antibiotic resistance in Acinetobacter baumannii. AVAILABILITY AND IMPLEMENTATION PRAWNS is implemented in C++ and Python3, licensed under the GPLv3 license, and freely downloadable from GitHub (https://github.com/KiranJavkar/PRAWNS.git). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kiran Javkar
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20740, USA
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD 20740, USA
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Mihai Pop
- To whom correspondence should be addressed.
| |
Collapse
|
46
|
Saati-Santamaría Z, Baroncelli R, Rivas R, García-Fraile P. Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution. Microbiol Spectr 2022; 10:e0237022. [PMID: 36354324 PMCID: PMC9769992 DOI: 10.1128/spectrum.02370-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria have evolved to occupy a plethora of different ecological niches, including living hosts, such as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their encoded functions remain unknown. Here, we describe a comparative genomic study of 3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains isolated from diverse environments. We detected functional divergence of Pseudomonas that depends on the niche. Each group of strains from a certain environment harbored a distinctive set of metabolic pathways or functions. The horizontal transfer of genes, which mainly proceeded between closely related taxa, was dependent on the isolation source. Finally, we detected thousands of undescribed proteins and functions associated with each Pseudomonas lifestyle. This research represents an effort to reveal the mechanisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will enable clinical, ecological, and biotechnological advances. IMPORTANCE Microbes play important roles in the health of living beings and in the environment. The knowledge of these functions may be useful for the development of new clinical and biotechnological applications and the restoration and preservation of natural ecosystems. However, most mechanisms implicated in the interaction of microbes with the environment remain poorly understood; thus, this field of research is very important. Here, we try to understand the mechanisms that facilitate the differential adaptation of Pseudomonas-a large and ubiquitous bacterial genus-to the environment. We analyzed more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be related with their coevolution with different hosts (animals, plants, or fungi) and environments. Our results revealed that thousands of genes and genetic features are associated with each niche. Our data may be useful to develop new technical and theoretical advances in the fields of ecology, health, and industry.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
47
|
West PT, Chanin RB, Bhatt AS. From genome structure to function: insights into structural variation in microbiology. Curr Opin Microbiol 2022; 69:102192. [PMID: 36030622 PMCID: PMC9783807 DOI: 10.1016/j.mib.2022.102192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/27/2022]
Abstract
Structural variation in bacterial genomes is an important evolutionary driver. Genomic rearrangements, such as inversions, duplications, and insertions, can regulate gene expression and promote niche adaptation. Importantly, many of these variations are reversible and preprogrammed to generate heterogeneity. While many tools have been developed to detect structural variation in eukaryotic genomes, variation in bacterial genomes and metagenomes remains understudied. However, recent advances in genome sequencing technology and the development of new bioinformatic pipelines hold promise in further understanding microbial genomics.
Collapse
Affiliation(s)
- Patrick T West
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Rachael B Chanin
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, 269 Campus Dr, CCSR 1155b, Stanford, 94305 CA, USA; Department of Medicine (Hematology, Blood and Marrow Transplantation), 269 Campus Dr, CCSR 1155b, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Emergent evolutionary forces in spatial models of luminal growth and their application to the human gut microbiota. Proc Natl Acad Sci U S A 2022; 119:e2114931119. [PMID: 35787046 PMCID: PMC9282425 DOI: 10.1073/pnas.2114931119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The genetic composition of the gut microbiota is constantly reshaped by ecological and evolutionary forces. These strain-level dynamics are challenging to understand because they depend on complex spatial growth processes that take place within a host. Here we introduce a population genetic framework to predict how stochastic evolutionary forces emerge from simple models of microbial growth in spatially extended environments like the intestinal lumen. Our framework shows how fluid flow and longitudinal variation in growth rate combine to shape the frequencies of genetic variants in simulated fecal samples, yielding analytical expressions for the effective generation times, selection coefficients, and rates of genetic drift. We find that over longer timescales, the emergent evolutionary dynamics can often be captured by well-mixed models that lack explicit spatial structure, even when there is substantial spatial variation in species-level composition. By applying these results to the human colon, we find that continuous fluid flow and simple forms of wall growth alone are unlikely to create sufficient bottlenecks to allow large fluctuations in mutant frequencies within a host. We also find that the effective generation times may be significantly shorter than expected from traditional average growth rate estimates. Our results provide a starting point for quantifying genetic turnover in spatially extended settings like the gut microbiota and may be relevant for other microbial ecosystems where unidirectional fluid flow plays an important role.
Collapse
|
49
|
Browne HP, Shao Y, Lawley TD. Mother-infant transmission of human microbiota. Curr Opin Microbiol 2022; 69:102173. [PMID: 35785616 DOI: 10.1016/j.mib.2022.102173] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Humans are colonised by a highly adapted microbiota with coevolved functions that promote human health, development and disease resistance. Acquisition and assembly of the microbiota start at birth and recent evidence suggests that it coincides with, and informs, immune system development and regulation in the rapidly growing infant. Several large-scale studies have identified Bifidobacterium and Bacteroides species maternally transmitted to infants, many of which are capable of colonising over the longer term. Disruption of maternal transmission by caesarean section and antibiotic exposure around birth is associated with a higher incidence of pathogen colonisation and immune-related disorders in children. In this review, we discuss key maternally transmitted bacterial species, their sources and their potential role in shaping immune development. Maternal transmission of gut bacteria provides a microbial 'starter kit' for infants which promotes healthy growth and disease resistance. Optimising and nurturing this under-appreciated form of kinship should be considered as a priority.
Collapse
Affiliation(s)
- Hilary P Browne
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Yan Shao
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
50
|
Kiousi DE, Efstathiou C, Tegopoulos K, Mantzourani I, Alexopoulos A, Plessas S, Kolovos P, Koffa M, Galanis A. Genomic Insight Into Lacticaseibacillus paracasei SP5, Reveals Genes and Gene Clusters of Probiotic Interest and Biotechnological Potential. Front Microbiol 2022; 13:922689. [PMID: 35783439 PMCID: PMC9244547 DOI: 10.3389/fmicb.2022.922689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Lacticaseibacillus paracasei species is comprised by nomadic bacteria inhabiting a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Lc. paracasei SP5 is a novel strain, originally isolated from kefir grains that presents desirable probiotic and biotechnological attributes. In this study, we applied genomic tools to further characterize the probiotic and biotechnological potential of the strain. Firstly, whole genome sequencing and assembly, were performed to construct the chromosome map of the strain and determine its genomic stability. Lc. paracasei SP5 carriers several insertion sequences, however, no plasmids or mobile elements were detected. Furthermore, phylogenomic and comparative genomic analyses were utilized to study the nomadic attributes of the strain, and more specifically, its metabolic capacity and ability to withstand environmental stresses imposed during food processing and passage through the gastrointestinal (GI) tract. More specifically, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Carbohydrate-active enzyme (CAZymes) analyses provided evidence for the ability of the stain to utilize an array of carbohydrates as growth substrates. Consequently, genes for heat, cold, osmotic shock, acidic pH, and bile salt tolerance were annotated. Importantly bioinformatic analysis showed that the novel strain does not harbor acquired antimicrobial resistance genes nor virulence factors, in agreement with previous experimental data. Putative bacteriocin biosynthesis clusters were identified using BAGEL4, suggesting its potential antimicrobial activity. Concerning microbe-host interactions, adhesins, moonlighting proteins, exopolysaccharide (EPS) biosynthesis genes and pilins mediating the adhesive phenotype were, also, pinpointed in the genome of Lc. paracasei SP5. Validation of this phenotype was performed by employing a microbiological method and confocal microscopy. Conclusively, Lc. paracasei SP5 harbors genes necessary for the manifestation of the probiotic character and application in the food industry. Upcoming studies will focus on the mechanisms of action of the novel strain at multiple levels.
Collapse
Affiliation(s)
- Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Efstathiou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Tegopoulos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Mantzourani
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Athanasios Alexopoulos
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
| | - Stavros Plessas
- Department of Agricultural Development, Democritus University of Thrace, Orestiada, Greece
- *Correspondence: Stavros Plessas,
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Koffa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
- Alex Galanis,
| |
Collapse
|