1
|
Zhao Y, Zhou L, Xiang D, Guo Z, Wang C, Song Q. Facile and enlargeable preparation of piezocatalytic CaCO 3 for efficient degradation of organic dyes. ENVIRONMENTAL RESEARCH 2025; 267:120649. [PMID: 39694436 DOI: 10.1016/j.envres.2024.120649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Piezoelectric catalysis has emerged as a promising green technology for implementing pollutant degradation and H2O2 production. The use of environment friendly and abundantly available piezocatalysts is critical for practical applications. This work presents the preparation of various morphological CaCO3 via a simple precipitation method in the absence or presence of different templates. The piezoelectric force microscopy (PFM) characterization demonstrates that the porous CaCO3 has excellent piezoelectric activity, which also demonstrates its efficient production of H2O2 and degradation of organic dyes. A production rate of H2O2 of 331 μmol g-1·h-1 and a degradation rate of 0.22535 min-1 for 5 mg/L Rhodamine B (RhB) were achieved under conventional ultrasonic agitation. The mechanistic investigations along with the H218O control experiment revealed that the piezocatalytic production of H2O2 mainly follows the oxygen reduction reaction (ORR) pathway. Furthermore, this research work has successfully achieved the large-scale preparation of CaCO3, and the properties of the prepared CaCO3 remain stable during the expansion of the preparation scale. Considering the simple, cost-effective and readily-scale-up preparation, the piezocatalytic CaCO3 should have a great potential for the degradation of organic dyes.
Collapse
Affiliation(s)
- Yunong Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi, 214122, PR China
| | - Lin Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi, 214122, PR China
| | - Dongliang Xiang
- Jiangsu Snow Leopard Daily Chemical Co.Ltd, Wuxi, 214122, PR China
| | - Zhanghong Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi, 214122, PR China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi, 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
2
|
Ma Y, Chen W, Xu S, Zou Z, Xie J, Meng J, Zhang P, Fu Z. Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7510-7520. [PMID: 39873205 DOI: 10.1021/acsami.4c21361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments. Such NIM-UST films were fabricated by using a simple and effective magnesium ion (Mg2+)-assisted dual-side mineralization strategy. The NIM-UST films exhibit high inorganic content (87 wt %), among which the aragonite fractions can reach 98 wt %. As a result, the modulus and hardness of the resulting NIM-UST films increased by 154% (from 8.17 ± 0.37 GPa to 20.78 ± 0.94 GPa) and 190% (from 0.70 ± 0.02 GPa to 2.03 ± 0.08 GPa), respectively, compared to those of the single-side NIM-UST films. And both surfaces of the resulting NIM-UST film maintain excellent underwater superoleophobicity (oil contact angle > 150°) and low oil adhesive force (<4 μN) under conditions of high-salt solutions, high temperatures, long-term immersion in seawater, and sand shock. In addition, the NIM-UST films can also be assembled into bulk materials with high hardness (2.63 ± 0.03 GPa) and flexural strength (109.55 ± 5.91 MPa) as next-generation structural materials. The feasible strategy developed in this work can promote the development and practical application of NIM-UST films.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Wei Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiqing Xu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengchao Zhang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| | - Zhengyi Fu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China
| |
Collapse
|
3
|
Wang X, Meng L, An X, Lian B. Quantitative study of competitive and selective immobilization of Pb(II)-Ni(II)-Zn(II)-MB(I) by biogenic monohydrocalcite composite and its potential environmental effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177545. [PMID: 39542278 DOI: 10.1016/j.scitotenv.2024.177545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The study of the competitive and selective immobilization properties and mechanisms of pollutants immobilized by metastable biogenic monohydrocalcite is of great importance for the assessment of the eco-environmental effects and applications of hydrated calcite at the Earth's poles. Microbial culture technology was used to induce the synthesis of biogenic monohydrocalcite (BMHC), and mineral characterization, batch adsorption experiments and chemical analyses were further used to investigate the sequestration characteristics, action mechanism, and environmental effects of BMHC on Pb(II)-Ni(II)-Zn(II)-methylene blue (MB) compound pollution. The results show that BMHC is an organic-inorganic mineral composite (about 3.60 % organic matter, Mg/Ca ≈ 0.07). The adsorption and immobilization processes of Pb(II), Ni(II), Zn(II), and MB(I) by BMHC are all better fitted by the pseudo-second-order kinetic equation. The passivation ability of BMHC for contaminants is ranked as Pb(II) ≫ Zn(II) > Ni(II) > MB(I). BMHC exhibits an excellent selective sequestration capacity of Pb(II) (k ≥ 31.89), which is related to the solubility product of the carbonate minerals, the initial concentration of Pb(II), ion exchange and mineral phase transformation. Based on these results, it is proposed that the synthesis and transformation of monohydrocalcite under global warming at the Earth's poles may influence the biogeochemical cycling of environmental pollutants. The study provides a theoretical basis for the environmental effects and geochemical action of biogenic monohydrocalcite and its applications.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lei Meng
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiaochi An
- School of Medical Information, Wannan Medical College, Wuhu 241002, China
| | - Bin Lian
- College of Life Science, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Liu Y, Gao X, Li Y, Gao A, Zheng Z, Wei J, Yang H, Ping H, Xie H, Wang H, Wang W, Fu Z. Intrafibrillar calcium carbonate mineralization of electrospinning polyvinyl alcohol/collagen films with improved mechanical and bioactive properties. J Mater Chem B 2024; 13:312-325. [PMID: 39540843 DOI: 10.1039/d4tb01472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Collagen films play an essential role in guided bone-regeneration (GBR) techniques, which create space, promote cell adhesion, and induce osteogenic differentiation. It is therefore crucial to design appropriate GBR films to facilitate bone regeneration. However, current electrospun collagen scaffolds used as bioactive materials have limited clinical applications due to their poor mechanical properties. In this study, polyvinyl alcohol (PVA)/collagen (Col) films were electrospun by mixing PVA and type I collagen solution. For the first time, the intrafibrillar mineralization of aragonite nanocrystals within the PVA/Col fibrils was achieved, resulting in the formation of a hierarchical, bioactive film. The PVA/Col-CaCO3 film exhibited good mechanical properties, with hardness and Young's modulus values of 211.6 ± 0.1 MPa and 5.6 ± 1.7 GPa, respectively. Furthermore, bone marrow mesenchymal stem cells (BMSCs) inoculated onto the PVA/Col-CaCO3 film demonstrated robust adhesion and proliferation. The mineralized fibrils effectively stimulated the growth of BMSCs while suppressing cell apoptosis. Besides, the PVA/Col-CaCO3 film significantly induced the osteogenic differentiation of BMSCs, revealing its potential biomedical applications in hard tissue engineering.
Collapse
Affiliation(s)
- Yin Liu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Gao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430070, China
| | - Yuqi Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Anqi Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhuozhi Zheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingjiang Wei
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430070, China
| | - Hang Ping
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
5
|
Yu W, Huang X, Zhou L, Zhang L, Zheng X, Luo W. Effects of trehalose and sodium alginate on microbially induced carbonate precipitation. ENVIRONMENTAL RESEARCH 2024; 263:120145. [PMID: 39401606 DOI: 10.1016/j.envres.2024.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The process of altering the microbial-induced carbonate precipitation (MICP) by adding additives has been extensively studied. The impact of polysaccharides, as an important component of bacteria, still requires deeper exploration on MICP. This work thus focuses on two types of sugars, sodium alginate (SA) and trehalose (Tre), to explore their effects on biomineralization of carbonate induced by Bacillus pumilus Z6. The results show that B. pumilus Z6 can raise the environmental pH and increase the supersaturation of carbonate and bicarbonate ions through carbonic anhydrase. The presence of organic functional groups and the negative carbon isotope signatures in minerals provide evidence of microbial involvement. Tre and SA do not change the mineral phase, which mainly consists of hollow rice-like granular vaterite and irregular calcite. Tre is conducive to the formation of calcite, whereas the carboxyl groups in SA contribute to the stability of vaterite. Both Tre and SA enhance the removal rate of calcium ions; however, SA is more effective for this purpose. Furthermore, mineralization experiments with calcium alginate gel tablets indicate that SA can attract calcium carbonate to nucleate on its surface. This research offers significant insights into biomineralization processes and introduces novel perspectives for advancing MICP technology.
Collapse
Affiliation(s)
- Wenwen Yu
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaowen Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Limin Zhou
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiangmin Zheng
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Weijun Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
6
|
Zhang H, Yang Y, Chen F, Liu D, Zhu R, Wu S. Removal and recovery of phosphorus by a long–term stabilized amorphous calcium carbonate. Sep Purif Technol 2024; 350:127956. [DOI: 10.1016/j.seppur.2024.127956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Wang Q, Huang W, Wang J, Long F, Fu Z, Xie J, Zou Z. Stabilization and crystallization mechanism of amorphous calcium carbonate. J Colloid Interface Sci 2024; 680:24-35. [PMID: 39550850 DOI: 10.1016/j.jcis.2024.11.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
Amorphous phases hold great promise in diverse applications and are widely used by organisms as precursors to produce biominerals with complex morphologies and excellent properties. However, the stabilization and crystallization mechanisms of amorphous phases are not fully understood, especially in the presence of additives. Here, using amorphous calcium carbonate (ACC) as the model system, we systematically investigate the crystallization pathways of amorphous phases in the presence of poly(Aspartic acid) (pAsp) with various chain lengths. Results show that pure ACC transforms into a mixture of calcite and vaterite via the typical dissolution-recrystallization mechanism and 3 % of Asp monomer exhibits negligible effect. However, pAsp with a chain length of only 10 strongly inhibits the aggregation-induced formation of vaterite spheres while slightly delaying the growth of calcite via classical ion-by-ion attachment, thus kinetically favoring the formation of calcite. Moreover, the inhibition effect of calcite growth from solution ions becomes more prominent with the increase of pAsp chain length or concentration, which significantly improves the stability of the amorphous phase and leads to crystallization of spherical or elongated calcite via the nonclassical particle attachment mechanism after pseudomorphic transformation of ACC into vaterite nanoparticles. These results allow us to reach a more comprehensive understanding of the stabilization and crystallization mechanism of ACC in the presence of additives and provide guidelines for controlling the polymorph selection and morphology of crystals during the crystallization of amorphous precursors.
Collapse
Affiliation(s)
- Qihang Wang
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wenyang Huang
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China
| | - Jilin Wang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Fei Long
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
8
|
Huang S, Liu T, Liu Y, Duan Y, Zhang J. Gradient heating activated ammonium persulfate oxidation for efficient preparation of high-quality chitin nanofibers. Carbohydr Polym 2024; 340:122308. [PMID: 38858009 DOI: 10.1016/j.carbpol.2024.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
APS is a cheap and eco-friendly oxidant which enables one-step extraction of nanochitin (NCh) from fishery wastes. However, it is challenging to improve the preparation efficiency and NCh quality simultaneously, owing to the uneven or uncontrollable oxidation. Herein, we propose a simple and controllable way to isolate chitin nanofibers (ChNFs) from squid pen by gradient heating activated (GHA)- ammonium persulfate (APS) oxidation. Compared to the isothermal activated (ITA)-APS oxidation, our strategy reduced the mass ratio of squid pen to APS from 1:45 to 1:6 and reaction time from 15 h to 8 h. Meanwhile, the as-prepared ChNFs exhibited high yield (91.5 %), light transmittance (98 % at 500 nm), crystallinity index (96.9 %), and carboxyl content (1.53 mmol/g). GHA-APS oxidation involved multiple continuous heating and isothermal stages. The former stimulates a moderate activation of APS and enhances the oxidation rate, while the latter provides a duration for surface chemistry. This non-isothermal heating facilitates the continuous decomposition of APS at a relatively high and consistent rate, thereby enhances its oxidation efficiency. Furthermore, green assessments indicate this method is simple, time-saving, eco-friendly and cost-effective. Overall, this work introduces a novel perspective for the industrial extraction of high-efficiency and high-quality nanomaterials.
Collapse
Affiliation(s)
- Shasha Huang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Tianjiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yunxiao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
9
|
Ma Q, Steiger S. Neutrophils and extracellular traps in crystal-associated diseases. Trends Mol Med 2024; 30:809-823. [PMID: 38853086 DOI: 10.1016/j.molmed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
Crystalline material can cause a multitude of acute and chronic inflammatory diseases, such as gouty arthritis, silicosis, kidney disease, and atherosclerosis. Crystals of various types are thought to cause similar inflammatory responses, including the release of proinflammatory mediators and formation of neutrophil extracellular traps (NETs), processes that further promote necroinflammation and tissue damage. It has become apparent that the intensity of inflammation and the related mechanisms of NET formation and neutrophil death in crystal-associated diseases can vary depending on the crystal type, amount, and site of deposition. This review details new mechanistic insights into crystal biology, highlights the differential effects of various crystals on neutrophils and extracellular trap (ET) formation, and discusses treatment strategies and potential future approaches for crystal-associated disorders.
Collapse
Affiliation(s)
- Qiuyue Ma
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, Harbin, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
10
|
Lu Y, Yi L, Fu Z, Xie J, Cheng Q, Fu Z, Zou Z. Nonclassical crystallization of goethite nanorods in limpet teeth by self-assembly of silica-rich nanoparticles reveals structure-mechanical property relations. J Colloid Interface Sci 2024; 669:64-74. [PMID: 38705113 DOI: 10.1016/j.jcis.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
Collapse
Affiliation(s)
- Yan Lu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Luyao Yi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zeyao Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qunfeng Cheng
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaoyong Zou
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
11
|
Jembere AL, Genet MB, Sintayehu B. Evaluation of precipitated CaCO 3 produced from locally available limestone as a reinforcement filler for PVC pipe. Sci Rep 2024; 14:11234. [PMID: 38755188 PMCID: PMC11099005 DOI: 10.1038/s41598-024-58594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/01/2024] [Indexed: 05/18/2024] Open
Abstract
The current experimental work aimed at developing PCC through two major process steps: dissolution and precipitation, using raw materials domestically available as SL, which are intensively used in construction inputs. The pH level was the decisive parameter used to determine the time required to complete the dissolution and carbonation processes during precipitation. The optimal pH levels were found to be 13 for dissolution and 7.1 for precipitation, respectively. The produced PCC was characterized based on chemical analysis, crystallinity, and morphology, showing an increment of CaCO3 content exceeding 99%, sharper crystal peaks, and predominantly calcite PCC. The compatibility of the PCC was assessed by incorporating 25%, 50%, 75%, and 100% of PCC with commercial filler, followed by selected mechanical tests, such as stress at yield, density, and elongation at break. The results indicated that mixing ratios of 25%, 50%, and 75% of PCC with the commercial filler met the standards, with stress at a yield above 45 MPa and density within the range of 1.35 to 1.46 g/cm3. However, complete substitution slightly lowered these properties. Nevertheless, the elongation at break was acceptable at all treatment levels.
Collapse
Affiliation(s)
- Addis Lemessa Jembere
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Melkamu Birlie Genet
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Bantelay Sintayehu
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
12
|
Shang LM, Li SC, Jiang J, Mao LB, Yu SH. Bioinspired High-Magnesium Calcite for Efficiently Reducing Chemical Oxygen Demand in Lake Water. SMALL METHODS 2024; 8:e2300236. [PMID: 37415544 DOI: 10.1002/smtd.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Organic matter accumulation in water can cause serious problems such as oxygen depletion and quality deterioration of waters. While calcium carbonate has been used as green and low-cost adsorbent for water treatment, its efficiency in reducing the chemical oxygen demand (COD) of water, which is a measure of organic pollution, is restrained by the limited specific surface area and chemical activity. Herein, inspired by the high-magnesium calcite (HMC) found in biological materials, a feasible method to synthesize fluffy dumbbell-like HMC with large specific surface area is reported. The magnesium inserting increases the chemical activity of the HMC moderately but without lowering its stability too much. Therefore, the crystalline HMC can retain its phase and morphology in aqueous environment for hours, which allows the establishment of adsorption equilibrium between the solution and the adsorbent that retains its initial large specific surface area and improved chemical activity. Consequently, the HMC exhibits notably enhanced capability in reducing the COD of lake water polluted by organics. This work provides a synergistic strategy to rationally design high-performance adsorbents by simultaneously optimizing the surface area and steering the chemical activity.
Collapse
Affiliation(s)
- Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Jiang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
13
|
Liu JH, Huang C, Wu H, Long Y, Tang X, Li H, Shen J, Zhou B, Zhang Y, Xu Z, Fan J, Zeng XC, Lu J, Li YY. From salt water to bioceramics: Mimic nature through pressure-controlled hydration and crystallization. SCIENCE ADVANCES 2024; 10:eadk5047. [PMID: 38416835 PMCID: PMC10901369 DOI: 10.1126/sciadv.adk5047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Modern synthetic technology generally invokes high temperatures to control the hydration level of ceramics, but even the state-of-the-art technology can still only control the overall hydration content. Magically, natural organisms can produce bioceramics with tailorable hydration profiles and crystallization traits solely from amorphous precursors under physiological conditions. To mimic the biomineralization tactic, here, we report pressure-controlled hydration and crystallization in fabricated ceramics, solely from the amorphous precursors of purely inorganic gels (PIGs) synthesized from biocompatible aqueous solutions with most common ions in organisms (Ca2+, Mg2+, CO32-, and PO43-). Transparent ceramic tablets are directly produced by compressing the PIGs under mild pressure, while the pressure regulates the hydration characteristics and the subsequent crystallization behaviors of the synthesized ceramics. Among the various hydration species, the moderately bound and ordered water appears to be a key in regulating the crystallization rate. This nature-inspired study offers deeper insights into the magic behind biomineralization.
Collapse
Affiliation(s)
- Jia-Hua Liu
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Haikun Wu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Yunchen Long
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinxue Tang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Hongkun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Junda Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yibo Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138637, Singapore
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jian Lu
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute and Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
| | - Yang Yang Li
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute and Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
| |
Collapse
|
14
|
Schmidt CA, Tambutté E, Venn AA, Zou Z, Castillo Alvarez C, Devriendt LS, Bechtel HA, Stifler CA, Anglemyer S, Breit CP, Foust CL, Hopanchuk A, Klaus CN, Kohler IJ, LeCloux IM, Mezera J, Patton MR, Purisch A, Quach V, Sengkhammee JS, Sristy T, Vattem S, Walch EJ, Albéric M, Politi Y, Fratzl P, Tambutté S, Gilbert PUPA. Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals. Nat Commun 2024; 15:1812. [PMID: 38418834 PMCID: PMC10901822 DOI: 10.1038/s41467-024-46117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Calcium carbonate (CaCO3) is abundant on Earth, is a major component of marine biominerals and thus of sedimentary and metamorphic rocks and it plays a major role in the global carbon cycle by storing atmospheric CO2 into solid biominerals. Six crystalline polymorphs of CaCO3 are known-3 anhydrous: calcite, aragonite, vaterite, and 3 hydrated: ikaite (CaCO3·6H2O), monohydrocalcite (CaCO3·1H2O, MHC), and calcium carbonate hemihydrate (CaCO3·½H2O, CCHH). CCHH was recently discovered and characterized, but exclusively as a synthetic material, not as a naturally occurring mineral. Here, analyzing 200 million spectra with Myriad Mapping (MM) of nanoscale mineral phases, we find CCHH and MHC, along with amorphous precursors, on freshly deposited coral skeleton and nacre surfaces, but not on sea urchin spines. Thus, biomineralization pathways are more complex and diverse than previously understood, opening new questions on isotopes and climate. Crystalline precursors are more accessible than amorphous ones to other spectroscopies and diffraction, in natural and bio-inspired materials.
Collapse
Affiliation(s)
- Connor A Schmidt
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Alexander A Venn
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Zhaoyong Zou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | | | - Laurent S Devriendt
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hans A Bechtel
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Carolyn P Breit
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor L Foust
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrii Hopanchuk
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Connor N Klaus
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Isaac J Kohler
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Jaiden Mezera
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Madeline R Patton
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Annie Purisch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Virginia Quach
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Tarak Sristy
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Shreya Vattem
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Evan J Walch
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA
| | - Marie Albéric
- Sorbonne Université/CNRS, Laboratoire de chimie de la matière condensée, 75005, Paris, France
| | - Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Sylvie Tambutté
- Department of Marine Biology, Centre Scientifique de Monaco, 98000, Monaco, Principality of Monaco
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI, 53706, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
15
|
Claesson PM, Wojas NA, Corkery R, Dedinaite A, Schoelkopf J, Tyrode E. The dynamic nature of natural and fatty acid modified calcite surfaces. Phys Chem Chem Phys 2024; 26:2780-2805. [PMID: 38193529 DOI: 10.1039/d3cp04432g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Calcium carbonate, particularly in the form of calcite, is an abundant mineral widely used in both human-made products and biological systems. The calcite surface possesses a high surface energy, making it susceptible to the adsorption of organic contaminants. Moreover, the surface is also reactive towards a range of chemicals, including water. Consequently, studying and maintaining a clean and stable calcite surface is only possible under ultrahigh vacuum conditions and for limited amounts of time. When exposed to air or solution, the calcite surface undergoes rapid transformations, demanding a comprehensive understanding of the properties of calcite surfaces in different environments. Similarly, attention must also be directed towards the kinetics of changes, whether induced by fluctuating environments or at constant condition. All these aspects are encompassed in the expression "dynamic nature", and are of crucial importance in the context of the diverse applications of calcite. In many instances, the calcite surface is modified by adsorption of fatty acids to impart a desired nonpolar character. Although the binding between carboxylic acid groups and calcite surfaces is strong, the fatty acid layer used for surface modification undergoes significant alterations when exposed to water vapour and liquid water droplets. Therefore, it is also crucial to understand the dynamic nature of the adsorbed layer. This review article provides a comprehensive overview of the current understanding of both the dynamics of the calcite surface as well as when modified by fatty acid surface treatments.
Collapse
Affiliation(s)
- Per M Claesson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| | - Natalia A Wojas
- RISE Research Institutes of Sweden, Division of Bioeconomy and Health - Material and Surface Design, Drottning Kristinas väg 61B, SE-114 28 Stockholm, Sweden
| | - Robert Corkery
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| | - Andra Dedinaite
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Box 5604, SE-114 86 Stockholm, Sweden
| | | | - Eric Tyrode
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
16
|
Clarà Saracho A, Marek EJ. Uncovering the Dynamics of Urease and Carbonic Anhydrase Genes in Ureolysis, Carbon Dioxide Hydration, and Calcium Carbonate Precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1199-1210. [PMID: 38173390 DOI: 10.1021/acs.est.3c06617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The hydration of CO2 suffers from kinetic inefficiencies that make its natural trapping impractically sluggish. However, CO2-fixing carbonic anhydrases (CAs) remarkably accelerate its equilibration by 6 orders of magnitude and are, therefore, "ideal" catalysts. Notably, CA has been detected in ureolytic bacteria, suggesting its potential involvement in microbially induced carbonate precipitation (MICP), yet the dynamics of the urease (Ur) and CA genes remain poorly understood. Here, through the use of the ureolytic bacteriumSporosarcina pasteurii, we investigate the differing role of Ur and CA in ureolysis, CO2 hydration, and CaCO3 precipitation with increasing CO2(g) concentrations. We show that Ur gene up-regulation coincides with an increase in [HCO3-] following the hydration of CO2 to HCO3- by CA. Hence, CA physiologically promotes buffering, which enhances solubility trapping and affects the phase of the CaCO3 mineral formed. Understanding the role of CO2 hydration on the performance of ureolysis and CaCO3 precipitation provides essential new insights, required for the development of next-generation biocatalyzed CO2 trapping technologies.
Collapse
Affiliation(s)
- Alexandra Clarà Saracho
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 301 E Dean Keeton St C1700, Austin, Texas 78712, United States
| | - Ewa J Marek
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
17
|
Ma Z, Kong K, Yin Y, Guo Z, Ma X, Lin Q, Wang J, Shen Y, Lu X, Xu X, Kong X, Liu Z, Tang R. High Mechanical Strength Alloy-like Minerals Prepared by Inorganic Ionic Co-cross-linking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308017. [PMID: 38009645 DOI: 10.1002/adma.202308017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Alloys often combine different metals to generate superior mechanical properties. However, it is challenging to prepare high mechanical strength minerals with similar strategies. Using calcium carbonate (CaC) and calcium phosphate (CaP) as examples, this work synthesizes a group of compounds with the chemical formulas Ca(CO3 )x (PO4 )2(1- x )/3 (0 < x < 1, CaCPs) by cross-linking ionic oligomers. Unlike mixtures, these CaCPs exhibit a single temperature for the phase transition from amorphous to crystallized CaC (calcite) and CaP (hydroxyapatite). By heat-induced synchronous crystallization, dual-phase CaC/CaP with continuous crystallized boundaries are resembled to alloy-like minerals (ALMs). The mechanical properties of the ALMs are adjusted by tailoring their chemical compositions to reach a hardness of 5.6 GPa, which exceed those of control calcite and hydroxyapatite samples by 430% and 260%, respectively. This strategy expands the chemical scope of inorganic materials and holds promise for preparing high-performance minerals.
Collapse
Affiliation(s)
- Zaiqiang Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhengxi Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Qingyun Lin
- Center of Electron Microscopy, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yinlin Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Centre for Molecular Sciences, Westlake University, Hangzhou, 310024, China
| | - Xurong Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, 310027, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
18
|
Das A, Kundu S, Gupta M, Mukherjee A. Synthesis of porous calcium-guar gum benzoate nano-biohybrids for sorptive removal of congo red and phosphates from water. Int J Biol Macromol 2023; 253:126662. [PMID: 37673147 DOI: 10.1016/j.ijbiomac.2023.126662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
This work aims to develop an eco-sound nano-bio-hybrid sorbent using sustainable materials for sorptive elimination of congo red and phosphates from aquatic environment. An amphipathic biopolymer derivative, high DS guar gum benzoate (GGBN) was used for entrapment of as synthesized calcium carbonate nanoparticles using solvent diffusion nano-precipitation technique. Designer nano-biohybrids were developed upon experimenting with various materials stoichiometry. SEM, XRD and EDX studies confirmed near-uniform impregnation of rhombohedral calcium carbonate crystals throughout the biopolymer matrix. Average pore size distribution and surface area of final product Ca-GGBNC, were estimated from NDLFT and BET methods respectively. Analysis of adsorption findings acquired at study temperature 27 ± 2 °C showed that the maximum adsorption capacity of Ca-GGBNC recorded qmax, 333.33 mg/g for congo red azo dye and that for phosphate was at 500 mg/g. Adsorptive removal was noted and both components followed pseudo second order kinetics. Intra-particle diffusion kinetics investigation disclosed that the boundary layer effect was prominent and the adsorption rates were not solely directed by the diffusion stage. Activation energy, Ea was to be estimated using Arrhenius equation at 56.136 and 47.015 KJ/mol for congo red and phosphates respectively. The calculated thermodynamic parameters(ΔG°, ΔH°, and ΔS°) revealed the spontaneous, feasible and endothermic sorption process. Owing to active surface area, spherical size, functional moiety and porous network, antibacterial properties of nanobiohybrid were persistent and MIC against E. coli and S. aureus were recorded at 200 μg/mL and 350 μg/mL respectively.
Collapse
Affiliation(s)
- Aatrayee Das
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| | - Sonia Kundu
- Department of Food Science and Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 741249, West Bengal, India
| | - Mradu Gupta
- Dravyaguna Department, Institute of Post Graduate Ayurvedic Education and Research, 294/3/1, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Arup Mukherjee
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, Nadia 741249, West Bengal, India
| |
Collapse
|
19
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
20
|
San X, Hu J, Chen M, Niu H, Smeets PJM, Malliakas CD, Deng J, Koo K, Dos Reis R, Dravid VP, Hu X. Unlocking the mysterious polytypic features within vaterite CaCO 3. Nat Commun 2023; 14:7858. [PMID: 38030637 PMCID: PMC10687017 DOI: 10.1038/s41467-023-43625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023] Open
Abstract
Calcium carbonate (CaCO3), the most abundant biogenic mineral on earth, plays a crucial role in various fields such as hydrosphere, biosphere, and climate regulation. Of the four polymorphs, calcite, aragonite, vaterite, and amorphous CaCO3, vaterite is the most enigmatic one due to an ongoing debate regarding its structure that has persisted for nearly a century. In this work, based on systematic transmission electron microscopy characterizations, crystallographic analysis and machine learning aided molecular dynamics simulations with ab initio accuracy, we reveal that vaterite can be regarded as a polytypic structure. The basic phase has a monoclinic lattice possessing pseudohexagonal symmetry. Direct imaging and atomic-scale simulations provide evidence that a single grain of vaterite can contain three orientation variants. Additionally, we find that vaterite undergoes a second-order phase transition with a critical point of ~190 K. These atomic scale insights provide a comprehensive understanding of the structure of vaterite and offer advanced perspectives on the biomineralization process of calcium carbonate.
Collapse
Affiliation(s)
- Xingyuan San
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Junwei Hu
- State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingyi Chen
- State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haiyang Niu
- State Key Laboratory of Solidification Processing, International Center for Materials Discovery, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Paul J M Smeets
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | | | - Jie Deng
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Kunmo Koo
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Roberto Dos Reis
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA.
| | - Xiaobing Hu
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
21
|
Yang B, Jiang X, Zheng Y, Zhou L, Yan J, Zhuang Z, Yu Y. Localized Phase Transformation Triggering Lattice Matching of Metal Oxide and Carbonate Hydroxide for Efficient CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302683. [PMID: 37466274 DOI: 10.1002/smll.202302683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Indexed: 07/20/2023]
Abstract
Orderly heterostructured catalysts, which integrate nanomaterials of complementary structures and dimensions into single-entity structures, have hold great promise for sustainability applications. In this work, it is showcased that air as green reagent can trigger in situ localized phase transformation and transform the metal carbonate hydroxide nanowires into ordered heterostructured catalyst. In single-crystal nanowire heterostructure, the in situ generated and nanosized Co3 O4 will be anchored in single-crystal Co6 (CO3 )2 (OH)8 nanowires spontaneously, triggered by the lattice matching between the (220) plane of Co3 O4 and the (001) plane of Co6 (CO3 )2 (OH)8 . The lattice matching allows intimate contact at heterointerface with well-defined orientation and strong interfacial coupling, and thus significantly expedites the transfer of photogenerated electrons from tiny Co3 O4 to catalytically active Co6 (CO3 )2 (OH)8 in single-crystal nanowire, which elevates the catalytic efficiency of metal carbonate catalyst in the CO2 reduction reaction (VCO = 19.46 mmol g-1 h-1 and VH2 = 11.53 mmol g-1 h-1 ). The present findings add to the growing body of knowledge on exploiting Earth-abundant metal-carbonate catalysts, and demonstrate the utility of localized phase transformation in constructing advanced catalysts for energy and environmental sustainability applications.
Collapse
Affiliation(s)
- Bixia Yang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Xingpeng Jiang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yanting Zheng
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Linxin Zhou
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Jiawei Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technologies, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
22
|
Mohamed H, Hkiri K, Botha N, Cloete K, Azizi S, Ahmed AAQ, Morad R, Motlamane T, Krief A, Gibaud A, Henini M, Chaker M, Ahmad I, Maaza M. Room temperature bio-engineered multifunctional carbonates for CO 2 sequestration and valorization. Sci Rep 2023; 13:16783. [PMID: 37798317 PMCID: PMC10556044 DOI: 10.1038/s41598-023-42905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
This contribution reports, for the first time, on an entirely green bio-engineering approach for the biosynthesis of single phase crystalline 1-D nano-scaled calcite CaCO3. This was validated using H2O as the universal solvent and natural extract of Hyphaene thebaica fruit as an effective chelating agent. In this room temperature green process, CaCl2 and CO2 are used as the unique source of Ca and CO3 respectively in view of forming nano-scaled CaCO3 with a significant shape anisotropy and an elevated surface to volume ratio. In terms of novelty, and relatively to the reported scientific and patented literature in relation to the fabrication of CaCO3 by green nano-chemistry, the current cost effective room temperature green process can be singled out as per the following specificities: only water as universal solvent is used, No additional base or acid chemicals for pH control, No additional catalyst, No critical or supercritical CO2 usage conditions, Only natural extract of thebaica as a green effective chelating agent through its phytochemicals and proper enzematic compounds, room Temperature processing, atmospheric pressure processing, Nanoscaled size particles, and Nanoparticles with a significant shape anisotropy (1-D like nanoparticles). Beyond and in addition to the validation of the 1-D synthesis aspect, the bio-engineered CaCO3 exhibited a wide-ranging functionalities in terms of highly reflecting pigment, an effective nanofertilizer as well as a potential binder in cement industry.
Collapse
Affiliation(s)
- H Mohamed
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- College of Graduate Studies, University of South Africa, PRETORIA, South Africa
| | - K Hkiri
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - N Botha
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - K Cloete
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - Sh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - A A Q Ahmed
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - R Morad
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - Th Motlamane
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
| | - A Krief
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- Chemistry Department (CMI Laboratory), University of Namur, 2 Rue Joseph Grafé, 5000, Namur, Belgium
| | - A Gibaud
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- IMMM, UMR 6283 CNRS, University of Le Maine, Bd O. Messiaen, 72085, Le Mans Cedex 09, France
| | - M Henini
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- Physics and Astronomy Department, Nottingham University, Nottingham, NG7 2RD7, UK
| | - M Chaker
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- INRS-Energie et Matériaux, 1650 Lionel-Boulet, Varennes, QC, J3X 1S2, Canada
| | - I Ahmad
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa
- Experimental Physics Directorate (EPD), National Center for Physics, Islamabad, 44000, Pakistan
| | - M Maaza
- UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.
- Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS-National Research Foundation of South Africa, 1 Old Faure Road, Somerset West, PO Box 722, Cape Town, 7129, Western Cape, South Africa.
| |
Collapse
|
23
|
Qin F, Liu R, Wu Q, Wang S, Liu F, Wei Q, Xu J, Luo Z. Fabrication of Ag-CaCO 3 Nanocomposites for SERS Detection of Forchlorfenuron. Molecules 2023; 28:6194. [PMID: 37687023 PMCID: PMC10489000 DOI: 10.3390/molecules28176194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/23/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, Ag-CaCO3 nanocomposites were synthesized using silver nitrate as the precursor solution based on calcium carbonate nanoparticles (CaCO3 NPs). The synthesis involved the reaction of calcium lignosulphonate and sodium bicarbonate. The properties of Ag-CaCO3 nanocomposites were studied by various technologies, including an ultraviolet-visible spectrophotometer, a transmission electron microscope, and a Raman spectrometer. The results showed that Ag-CaCO3 nanocomposites exhibited a maximum UV absorption peak at 430 nm, the surface-enhanced Raman spectroscopy (SERS) activity of Ag-CaCO3 nanocomposites was evaluated using mercaptobenzoic acid (MBA) as the marker molecule, resulting in an enhancement factor of 6.5 × 104. Additionally, Ag-CaCO3 nanocomposites were utilized for the detection of forchlorfenuron. The results demonstrated a linear relationship in the concentration range of 0.01 mg/mL to 2 mg/mL, described by the equation y = 290.02x + 1598.8. The correlation coefficient was calculated to be 0.9772, and the limit of detection (LOD) was determined to be 0.001 mg/mL. These findings highlight the relatively high SERS activity of Ag-CaCO3 nanocomposites, making them suitable for analyzing pesticide residues and detecting toxic and harmful molecules, thereby contributing to environmental protection.
Collapse
Affiliation(s)
- Fangyi Qin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Rongjun Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Qiong Wu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Shulong Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Fa Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Qingmin Wei
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Jiayao Xu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| | - Zhihui Luo
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Guangxi Colleges and Universities Key Laboratory for Efficient Use of Featured Resources in the Southeast of Guangxi, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
24
|
Gibaud A, Younas D, Matthews L, Narayanan T, Longkaew K, Hageberg IU, Chushkin Y, Breiby DW, Chattopadhyay B. Insights into the precipitation kinetics of CaCO 3 particles in the presence of polystyrene sulfonate using in situ small-angle X-ray scattering. J Appl Crystallogr 2023; 56:1114-1124. [PMID: 37555223 PMCID: PMC10405600 DOI: 10.1107/s1600576723005356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/16/2023] [Indexed: 08/10/2023] Open
Abstract
The formation of calcium carbonate (CaCO3) nanoparticles (NPs) in the presence of polystyrene sulfonate (PSS) as an additive was examined by time-resolved small-angle X-ray scattering (SAXS) in a flow system that mimics experimental conditions used at home facilities where the precipitation can be achieved in a beaker. The experiments were carried out at low concentrations to remain in the dilute regime. A model-independent analysis was performed using the Porod invariant which defines the scale factor, leaving only the distribution of radii as the adjustable parameter. The presence of the PSS additive strongly retards the precipitation of CaCO3 NPs. The formation of NPs reaches a state of equilibrium after a few minutes. Here, it is shown that the concentration of precursors at a fixed PSS concentration plays a key role in determining the size of the NPs obtained. A full analysis of the SAXS patterns was carried out using the Hurd-Flower model to account for the weaker intensity decay than the classical Porod behaviour. The temporal evolution of the particle radii was determined. Wide-angle X-ray scattering experiments carried out simultaneously show that the particles formed have the structure of vaterite with growth consistent with the evolution of the Porod invariant.
Collapse
Affiliation(s)
- A. Gibaud
- IMMM, Le Mans Université, Bld O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - D. Younas
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - L. Matthews
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, Cedex 9, France
| | - T. Narayanan
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, Cedex 9, France
| | - K. Longkaew
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - I. U. Hageberg
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - Y. Chushkin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, Cedex 9, France
| | - D. W. Breiby
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| | - B. Chattopadhyay
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim 7491, Norway
| |
Collapse
|
25
|
Wang S, Cao Z, Zhang X, Yu H, Yao L. An Engineering Method for Resonant Microcantilever Using Double-Channel Excitation and Signal Acquisition Based on LabVIEW. MICROMACHINES 2023; 14:823. [PMID: 37421056 DOI: 10.3390/mi14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 07/09/2023]
Abstract
Resonant microcantilevers have the advantages of ultra-high heating rates, analysis speed, ultra-low power consumption, temperature programming, and trace sample analysis when applied in TGA. However, the current single-channel testing system for resonant microcantilevers can only detect one sample at a time, and need two program heating tests to obtain the thermogravimetric curve of a sample. In many cases, it is desirable to obtain the thermogravimetric curve of a sample with a single-program heating test and to simultaneously detect multiple microcantilevers for testing multiple samples. To address this issue, this paper proposes a dual-channel testing method, where a microcantilever is used as a control group and another microcantilever is used as an experimental group, to obtain the thermal weight curve of the sample in a single program temperature ramp test. With the help of the LabVIEW's convenient parallel running method, the functionality of simultaneously detecting two microcantilevers is achieved. Experimental validation showed that this dual-channel testing system can obtain the thermogravimetric curve of a sample with a single program heating test and detect two types of samples simultaneously.
Collapse
Affiliation(s)
- Shanlai Wang
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Zhi Cao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoyang Zhang
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lei Yao
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
26
|
Wang Q, Yuan B, Huang W, Ping H, Xie J, Wang K, Wang W, Zou Z, Fu Z. Bioprocess inspired formation of calcite mesocrystals by cation-mediated particle attachment mechanism. Natl Sci Rev 2023; 10:nwad014. [PMID: 36960223 PMCID: PMC10029847 DOI: 10.1093/nsr/nwad014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
Calcite mesocrystals were proposed, and have been widely reported, to form in the presence of polymer additives via oriented assembly of nanoparticles. However, the formation mechanism and the role of polymer additives remain elusive. Here, inspired by the biomineralization process of sea urchin spine comprising magnesium calcite mesocrystals, we show that calcite mesocrystals could also be obtained via attachment of amorphous calcium carbonate (ACC) nanoparticles in the presence of inorganic zinc ions. Moreover, we demonstrate that zinc ions can induce the formation of temporarily stabilized amorphous nanoparticles of less than 20 nm at a significantly lower calcium carbonate concentration as compared to pure solution, which is energetically beneficial for the attachment and occlusion during calcite growth. The cation-mediated particle attachment crystallization significantly improves our understanding of mesocrystal formation mechanisms in biomineralization and offers new opportunities to bioprocess inspired inorganic ions regulated materials fabrication.
Collapse
Affiliation(s)
| | | | - Wenyang Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jingjing Xie
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | | | | |
Collapse
|
27
|
Mandera S, Coronado I, Fernández-Díaz L, Mazur M, Cruz JA, Januszewicz B, Fernández-Martínez E, Cózar P, Stolarski J. Earthworm granules: A model of non-classical biogenic calcium carbonate phase transformations. Acta Biomater 2023; 162:149-163. [PMID: 37001839 DOI: 10.1016/j.actbio.2023.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Different non-classical crystallization mechanisms have been invoked to explain structural and compositional properties of biocrystals. The identification of precursor amorphous nanoparticle aggregation as an onset process in the formation of numerous biominerals (crystallization via particle attachment) constituted a most important breakthrough for understanding biologically mediated mineralization. A comprehensive understanding about how the attached amorphous particles transform into more stable, crystalline grains has yet to be elucidated. Here, we document structural, biogeochemical, and crystallographic aspects of the formation as well as the further phase transformations of the amorphous calcium carbonate particles formed by cultured specimens of earthworm Lumbricus terrestris. In-situ observations evidence the formation of proto-vaterite after dehydration of earthworm-produced ACC, which is subsequently followed by proto-vaterite transformation into calcite through nanoparticle attachment within the organic framework. In culture medium spiked with trace amounts of Mn2+, the cauliflower-like proto-vaterite structures become longer-lived than in the absence of Mn2+. We propose that the formation of calcite crystals takes place through a non-classical recrystallization path that involves migration of proto-vaterite nanoparticles to the crystallization site, and then, their transformation into calcite via a dissolution-recrystallization reaction. The latter is complemented by ion-by-ion crystal growth and associated with impurity release. These observations are integrated into a new model of the biocrystallization of earthworm-produced carbonate granules which highlights the sensibility of this process to environmental chemical changes, its potential impact on the bioavailability of contaminants as well as the threat that chemical pollution poses to the normal development of its early stages. STATEMENT OF SIGNIFICANCE: Understanding the mechanisms of nucleation, stabilization and aggregation of amorphous calcium carbonate (ACC) and factors controlling its further transformation into crystalline phases is fundamental for elucidation of biogenic mineralization. Some species of earthworms are natural workbench to understand the biogenic ACC, stabilization and the transformation mechanisms, because they create millimeter-sized calcareous granules from amorphous calcium carbonate, which crystallize to a more stable mineral phase (mostly calcite). This study undergoes into the mechanisms of ACC stabilization by the incorporation of trace elements, as manganese, and the ulterior precipitation of calcareous granules by a coupled process of amorphous particle attachment and ion-by-ion growth. The study points to sensibility of this process to environmental chemical changes.
Collapse
|
28
|
Biomimetic Construction of the Enamel-like Hierarchical Structure. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
29
|
Goldberga I, Jensen ND, Combes C, Mentink-Vigier F, Wang X, Hung I, Gan Z, Trébosc J, Métro TX, Bonhomme C, Gervais C, Laurencin D. 17O solid state NMR as a valuable tool for deciphering reaction mechanisms in mechanochemistry: the case study on the 17O-enrichment of hydrated Ca-pyrophosphate biominerals. Faraday Discuss 2023; 241:250-265. [PMID: 36134444 PMCID: PMC9813801 DOI: 10.1039/d2fd00127f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023]
Abstract
The possibility of enriching in 17O the water molecules within hydrated biominerals belonging to the Ca-pyrophosphate family was investigated, using liquid assisted grinding (LAG) in the presence of 17O-labelled water. Two phases with different hydration levels, namely triclinic calcium pyrophosphate dihydrate (Ca2P2O7·2H2O, denoted t-CPPD) and monoclinic calcium pyrophosphate tetrahydrate (Ca2P2O7·4H2O, denoted m-CPPT β) were enriched in 17O using a "post-enrichment" strategy, in which the non-labelled precursors were ground under gentle milling conditions in the presence of stoichiometric quantities of 17O-enriched water (introduced here in very small volumes ∼10 μL). Using high-resolution 17O solid-state NMR (ssNMR) analyses at multiple magnetic fields, and dynamic nuclear polarisation (DNP)-enhanced 17O NMR, it was possible to show that the labelled water molecules are mainly located at the core of the crystal structures, but that they can enter the lattice in different ways, namely by dissolution/recrystallisation or by diffusion. Overall, this work sheds light on the importance of high-resolution 17O NMR to help decipher the different roles that water can play as a liquid-assisted grinding agent and as a reagent for 17O-isotopic enrichment.
Collapse
Affiliation(s)
- Ieva Goldberga
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | | | - Xiaoling Wang
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida, USA
| | - Julien Trébosc
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois FR2638 - IMEC - Institut Michel Eugène Chevreul, 59000 Lille, France
| | | | | | | | | |
Collapse
|
30
|
Han Z, Hu J, Huang H, Han X, Ke Y, Li Z, Wang Y, Song D, Xu W. Effect of in situ deposition of calcium carbonate in cotton fiber on its mechanical properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.53344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zongbao Han
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
- Hubei Key Laboratory of Biomass Fibers and Eco‐Dyeing & Finishing Wuhan Textile University Wuhan China
| | - Jinbang Hu
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
- Hubei Key Laboratory of Biomass Fibers and Eco‐Dyeing & Finishing Wuhan Textile University Wuhan China
| | - Hongbo Huang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| | - Xiaoyu Han
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
- Hubei Key Laboratory of Biomass Fibers and Eco‐Dyeing & Finishing Wuhan Textile University Wuhan China
| | - Yushi Ke
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
- Hubei Key Laboratory of Biomass Fibers and Eco‐Dyeing & Finishing Wuhan Textile University Wuhan China
| | - Zhujun Li
- College of Textiles, Guangdong Polytechnic Guangzhou China
| | - Yunli Wang
- College of Chemistry and Chemical Engineering Wuhan Textile University Wuhan China
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
- Hubei Key Laboratory of Biomass Fibers and Eco‐Dyeing & Finishing Wuhan Textile University Wuhan China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan China
| |
Collapse
|
31
|
Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent. Nat Commun 2022; 13:5088. [PMID: 36038532 PMCID: PMC9424530 DOI: 10.1038/s41467-022-32615-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Amorphous calcium carbonate plays a key role as transient precursor in the early stages of biogenic calcium carbonate formation in nature. However, due to its instability in aqueous solution, there is still rare success to utilize amorphous calcium carbonate in biomedicine. Here, we report the mutual effect between paramagnetic gadolinium ions and amorphous calcium carbonate, resulting in ultrafine paramagnetic amorphous carbonate nanoclusters in the presence of both gadolinium occluded highly hydrated carbonate-like environment and poly(acrylic acid). Gadolinium is confirmed to enhance the water content in amorphous calcium carbonate, and the high water content of amorphous carbonate nanoclusters contributes to the much enhanced magnetic resonance imaging contrast efficiency compared with commercially available gadolinium-based contrast agents. Furthermore, the enhanced T1 weighted magnetic resonance imaging performance and biocompatibility of amorphous carbonate nanoclusters are further evaluated in various animals including rat, rabbit and beagle dog, in combination with promising safety in vivo. Overall, exceptionally facile mass-productive amorphous carbonate nanoclusters exhibit superb imaging performance and impressive stability, which provides a promising strategy to design magnetic resonance contrast agent. Sensitive, biocompatible and stable contrast agents for MRI are in demand. Here, the authors combine gadolinium ions with amorphous calcium carbonate to make stable paramagnetic amorphous carbonate nanoclusters with high MRI contrast and significantly improved biocompatibility over commercial gadolinium-based agents.
Collapse
|
32
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
33
|
Tian Y, Themelis NJ, Zhao D, Thanos Bourtsalas AC, Kawashima S. Stabilization of Waste-to-Energy (WTE) fly ash for disposal in landfills or use as cement substitute. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 150:227-243. [PMID: 35863171 DOI: 10.1016/j.wasman.2022.06.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This study investigated two approaches for managing Waste-to-Energy (WTE) fly ash (FA): (i) phosphoric acid stabilization of FA and disposal in non-hazardous landfills, so that it can pass the U.S. TCLP procedure and meet the U.S. Resource Conservation and Recovery Act (RCRA) standards; (ii) use of FA or phosphoric acid stabilized fly ash (PFA) as cement substitute in construction for avoiding disposal in landfills and reducing the consumption of Portland cement. The effect of stabilization was identified by TCLP tests and XRD quantification (QXRD), which showed that the economically optimal concentration for PFA to pass the RCRA was 1 mol/L H3PO4 (equivalent to 0.4 mol of H3PO4/kg of FA). Zn/Pb-phosphates were formed in treated ash by using high concentration H3PO4 (e.g., 3 mol/L). Thus, the hazardous FA was chemically stabilized to PFA, that were both discussed as cement substitute. QXRD and SEM results showed that both FA and PFA (1 mol/L H3PO4) chemically reacted with cement and water. Up to 25 vol% of the cement can be replaced by FA or PFA, with similar mechanical performance of cement mortars than that of reference. Testing by LEAF Method 1313-pH dependence showed that the FA and PFA cement mortars exhibited the same leachability of heavy metals; therefore, this study demonstrated the technical feasibility of utilizing either raw FA or stabilized PFA as supplementary cementitious material. The leachability of heavy metals in optimal FA or PFA 25 vol% cement mortar was under the U.K. WAC non-hazardous limits.
Collapse
Affiliation(s)
- Yixi Tian
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA.
| | - Nickolas J Themelis
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Diandian Zhao
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA
| | - A C Thanos Bourtsalas
- Department of Earth and Environmental Engineering, Columbia University, New York, NY 10027, USA
| | - Shiho Kawashima
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10027, USA
| |
Collapse
|
34
|
Gebauer D, Gale JD, Cölfen H. Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107735. [PMID: 35678091 DOI: 10.1002/smll.202107735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Indexed: 05/27/2023]
Abstract
In this review article, selected, latest theoretical, and experimental developments in the field of nucleation and crystal growth of inorganic materials from aqueous solution are highlighted, with a focus on literature after 2015 and on non-classical pathways. A key point is to emphasize the so far underappreciated role of water and solvent entropy in crystallization at all stages from solution speciation through to the final crystal. While drawing on examples from current inorganic materials where non-classical behavior has been proposed, the potential of these approaches to be adapted to a wide-range of systems is also discussed, while considering the broader implications of the current re-assessment of pathways for crystallization. Various techniques that are suitable for the exploration of crystallization pathways in aqueous solution, from nucleation to crystal growth are summarized, and a flow chart for the assignment of specific theories based on experimental observations is proposed.
Collapse
Affiliation(s)
- Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167, Hannover, Germany
| | - Julian D Gale
- Curtin Institute for Computation/The Institute for Geoscience Research (TiGER), School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, Western Australia, 6845, Australia
| | - Helmut Cölfen
- University of Konstanz, Physical Chemistry, Universitätsstr. 10, 78465, Konstanz, Germany
| |
Collapse
|
35
|
Song K, Bang JH, Chae SC, Kim J, Lee SW. Phase and morphology of calcium carbonate precipitated by rapid mixing in the absence of additives. RSC Adv 2022; 12:19340-19349. [PMID: 35865589 PMCID: PMC9251642 DOI: 10.1039/d2ra03507c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Calcium carbonate is one of the most common minerals, and its polymorphic formation and transformation pathways from the amorphous to crystalline phases are well documented. However, the effects of locally created pH changes on the preferential formation of amorphous calcium carbonate (ACC) or its crystalline phase remain poorly understood. In this study, the influence of the initial solution pH on the precipitated polymorphs of calcium carbonate was investigated by the rapid mixing of each solution containing calcium or carbonate ions in the absence of additives. The results showed that the amount of recovered ACC particles was associated with the availability of fully deprotonated carbonate ions. A secondary crystalline phase was identified as the vaterite phase, but no polymorphic change to produce the more stable calcite was detected during 5 h of stirring. Interestingly, during the early stage of pouring, the vaterite morphology was dependent on the generated pH range, over which ACC particles were stabilized (pH > 10.3), followed by the hydration–condensation processes. When the pH was sufficiently low (pH < 10.3) for bicarbonate ions to participate in the carbonation reaction, croissant- or cauliflower-like aggregates with layered structures were obtained. In contrast, typical spherical vaterite particles were obtained at a high initial pH when the carbonate ions were dominant. Meanwhile, vaterite particles that were formed in the presence of an excess of carbonate ions were irregular and separate agglomerates. These results elucidate the formation of ACC and the morphologies of the vaterite products. Vaterite with various polymorphs was prepared using different solution pH values. The effects of local solution differences in pH were systematically investigated.![]()
Collapse
Affiliation(s)
- Kyungsun Song
- Korea Institute of Geoscience & Mineral Resources (KIGAM) Gwahang-no 124, Yuseong-gu Daejeon 34132 Republic of Korea +82-42-868-3640
| | - Jun-Hwan Bang
- Korea Institute of Geoscience & Mineral Resources (KIGAM) Gwahang-no 124, Yuseong-gu Daejeon 34132 Republic of Korea +82-42-868-3640
| | - Soo-Chun Chae
- Korea Institute of Geoscience & Mineral Resources (KIGAM) Gwahang-no 124, Yuseong-gu Daejeon 34132 Republic of Korea +82-42-868-3640
| | - Jeongyun Kim
- Korea Institute of Geoscience & Mineral Resources (KIGAM) Gwahang-no 124, Yuseong-gu Daejeon 34132 Republic of Korea +82-42-868-3640
| | - Seung-Woo Lee
- Korea Institute of Geoscience & Mineral Resources (KIGAM) Gwahang-no 124, Yuseong-gu Daejeon 34132 Republic of Korea +82-42-868-3640
| |
Collapse
|
36
|
Yao F, Xu P, Jia H, Li X, Yu H, Li X. Thermogravimetric Analysis on a Resonant Microcantilever. Anal Chem 2022; 94:9380-9388. [PMID: 35731930 DOI: 10.1021/acs.analchem.2c01374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermogravimetric analysis (TGA) is a widely applied classic method for material characterization. However, the existing TGA method has reached its technical ceiling in regard to its sensitivity, efficiency, application scope, and extensibility. With temperature-programming and a picogram (10-12 g) mass resoluble measurement function, an integrated resonant microcantilever is proposed and developed into micro-electromechanical system-based TGA (MEMS TGA) technology to satisfy the significantly higher TGA requirements. With only a nanogram (10-9 g) level of a loaded sample, the microcantilever can conduct ultrasensitive mass-loss analysis along with ultrafast and controllable heating up to 1200 °C. Experiments have verified that MEMS TGA can improve heating efficiency by at least one order of magnitude compared to conventional TGA while maintaining measurement accuracy. The trace sample requirement also enables MEMS TGA to directly test explosive substances in an air atmosphere, while conventional TGA with a larger amount of sample has difficulty in avoiding explosion-induced equipment damage during heating. The silicon MEMS TGA microchip also exhibits functional combination (even integration) with other analytical techniques such as Raman spectroscopy to realize operando characterization.
Collapse
Affiliation(s)
- Fanglan Yao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Jia
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinyu Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Yao F, Xu P, Li M, Wang X, Jia H, Chen Y, Li X. Microreactor-Based TG-TEM Synchronous Analysis. Anal Chem 2022; 94:9009-9017. [PMID: 35652373 DOI: 10.1021/acs.analchem.2c01051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is challenging to measure the heating-induced mass change of the material during its morphological/structural evolution process. Herein, a silicon microreactor is developed for thermogravimetric-transmission electron microscopy synchronous analysis (TG-TEM synchronous analysis). A self-heating resonant microcantilever for mass-change detection and a dummy microcantilever with electron-beam transparent SiNx windows for in situ TEM imaging are integrated back-to-back inside the microreactor. The TEM resolution of the microreactor reaches the Ångström level in an air atmosphere of 100 mbar, and the TGA function is realized by the heatable resonant microcantilever. The TG-TEM synchronous analysis has been successfully used to characterize two Ni(OH)2 samples. During the in situ TEM observing process, the desorption of the intercalated H2O molecules and dehydration of the lattice OH groups in the amorphous Ni(OH)2·xH2O nanosheets can be clearly distinguished from the microcantilever-based TGA. For single-crystal Ni(OH)2 nanosheets, the TG-TEM synchronous analysis can distinguish the desorption of physiosorbed water, the condensation of surface OH groups, and the dehydration of lattice OH groups. The amorphous Ni(OH)2 nanosheets transformed to polycrystalline NiO completed at 290 °C, and the decomposition from the single-crystalline Ni(OH)2 nanoplates to NiO at 315 °C is also clearly recognized. The proposed microreactor-based TG-TEM synchronous analysis provides an interrelated characterization platform to obtain more comprehensive information on materials.
Collapse
Affiliation(s)
- Fanglan Yao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuefeng Wang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jia
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Jiang J, Xu S, Xiao H, Tao C, Chen C, Li Q, Shi R. The synthesis of long-term stable amorphous calcium carbonate in water-free ethylene glycol system without any phase stabilizer. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Effects of Mg ions on the structural transformation of calcium carbonate and their implication for the tailor-synthesized carbon mineralization process. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Badou A, Pont S, Auzoux-Bordenave S, Lebreton M, Bardeau JF. New insight on spatial localization and microstructures of calcite-aragonite interfaces in Haliotis tuberculata adults: investigations of wild and farmed abalones by FTIR and Raman mapping. J Struct Biol 2022; 214:107854. [DOI: 10.1016/j.jsb.2022.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
|
41
|
Song N, Li J, Li B, Pan E, Ma Y. Transcriptome analysis of the bivalve Placuna placenta mantle reveals potential biomineralization-related genes. Sci Rep 2022; 12:4743. [PMID: 35304539 PMCID: PMC8933548 DOI: 10.1038/s41598-022-08610-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 01/31/2023] Open
Abstract
The shells of window pane oyster Placuna placenta are very thin and exhibit excellent optical transparency and mechanical robustness. However, little is known about the biomineralization-related proteins of the shells of P. placenta. In this work, we report the comprehensive transcriptome of the mantle tissue of P. placenta for the first time. The unigenes of the mantle tissue of P. placenta were annotated by using the public databases such as nr, GO, KOG, KEGG, and Pfam. 24,343 unigenes were annotated according to Pfam database, accounting for 21.48% of the total unigenes. We find that half of the annotated unigenes of the mantle tissue of P. placenta are consistent to the annotated unigenes from pacific oyster Crassostrea gigas according to nr database. The unigene sequence analysis from the mantle tissue of P. placenta indicates that 465,392 potential single nucleotide polymorphisms (SNPs) and 62,103 potential indel markers were identified from 60,371 unigenes. 178 unigenes of the mantle tissue of P. placenta are found to be homologous to those reported proteins related to the biomineralization process of molluscan shells, while 18 of them are highly expressed unigenes in the mantle tissue. It is proposed that four unigenes with the highest expression levels in the mantle tissue are very often related to the biomineralization process, while another three unigenes are potentially related to the biomineralization process according to the Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) analysis. In summary, the transcriptome analysis of the mantle tissue of P. Placenta shows the potential biomineralization-related proteins and this work may shed light for the shell formation mechanism of bivalves.
Collapse
Affiliation(s)
- Ningjing Song
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangfeng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ercai Pan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yurong Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
42
|
Li Y, Li Y, Chen T, Yang X, Qiao C, Hao F, Liu M. N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride/carboxymethyl cellulose films filled with in-situ crystallized calcium carbonate. Carbohydr Polym 2022; 278:118975. [PMID: 34973789 DOI: 10.1016/j.carbpol.2021.118975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
The research and development of substitutes for petroleum-based plastics has become a hot topic. The N-(2-hydroxyl)-propyl-3-trimethylammonium chitosan chloride (HTCC, 10 wt%)/sodium carboxymethyl cellulose (CMC) films have showed enhanced mechanical properties, which also provide a potential substitute to petroleum-based plastics. In this paper, calcium carbonate was crystallized (cry-CaCO3) in HTCC/CMC film-forming solutions, and the effects of the cry-CaCO3 particles on HTCC/CMC film properties including microstructures, mechanical properties, thermal stability, whiteness, and wettability were characterized. An HTCC/CMC film with commercially available CaCO3 (com-CaCO3) was used as a control. The results showed that the cry-CaCO3 promoted the homogeneous distribution of the HTCC/CMC matrix and significantly improved mechanical properties, but showed little effect on the thermal stability, whiteness and wettability of the films. To reveal the affecting mechanism of cry-CaCO3 on HTCC/CMC film properties, the cry-CaCO3 particles were isolated from film-forming solutions and characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) methods. The results showed that the HTCC/CMC matrix modulated spherical CaCO3 particles, and the macromolecules were encapsulated in cry-CaCO3 particles, decreasing their adhesion to the HTCC/CMC matrix while increasing their distribution in the HTCC/CMC matrix. The strong electrostatic, hydrogen bonding and flexible interaction between CMC and cry-CaCO3 particles played a key role in improving the mechanical properties of HTCC/CMC films.
Collapse
Affiliation(s)
- Yong Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tao Chen
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Fei Hao
- Shandong Key Laboratory of Molecular Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Mingxia Liu
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
43
|
Li G, Fan G, Fan Y, Jiang J, Shi X, Liu Z. Polystyrene‐poly
(ethylene‐butylene)‐polystyrene/asphaltene sands composite elastomer with improved mechanical properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.51637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an China
| | - Guang‐Lin Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an China
| | - Ying‐Li Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an China
| | - Jin‐Qiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an China
| | - Xian‐Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an China
| |
Collapse
|
44
|
Simon P, Pompe W, Gruner D, Sturm E, Ostermann K, Matys S, Vogel M, Rödel G. Nested Formation of Calcium Carbonate Polymorphs in a Bacterial Surface Membrane with a Graded Nanoconfinement: An Evolutionary Strategy to Ensure Bacterial Survival. ACS Biomater Sci Eng 2022; 8:526-539. [PMID: 34995442 PMCID: PMC8848282 DOI: 10.1021/acsbiomaterials.1c01280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
It is the intention
of this study to elucidate the nested formation
of calcium carbonate polymorphs or polyamorphs in the different nanosized
compartments. With these observations, it can be concluded how the
bacteria can survive in a harsh environment with high calcium carbonate
supersaturation. The mechanisms of calcium carbonate precipitation
at the surface membrane and at the underlying cell wall membrane of
the thermophilic soil bacterium Geobacillus stearothermophilus DSM 13240 have been revealed by high-resolution transmission electron
microscopy and atomic force microscopy. In this Gram-positive bacterium,
nanopores in the surface layer (S-layer) and in the supporting cell
wall polymers are nucleation sites for metastable calcium carbonate
polymorphs and polyamorphs. In order to observe the different metastable
forms, various reaction times and a low reaction temperature (4 °C)
have been chosen. Calcium carbonate polymorphs nucleate in the confinement
of nanosized pores (⌀ 3–5 nm) of the S-layer. The hydrous
crystalline calcium carbonate (ikaite) is formed initially with [110]
as the favored growth direction. It transforms into the anhydrous
metastable vaterite by a solid-state transition. In a following reaction
step, calcite is precipitated, caused by dissolution of vaterite in
the aqueous solution. In the larger pores of the cell wall (⌀
20–50 nm), hydrated amorphous calcium carbonate is grown, which
transforms into metastable monohydrocalcite, aragonite, or calcite.
Due to the sequence of reaction steps via various metastable phases,
the bacteria gain time for chipping the partially mineralized S-layer,
and forming a fresh S-layer (characteristic growth time about 20 min).
Thus, the bacteria can survive in solutions with high calcium carbonate
supersaturation under the conditions of forced biomineralization.
Collapse
Affiliation(s)
- Paul Simon
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Wolfgang Pompe
- Institute of Materials Science, Technische Universität Dresden, Helmholtzstraße 7, 01069 Dresden, Germany
| | - Denise Gruner
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.,Polymeric Microsystems, Technische Universität Dresden, Helmholtzstraße 100, 01069 Dresden, Germany
| | - Elena Sturm
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany.,Physical Chemistry, University of Konstanz, POB 714, D-78457 Konstanz, Germany
| | - Kai Ostermann
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Sabine Matys
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzener Landstraße 400, 01328 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| |
Collapse
|
45
|
Jun YS, Zhu Y, Wang Y, Ghim D, Wu X, Kim D, Jung H. Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annu Rev Phys Chem 2022; 73:453-477. [PMID: 35113740 DOI: 10.1146/annurev-physchem-082720-100947] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces and expand by monomeric growth, oriented attachment, and phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can determine their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical and nonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and the growth of nanoparticles. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut;
| | - Doyoon Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri; , , , ,
| | - Haesung Jung
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, South Korea;
| |
Collapse
|
46
|
Wan Y, Chen X. Preparation and characterization of self-suspended CaCO3 nanoparticles derived from scallop shells. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2028632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yaochuang Wan
- National Engineering Research Center of Ultrafine Powder, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Xuemei Chen
- National Engineering Research Center of Ultrafine Powder, School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
47
|
Merle M, Soulié J, Sassoye C, Roblin P, Rey C, Bonhomme C, Combes C. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model. CrystEngComm 2022. [DOI: 10.1039/d2ce00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Pierre Roblin
- LGC, Université de Toulouse, CNRS, 118 Route de Narbonne Bâtiment 2R1, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| |
Collapse
|
48
|
Huang W, Wang Q, Chi W, Cai M, Wang R, Fu Z, Xie JJ, Zou Z. Multiple Crystallization Pathways of Amorphous Calcium Carbonate in the Presence of Poly(Aspartic acid) with a Chain Length of 30. CrystEngComm 2022. [DOI: 10.1039/d2ce00328g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystallization pathways of amorphous calcium carbonate (ACC) have attracted tremendous interests because of the importance of ACC in biomineralization. Here, by using poly(Aspartic acid) with a chain length of...
Collapse
|
49
|
Maslyk M, Mondeshki M, Tremel W. Amorphous calcium carbonate monohydrate containing a defect hydrate network by mechanochemical processing of mono-hydrocalcite using ethanol as auxiliary solvent. CrystEngComm 2022. [DOI: 10.1039/d2ce00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate monohydrate-like ACC was made by ball-milling with ethanol as auxiliary solvent. IR and solid-state NMR, diffraction and total scattering show that defects of the hydrate network due to partial displacement of water by ethanol are crucial for amorphization.
Collapse
Affiliation(s)
- Marcel Maslyk
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Mihail Mondeshki
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Wolfgang Tremel
- Department Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|
50
|
Hamdi R, Tlili MM. Influence of foreign salts on the CaCO3 pre-nucleation stage: application of the conductometric method. CrystEngComm 2022. [DOI: 10.1039/d2ce00099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium carbonate crystallization process has been studied for more than a century. Nevertheless, little is known about the early stages of nucleation since the in situ observations are difficult at...
Collapse
|