1
|
Wan G, Gao C, Zhang X, Qiu H, Tang Q, Zeng J, Yu L. Discovery of 1,3-Disubstituted Pyrazole derivatives as Mycobacterium tuberculosis inhibitors. Bioorg Med Chem Lett 2025; 121:130156. [PMID: 40024479 DOI: 10.1016/j.bmcl.2025.130156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Tuberculosis is a global epidemic caused by Mycobacterium tuberculosis, predominantly impacting underprivileged regions worldwide. Here, we identified a novel 1,3-disubstituted pyrazole derivative, compound A, that exhibits antitubercular activity through in vitro screening. Further SAR studies resulted in the identification of compounds 4c and 6b, which exhibited improved antitubercular activity, with MIC values of 5.34 and 5.04 μg/mL against H37Ra, respectively. Additionally, compounds 4c and 6b exhibited favorable safety profiles, showing no obvious toxicity to Vero, A549, and HepG2 cell lines. Our docking studies suggest that PptT may serve as one of the potential targets for these compounds. These encouraging results provide valuable insights for the development of novel structured antitubercular agents.
Collapse
Affiliation(s)
- Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Chao Gao
- Institute of Immunology and Inflammation,Frontiers Science Center for Disease-related Molecular Network,West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaorui Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Huapei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Qifan Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China; Children's Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
2
|
Rocha BM, Pinto E, Sousa E, Resende DISP. Targeting Siderophore Biosynthesis to Thwart Microbial Growth. Int J Mol Sci 2025; 26:3611. [PMID: 40332123 PMCID: PMC12026967 DOI: 10.3390/ijms26083611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
The growing threat of antibiotic resistance has made treating bacterial and fungal infections increasingly difficult. With the discovery of new antibiotics slowing down, alternative strategies are urgently needed. Siderophores, small iron-chelating molecules produced by microorganisms, play a crucial role in iron acquisition and serve as virulence factors in many pathogens. Because iron is essential for microbial survival, targeting siderophore biosynthesis and transport presents a promising approach to combating drug-resistant infections. This review explores the key genetic and biochemical mechanisms involved in siderophore production, emphasizing potential drug targets within these pathways. Three major biosynthetic routes are examined: nonribosomal peptide synthetase (NRPS)-dependent, polyketide synthase (PKS)-based, and NRPS-independent (NIS) pathways. Additionally, microbial iron uptake mechanisms and membrane-associated transport systems are discussed, providing insights into their role in sustaining pathogenic growth. Recent advances in inhibitor development have shown that blocking critical enzymes in siderophore biosynthesis can effectively impair microbial growth. By disrupting these pathways, new antimicrobial strategies can be developed, offering alternatives to traditional antibiotics and potentially reducing the risk of resistance. A deeper understanding of siderophore biosynthesis and its regulation not only reveals fundamental microbial processes but also provides a foundation for designing targeted therapeutics. Leveraging these insights could lead to novel drugs that overcome antibiotic resistance, offering new hope in the fight against persistent infections.
Collapse
Affiliation(s)
- Beatriz M. Rocha
- LQOF—Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- CIIMAR/CIMAR LA—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- LQOF—Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR/CIMAR LA—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- LQOF—Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR/CIMAR LA—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
Mellor DA, Suo Y, Miyada MG, Medina Perez GA, Burkart MD. Manipulation and Structural Activity of AcpM in Mycobacterium tuberculosis. Biochemistry 2025; 64:351-356. [PMID: 39740789 PMCID: PMC11988284 DOI: 10.1021/acs.biochem.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state. Herein, we report a streamlined method to generate homogeneous samples of modified AcpM for applications in structure and functional studies. We apply these to generate solvatochromic labeled crypto-AcpM, where fluorescence response reports cargo sequestration and chain flipping upon interaction with four FAS-II enzymes. We find an increased fluorescence in a truncated form, AcpM80, indicating that the 35-residue C-terminus is involved in modulating the chemical environment surrounding the substrate and contributing to the regulation of PPIs. This study establishes an efficient chemo-enzymatic strategy to generate AcpM analogs for biophysical studies to aid in understanding the processes driving Mtb pathogenicity and drug resistance.
Collapse
Affiliation(s)
- Desirae A Mellor
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Yixing Suo
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Matthew G Miyada
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Grace A Medina Perez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
4
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
5
|
Jiang Z, Mei L, Li Y, Guo Y, Yang B, Huang Z, Li Y. Enzymatic Regulation of the Gut Microbiota: Mechanisms and Implications for Host Health. Biomolecules 2024; 14:1638. [PMID: 39766345 PMCID: PMC11727233 DOI: 10.3390/biom14121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The gut microbiota, a complex ecosystem, is vital to host health as it aids digestion, modulates the immune system, influences metabolism, and interacts with the brain-gut axis. Various factors influence the composition of this microbiota. Enzymes, as essential catalysts, actively participate in biochemical reactions that have an impact on the gut microbial community, affecting both the microorganisms and the gut environment. Enzymes play an important role in the regulation of the intestinal microbiota, but the interactions between enzymes and microbial communities, as well as the precise mechanisms of enzymes, remain a challenge in scientific research. Enzymes serve both traditional nutritional functions, such as the breakdown of complex substrates into absorbable small molecules, and non-nutritional roles, which encompass antibacterial function, immunomodulation, intestinal health maintenance, and stress reduction, among others. This study categorizes enzymes according to their source and explores the mechanistic principles by which enzymes drive gut microbial activity, including the promotion of microbial proliferation, the direct elimination of harmful microbes, the modulation of bacterial interaction networks, and the reduction in immune stress. A systematic understanding of enzymes in regulating the gut microbiota and the study of their associated molecular mechanisms will facilitate the application of enzymes to precisely regulate the gut microbiota in the future and suggest new therapeutic strategies and dietary recommendations. In conclusion, this review provides a comprehensive overview of the role of enzymes in modulating the gut microbiota. It explores the underlying molecular and cellular mechanisms and discusses the potential applications of enzyme-mediated microbiota regulation for host gut health.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Mei
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuqi Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yuguang Guo
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Bo Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiyi Huang
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| | - Yangyuan Li
- Guangdong VTR Bio-Tech Co,. Ltd., Zhuhai 519060, China
| |
Collapse
|
6
|
Xia Y, Chen Q, Liu HN, Chi Y, Zhu Y, Shan LS, Dai B, Wu L, Shi X. Synthetic routes and clinical application of new drugs approved by EMA during 2023. Eur J Med Chem 2024; 277:116762. [PMID: 39151275 DOI: 10.1016/j.ejmech.2024.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
In 2023, the European Medicines Agency (EMA) granted approval to 77 new molecular entities (NMEs), consisting of 45 new chemical entities (NCEs) and 32 new biological entities (NBEs). These pharmacological agents encompass a broad spectrum of therapeutic domains, including oncology, cardiology, dermatology, diagnostic medicine, endocrinology, gastroenterology and hepatology, metabolic disorders, and neurology. Among the 77 approved pharmaceuticals, three received accelerated review status, and 17 (22 %) were granted orphan drug designation for the treatment of rare diseases. This review provides an overview of the clinical applications and synthetic routes of 42 newly approved NCEs by the EMA in 2023. The objective is to offer a comprehensive understanding of the synthetic approaches used in the development of these drug molecules, thereby inspiring the creation of novel, efficient, and applicable synthetic methodologies.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qingqing Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuan Chi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Li-Shen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lin Wu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xiaobao Shi
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Singh A, Ottavi S, Krieger I, Planck K, Perkowski A, Kaneko T, Davis AM, Suh C, Zhang D, Goullieux L, Alex A, Roubert C, Gardner M, Preston M, Smith DM, Ling Y, Roberts J, Cautain B, Upton A, Cooper CB, Serbina N, Tanvir Z, Mosior J, Ouerfelli O, Yang G, Gold BS, Rhee KY, Sacchettini JC, Fotouhi N, Aubé J, Nathan C. Redirecting raltitrexed from cancer cell thymidylate synthase to Mycobacterium tuberculosis phosphopantetheinyl transferase. SCIENCE ADVANCES 2024; 10:eadj6406. [PMID: 38489355 PMCID: PMC10942122 DOI: 10.1126/sciadv.adj6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
There is a compelling need to find drugs active against Mycobacterium tuberculosis (Mtb). 4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme in Mtb that has attracted interest as a potential drug target. We optimized a PptT assay, used it to screen 422,740 compounds, and identified raltitrexed, an antineoplastic antimetabolite, as the most potent PptT inhibitor yet reported. While trying unsuccessfully to improve raltitrexed's ability to kill Mtb and remove its ability to kill human cells, we learned three lessons that may help others developing antibiotics. First, binding of raltitrexed substantially changed the configuration of the PptT active site, complicating molecular modeling of analogs based on the unliganded crystal structure or the structure of cocrystals with inhibitors of another class. Second, minor changes in the raltitrexed molecule changed its target in Mtb from PptT to dihydrofolate reductase (DHFR). Third, the structure-activity relationship for over 800 raltitrexed analogs only became interpretable when we quantified and characterized the compounds' intrabacterial accumulation and transformation.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Kyle Planck
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Andrew Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Takushi Kaneko
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | | | - Christine Suh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | | | - Alexander Alex
- AMG Consultants Limited, Camburgh House, 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
- Evenor Consulting Limited, The New Barn, Mill Lane, Eastry, Kent CT13 0JW, UK
| | | | - Mark Gardner
- AMG Consultants Limited, Camburgh House, 27 New Dover Road, Canterbury, Kent, CT1 3DN, UK
| | - Marian Preston
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Dave M. Smith
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK
| | - Yan Ling
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bastien Cautain
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | - Anna Upton
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | | | - Natalya Serbina
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - Zaid Tanvir
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - John Mosior
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ben S. Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, TX 77843, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY 10005, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
8
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
9
|
Niu ZX, Wang YT, Sun JF, Nie P, Herdewijn P. Recent advance of clinically approved small-molecule drugs for the treatment of myeloid leukemia. Eur J Med Chem 2023; 261:115827. [PMID: 37757658 DOI: 10.1016/j.ejmech.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Myeloid leukemia denotes a hematologic malignancy characterized by aberrant proliferation and impaired differentiation of blood progenitor cells within the bone marrow. Despite the availability of several treatment options, the clinical outlook for individuals afflicted with myeloid leukemia continues to be unfavorable, making it a challenging disease to manage. Over the past, substantial endeavors have been dedicated to the identification of novel targets and the advancement of enhanced therapeutic modalities to ameliorate the management of this disease, resulting in the discovery of many clinically approved small-molecule drugs for myeloid leukemia, including histone deacetylase inhibitors, hypomethylating agents, and tyrosine kinase inhibitors. This comprehensive review succinctly presents an up-to-date assessment of the application and synthetic routes of clinically sanctioned small-molecule drugs employed in the treatment of myeloid leukemia. Additionally, it provides a concise exploration of the pertinent challenges and prospects encompassing drug resistance and toxicity. Overall, this review effectively underscores the considerable promise exhibited by clinically endorsed small-molecule drugs in the therapeutic realm of myeloid leukemia, while concurrently shedding light on the prospective avenues that may shape the future landscape of drug development within this domain.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Ottavi S, Li K, Cacioppo JG, Perkowski AJ, Ramesh R, Gold BS, Ling Y, Roberts J, Singh A, Zhang D, Mosior J, Goullieux L, Roubert C, Bacqué E, Sacchettini JC, Nathan CF, Aubé J. Mycobacterium tuberculosis PptT Inhibitors Based on Heterocyclic Replacements of Amidinoureas. ACS Med Chem Lett 2023; 14:970-976. [PMID: 37465309 PMCID: PMC10351052 DOI: 10.1021/acsmedchemlett.3c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
4'-Phosphopantetheinyl transferase (PptT) is an essential enzyme for Mycobacterium tuberculosis (Mtb) survival and virulence and therefore an attractive target for a tuberculosis therapeutic. In this work, two modeling-informed approaches toward the isosteric replacement of the amidinourea moiety present in the previously reported PptT inhibitor AU 8918 are reported. Although a designed 3,5-diamino imidazole unexpectedly adopted an undesired tautomeric form and was inactive, replacement of the amidinourea moiety afforded a series of active PptT inhibitors containing 2,6-diaminopyridine scaffolds.
Collapse
Affiliation(s)
- Samantha Ottavi
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Kelin Li
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jackson G. Cacioppo
- Department
of Chemistry, UNC College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew J. Perkowski
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Remya Ramesh
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Ben S. Gold
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, New York, New York 10065, United States
| | - Yan Ling
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, New York, New York 10065, United States
| | - Julia Roberts
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, New York, New York 10065, United States
| | - Amrita Singh
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, New York, New York 10065, United States
| | - David Zhang
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, New York, New York 10065, United States
| | - John Mosior
- Departments
of Biochemistry and Biophysics, Texas Agricultural
and Mechanical University, College
Station, Texas 77843, United States
| | | | | | - Eric Bacqué
- Evotec
ID (Lyon), SAS 40 Avenue
Tony Garnier, 69001 Lyon, France
| | - James C. Sacchettini
- Departments
of Biochemistry and Biophysics, Texas Agricultural
and Mechanical University, College
Station, Texas 77843, United States
| | - Carl F. Nathan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina at
Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, UNC College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Harris CT, Tong X, Campelo R, Marreiros IM, Vanheer LN, Nahiyaan N, Zuzarte-Luís VA, Deitsch KW, Mota MM, Rhee KY, Kafsack BFC. Sexual differentiation in human malaria parasites is regulated by competition between phospholipid metabolism and histone methylation. Nat Microbiol 2023; 8:1280-1292. [PMID: 37277533 PMCID: PMC11163918 DOI: 10.1038/s41564-023-01396-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.
Collapse
Affiliation(s)
- Chantal T Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Xinran Tong
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- BCMB Allied Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Riward Campelo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Inês M Marreiros
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Leen N Vanheer
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Navid Nahiyaan
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vanessa A Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Schneider V, Visone J, Harris C, Florini F, Hadjimichael E, Zhang X, Gross M, Rhee K, Ben Mamoun C, Kafsack B, Deitsch K. The human malaria parasite Plasmodium falciparum can sense environmental changes and respond by antigenic switching. Proc Natl Acad Sci U S A 2023; 120:e2302152120. [PMID: 37068249 PMCID: PMC10151525 DOI: 10.1073/pnas.2302152120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/20/2023] [Indexed: 04/19/2023] Open
Abstract
The primary antigenic and virulence determinant of the human malaria parasite Plasmodium falciparum is a variant surface protein called PfEMP1. Different forms of PfEMP1 are encoded by a multicopy gene family called var, and switching between active genes enables the parasites to evade the antibody response of their human hosts. var gene switching is key for the maintenance of chronic infections; however, what controls switching is unknown, although it has been suggested to occur at a constant frequency with little or no environmental influence. var gene transcription is controlled epigenetically through the activity of histone methyltransferases (HMTs). Studies in model systems have shown that metabolism and epigenetic control of gene expression are linked through the availability of intracellular S-adenosylmethionine (SAM), the principal methyl donor in biological methylation modifications, which can fluctuate based on nutrient availability. To determine whether environmental conditions and changes in metabolism can influence var gene expression, P. falciparum was cultured in media with altered concentrations of nutrients involved in SAM metabolism. We found that conditions that influence lipid metabolism induce var gene switching, indicating that parasites can respond to changes in their environment by altering var gene expression patterns. Genetic modifications that directly modified expression of the enzymes that control SAM levels similarly led to profound changes in var gene expression, confirming that changes in SAM availability modulate var gene switching. These observations directly challenge the paradigm that antigenic variation in P. falciparum follows an intrinsic, programed switching rate, which operates independently of any external stimuli.
Collapse
Affiliation(s)
- Victoria M. Schneider
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Laboratory of Chemical Biology and Microbial Pathogenesis, Rockefeller University, New York, NY 10065
| | - Joseph E. Visone
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Chantal T. Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Xu Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Mackensie R. Gross
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kyu Y. Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Choukri Ben Mamoun
- Section of Infectious Disease, Department of Microbial Pathogenesis, Yale School of Medicine, Yale University New Haven, CT 06510
| | - Björn F. C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, Ithaca, NY14853
| |
Collapse
|
13
|
Bano K, Sharma J, Jain A, Tsurugi H, Panda TK. A binuclear aluminium complex as a single competent catalyst for efficient synthesis of urea, biuret, isourea, isothiourea, phosphorylguanidine, and quinazolinones. RSC Adv 2023; 13:3020-3032. [PMID: 36756451 PMCID: PMC9850453 DOI: 10.1039/d2ra07714k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
The synthesis and characterisation of two mononuclear aluminium alkyl complexes with the general composition [Al(Me)2{Ph2P(E)N(CH2)2N(CH2CH2)2O}] (E = Se (2a); S (2b)), and two binuclear aluminium complexes, [Al(Me)2{Ph2P-(E)N(CH2)2N(CH2CH2)2O}(AlMe3)] (E = Se (3a) and S (3b)), are described. The binuclear aluminium alkyl complex 3a proved to be a proficient catalyst for the addition of simple nucleophiles to heterocumulenes, leading to the synthesis of a variety of products such as urea, biuret, isourea, isothiourea, phosphorylguanidine, and quinazolinone derivatives, in contrast to its mononuclear analogues. Complex 3a is the first example of a single competent catalyst, which is also low-cost and eco-friendly and derived from a main-group metal, under solvent-free conditions either at room temperature or mild temperatures. Complex 3a possessed a wide functional group tolerance including heteroatoms, yielding the corresponding insertion products in good quantities and with high selectivity.
Collapse
Affiliation(s)
- Kulsum Bano
- Department of Chemistry, Indian Institute of Technology Kandi-502 285, Sangareddy Hyderabad Telangana India https://sites.google.com/site/tkpandagroup/home
| | - Jyoti Sharma
- Department of Chemistry, Indian Institute of Technology Kandi-502 285, Sangareddy Hyderabad Telangana India https://sites.google.com/site/tkpandagroup/home
| | - Archana Jain
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology Gandipet-500 075 Hyderabad Telangana India
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Kandi-502 285, Sangareddy Hyderabad Telangana India https://sites.google.com/site/tkpandagroup/home
| |
Collapse
|
14
|
Roubert C, Fontaine E, Upton AM. “Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol 2022; 12:1029044. [PMID: 36275029 PMCID: PMC9582839 DOI: 10.3389/fcimb.2022.1029044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Despite reinvigorated efforts in Tuberculosis (TB) drug discovery over the past 20 years, relatively few new drugs and candidates have emerged with clear utility against drug resistant TB. Over the same period, significant technological advances and learnings around target value have taken place. This has offered opportunities to re-assess the potential for optimization of previously discovered chemical matter against Mycobacterium tuberculosis (M.tb) and for reconsideration of clinically validated targets encumbered by drug resistance. A re-assessment of discarded compounds and programs from the “golden age of antibiotics” has yielded new scaffolds and targets against TB and uncovered classes, for example beta-lactams, with previously unappreciated utility for TB. Leveraging validated classes and targets has also met with success: booster technologies and efforts to thwart efflux have improved the potential of ethionamide and spectinomycin classes. Multiple programs to rescue high value targets while avoiding cross-resistance are making progress. These attempts to make the most of known classes, drugs and targets complement efforts to discover new chemical matter against novel targets, enhancing the chances of success of discovering effective novel regimens against drug-resistant TB.
Collapse
|
15
|
Paik S, Kim KT, Kim IS, Kim YJ, Kim HJ, Choi S, Kim HJ, Jo EK. Mycobacterial acyl carrier protein suppresses TFEB activation and upregulates miR-155 to inhibit host defense. Front Immunol 2022; 13:946929. [PMID: 36248815 PMCID: PMC9559204 DOI: 10.3389/fimmu.2022.946929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to suppress host cell death during mycobacterial infection. This study reports that mycobacterial AcpM works as an effector to subvert host defense and promote bacterial growth by increasing microRNA (miRNA)-155-5p expression. In murine bone marrow-derived macrophages (BMDMs), AcpM protein prevented transcription factor EB (TFEB) from translocating to the nucleus in BMDMs, which likely inhibited transcriptional activation of several autophagy and lysosomal genes. Although AcpM did not suppress autophagic flux in BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in BMDMs, AcpM-induced increased intracellular survival of Mtb was suppressed. In addition, AcpM overexpression significantly reduced mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M. smegmatis strains. Collectively, our findings point to AcpM as a novel mycobacterial effector to regulate antimicrobial host defense and a potential new therapeutic target for Mtb infection.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| | - Kyeong Tae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seunga Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| |
Collapse
|
16
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
17
|
Shyam M, Shilkar D, Rakshit G, Jayaprakash V. Approaches for Targeting the Mycobactin Biosynthesis Pathway for Novel Anti-tubercular Drug Discovery: Where We Stand. Expert Opin Drug Discov 2022; 17:699-715. [PMID: 35575503 DOI: 10.1080/17460441.2022.2077328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Several decades of antitubercular drug discovery efforts have focused on novel antitubercular chemotherapies. However, recent efforts have greatly shifted towards countering extremely/multi/total drug-resistant species. Targeting the conditionally essential elements inside Mycobacterium is a relatively new approach against tuberculosis and has received lackluster attention. The siderophore, Mycobactin, is a conditionally essential molecule expressed by mycobacteria in iron-stress conditions. It helps capture the micronutrient iron, essential for the smooth functioning of cellular processes. AREAS COVERED The authors discuss opportunities to target the conditionally essential pathways to help develop newer drugs and prolong the shelf life of existing therapeutics, emphasizing the bottlenecks in fast-tracking antitubercular drug discovery. EXPERT OPINION While the lack of iron supply can cripple bacterial growth and multiplication, excess iron can cause oxidative overload. Constant up-regulation can strain the bacterial synthetic machinery, further slowing its growth. Mycobactin synthesis is tightly controlled by a genetically conserved mega enzyme family via up-regulation (HupB) or down-regulation (IdeR) based on iron availability in its microenvironment. Furthermore, the recycling of siderophores by the MmpL-MmpS4/5 orchestra provides endogenous drug targets to beat the bugs with iron-toxicity contrivance. These processes can be exploited as chinks in the armor of Mycobacterium and be used for new drug development.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
18
|
Zhou Z, Li J, Tan L, Liu X, Zheng Y, Cui Z, Li C, Yeung KWK, Li Z, Liang Y, Zhu S, Wu S. Using tea nanoclusters as β-lactamase inhibitors to cure multidrug-resistant bacterial pneumonia: A promising therapeutic strategy by Chinese materioherbology. FUNDAMENTAL RESEARCH 2022; 2:496-504. [PMID: 38933406 PMCID: PMC11197604 DOI: 10.1016/j.fmre.2021.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022] Open
Abstract
β-lactamase, a kind of hydrolase in multi-drug resistant pathogens, can hydrolyze β-lactam antibiotics and make these kinds of antibiotics invalid. Small-molecular inhibitors about the enzyme and their mechanism are widely investigated but they may result in unavoidable adverse reactions and drug-resistance. Herein, we propose a new therapeutic strategy of Chinese materioherbology, in which herbal medicine or traditional Chinese medicinal herbs can be employed as biological functional materials or refreshed/excited by means of materialogy. Natural tea nanoclusters (TNCs) were extracted from tea to inhibit β-lactamase. Different from the mechanism of small-molecular inhibitors inhibiting enzymes by binding to the corresponding active sites, the TNCs as a cap cover the protein pocket and create a spatial barrier between the active sites and antibiotics, which was named "capping-pocket" effect. TNCs were combined with amoxicillin sodium (Amo) to treat the methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in mice. This combinatorial therapy remarkably outperforms antibiotic monotherapy in reducing MRSA infections and the associated inflammation in mice. The therapeutic strategy exhibited excellent biosafety, without any side effects, even in piglets. Hence, TNCs have great clinical value in potentiating β-lactam antibiotic activity for combatting multi-drug resistant pathogen infections and the "pocket capping" effect can guide the design of new enzyme inhibitors in near future.
Collapse
Affiliation(s)
- Ziao Zhou
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Jun Li
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University, No. 12, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Yanqin Liang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Zeng L, Zhong G, Huang Y, Jia J, Bi H. A phosphopantetheinyl transferase gene restricted to Porphyromonas. Res Microbiol 2022; 173:103940. [PMID: 35337986 DOI: 10.1016/j.resmic.2022.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
The phosphopantetheinyl transferases (PPTases) catalyze the post-translational modification of carrier proteins (CPs) from fatty acid synthases (FASs) in primary metabolism and from polyketide synthases (PKSs) and non-ribosomal polypeptide synthases (NRPSs) in secondary metabolism. Based on the conserved sequence motifs and substrate specificities, two types (AcpS-type and Sfp-type) of PPTases have been identified in prokaryotes. We present here that Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, harbors merely one PPTase, namely PptP. Complementation and gene deletion experiments clearly show that PptP can replace the function of Escherichia coli AcpS and is essential for the growth of P. gingivalis. Purified PptP transfers the 4-phosphopantetheine moiety of CoA to inactive apo-acyl carrier protein (ACP) to form holo-ACP, which functions as an active carrier of the acyl intermediates of fatty acid synthesis. Moreover, PptP exhibits broad substrate specificity, modifying all ACP substrates tested and catalyzing the transfer of coenzyme A (CoA) derivatives. The lack of sequence alignment with known PPTases together with phylogenetic analyses revealed PptP as a new class of PPTases. Identification of the new PPTase gene pptP exclusive in Porphyromonas species reveals a potential target for treating P. gingivalis infections.
Collapse
Affiliation(s)
- Liping Zeng
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Huang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jia Jia
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Mi J, Gong W, Wu X. Advances in Key Drug Target Identification and New Drug Development for Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5099312. [PMID: 35252448 PMCID: PMC8896939 DOI: 10.1155/2022/5099312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical foundation for new drug development. With the development of molecular biology and the success of Mtb genome sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for TB control and treatment.
Collapse
Affiliation(s)
- Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing 100091, China
| |
Collapse
|
21
|
Pepi MJ, Chacko S, Marqus GM, Singh V, Wang Z, Planck K, Cullinane RT, Meka PN, Gollapalli DR, Ioerger TR, Rhee KY, Cuny GD, Boshoff HI, Hedstrom L. A d-Phenylalanine-Benzoxazole Derivative Reveals the Role of the Essential Enzyme Rv3603c in the Pantothenate Biosynthetic Pathway of Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:330-342. [PMID: 35015509 PMCID: PMC9558617 DOI: 10.1021/acsinfecdis.1c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New drugs and new targets are urgently needed to treat tuberculosis. We discovered that d-phenylalanine-benzoxazole Q112 displays potent antibacterial activity against Mycobacterium tuberculosis (Mtb) in multiple media and in macrophage infections. A metabolomic profiling indicates that Q112 has a unique mechanism of action. Q112 perturbs the essential pantothenate/coenzyme A biosynthetic pathway, depleting pantoate while increasing ketopantoate, as would be expected if ketopantoate reductase (KPR) were inhibited. We searched for alternative KPRs, since the enzyme annotated as PanE KPR is not essential in Mtb. The ketol-acid reductoisomerase IlvC catalyzes the KPR reaction in the close Mtb relative Corynebacterium glutamicum, but Mtb IlvC does not display KPR activity. We identified the essential protein Rv3603c as an orthologue of PanG KPR and demonstrated that a purified recombinant Rv3603c has KPR activity. Q112 inhibits Rv3603c, explaining the metabolomic changes. Surprisingly, pantothenate does not rescue Q112-treated bacteria, indicating that Q112 has an additional target(s). Q112-resistant strains contain loss-of-function mutations in the twin arginine translocase TatABC, further underscoring Q112's unique mechanism of action. Loss of TatABC causes a severe fitness deficit attributed to changes in nutrient uptake, suggesting that Q112 resistance may derive from a decrease in uptake.
Collapse
Affiliation(s)
- Michael J. Pepi
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shibin Chacko
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Gary M. Marqus
- Graduate Program in Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Vinayak Singh
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa and Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, 7701, South Africa
| | - Zhe Wang
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Kyle Planck
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Ryan T. Cullinane
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Penchala N. Meka
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
| | | | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Helena I.M. Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, United States
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, United States
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
22
|
Ottavi S, Scarry SM, Mosior J, Ling Y, Roberts J, Singh A, Zhang D, Goullieux L, Roubert C, Bacqué E, Lagiakos HR, Vendome J, Moraca F, Li K, Perkowski AJ, Ramesh R, Bowler MM, Tracy W, Feher VA, Sacchettini JC, Gold BS, Nathan CF, Aubé J. In Vitro and In Vivo Inhibition of the Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT by Amidinoureas. J Med Chem 2022; 65:1996-2022. [PMID: 35044775 PMCID: PMC8842310 DOI: 10.1021/acs.jmedchem.1c01565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).
Collapse
Affiliation(s)
- Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John Mosior
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, Texas 77843, United States
| | - Yan Ling
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Julia Roberts
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Amrita Singh
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - David Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | | | | | - Eric Bacqué
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | - H Rachel Lagiakos
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - Jeremie Vendome
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - Francesca Moraca
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew J Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Remya Ramesh
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew M Bowler
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Tracy
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Feher
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - James C Sacchettini
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, Texas 77843, United States
| | - Ben S Gold
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States.,Department of Medicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Abstract
Fatty acid (FA) biosynthesis plays a central role in the metabolism of living cells as building blocks of biological membranes, energy reserves of the cell, and precursors to second messenger molecules. In keeping with its central metabolic role, FA biosynthesis impacts several cellular functions and its misfunction is linked to disease, such as cancer, obesity, and non-alcoholic fatty liver disease. Cellular FA biosynthesis is conducted by fatty acid synthases (FAS). All FAS enzymes catalyze similar biosynthetic reactions, but the functional architectures adopted by these cellular catalysts can differ substantially. This variability in FAS structure amongst various organisms and the essential role played by FA biosynthetic pathways makes this metabolic route a valuable target for the development of antibiotics. Beyond cellular FA biosynthesis, the quest for renewable energy sources has piqued interest in FA biosynthetic pathway engineering to generate biofuels and fatty acid derived chemicals. For these applications, based on FA biosynthetic pathways, to succeed, detailed metabolic, functional and structural insights into FAS are required, along with an intimate knowledge into the regulation of FAS. In this review, we summarize our present knowledge about the functional, structural, and regulatory aspects of FAS.
Collapse
Affiliation(s)
- Aybeg N Günenc
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Graf
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
24
|
Pandey S, Singh A, Yang G, d’Andrea FB, Jiang X, Hartman TE, Mosior JW, Bourland R, Gold B, Roberts J, Geiger A, Tang S, Rhee K, Ouerfelli O, Sacchettini JC, Nathan CF, Burns-Huang K. Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis. Microbiol Spectr 2021; 9:e0092821. [PMID: 34550010 PMCID: PMC8557913 DOI: 10.1128/spectrum.00928-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphopantetheinyl hydrolase, PptH (Rv2795c), is a recently discovered enzyme from Mycobacterium tuberculosis that removes 4'-phosphopantetheine (Ppt) from holo-carrier proteins (CPs) and thereby opposes the action of phosphopantetheinyl transferases (PPTases). PptH is the first structurally characterized enzyme of the phosphopantetheinyl hydrolase family. However, conditions for optimal activity of PptH have not been defined, and only one substrate has been identified. Here, we provide biochemical characterization of PptH and demonstrate that the enzyme hydrolyzes Ppt in vitro from more than one M. tuberculosis holo-CP as well as holo-CPs from other organisms. PptH provided the only detectable activity in mycobacterial lysates that dephosphopantetheinylated acyl carrier protein M (AcpM), suggesting that PptH is the main Ppt hydrolase in M. tuberculosis. We could not detect a role for PptH in coenzyme A (CoA) salvage, and PptH was not required for virulence of M. tuberculosis during infection of mice. It remains to be determined why mycobacteria conserve a broadly acting phosphohydrolase that removes the Ppt prosthetic group from essential CPs. We speculate that the enzyme is critical for aspects of the life cycle of M. tuberculosis that are not routinely modeled. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, was the leading cause of death from an infectious disease before COVID, yet the in vivo essentiality and function of many of the protein-encoding genes expressed by M. tuberculosis are not known. We biochemically characterize M. tuberculosis's phosphopantetheinyl hydrolase, PptH, a protein unique to mycobacteria that removes an essential posttranslational modification on proteins involved in synthesis of lipids important for the bacterium's cell wall and virulence. We demonstrate that the enzyme has broad substrate specificity, but it does not appear to have a role in coenzyme A (CoA) salvage or virulence in a mouse model of TB.
Collapse
Affiliation(s)
- Shilpika Pandey
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Amrita Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Guangli Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Felipe B. d’Andrea
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Travis E. Hartman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John W. Mosior
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ronnie Bourland
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Annie Geiger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Su Tang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
25
|
Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol 2021; 105:7785-7799. [PMID: 34546406 DOI: 10.1007/s00253-021-11546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is a Gram-negative bacterium that is used to treat inflammatory bowel diseases. The probiotic character of EcN is not well-understood, but its ability to produce secondary metabolites plays an important role in its activity. The EcN genome encodes for an aryl polyene (APE) biosynthetic gene cluster (BGC), and APE products have a role in biofilm formation. We show here that this unusual polyketide assembly line synthase produces four APE molecules which are likely cis/trans isomers. Within the APE BGC, two acyl carrier proteins are involved in biosynthesis. Acyl carrier proteins require activation by post-translational modification with a phosphopantetheinyl transferase (PPTase). Through analysis of single, double, and triple mutants of three PPTases, the PPTase-BGC crosstalk relationship in EcN was characterized. Understanding PPTase-BGC crosstalk is important for the engineering of secondary metabolite production hosts and for targeting of PPTases with new antibiotics. KEY POINTS: • Escherichia coli Nissle 1917 biosynthesizes four aryl polyene isoforms. • Phosphopantetheinyl transferase crosstalk is important for biosynthesis.
Collapse
Affiliation(s)
- Courtney V Jones
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Brianna G Jarboe
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Haley M Majer
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
| |
Collapse
|
26
|
Yang L, Hu X, Chai X, Ye Q, Pang J, Li D, Hou T. Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discov Today 2021; 27:326-336. [PMID: 34537334 DOI: 10.1016/j.drudis.2021.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Tuberculosis (TB), an airborne infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of human morbidity and mortality worldwide. Given the alarming rise of resistance to anti-TB drugs and latent TB infection (LTBI), new targets and novel bioactive compounds are urgently needed for the treatment of this disease. We provide an overview of the recent advances in anti-TB drug discovery, emphasizing several newly validated targets for which an inhibitor has been reported in the past five years. Our review presents several attractive directions that have potential for the development of next-generation therapies.
Collapse
Affiliation(s)
- Liu Yang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xueping Hu
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qing Ye
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Lab of Computer-aided Design and Computer Graphics (CAD&CG), Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
27
|
Phosphopantetheinyl transferase binding and inhibition by amidino-urea and hydroxypyrimidinethione compounds. Sci Rep 2021; 11:18042. [PMID: 34508141 PMCID: PMC8433221 DOI: 10.1038/s41598-021-97197-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to their role in activating enzymes essential for bacterial viability and pathogenicity, phosphopantetheinyl transferases represent novel and attractive drug targets. In this work, we examined the inhibitory effect of the aminido-urea 8918 compound against the phosphopantetheinyl transferases PptAb from Mycobacterium abscessus and PcpS from Pseudomonas aeruginosa, two pathogenic bacteria associated with cystic fibrosis and bronchiectasis, respectively. Compound 8918 exhibits inhibitory activity against PptAb but displays no activity against PcpS in vitro, while no antimicrobial activity against Mycobacterium abscessus or Pseudomonas aeruginosa could be detected. X-ray crystallographic analysis of 8918 bound to PptAb-CoA alone and in complex with an acyl carrier protein domain in addition to the crystal structure of PcpS in complex with CoA revealed the structural basis for the inhibition mechanism of PptAb by 8918 and its ineffectiveness against PcpS. Finally, in crystallo screening of potent inhibitors from the National Cancer Institute library identified a hydroxypyrimidinethione derivative that binds PptAb. Both compounds could serve as scaffolds for the future development of phosphopantetheinyl transferases inhibitors.
Collapse
|
28
|
Abdelbary MMH, Wilms G, Conrads G. A New Species-Specific Typing Method for Salivarius Group Streptococci Based on the Dephospho-Coenzyme A Kinase ( coaE) Gene Sequencing. Front Cell Infect Microbiol 2021; 11:685657. [PMID: 34422679 PMCID: PMC8378900 DOI: 10.3389/fcimb.2021.685657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Viridans streptococci are a group of α-hemolytic streptococcal species. They are mainly commensals, most abundant in the mouth supporting oral health. But they also include important human pathogens such as Streptococcus pneumoniae. Identification and molecular typing of viridans group streptococci are challenging, especially for members of the salivarius group. In this study, we developed a single-locus molecular typing method that is able to differentiate among the highly phylogenetically related members of the salivarius group (S. salivarius, S. vestibularis and S. thermophilus) and might support differentiation in other groups as well. This typing approach is based on the amplification and sequence analysis of the housekeeping gene dephospho-coenzyme A kinase (coaE), a gene with unrecognized taxonomic potential to date. Here, we analysed coaE gene sequences of 154 publicly available genomes and of 30 salivarius group isolates of our own collection that together belong to 20 different gram-positive bacterial (sub) species. Our results revealed that the coaE phylogeny distinguished between streptococcal and non-streptococcal genomes and that coaE gene sequences were species-specific. In contrast to MALDI-TOF MS performance, the coaE typing was able to precisely identify the phylogenetically very closely related members of the salivarius group.
Collapse
Affiliation(s)
- Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Gerrit Wilms
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry and Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
29
|
Aldridge BB, Barros-Aguirre D, Barry CE, Bates RH, Berthel SJ, Boshoff HI, Chibale K, Chu XJ, Cooper CB, Dartois V, Duncan K, Fotouhi N, Gusovsky F, Hipskind PA, Kempf DJ, Lelièvre J, Lenaerts AJ, McNamara CW, Mizrahi V, Nathan C, Olsen DB, Parish T, Petrassi HM, Pym A, Rhee KY, Robertson GT, Rock JM, Rubin EJ, Russell B, Russell DG, Sacchettini JC, Schnappinger D, Schrimpf M, Upton AM, Warner P, Wyatt PG, Yuan Y. The Tuberculosis Drug Accelerator at year 10: what have we learned? Nat Med 2021; 27:1333-1337. [PMID: 34226736 PMCID: PMC10478072 DOI: 10.1038/s41591-021-01442-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Tuberculosis Drug Accelerator, an experiment designed to facilitate collaboration in TB drug discovery by breaking down barriers among competing labs and institutions, has reached the 10-year landmark. We review the consortium’s achievements, advantages and limitations and advocate for application of similar models to other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin-Jie Chu
- Global Health Drug Discovery Institute, Beijing, China
| | | | - Véronique Dartois
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, NJ, USA
| | - Ken Duncan
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY, USA
| | | | | | | | | | | | - Case W McNamara
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - Tanya Parish
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Kyu Y Rhee
- Weill Cornell Medicine, New York, NY, USA
| | | | | | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Betsy Russell
- Bill & Melinda Gates Medical Research Institute, Boston, MA, USA
| | | | | | | | | | | | - Peter Warner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Ying Yuan
- Global Health Drug Discovery Institute, Beijing, China
| |
Collapse
|
30
|
Sakallioglu IT, Barletta RG, Dussault PH, Powers R. Deciphering the mechanism of action of antitubercular compounds with metabolomics. Comput Struct Biotechnol J 2021; 19:4284-4299. [PMID: 34429848 PMCID: PMC8358470 DOI: 10.1016/j.csbj.2021.07.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB), one of the oldest and deadliest bacterial diseases, continues to cause serious global economic, health, and social problems. Current TB treatments are lengthy, expensive, and routinely ineffective against emerging drug resistant strains. Thus, there is an urgent need for the identification and development of novel TB drugs possessing comprehensive and specific mechanisms of action (MoAs). Metabolomics is a valuable approach to elucidating the MoA, toxicity, and potency of promising chemical leads, which is a critical step of the drug discovery process. Recent advances in metabolomics methodologies for deciphering MoAs include high-throughput screening techniques, the integration of multiple omics methods, mass spectrometry imaging, and software for automated analysis. This review describes recently introduced metabolomics methodologies and techniques for drug discovery, highlighting specific applications to the discovery of new antitubercular drugs and the elucidation of their MoAs.
Collapse
Affiliation(s)
- Isin T. Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, Lincoln, NE 68583-0905, USA
| | - Patrick H. Dussault
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
31
|
Brown AS, Owen JG, Jung J, Baker EN, Ackerley DF. Inhibition of Indigoidine Synthesis as a High-Throughput Colourimetric Screen for Antibiotics Targeting the Essential Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT. Pharmaceutics 2021; 13:pharmaceutics13071066. [PMID: 34371757 PMCID: PMC8309046 DOI: 10.3390/pharmaceutics13071066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
A recently-validated and underexplored drug target in Mycobacterium tuberculosis is PptT, an essential phosphopantetheinyl transferase (PPTase) that plays a critical role in activating enzymes for both primary and secondary metabolism. PptT possesses a deep binding pocket that does not readily accept labelled coenzyme A analogues that have previously been used to screen for PPTase inhibitors. Here we report on the development of a high throughput, colourimetric screen that monitors the PptT-mediated activation of the non-ribosomal peptide synthetase BpsA to a blue pigment (indigoidine) synthesising form in vitro. This screen uses unadulterated coenzyme A, avoiding analogues that may interfere with inhibitor binding, and requires only a single-endpoint measurement. We benchmark the screen using the well-characterised Library of Pharmaceutically Active Compounds (LOPAC1280) collection and show that it is both sensitive and able to distinguish weak from strong inhibitors. We further show that the BpsA assay can be applied to quantify the level of inhibition and generate consistent EC50 data. We anticipate these tools will facilitate both the screening of established chemical collections to identify new anti-mycobacterial drug leads and to guide the exploration of structure-activity landscapes to improve existing PPTase inhibitors.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.S.B.); (J.G.O.)
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.S.B.); (J.G.O.)
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
| | - James Jung
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Edward N. Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.S.B.); (J.G.O.)
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand; (J.J.); (E.N.B.)
- Correspondence: ; Tel.: +64-4-4635576
| |
Collapse
|
32
|
Evans JC, Murugesan D, Post JM, Mendes V, Wang Z, Nahiyaan N, Lynch SL, Thompson S, Green SR, Ray PC, Hess J, Spry C, Coyne AG, Abell C, Boshoff HIM, Wyatt PG, Rhee KY, Blundell TL, Barry CE, Mizrahi V. Targeting Mycobacterium tuberculosis CoaBC through Chemical Inhibition of 4'-Phosphopantothenoyl-l-cysteine Synthetase (CoaB) Activity. ACS Infect Dis 2021; 7:1666-1679. [PMID: 33939919 PMCID: PMC8205227 DOI: 10.1021/acsinfecdis.0c00904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Coenzyme A (CoA) is a ubiquitous cofactor present in all living cells and estimated to be required for up to 9% of intracellular enzymatic reactions. Mycobacterium tuberculosis (Mtb) relies on its own ability to biosynthesize CoA to meet the needs of the myriad enzymatic reactions that depend on this cofactor for activity. As such, the pathway to CoA biosynthesis is recognized as a potential source of novel tuberculosis drug targets. In prior work, we genetically validated CoaBC as a bactericidal drug target in Mtb in vitro and in vivo. Here, we describe the identification of compound 1f, a small molecule inhibitor of the 4'-phosphopantothenoyl-l-cysteine synthetase (PPCS; CoaB) domain of the bifunctional Mtb CoaBC, and show that this compound displays on-target activity in Mtb. Compound 1f was found to inhibit CoaBC uncompetitively with respect to 4'-phosphopantothenate, the substrate for the CoaB-catalyzed reaction. Furthermore, metabolomic profiling of wild-type Mtb H37Rv following exposure to compound 1f produced a signature consistent with perturbations in pantothenate and CoA biosynthesis. As the first report of a direct small molecule inhibitor of Mtb CoaBC displaying target-selective whole-cell activity, this study confirms the druggability of CoaBC and chemically validates this target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Dinakaran Murugesan
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - John M. Post
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Vitor Mendes
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Zhe Wang
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Navid Nahiyaan
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Sasha L. Lynch
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Stephen Thompson
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Simon R. Green
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Peter C. Ray
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Jeannine Hess
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Christina Spry
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Anthony G. Coyne
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Chris Abell
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Paul G. Wyatt
- Drug
Discovery Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1
5EH, Scotland, U.K.
| | - Kyu Y. Rhee
- Department
of Microbiology and Immunology, Weill Cornell
Medical College, New York, New York 10065, United States
| | - Tom L. Blundell
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Clifton E. Barry
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease,
National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT
Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence
for Biomedical TB Research & Wellcome Centre for Infectious Diseases
Research in Africa, Institute of Infectious Disease and Molecular
Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
33
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
34
|
The DnaK Chaperone System Buffers the Fitness Cost of Antibiotic Resistance Mutations in Mycobacteria. mBio 2021; 12:mBio.00123-21. [PMID: 33785614 PMCID: PMC8092207 DOI: 10.1128/mbio.00123-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chaperones aid in protein folding and maintenance of protein integrity. In doing so, they have the unique ability to directly stabilize resistance-conferring amino acid substitutions in drug targets and to counter the stress imparted by these substitutions, thus supporting heritable antimicrobial resistance (AMR). We asked whether chaperones support AMR in Mycobacterium smegmatis, a saprophytic model of Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). We show that DnaK associates with many drug targets and that DnaK associates more with AMR-conferring mutant RNA polymerase (RNAP) than with wild-type RNAP. In addition, frequency-of-resistance (FOR) and fitness studies reveal that the DnaK system of chaperones supports AMR in antimicrobial targets in mycobacteria, including RNAP and the ribosome. These findings highlight chaperones as potential targets for drugs to overcome AMR in mycobacteria, including M. tuberculosis, as well as in other pathogens.IMPORTANCE AMR is a global problem, especially for TB. Here, we show that mycobacterial chaperones support AMR in M. smegmatis, a nonpathogenic model of M. tuberculosis, the causative agent of TB. In particular, the mycobacterial DnaK system of chaperones supports AMR in the antimicrobial targets RNA polymerase and the ribosome. This is the first report showing a role for protein chaperones in mediating AMR in mycobacteria. Given the widespread role of protein chaperones in enabling genomic diversity, we anticipate that our findings can be extended to other microbes.
Collapse
|
35
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Libardo MDJ, Duncombe CJ, Green SR, Wyatt PG, Thompson S, Ray PC, Ioerger TR, Oh S, Goodwin MB, Boshoff HIM, Barry CE. Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chem Biol 2021; 28:1180-1191.e20. [PMID: 33765439 PMCID: PMC8379015 DOI: 10.1016/j.chembiol.2021.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 01/22/2023]
Abstract
Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.
Collapse
Affiliation(s)
- M Daben J Libardo
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline J Duncombe
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon R Green
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stephen Thompson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter C Ray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael B Goodwin
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clifton E Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7935, South Africa.
| |
Collapse
|
37
|
Saravanan P, Dusthackeer VNA, Rajmani RS, Mahizhaveni B, Nirmal CR, Rajadas SE, Bhardwaj N, Ponnuraja C, Bhaskar A, Hemanthkumar AK, Ramachandran G, Tripathy SP. Discovery of a highly potent novel rifampicin analog by preparing a hybrid of the precursors of the antibiotic drugs rifampicin and clofazimine. Sci Rep 2021; 11:1029. [PMID: 33441878 PMCID: PMC7806721 DOI: 10.1038/s41598-020-80439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). The present work reports the design and synthesis of a hybrid of the precursors of rifampicin and clofazimine, which led to the discovery of a novel Rifaphenazine (RPZ) molecule with potent anti-TB activity. In addition, the efficacy of RPZ was evaluated in-vitro using the reference strain Mtb H37Rv. Herein, 2,3 diamino phenazine, a precursor of an anti-TB drug clofazimine, was tethered to the rifampicin core. This 2,3 diamino phenazine did not have an inherent anti-TB activity even at a concentration of up to 2 µg/mL, while rifampicin did not exhibit any activity against Mtb at a concentration of 0.1 µg/mL. However, the synthesized novel Rifaphenzine (RPZ) inhibited 78% of the Mtb colonies at a drug concentration of 0.1 µg/mL, while 93% of the bacterial colonies were killed at 0.5 µg/mL of the drug. Furthermore, the Minimum Inhibitory Concentration (MIC) value for RPZ was 1 µg/mL. Time-kill studies revealed that all bacterial colonies were killed within a period of 24 h. The synthesized novel molecule was characterized using high-resolution mass spectroscopy and NMR spectroscopy. Cytotoxicity studies (IC50) were performed on human monocytic cell line THP-1, and the determined IC50 value was 96 µg/mL, which is non-cytotoxic.
Collapse
Affiliation(s)
| | | | - R S Rajmani
- Centre for Infectious Disease and Research, Indian Institute of Science, Bangalore, India
| | - B Mahizhaveni
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Christy R Nirmal
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | | | - Neerupma Bhardwaj
- Centre for Infectious Disease and Research, Indian Institute of Science, Bangalore, India
| | - C Ponnuraja
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Adhin Bhaskar
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - A K Hemanthkumar
- ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | | | | |
Collapse
|
38
|
Huke CD, Kays DL. Hydrofunctionalization reactions of heterocumulenes: Formation of C–X (X = B, N, O, P, S and Si) bonds by homogeneous metal catalysts. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Abstract
Enzymes fuel the biochemical activities of all cells. Their substrates and products thus represent a potential window into the physiologic state of a cell. Metabolomics focuses on the global, or systems-level, study of small molecules in a given biological system and has thus provided an experimental tool with which to study cellular physiology, including the biochemistry within pathogenic microorganisms. While metabolomic studies of Mycobacterium tuberculosis are still in their infancy, recent studies have begun to deliver unique insights into the composition, organization, activity, and regulation of the bacterium's physiologic network not accessible by other approaches. Here, we outline practical methods for the culture, collection, and analysis of metabolomic samples from M. tuberculosis that emphasize minimally perturbing sample handling, broad and native metabolite recovery, and sensitive, biologically agnostic metabolite detection.
Collapse
Affiliation(s)
- Kyle A Planck
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Kyu Rhee
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
41
|
Brown AS, Sissons JA, Owen JG, Ackerley DF. Directed Evolution of the Nonribosomal Peptide Synthetase BpsA to Enable Recognition by the Human Phosphopantetheinyl Transferase for Counter-Screening Antibiotic Candidates. ACS Infect Dis 2020; 6:2879-2886. [PMID: 33118808 DOI: 10.1021/acsinfecdis.0c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial type II phosphopantetheinyl transferases (PPTases), required for the activation of many cellular mega-synthases, have been validated as promising drug targets in several pathogens. Activation of the blue-pigment-synthesizing nonribosomal peptide synthetase BpsA by a target PPTase can be used to screen in vitro for new antibiotic candidates from chemical libraries. For a complete screening platform, there is a need to also counter-screen inhibitors for cross-reactivity with the endogenous human Type II PPTase (hPPTase), as this is a likely source of toxicity. As hPPTase is unable to recognize the PCP-domain of native BpsA, we used a combination of directed evolution and rational engineering to generate a triple-substitution variant that is able to be efficiently activated by hPPTase. Our engineered BpsA variant was able to readily detect inhibition of both hPPTase and the equivalent rat PPTase by broad-spectrum PPTase inhibitors, demonstrating its potential for high-throughput counter-screening of novel antibiotic candidates.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jack A. Sissons
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
42
|
Arora G, Bothra A, Prosser G, Arora K, Sajid A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 2020; 288:3375-3393. [PMID: 33021056 DOI: 10.1111/febs.15582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the primary causes of deaths due to infectious diseases. The current TB regimen is long and complex, failing of which leads to relapse and/or the emergence of drug resistance. There is a critical need to understand the mechanisms of resistance development. With increasing drug pressure, Mycobacterium tuberculosis (Mtb) activates various pathways to counter drug-related toxicity. Signaling modules steer the evolution of Mtb to a variant that can survive, persist, adapt, and emerge as a form that is resistant to one or more drugs. Recent studies reveal that about 1/3rd of the annotated Mtb proteome is modified post-translationally, with a large number of these proteins being essential for mycobacterial survival. Post-translational modifications (PTMs) such as phosphorylation, acetylation, and pupylation play a salient role in mycobacterial virulence, pathogenesis, and metabolism. The role of many other PTMs is still emerging. Understanding the signaling pathways and PTMs may assist clinical strategies and drug development for Mtb. In this review, we explore the contribution of PTMs to mycobacterial physiology, describe the related cellular processes, and discuss how these processes are linked to drug resistance. A significant number of drug targets, InhA, RpoB, EmbR, and KatG, are modified at multiple residues via PTMs. A better understanding of drug-resistance regulons and associated PTMs will aid in developing effective drugs against TB.
Collapse
Affiliation(s)
- Gunjan Arora
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ankur Bothra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gareth Prosser
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Kriti Arora
- Proteus Digital Health, Inc., Redwood City, CA, USA
| | - Andaleeb Sajid
- Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
43
|
Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med 2020; 12:eaaz6992. [PMID: 32581135 PMCID: PMC8177555 DOI: 10.1126/scitranslmed.aaz6992] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Insufficient development of new antibiotics and the rising resistance of bacteria to those that we have are putting the world at risk of losing the most widely curative class of medicines currently available. Preventing deaths from antimicrobial resistance (AMR) will require exploiting emerging knowledge not only about genetic AMR conferred by horizontal gene transfer or de novo mutations but also about phenotypic AMR, which lacks a stably heritable basis. This Review summarizes recent advances and continuing limitations in our understanding of AMR and suggests approaches for combating its clinical consequences, including identification of previously unexploited bacterial targets, new antimicrobial compounds, and improved combination drug regimens.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Julien Vaubourgeix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
44
|
Nguyen MC, Saurel O, Carivenc C, Gavalda S, Saitta S, Tran MP, Milon A, Chalut C, Guilhot C, Mourey L, Pedelacq JD. Conformational flexibility of coenzyme A and its impact on the post-translational modification of acyl carrier proteins by 4'-phosphopantetheinyl transferases. FEBS J 2020; 287:4729-4746. [PMID: 32128972 DOI: 10.1111/febs.15273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/20/2020] [Accepted: 02/29/2020] [Indexed: 12/01/2022]
Abstract
One central question surrounding the biosynthesis of fatty acids and polyketide-derived natural products is how the 4'-phosphopantetheinyl transferase (PPTase) interrogates the essential acyl carrier protein (ACP) domain to fulfill the initial activation step. The triggering factor of this study was the lack of structural information on PPTases at physiological pH, which could bias our comprehension of the mechanism of action of these important enzymes. Structural and functional studies on the family II PPTase PptAb of Mycobacterium abscessus show that pH has a profound effect on the coordination of metal ions and on the conformation of endogenously bound coenzyme A (CoA). The observed conformational flexibility of CoA at physiological pH is accompanied by a disordered 4'-phosphopantetheine (Ppant) moiety. Finally, structural and dynamical information on an isolated mycobacterial ACP domain, in its apo form and in complex with the activator PptAb, suggests an alternate mechanism for the post-translational modification of modular megasynthases.
Collapse
Affiliation(s)
- Minh Chau Nguyen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Saurel
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Coralie Carivenc
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sabine Gavalda
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Stéphane Saitta
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Mai Phuong Tran
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Milon
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
45
|
Mosior J, Bourland R, Soma S, Nathan C, Sacchettini J. Structural insights into phosphopantetheinyl hydrolase PptH from Mycobacterium tuberculosis. Protein Sci 2020; 29:744-757. [PMID: 31886928 PMCID: PMC7021004 DOI: 10.1002/pro.3813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022]
Abstract
The amidinourea 8918 was recently reported to inhibit the type II phosphopantetheinyl transferase (PPTase) of Mycobacterium tuberculosis (Mtb), PptT, a potential drug-target that activates synthases and synthetases involved in cell wall biosynthesis and secondary metabolism. Surprisingly, high-level resistance to 8918 occurred in Mtb harboring mutations within the gene adjacent to pptT, rv2795c, highlighting the role of the encoded protein as a potentiator of the bactericidal action of the amidinourea. Those studies revealed that Rv2795c (PptH) is a phosphopantetheinyl (PpT) hydrolase, possessing activity antagonistic with respect to PptT. We have solved the crystal structure of Mtb's phosphopantetheinyl hydrolase, making it the first phosphopantetheinyl (carrier protein) hydrolase structurally characterized. The 2.5 Å structure revealed the hydrolases' four-layer (α/β/β/α) sandwich fold featuring a Mn-Fe binuclear center within the active site. A structural similarity search confirmed that PptH most closely resembles previously characterized metallophosphoesterases (MPEs), particularly within the vicinity of the active site, suggesting that it may utilize a similar catalytic mechanism. In addition, analysis of the structure has allowed for the rationalization of the previously reported PptH mutations associated with 8918-resistance. Notably, differences in the sequences and predicted structural characteristics of the PpT hydrolases PptH of Mtb and E. coli's acyl carrier protein hydrolase (AcpH) indicate that the two enzymes evolved convergently and therefore are representative of two distinct PpT hydrolase families.
Collapse
Affiliation(s)
- John Mosior
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Ronnie Bourland
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Shivatheja Soma
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| | - Carl Nathan
- Department of Microbiology and ImmunologyWeill Cornell MedicineNew YorkNew York
| | - James Sacchettini
- Department of Biochemistry and BiophysicsTexas Agricultural and Mechanical UniversityCollege StationTexas
| |
Collapse
|
46
|
Huszár S, Chibale K, Singh V. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discov Today 2020; 25:772-780. [PMID: 32062007 PMCID: PMC7215093 DOI: 10.1016/j.drudis.2020.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
In 2018 1.2 million people died of tuberculosis. The ideal drug candidate should be active against replicating and nonreplicating Mycobacterium tuberculosis. New drug targets such as EfpA, PptT, ClpP, Pks13, DnaN and QcrB have been identified. Tuberculosis drug discovery is advancing with innovative screens.
Tuberculosis (TB) remains the leading cause of death from an infectious disease worldwide. TB therapy is complicated by the protracted treatment regimens, development of resistance coupled with toxicity and insufficient sterilizing capacity of current drugs. Although considerable progress has been made on establishing a TB drug pipeline, the high attrition rate reinforces the need to continually replenish the pipeline with high-quality leads that act through inhibition of novel targets. In this review, we highlight some of the key advances that have assisted TB drug discovery with novel chemical matter, targets and strategies – to fuel the TB drug pipeline.
Collapse
Affiliation(s)
- Stanislav Huszár
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
47
|
South AJ, Geer AM, Taylor LJ, Sharpe HR, Lewis W, Blake AJ, Kays DL. Iron(II)-Catalyzed Hydroamination of Isocyanates. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amy J. South
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ana M. Geer
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Laurence J. Taylor
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Helen R. Sharpe
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - William Lewis
- School of Chemistry, The University of Sydney, F11 Eastern Ave, Sydney, New South Wales 2006, Australia
| | - Alexander J. Blake
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Deborah L. Kays
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
48
|
Han X, Chen C, Yan Q, Jia L, Taj A, Ma Y. Action of Dicumarol on Glucosamine-1-Phosphate Acetyltransferase of GlmU and Mycobacterium tuberculosis. Front Microbiol 2019; 10:1799. [PMID: 31481936 PMCID: PMC6710349 DOI: 10.3389/fmicb.2019.01799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis is one of most pathogenic microorganisms in the world. Previously, the bifunctional enzyme GlmU with glucosamine-1-phosphate acetyltransferase activity and N-acetylglucosamine-1-phosphate uridyltransferase activity has been suggested as a potential drug target; therefore, discovering compounds targeting GlmU acetyltransferase is necessary. The natural products were tested for inhibition of GlmU acetyltransferase activity. We found that dicumarol exhibited inhibitory effects on GlmU acetyltransferase, with a concentration achieving a 50% inhibition (IC50) value of 4.608 μg/ml (13.7 μM). The inhibition kinetics indicated that dicumarol uncompetitively inhibited acetyl CoA and showed mixed-type inhibition for glucosamine-1-phosphate (GlcN-1-P). The activity of dicumarol against M. tuberculosis H37Ra was evaluated with a minimum inhibitory concentration (MIC) value of 6.25 μg/ml (18.55 μM) in the Alamar blue assay. Dicumarol also exhibited inhibitory effects on several clinically sensitive M. tuberculosis strains and drug-resistant strains, with a range of MIC value of 6.25 to >100 μg/ml. Dicumarol increased the sensitivity of anti-tuberculosis drugs (isoniazid and rifampicin) when dicumarol was present at a low concentration. The transcriptome and proteome data of M. tuberculosis H37Ra treated by dicumarol showed that the affected genes were associated with cell wall synthesis, DNA damage and repair, metabolic processes, and signal transduction. These results provided the mechanism of dicumarol inhibition against GlmU acetyltransferase and M. tuberculosis and also suggested that dicumarol is a potential candidate for TB treatment.
Collapse
Affiliation(s)
- Xiuyan Han
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Changming Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ayaz Taj
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
49
|
de Wet T, Warner DF, Mizrahi V. Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. Acc Chem Res 2019; 52:2340-2348. [PMID: 31361123 PMCID: PMC6704484 DOI: 10.1021/acs.accounts.9b00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is the leading cause of mortality globally resulting from an infectious disease, killing almost 1.6 million people annually and accounting for approximately 30% of deaths attributed to antimicrobial resistance (AMR). This despite the widespread administration of a neonatal vaccine, and the availability of an effective combination drug therapy against the causative agent, Mycobacterium tuberculosis (Mtb). Instead, TB prevalence worldwide is characterized by high-burden regions in which co-epidemics, such as HIV, and social and economic factors, undermine efforts to control TB. These elements additionally ensure conditions that favor the emergence of drug-resistant Mtb strains, which further threaten prospects for future TB control. To address this challenge, significant resources have been invested in developing a TB drug pipeline, an initiative given impetus by the recent regulatory approval of two new anti-TB drugs. However, both drugs have been reserved for drug-resistant disease, and the seeming inevitability of new resistance plus the recognized need to shorten the duration of chemotherapy demands continual replenishment of the pipeline with high-quality "hits" with novel mechanisms of action. This represents a massive challenge, which has been undermined by key gaps in our understanding of Mtb physiology and metabolism, especially during host infection. Whereas drug discovery for other bacterial infections can rely on predictive in vitro assays and animal models, for Mtb, inherent metabolic flexibility and uncertainties about the nutrients available to infecting bacilli in different host (micro)environments instead requires educated predictions or demonstrations of efficacy in animal models of arguable relevance to human disease. Even microbiological methods for enumeration of viable mycobacterial cells are fraught with complication. Our research has focused on elucidating those aspects of mycobacterial metabolism that contribute to the robustness of the bacillus to host immunological defenses and applied antibiotics and that, possibly, drive the emergence of drug resistance. This work has identified a handful of metabolic pathways that appear vulnerable to antibiotic targeting. Those highlighted, here, include the inter-related functions of pantothenate and coenzyme A biosynthesis and recycling and nucleotide metabolism-the last of which reinforces our view that DNA metabolism constitutes an under-explored area for new TB drug development. Although nonessential functions have traditionally been deprioritized for antibiotic development, a common theme emerging from this work is that these very functions might represent attractive targets because of the potential to cripple mechanisms critical to bacillary survival under stress (for example, the RelMtb-dependent stringent response) or to adaptability under unfavorable, potentially lethal, conditions including antibiotic therapy (for example, DnaE2-dependent SOS mutagenesis). The bar, however, is high: demonstrating convincingly the likely efficacy of this strategy will require innovative models of human TB disease. In the concluding section, we focus on the need for improved techniques to elucidate mycobacterial metabolism during infection and its impact on disease outcomes. Here, we argue that developments in other fields suggest the potential to break through this barrier by harnessing chemical-biology approaches in tandem with the most advanced technologies. As researchers based in a high-burden country, we are impelled to continue participating in this important endeavor.
Collapse
Affiliation(s)
- Timothy
J. de Wet
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Department
of Integrative Biomedical Sciences, University
of Cape Town, Observatory, Cape Town 7925, South
Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Wellcome
Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South
Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT
Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence
for Biomedical TB Research, Department of Pathology and Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South
Africa
- Wellcome
Centre for Infectious Disease Research in Africa, University of Cape Town, Observatory, Cape Town 7925, South
Africa
| |
Collapse
|
50
|
Mabhula A, Singh V. Drug-resistance in Mycobacterium tuberculosis: where we stand. MEDCHEMCOMM 2019; 10:1342-1360. [PMID: 31534654 PMCID: PMC6748343 DOI: 10.1039/c9md00057g] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB), an infectious disease caused by the bacterium Mycobacterium tuberculosis (Mtb), has burdened vulnerable populations in modern day societies for decades. Recently, this global health threat has been heightened by the emergence and propagation of multi drug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mtb that are resistant to current treatment regimens. The End-TB strategy, launched by the World Health Organization (WHO), aims to reduce TB-related deaths by 90%. This program encourages universal access to drug susceptibility testing, which is not widely available owing to the lack of laboratory capacity or resources in certain under-resourced areas. Clinical assays are further complicated by the slow growth of Mtb, resulting in the long turn-around time of tests which severely limits their application in guiding a patient's treatment regimen. This review provides a comprehensive overview of current TB treatments, mechanisms of resistance to anti-tubercular drugs and their diagnosis and the current pipeline of drugs targeting drug-resistant TB (DR-TB) with particular attention paid to ways in which drug-resistance is combated.
Collapse
Affiliation(s)
- Amanda Mabhula
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , Department of Chemistry and Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa .
| | - Vinayak Singh
- South African Medical Research Council Drug Discovery and Development Research Unit , Department of Chemistry and Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa .
- Drug Discovery and Development Centre (H3D) , Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|