1
|
Wei Y, Jia J, Yu X, Huo S, Xu Z. A range of surfactant-accelerated hydrogels based on terpyridine-based assembly via strong dipole-dipole interactions. Chem Commun (Camb) 2025; 61:8067-8070. [PMID: 40326830 DOI: 10.1039/d5cc01205h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A universal hydrogelation strategy employs surfactant-coassembled supramolecular terpyridine (DA-BET) aggregates. Dipole-dipole interactions between DA-BET's distinct binding sites and surfactant ions primarily drive hydrogel formation. This platform integrates hydrophobic organics with surfactants, establishing a novel supramolecular approach for advancing environmental remediation soft materials.
Collapse
Affiliation(s)
- Yi Wei
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| | - Jie Jia
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| | - Suhong Huo
- School of Chemical Safety, North China Institute of Science and Technology, Langfang 065201, P. R. China.
| | - Zhice Xu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050080, P. R. China.
| |
Collapse
|
2
|
Xie X, Chen X, Zhou J, Wang T, Yang G, Han F, Wei Z. Dynamic Hydrogels with Tunable Mechanics for 3D Organoid Derivation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501862. [PMID: 40434214 DOI: 10.1002/smll.202501862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/04/2025] [Indexed: 05/29/2025]
Abstract
The mechanical properties of the hydrogel play a pivotal role in governing the formation and development of 3D organoids in vitro. However, commonly employed natural hydrogels, such as Matrigel and other extracellular matrix (ECM)-derived products, are characterized by ill-defined and complex compositions, resulting in non-tunable mechanical properties. This limitation poses challenges in controlling organoids' developmental trajectory and 3D morphology. Although numerous synthetic hydrogels with well-defined chemical structures have recently been adopted to study organoids by modulating stiffness, advanced research emphasizes the importance of dynamic mechanical cues, such as dynamic stiffness softening and dynamic viscoelasticity, for optimal organoid derivation. These cues are essential for mimicking the dynamic physiological states of organoids during their growth. Despite their potential, the concept of dynamic hydrogels is often used interchangeably, and a systematic review is lacking to clarify this ambiguity. Furthermore, the mechanisms through which dynamic mechanical cues regulate organoid formation have not been thoroughly reported. This review endeavors to summarize and categorize dynamic hydrogels and reveal the effects of dynamic mechanics on organoid derivation. Additionally, the prospects of dynamic hydrogels in organoid derivation are deliberated to promote a more rational design of synthetic hydrogels, guiding organoid derivation and propelling organoid technology in biomedicine.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jian Zhou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
| | - Tiansong Wang
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, P. R. China
- School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Kasahara Y, Takeda T, Dekura S, Ishii Y, Anetai H, Takai A, Hisaki I, Takeuchi M, Akutagawa T. Supramolecular Polymorphism of the Hydrogen-Bonded C3-Symmetrical Hexadehydrotribenzo[12]annulene Derivative. J Am Chem Soc 2025. [PMID: 40413634 DOI: 10.1021/jacs.5c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
The C3-symmetric hexadehydrotribenzo[12]annulene ([12]DBA) derivative (1a) with three tetradecylamide (-NHCOC14H29) chains capable of hydrogen-bonding interaction formed either a two-dimensional lamellar (LM) or a one-dimensional (1D) nanofiber (NF) molecular assembly, depending on the association state of the amide hydrogen bonds in the solution phase. The intermolecular amide hydrogen-bonding modes in the LM and NF structures were different from each other. The NF structure was metastable, 2.2 kJ mol-1 less stable than that of the LM structure, and was obtained through organogel formation. In CHCl3, 1a exhibited a 1D association behavior following the isodesmic model (K = 2.18 × 103 M-1) due to intermolecular amide hydrogen bonds, whereas the presence of CH3CN inhibited this association state. The NF structure had larger amplitude dynamics about the polar amide group than that of the LM structure, undergoing a phase transition from the NF to the LM structure upon heating. The absorption spectra of NF and solid-state LM were different from each other, exhibiting different optical properties. The coexistence of intermolecular amide hydrogen bonds and van der Waals interactions among the C3-symmetric molecules resulted in polymorphic phenomena, where energetically similar molecular assemblies were expressed.
Collapse
Affiliation(s)
- Yotaro Kasahara
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Takeda
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan
| | - Shun Dekura
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yoshiki Ishii
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Hayato Anetai
- National Institute for Materials Science (NIMS), 1-2-1 Tsukuba 305-0047, Japan
| | - Atsuro Takai
- National Institute for Materials Science (NIMS), 1-2-1 Tsukuba 305-0047, Japan
| | - Ichiro Hisaki
- Graduate School of Engineering Science, The University of Osaka, Toyonaka, Osaka 560-8531, Japan
| | - Masayuki Takeuchi
- National Institute for Materials Science (NIMS), 1-2-1 Tsukuba 305-0047, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research (IIR), Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tomoyuki Akutagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
4
|
Du H, Qiu R, Lou X, Jansen SAH, Sai H, Wang Y, Markvoort AJ, Meijer EW, Stupp SI. Mapping in situ the assembly and dynamics in aqueous supramolecular polymers. Nat Commun 2025; 16:4837. [PMID: 40413168 PMCID: PMC12103577 DOI: 10.1038/s41467-025-60138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
Supramolecular polymers, bonded through directional non-covalent interactions, closely mimic dynamic behaviors of biological nanofibers. However, the complexity of assembly pathways makes it highly challenging to unravel the nature of supramolecular dynamics in aqueous environments. Here we introduce a precise combinatorial titration methodology to probe in situ the assembly of peptide amphiphiles (PAs). This approach reveals a binary assembly mechanism governed by equilibrium between spheroidal micelles and β-sheet polymers. Weakening hydrogen bonding shifts the equilibrium towards micelles and decreases the internal structural order of filamentous polymers, promoting supramolecular dynamics. Extending this methodology to two-component copolymerization systems, we find a surprising tendency to form blocky nanostructures with reduced internal phase separation as the mismatch in peptide sequence decreases. Interestingly, while well-mixed copolymers acquire different dynamics, mismatched ones retain the characteristic supramolecular motion of their homopolymer counterparts. These critical insights into supramolecular dynamics offer strategies to tailor the dynamic functions of supramolecular nanomaterials.
Collapse
Affiliation(s)
- Huachuan Du
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ruomeng Qiu
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Xianwen Lou
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stef A H Jansen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hiroaki Sai
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert J Markvoort
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Synthetic Biology Group, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, NSW, Australia.
| | - Samuel I Stupp
- Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Bouwens T, Bobylev EO, Antony LSD, Poole DA, Alarcón-Lladó E, Mathew S, Reek JNH. Exo-templating via pseudorotaxane formation reduces pathway complexity in the multicomponent self-assembly of M 12L 24 nanospheres. Nat Chem 2025:10.1038/s41557-025-01808-w. [PMID: 40355625 DOI: 10.1038/s41557-025-01808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/19/2025] [Indexed: 05/14/2025]
Abstract
Selective formation of multicomponent structures via the self-assembly of numerous building blocks is ubiquitous in biological systems but challenging to emulate synthetically. More components introduce additional possibilities for kinetic intermediates with trap-state ability, hampering access to desired products. In covalent chemistry, templates, reagents and catalysts are applied to create alternative pathways for desired product formation. Analogously, we enlist exo-templating to mould the formation of large, multicomponent supramolecular structures. Specifically, a charged ring docks at 1,5-dioxynaphthalene stations within exo-functionalized building blocks to promote formation of cuboctahedral Pd12L24 nanospheres via exoskeletal templating. With the exo-templating ring present, nanosphere formation occurs via small Pdx-Ly oligomers, while in the absence of the ring a Pdx-Ly polymer resting state rapidly evolves, from which nanosphere formation occurs slowly. We demonstrate a form of kinetic templating-via intermediate destabilization-resembling properties observed in catalysis. Importantly, unlike typically employed endo-templates, we demonstrate that exo-templating is particularly suited for larger, complex, self-assembled structures.
Collapse
Affiliation(s)
- T Bouwens
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Amsterdam, the Netherlands
- Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | - E O Bobylev
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Amsterdam, the Netherlands
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - D A Poole
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Amsterdam, the Netherlands
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - E Alarcón-Lladó
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Amsterdam, the Netherlands
- AMOLF, Amsterdam, the Netherlands
| | - S Mathew
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - J N H Reek
- van 't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Alessi D, Morgan L, Pelorosso E, Graiff C, Pinter P, Aliprandi A. Redox-driven photoselective self-assembly. Nat Commun 2025; 16:4316. [PMID: 40346045 PMCID: PMC12064647 DOI: 10.1038/s41467-025-58890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/02/2025] [Indexed: 05/11/2025] Open
Abstract
Self-assembly via non-covalent interactions is key to constructing complex architectures with advanced functionalities. A noncovalent synthetic chemistry approach, akin to organic chemistry, allows stepwise construction with enhanced control. Here, we explore this by coupling Pt(II) complex self-assembly with a redox reaction. Oxidation to Pt(IV) creates a non-emissive monomer that, upon reduction to Pt(II), forms luminescent gels with unique kinetic and thermodynamic pathways. UV irradiation induces Pt(IV) reduction, generating supramolecular fibers with Pt∙∙∙Pt interactions, enhancing photophysical properties and enabling visible light absorption up to 550 nm. This allows photoselective growth, where fibers convert surrounding Pt(IV) to Pt(II), promoting growth over nucleation, as observed via real-time fluorescence microscopy.
Collapse
Affiliation(s)
- Dario Alessi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Morgan
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Elisa Pelorosso
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Claudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | | | - Alessandro Aliprandi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
7
|
Bäumer N, Ogi S, Yamaguchi S. Elucidating the Boundary of Intercalation vs Sequestration in Supramolecular Polymers by Retrosynthetic Design Toward the Construction of Complex Supramolecular Systems. Angew Chem Int Ed Engl 2025; 64:e202501693. [PMID: 39985367 PMCID: PMC12051726 DOI: 10.1002/anie.202501693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 02/24/2025]
Abstract
Controlled social self-sorting by intercalation can offer distinct properties at the supramolecular level that go beyond the sum of its parts. Likewise, controlling narcissistic self-sorting by sequestration can induce unique system properties. In contrast, the interface between the two cases has hitherto remained underexplored, and clear design rules remain elusive. Herein it is demonstrated that by fine-tuning the molecular similarity of supramolecular synthons, intricate control over concerted supramolecular equilibria can be achieved. By reducing the molecular similarity, a former intercalator can be tuned to become a strong or weak sequestrator. Understanding these roles in binary mixtures allows to rationalize more complex tertiary systems. Consequently, the influence of an uncommon dual sequestration mechanism is revealed. Further, an unprecedented hybrid mechanism between supramolecular intercalation and sequestration can be demonstrated. We are hopeful that the results presented herein will contribute to the development and understanding of concerted processes in complex supramolecular systems.
Collapse
Affiliation(s)
- Nils Bäumer
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya University Furo, ChikusaNagoya464–8601Japan
| | - Soichiro Ogi
- Integrated Research Consortium on Chemical Science (IRCCS)Nagoya University Furo, ChikusaNagoya464–8602Japan
| | - Shigehiro Yamaguchi
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya University Furo, ChikusaNagoya464–8601Japan
- Integrated Research Consortium on Chemical Science (IRCCS)Nagoya University Furo, ChikusaNagoya464–8602Japan
- Department of ChemistryGraduate School of ScienceNagoya University Furo ChikusaNagoya464–8602Japan
| |
Collapse
|
8
|
Guo K, Gao L, Fei J. Cascade of phase transitions in a dipeptide supramolecular assembly triggered by a single fatty acid. Colloids Surf B Biointerfaces 2025; 248:114480. [PMID: 39740486 DOI: 10.1016/j.colsurfb.2024.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Significant progress has been achieved with diversity of short peptide supramolecular assemblies. However, their programmable phase modulation by single stimulus remains a great challenge. Herein, we demonstrate a dipeptide supramolecular system undergoes sequentially coupled phase transitions upon hydrogen bonding association and dissociation triggered by a single fatty acid. To be specific, fatty acid at a low specific ratio mediates gel-crystal transformation of the dipeptide supramolecular assembly by rearrangement of hydrogen bonding interactions. Moreover, fatty acid at a high specific ratio induces crystal-sol transition by protonation of the dipeptide, generating strong electrostatic repulsion to cleave hydrogen bonding interactions. Remarkably, the cascade of phase transitions enables spontaneous solid-liquid separation of the dipeptide from one dispersion phase and further dissolution in another in a capture and release fashion. In contrast, it is not facilitated by individual phase transition. Our work creates competitive pathways to achieve integration of phase transitions in a simple dipeptide supramolecular system. It is useful to deeply understand the dynamic and complex biomolecular condensates in nature and with important implications for efficient collection of biomolecules.
Collapse
Affiliation(s)
- Kaifeng Guo
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Zhang X, Zhuo J, Wang D, Zhu X. Supramolecular Polymers for Drug Delivery. Chemistry 2025; 31:e202404617. [PMID: 39961052 DOI: 10.1002/chem.202404617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Indexed: 03/21/2025]
Abstract
Supramolecular polymers are constructed through highly reversible and directionally specific non-covalent interactions between monomer units. This unique feature enables supramolecular polymers to undergo controlled structural reconfiguration and functional transformation in response to external stimuli, imparting them with high environmental responsiveness and self-healing properties. In particular, supramolecular polymers exhibit several specific advantages compared to conventional polymers, such as inherent degradability, the ease of preparation and the incorporation of functional units, and smart responsiveness to various biological stimuli. These characters make supramolecular polymers promising candidates for intelligent drug delivery systems in complex biological environments. In this review, we comprehensively summarize the latest developments and representative achievements of supramolecular polymers in drug delivery fields, focusing primarily on the design and synthesis, the properties and functionalities, and the practical applications of supramolecular polymers in small molecule drug delivery, gene therapy, and protein delivery. Finally, we highlight future research directions, focusing on multifunctionality, adaptability, and personalized therapy. We focus on recent studies that address key challenges in the field, providing rational polymer design, important properties, functionality, and understanding delivery strategies. These developments are expected to advance supramolecular polymers as new platforms of intelligent drug delivery systems, offering innovative solutions for the treatment of complex diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jiaxin Zhuo
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Dali Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Tozzi M, De Letter J, Krievins D, Jushinskis J, D'Haeninck A, Rucinskas K, Miglinas M, Baltrunas T, Nauwelaers S, De Vriese AS, Moll F, Vermassen F. First-in-human feasibility study of the aXess graft (aXess-FIH): 6-Month results. J Vasc Access 2025; 26:502-509. [PMID: 38317272 DOI: 10.1177/11297298231220967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE The creation of an arteriovenous fistula (AVF) is considered the most effective hemodialysis (HD) vascular access. For patients who are not suitable for AVF, arteriovenous grafts (AVGs) are the best access option for chronic HD. However, conventional AVGs are prone to intimal hyperplasia, stenosis, thrombosis, and infection. Xeltis has developed an AVG as a potential alternative to currently available AVGs based on the concept of endogenous tissue restoration. The results of the first 6-month follow-up are presented here. METHODS The aXess first-in-human (FIH) study [NCT04898153] is a prospective, single-arm, multicenter feasibility study that evaluates the early safety and performance of the aXess Hemodialysis Graft. A total of 20 patients with end-stage renal disease were enrolled across six European investigational sites. RESULTS At 6-months follow-up, all grafts were patent with primary and secondary patency rates were 80% and 100%, respectively. Three patients required a re-intervention to maintain graft patency, while one re-intervention was required to restore patency. One graft thrombosis and zero infections were reported. CONCLUSION The expected advantages of the novel aXess Hemodialysis Graft over conventional AVGs would be evaluated by the analysis on long-term safety and effectiveness during the 5-year follow-up of the currently ongoing trial.
Collapse
Affiliation(s)
- Matteo Tozzi
- Vascular Unit, Department of Medicine and Surgery, Insubria University and Research Center, Varese, Italy
| | - Jan De Letter
- Department of Vascular Surgery, AZ-Sint Jan Brugge, Bruges, Belgium
| | | | | | | | - Kestutis Rucinskas
- Department of Cardiology and Angiology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Marius Miglinas
- Department of Cardiology and Angiology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Tomas Baltrunas
- Department of Cardiology and Angiology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Sigi Nauwelaers
- Department of Thoracic and Vascular Surgery, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - An S De Vriese
- Department of Nephrology and Infectious Diseases, AZ-Sint Jan, Brugge, Bruges, Belgium
| | - Frans Moll
- Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Vermassen
- Department of Thoracic and Vascular Surgery, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
11
|
Rey-Tarrío F, Sánchez L. On the Stability of Metastable Monomers to Bias the Supramolecular Polymerization of Naphthalendiimides. Angew Chem Int Ed Engl 2025; 64:e202418301. [PMID: 39648962 DOI: 10.1002/anie.202418301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/10/2024]
Abstract
Herein, we report the synthesis of the naphthalendiimides (NDIs) 1-3 endowed with peripheral 3,4,5-trialkoxybenzamide units and a variable number of 1,2,3-triazole rings. Both the benzamide units and the triazole rings are able to form six- or seven-membered intramolecularly H-bonded pseudocycles that behave as metastable monomeric units. Whilst freshly prepared solutions of 1-3 afford H-type aggregates, the presence or lack of the 1,2,3-triazole rings strongly conditions the kinetics and stability of the resulting aggregated species. These structural features result in highly stable metastable monomeric species M* for the symmetric 2 that can be trapped for long periods of time when the sample is subject to a heating/cooling cycle. Contrary to NDI 2, the M* species formed by 1 and 3 evolve to the final supramolecular polymers in shorter times. A detailed experimental and theoretical study display the different non-covalent supramolecular forces operating in the stabilization of such M* species. In all cases, but especially in those NDIs endowed with the triazoles rings (NDIs 2 and 3), a number of conformers for the metastable monomeric units can be modelled. The high stability of such monomeric species justifies the delay in the formation of the H-type aggregates.
Collapse
Affiliation(s)
- Francisco Rey-Tarrío
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, 28040-, Madrid, Spain
| |
Collapse
|
12
|
Zhou Y, Chang R, Yang Z, Guo Q, Wang M, Jia B, Li B, Deng B, Ren Y, Zhu H, Wang X, Wang Q, Wen H, Zhang H, Yu J, Chen YX, Liu K. Dynamic Peptide Nanoframework-Guided Protein Coassembly: Advancing Adhesion Performance with Hierarchical Structures. J Am Chem Soc 2025; 147:2335-2349. [PMID: 39787294 DOI: 10.1021/jacs.4c10882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Hierarchical structures are essential in natural adhesion systems. Replicating these in synthetic adhesives is challenging due to intricate molecular mechanisms and multiscale processes. Here, we report three phosphorylated peptides featuring a hydrophobic self-assembly motif linked to a hydrophilic phosphorylated sequence (pSGSS), forming peptide fibril nanoframeworks. These nanoframeworks effectively coassemble with elastin-derived positively charged proteins (PCP), resulting in complex coacervate-based adhesives with hierarchical structures. Our method enables the controlled regulation of both cohesion and adhesion properties in the adhesives. Notably, the complex adhesives formed by the dityrosine-containing peptide and PCP demonstrate an exceptional interfacial adhesion strength of up to 30 MPa, outperforming most known supramolecular adhesives and rivaling cross-linked chemical adhesives. Additionally, these adhesives show promising biocompatibility and bioactivity, making them suitable for applications such as visceral hemostasis and tissue repair. Our findings highlight the utility of bioinspired hierarchical assembly combined with bioengineering techniques in advancing biomedical adhesives.
Collapse
Affiliation(s)
- Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenyue Yang
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, China
| | - Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 637553, Singapore
| | - Mengyao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bodan Deng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaxia Zhu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | | | - Han Wen
- DP Technology, Beijing 100089, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| | - Jing Yu
- Mechano-X Institute, Tsinghua University, Beijing 100084, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
13
|
Matsumoto K, Bäumer N, Ogi S, Yamaguchi S. Kinetic Control over Social and Narcissistic Self-Sorting from Multicomponent Mixtures in Seed-Initiated Supramolecular Polymerization by Fine-Tuning of Steric Effects. Angew Chem Int Ed Engl 2025; 64:e202416361. [PMID: 39434621 DOI: 10.1002/anie.202416361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Supramolecular polymers offer an intriguing possibility to transfer molecular properties from the nano- to the mesoscale. Towards this achievement, seed-initiated supramolecular polymerization has emerged as a powerful tool, as it prevents unlimited growth and enables size control of the assembly outcome. However, the potential application of the seeding method in the context of complex supramolecular systems is hitherto unclear. Herein we demonstrate that minute differences in molecular design in direct proximity to intermolecular recognition sites govern the molecular packing and in turn dictate the efficacy of seeded polymerization processes. We introduce a stepwise increase in steric demand in the central amino acid residue of a diamide system, which gradually increases the rotational displacement within the aggregated state. This fine-tuning of the molecular packing directly affects the propensity of the different aggregates to act as seeds for the other supramolecular synthons. In turn this allows us to selectively target specific trapped monomer states in binary mixtures for social or narcissistic seeded polymerization.
Collapse
Affiliation(s)
- Kentaro Matsumoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Nils Bäumer
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Soichiro Ogi
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
- Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| |
Collapse
|
14
|
Djalali S, Jing Y, Ogawa Y, Delbianco M. Synthetic chitin oligosaccharide nanocrystals and their higher-order assemblies. Chem Sci 2025; 16:1390-1395. [PMID: 39703414 PMCID: PMC11653566 DOI: 10.1039/d4sc07549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Self-assembly is a powerful strategy for creating complex architectures and elucidating the aggregation behaviors of biopolymers. Herein, we investigate the hierarchical assembly of chitin using a bottom-up approach based on synthetic oligosaccharides. We discovered that chitin oligosaccharides self-assemble into platelets, which then form higher-order structures. Subtle changes in experimental conditions drastically altered the self-assembly results, generating a wide array of higher-order architectures. Through systematic investigations employing transmission electron microscopy (TEM), photoinduced force microscopy (PiFM), and atomic force microscopy (AFM), we uncovered the role of water in shaping the different morphologies. This finding gave us the tools to promote the formation of chiral, uniform chitin oligosaccharide bundles. Our work not only sheds light on the fundamental aspects of chitin organization, but also suggests strategies for designing carbohydrate-based materials with tunable structures and properties.
Collapse
Affiliation(s)
- Surusch Djalali
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 Berlin 14195 Germany
| | - Yun Jing
- Molecular Vista Inc. 6840 Via Del Oro, Suite 110 San Jose CA 95119 USA
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble 38000 France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| |
Collapse
|
15
|
Li W, Shao Y, Xu Z, Ge Y, Wang Z, Jiang H, Dong Z. Heterochiral π-Stacking Dimerization of Helical Secondary Structures with Emerging Supramolecular Chirality. Angew Chem Int Ed Engl 2025; 64:e202414317. [PMID: 39171890 DOI: 10.1002/anie.202414317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
A specific interface mode type was observed between helical secondary structures, in which a left-handed (M) helix binds specifically to a right-handed (P) helix along the helical axis, leading to the formation of discrete heterochiral helical dimers. Moreover, a concealed supramolecular chirality within the meso-supramolecular dimers was unexpectedly discovered by chiral induction, and was further underpinned by covalent meso-helix structures.
Collapse
Affiliation(s)
- Wencan Li
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yiqi Shao
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhaocheng Xu
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yunpeng Ge
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhenzhu Wang
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
16
|
Patra S, Chandrabhas S, George SJ. Bioinspired programmable coacervate droplets and self-assembled fibers through pH regulation of monomers. J Mater Chem B 2025; 13:604-609. [PMID: 39585665 DOI: 10.1039/d4tb01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Phase separation and phase transitions pervade the biological domain, where proteins and RNA engage in liquid-liquid phase separation (LLPS), forming liquid-like membraneless organelles. The misregulation or dysfunction of these proteins culminates in the formation of solid aggregates via a liquid-to-solid transition, leading to pathogenic conditions. To decipher the underlying mechanisms, synthetic LLPS has been examined through complex coacervate formation from charged polymers. Nonetheless, temporal control over phase transitions from prebiotically relevant small organic synthons remains largely unexplored. Herein, we propose utilizing pH modulation to regulate the charge of small molecular building blocks, thereby controlling the LLPS process. Through a bio-inspired, enzyme-mediated pH-regulated reaction, we introduce temporal control over both LLPS and the transition from coacervates to supramolecular polymers. Additionally, by incorporating antagonistic pH modulators, we achieve transient LLPS and further temporal regulation of supramolecular polymer disassembly. Our investigation into pH-regulated LLPS provides a new avenue for exploring the stimuli-responsive, dynamic, and transient nature of LLPS.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| | - Sushmitha Chandrabhas
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| |
Collapse
|
17
|
Mohammadifar E, Gasbarri M, Dimde M, Nie C, Wang H, Povolotsky TL, Kerkhoff Y, Desmecht D, Prevost S, Zemb T, Ludwig K, Stellacci F, Haag R. Supramolecular Architectures of Dendritic Polymers Provide Irreversible Inhibitor to Block Viral Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2408294. [PMID: 39344918 DOI: 10.1002/adma.202408294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
In Nature, most known objects can perform their functions only when in supramolecular self-assembled from, e.g. protein complexes and cell membranes. Here, a dendritic polymer is presented that inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an irreversible (virucidal) mechanism only when self-assembled into a Two-dimmensional supramolecular polymer (2D-SupraPol). Monomeric analogs of the dendritic polymer can only inhibit SARS-CoV-2 reversibly, thus allowing for the virus to regain infectivity after dilution. Upon assembly, 2D-SupraPol shows a remarkable half-inhibitory concentration (IC50 30 nM) in vitro and in vivo in a Syrian Hamster model has a good efficacy. Using cryo-TEM, it is shown that the 2D-SupraPol has a controllable lateral size that can be tuned by adjusting the pH and use small angle X-ray and neutron scattering to unveil the architecture of the supramolecular assembly. This functional 2D-SupraPol, and its supramolecular architecture are proposed, as a prophylaxis nasal spray to inhibit the virus interaction with the respiratory tract.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mathias Dimde
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Heyun Wang
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Tatyana L Povolotsky
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, Liège, 4000, Belgium
| | - Sylvain Prevost
- Institut Laue-Langevin - The European Neutron Source, 71 avenue des Martyrs - CS 20156 38042, Grenoble, cedex 9, France
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols-sur-Ceze, 30207, France
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| |
Collapse
|
18
|
Pol M, Thomann R, Thomann Y, Pappas CG. Abiotic Acyl Transfer Cascades Driven by Aminoacyl Phosphate Esters and Self-Assembly. J Am Chem Soc 2024; 146:29621-29629. [PMID: 39419499 PMCID: PMC11528443 DOI: 10.1021/jacs.4c10082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024]
Abstract
Biochemical acyl transfer cascades, such as those initiated by the adenylation of carboxylic acids, are central to various biological processes, including protein synthesis and fatty acid metabolism. Designing cascade reactions in aqueous media remains challenging due to the need to control multiple, sequential reactions in a single pot and manage the stability of reactive intermediates. Herein, we developed abiotic cascades using aminoacyl phosphate esters, the synthetic counterparts of biological aminoacyl adenylates, to drive sequential chemical reactions and self-assembly in a single pot. We demonstrated that the structural elements of amino acid side chains (aromatic versus aliphatic) significantly influence the reactivity and half-lives of aminoacyl phosphate esters, ranging from hours to days. This behavior, in turn, affects the number of couplings we can achieve in the network and the self-assembly propensity of activated intermediate structures. The cascades are constructed using bifunctional peptide substrates featuring side chain nucleophiles. Specifically, aromatic amino acids facilitate the formation of transient thioesters, which preorganized into spherical aggregates and further couple into chimeric assemblies composed of esters and thioesters. In contrast, aliphatic amino acids, which lack the ability to form such structures, predominantly undergo hydrolysis, bypassing further transformations after thioester formation. Additionally, in mixtures containing multiple aminoacyl phosphate esters and peptide substrates, we achieved selective product formation by following a distinct pathway that favors subsequent reactions through reactivity changes and self-assembly. By coupling chemical reactions with molecules of varying reactivity time scales, we can drive multiple reaction clocks with distinct lifetimes and self-assembly dynamics, facilitating precise temporal and structural regulation.
Collapse
Affiliation(s)
- Mahesh
D. Pol
- DFG
Cluster of Excellence livMatS @FIT−Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Ralf Thomann
- Freiburg
Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg
Materials Research Center (FMF), University
of Freiburg, Stefan-Meier-Strasse
21, 79104 Freiburg, Germany
| | - Yi Thomann
- Freiburg
Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Charalampos G. Pappas
- DFG
Cluster of Excellence livMatS @FIT−Freiburg Center for Interactive
Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute
of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Yang L, Zhang H, Wang C, Jiao Y, Pang X, Xu J, Ma H. Novel aerogels based on supramolecular G-quadruplex assembly with intrinsic flame retardancy and thermal insulation. J Colloid Interface Sci 2024; 672:618-630. [PMID: 38861849 DOI: 10.1016/j.jcis.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The construction of supramolecular aerogels still faces great challenges. Herein, we present a novel bio-based supramolecular aerogel derived from G-Quadruplex self-assembly of guanosine (G), boric acid (B) and sodium alginate (SA) and the obtained GBS aerogels exhibit superior flame-retardant and thermal insulating properties. The entire process involves environmentally friendly aqueous solvents and freeze-drying. Benefiting from the supramolecular self-assembly and interpenetrating dual network structures, GBS aerogels exhibit unique structures and sufficient self-supporting capabilities. The resulting GBS aerogels exhibit overall low densities (36.5-52.4 mg/cm3), and high porosities (>95 %). Moreover, GBS aerogels also illustrate excellent flame retardant and thermal insulating properties. With an oxygen index of 47.0-51.1 %, it can easily achieve a V-0 rating and low heat, smoke release during combustion. This work demonstrates the preparation of intrinsic flame-retardant aerogels derived from supramolecular self-assembly and dual cross-linking strategies, and is expected to provide an idea for the realization and application of novel supramolecular aerogel materials.
Collapse
Affiliation(s)
- Le Yang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Hong Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Chang Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Yunhong Jiao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China.
| | - Xiuyan Pang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Jianzhong Xu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding 071002, China; The Flame Retardant Material and Processing Technology Engineering Research Center of Hebei Province, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
20
|
Sugiura S, Ikeda M. Supramolecular materials constructed from synthetic glycopeptides via aqueous self-assembly and their bioapplications in immunotherapy. Org Biomol Chem 2024; 22:7287-7306. [PMID: 39189690 DOI: 10.1039/d4ob01116c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Synthetic glycopeptides capable of self-assembly in aqueous environments form a range of supramolecular nanostructures, such as nanoparticles and nanofibers, owing to their amphiphilic nature and the diverse structures of the saccharides introduced. These glycopeptide-based supramolecular materials are promising for immunotherapy applications because of their biocompatibility and multivalent saccharide display, which enhances lectin-saccharide interactions. This review highlights recent advances in the molecular design of synthetic glycopeptide-based supramolecular materials and their use as immunomodulatory agents.
Collapse
Affiliation(s)
- Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
21
|
Mohanta I, Sahu N, Guchhait C, Kaur L, Mandal D, Adhikari B. Ag +-Induced Supramolecular Polymers of Folic Acid: Reinforced by External Kosmotropic Anions Exhibiting Salting Out. Biomacromolecules 2024; 25:6203-6215. [PMID: 39153217 DOI: 10.1021/acs.biomac.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Introducing kosmotropic salts enhances protein stability and reduces solubility by withdrawing water from the protein surface, leading to 'salting out', a phenomenon we have mimicked in supramolecular polymers (SPs). Under the guidance of Ag+, folic acid (FA) self-assembled in water through slipped-stacking and hydrophobic interactions into elongated, robust one-dimensional SPs, resulting in thermo-stable supergels. The SPs exhibited temperature and dilution tolerance, attributed to the stability of the FA-Ag+ complex and its hydrophobic stacking. Importantly, FA-Ag+ SP's stability has been augmented by the kosmotropic anions, such as SO42-, strengthening hydrophobic interactions in the SP, evident from the enhanced J-band, causing improvement of gel's mechanical property. Interestingly, higher kosmotrope concentrations caused a significant decrease in SP's solubility, leading to precipitation of the reinforced SPs─a 'salting out' effect. Conversely, chaotropes like ClO4- slightly destabilized hydrophobic stacking and promoted an extended conformation of individual SP chain with enhanced solubility, resembling a 'salting in' effect.
Collapse
Affiliation(s)
- Indrajit Mohanta
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Chandrakanta Guchhait
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Lovleen Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| |
Collapse
|
22
|
Zhang R, Daglar H, Tang C, Li P, Feng L, Han H, Wu G, Limketkai BN, Wu Y, Yang S, Chen AXY, Stern CL, Malliakas CD, Snurr RQ, Stoddart JF. Balancing volumetric and gravimetric capacity for hydrogen in supramolecular crystals. Nat Chem 2024:10.1038/s41557-024-01622-w. [PMID: 39227421 DOI: 10.1038/s41557-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
The storage of hydrogen is key to its applications. Developing adsorbent materials with high volumetric and gravimetric storage capacities, both of which are essential for the efficient use of hydrogen as a fuel, is challenging. Here we report a controlled catenation strategy in hydrogen-bonded organic frameworks (RP-H100 and RP-H101) that depends on multiple hydrogen bonds to guide catenation in a point-contact manner, resulting in high volumetric and gravimetric surface areas, robustness and ideal pore diameters (~1.2-1.9 nm) for hydrogen storage. This approach involves assembling nine imidazole-annulated triptycene hexaacids into a secondary hexagonal superstructure containing three open channels through which seven of the hexagons interpenetrate to form a seven-fold catenated superstructure. RP-H101 exhibits high deliverable volumetric (53.7 g l-1) and gravimetric (9.3 wt%) capacities for hydrogen under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar). This work illustrates the virtues of supramolecular crystals as promising candidates for hydrogen storage.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Hilal Daglar
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Chun Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Penghao Li
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Liang Feng
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Han Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Guangcheng Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | | | - Yong Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Shuliang Yang
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | | | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | - J Fraser Stoddart
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- H2MOF Inc., Irvine, CA, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, China.
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Mei W, Li W, Zhang A. Supramolecular assembly of dendronized diacetylenes into thermoresponsive chiral fibers and their covalent fixation through topochemical polymerization. J Colloid Interface Sci 2024; 669:314-326. [PMID: 38718585 DOI: 10.1016/j.jcis.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/27/2024]
Abstract
By combination of dendritic topological structures with photopolymerizable diacetylene, here we report on supramolecular chiral assembly of the dendronized diacetylenes in water. These dendronized diacetylenes are constituted with three-fold dendritic oligoethylene glycols (OEGs), bridged with a dipeptide from phenylalanine and glycine. These dendronized amphiphiles exhibit intensive propensity to aggregate in water and form helical fibers, which show characteristic thermoresponsive behavior with phase transition temperatures dominated by hydrophilicity of the dendritic OEGs. Topochemical polymerization of these supramolecular fibers through UV irradiation transfers them into the covalent helical dendronized polydiacetylenes. Chirality of these dendronized polydiacetylenes can be mediated through the thermally-induced phase transitions, but is also intriguingly dependent on vortex via stirring. Through stirring the solutions, chiralities of the dendronized polydiacetylenes are inverted, which can be reversibly recovered after keeping still the solution. Hydrogels are formed from these dendronized diacetylenes through concentration-enhanced interactions between the supramolecular fibers. Their mechanical properties can be greatly increased through thermally-enhanced interactions between the fibers with storage moduli increased from 20 Pa to a few hundred Pa. In addition, through photo-polymerization, the supramolecular fibers are transferred into covalent dendronized polydiacetylenes, and the corresponding hydrogels show much improved mechanical properties with storage moduli about 10 kPa.
Collapse
Affiliation(s)
- Wenli Mei
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science & Engineering, Shanghai University, Mailbox 152, No. 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
24
|
Dore MD, Rafique MG, Yang TP, Zorman M, Platnich CM, Xu P, Trinh T, Rizzuto FJ, Cosa G, Li J, Guarné A, Sleiman HF. Heat-activated growth of metastable and length-defined DNA fibers expands traditional polymer assembly. Nat Commun 2024; 15:4384. [PMID: 38782917 PMCID: PMC11116425 DOI: 10.1038/s41467-024-48722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | | | - Tianxiao Peter Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Marlo Zorman
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Casey M Platnich
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Pengfei Xu
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Tuan Trinh
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
| | - Felix J Rizzuto
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gonzalo Cosa
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47906, USA
| | - Alba Guarné
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montréal, QC, H3A 08B, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada.
| |
Collapse
|
25
|
Patra S, Chandrabhas S, Dhiman S, George SJ. Controlled Supramolecular Polymerization via Bioinspired, Liquid-Liquid Phase Separation of Monomers. J Am Chem Soc 2024; 146:12577-12586. [PMID: 38683934 DOI: 10.1021/jacs.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Dynamic supramolecular assemblies, driven by noncovalent interactions, pervade the biological realm. In the synthetic domain, their counterparts, supramolecular polymers, endowed with remarkable self-repair and adaptive traits, are often realized through bioinspired designs. Recently, controlled supramolecular polymerization strategies have emerged, drawing inspiration from protein self-assembly. A burgeoning area of research involves mimicking the liquid-liquid phase separation (LLPS) observed in proteins to create coacervate droplets and recognizing their significance in cellular organization and diverse functions. Herein, we introduce a novel perspective on synthetic coacervates, extending beyond their established role in synthetic biology as dynamic, membraneless phases to enable structural control in synthetic supramolecular polymers. Drawing parallels with the cooperative growth of amyloid fibrils through LLPS, we present metastable coacervate droplets as dormant monomer phases for controlled supramolecular polymerization. This is achieved via a π-conjugated monomer design that combines structural characteristics for both coacervation through its terminal ionic groups and one-dimensional growth via a π-conjugated core. This design leads to a unique temporal LLPS, resulting in a metastable coacervate phase, which subsequently undergoes one-dimensional growth via nucleation within the droplets. In-depth spectroscopic and microscopic characterization provides insights into the temporal evolution of disordered and ordered phases. Furthermore, to modulate the kinetics of liquid-to-solid transformation and to achieve precise control over the structural characteristics of the resulting supramolecular polymers, we invoke seeding in the droplets, showcasing living growth characteristics. Our work thus opens up new avenues in the exciting field of supramolecular polymerization, offering general design principles and controlled synthesis of precision self-assembled structures in confined environments.
Collapse
Affiliation(s)
- Satyajit Patra
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Sushmitha Chandrabhas
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shikha Dhiman
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
26
|
Pal T, Samanta S, Chaudhuri D. Noncovalent Catalyst-cum-Inhibitor Directed Supramolecular Pathway Selection and Asymmetry Amplification by Aggregate Cross-Nucleation. ACS NANO 2024; 18:11349-11359. [PMID: 38623861 DOI: 10.1021/acsnano.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The key to any controlled supramolecular polymerization (CSP) process lies in controlling the nucleation step, which is typically achieved by sequestering monomers in a kinetically trapped state. However, kinetic traps that are shallow cannot prevent spontaneous nucleation, thus limiting the applicability of the CSP in such systems. We use a molecular additive to overcome this limitation by modifying the energy landscape of a competitive self-assembly process and increasing the kinetic stability of an otherwise short-lived trap state. The additive achieves this by simultaneously catalyzing OFF-pathway nucleation and inhibiting ON-pathway aggregation. In the process, it guides the molecular assembly exclusively toward the OFF-pathway aggregate analogue. The mechanisms of OFF-pathway catalysis and ON-pathway inhibition are elucidated. By specifically targeting the nucleation step, it was possible to achieve pathway selection at an extremely low additive-to-monomer ratio of 1:100. The generality of our approach is also demonstrated for other related molecular systems. Finally, removing the additive triggers the cross-nucleation of the ON-pathway aggregate on the surface of a less stable, OFF-pathway aggregate analogue. The resultant supramolecular polymer not only exhibits a more uniform morphology but more importantly, a marked improvement in the structural order that leads to an amplification of chiral asymmetry and a high absorption dissymmetry factor (gAbs) of ∼0.05.
Collapse
Affiliation(s)
- Triza Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Samaresh Samanta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Debangshu Chaudhuri
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
27
|
Lecourt C, Hossain SM, Xu C, Khalil AM, Calvez G, Triki S, Lescop C. Pseudohalide Ions as Ligands to Tune Architecture and Luminescence of Polymetallic CU(I) Assemblies. Inorg Chem 2024; 63:6370-6382. [PMID: 38547380 DOI: 10.1021/acs.inorgchem.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The reaction of preassembled Cu(I) bimetallic units {Cu2(dppm)2} and {Cu2(dppa)2} (dppm: bis(diphenylphosphino)methane and dppa: bis(diphenylphosphino)amine) with pseudohalide linkers (azido, dicyanamide, and tricyanomethanide) allows for the quantitative and selective preparation of three discrete tetrametallic metallacycles of formula [Cu4(μ2-dppm)4(N3)2](PF6)2, [Cu4(μ2-dppm)4(N(CN)2)2](PF6)2, and [Cu4(μ2-dppm)4(C(CN)3)4]. To explore further the impact of the linker on the architecture and dimensionality of the molecular edifice, the study was extended to more sophisticated tetradentate cyanocarbanion ligands (tcnsMe-: 2-(methylthio)-1,1,3,3-propanetetracarbonitrile and tcnsEt-: 2-(ethylthio)-1,1,3,3-propanetetracarbonitrile). Three ladder-like one-dimensional coordination polymers and an octametallic metallacycle have been obtained. The careful comparison of the metric and geometrical intramolecular and intermolecular parameters observed in this series of seven derivatives allows for rationalization of their molecular architectures. The subtle balance between the length and steric hindrance of the ligand and the formation of noncovalent interaction networks greatly influences the topology and dimensionality of the resulting assemblies and will be discussed hereafter. The photophysical properties of these seven polymetallic Cu(I) compounds have also been also studied.
Collapse
Affiliation(s)
- Constance Lecourt
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Sayed Muktar Hossain
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Chendong Xu
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Ali Mustafa Khalil
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Guillaume Calvez
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| | - Smail Triki
- Univ Brest, CNRS, CEMCA, 6 Avenue Victor Le Gorgeu, C.S. 93837, 29238 Brest Cedex 3, France
| | - Christophe Lescop
- Univ Rennes, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)─UMR 6226, F-35000 Rennes, France
| |
Collapse
|
28
|
Rieu T, Osypenko A, Lehn JM. Triple Adaptation of Constitutional Dynamic Networks of Imines in Response to Micellar Agents: Internal Uptake-Interfacial Localization-Shape Transition. J Am Chem Soc 2024; 146:9096-9111. [PMID: 38526415 DOI: 10.1021/jacs.3c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the behavior of complex chemical reaction networks and how environmental conditions can modulate their organization as well as the associated outcomes may take advantage of the design of related artificial systems. Microenvironments with defined boundaries are of particular interest for their unique properties and prebiotic significance. Dynamic covalent libraries (DCvLs) and their underlying constitutional dynamic networks (CDNs) have been shown to be appropriate for studying adaptation to several processes, including compartmentalization. However, microcompartments (e.g., micelles) provide specific environments for the selective protection from interfering reactions such as hydrolysis and an enhanced chemical promiscuity due to the interface, governing different processes of network modulation. Different interactions between the micelles and the library constituents lead to dynamic sensing, resulting in different expressions of the network through pattern generation. The constituents integrated into the micelles are protected from hydrolysis and hence preferentially expressed in the network composition at the cost of constitutionally linked members. In the present work, micellar integration was observed for two processes: internal uptake based on hydrophobic forces and interfacial localization relying on attractive electrostatic interactions. The latter drives a complex triple adaptation of the network with feedback on the shape of the self-assembled entity. Our results demonstrate how microcompartments can enforce the expression of constituents of CDNs by reducing the hydrolysis of uptaken members, unravelling processes that govern the response of reactions networks. Such studies open the way toward using DCvLs and CDNs to understand the emergence of complexity within reaction networks by their interactions with microenvironments.
Collapse
Affiliation(s)
- Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
29
|
Lei ZC, Wang X, Yang L, Qu H, Sun Y, Yang Y, Li W, Zhang WB, Cao XY, Fan C, Li G, Wu J, Tian ZQ. What can molecular assembly learn from catalysed assembly in living organisms? Chem Soc Rev 2024; 53:1892-1914. [PMID: 38230701 DOI: 10.1039/d3cs00634d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.
Collapse
Affiliation(s)
- Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science, Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
30
|
Elizebath D, Lim JH, Nishiyama Y, Vedhanarayanan B, Saeki A, Ogawa Y, Praveen VK. Nonclassical Crystal Growth of Supramolecular Polymers in Aqueous Medium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306175. [PMID: 37771173 DOI: 10.1002/smll.202306175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/08/2023] [Indexed: 09/30/2023]
Abstract
A mechanistic understanding of the principles governing the hierarchical organization of supramolecular polymers offers a paradigm for tailoring synthetic molecular architectures at the nano to micrometric scales. Herein, the unconventional crystal growth mechanism of a supramolecular polymer of superbenzene(coronene)-diphenylalanine conjugate (Cr-FFOEt ) is demonstrated. 3D electron diffraction (3D ED), a technique underexplored in supramolecular chemistry, is effectively utilized to gain a molecular-level understanding of the gradual growth of the initially formed poorly crystalline hairy, fibril-like supramolecular polymers into the ribbon-like crystallites. The further evolution of these nanosized flat ribbons into microcrystals by oriented attachment and lateral fusion is probed by time-resolved microscopy and electron diffraction. The gradual morphological and structural changes reveal the nonclassical crystal growth pathway, where the balance of strong and weak intermolecular interactions led to a structure beyond the nanoscale. The role of distinct π-stacking and H-bonding interactions that drive the nonclassical crystallization process of Cr-FFOEt supramolecular polymers is analyzed in comparison to analogous molecules, Py-FFOEt and Cr-FF forming helical and twisted fibers, respectively. Furthermore, the Cr-FFOEt crystals formed through nonclassical crystallization are found to improve the functional properties.
Collapse
Affiliation(s)
- Drishya Elizebath
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jia Hui Lim
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | | | - Balaraman Vedhanarayanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, 38000, France
| | - Vakayil K Praveen
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
31
|
Cougnon FBL, Stefankiewicz AR, Ulrich S. Dynamic covalent synthesis. Chem Sci 2024; 15:879-895. [PMID: 38239698 PMCID: PMC10793650 DOI: 10.1039/d3sc05343a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024] Open
Abstract
Dynamic covalent synthesis aims to precisely control the assembly of simple building blocks linked by reversible covalent bonds to generate a single, structurally complex, product. In recent years, considerable progress in the programmability of dynamic covalent systems has enabled easy access to a broad range of assemblies, including macrocycles, shape-persistent cages, unconventional foldamers and mechanically-interlocked species (catenanes, knots, etc.). The reversibility of the covalent linkages can be either switched off to yield stable, isolable products or activated by specific physico-chemical stimuli, allowing the assemblies to adapt and respond to environmental changes in a controlled manner. This activatable dynamic property makes dynamic covalent assemblies particularly attractive for the design of complex matter, smart chemical systems, out-of-equilibrium systems, and molecular devices.
Collapse
Affiliation(s)
- Fabien B L Cougnon
- Department of Chemistry and Nanoscience Centre, University of Jyväskylä Jyväskylä Finland
| | - Artur R Stefankiewicz
- Centre for Advanced Technology and Faculty of Chemistry, Adam Mickiewicz University Poznań Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
| |
Collapse
|
32
|
Zhang H, Xu T, Liang J, Wu B, Yang X, Wang J, Zhou Z, Wang H. Controlling Supramolecular Fiber Formation of Nucleopeptide by Guanosine Triphosphate. Biomacromolecules 2023; 24:5678-5686. [PMID: 37934694 DOI: 10.1021/acs.biomac.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Cells use dynamic self-assembly to construct functional structures for maintaining cellular homeostasis. However, using a natural biological small molecule to mimic this phenomenon remains challenging. This work reports the dynamic microfiber formation of nucleopeptide driven by guanosine triphosphate, the small molecule that controls microtubule polymerization in living cells. Deactivation of GTP by enzyme dissociates the fibers, which could be reactivated by adding GTP. Molecular dynamic simulation unveils the mystery of microfiber formation of GBM-1 and GTP. Moreover, the microfiber formation can also be controlled by diffusion-driven GTP gradients across a semipermeable membrane in bulk conditions and the microfluidic method in the defined droplets. This study provides a new platform to construct dynamic self-assembly materials of molecular building blocks driven by GTP.
Collapse
Affiliation(s)
- Hongyue Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Tengyan Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Juan Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Bihan Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Ziao Zhou
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
33
|
Dai K, Pol MD, Saile L, Sharma A, Liu B, Thomann R, Trefs JL, Qiu D, Moser S, Wiesler S, Balzer BN, Hugel T, Jessen HJ, Pappas CG. Spontaneous and Selective Peptide Elongation in Water Driven by Aminoacyl Phosphate Esters and Phase Changes. J Am Chem Soc 2023; 145:26086-26094. [PMID: 37992133 DOI: 10.1021/jacs.3c07918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Nature chose phosphates to activate amino acids, where reactive intermediates and complex machinery drive the construction of polyamides. Outside of biology, the pathways and mechanisms that allow spontaneous and selective peptide elongation in aqueous abiotic systems remain unclear. Herein we work to uncover those pathways by following the systems chemistry of aminoacyl phosphate esters, synthetic counterparts of aminoacyl adenylates. The phosphate esters act as solubility tags, making hydrophobic amino acids and their oligomers soluble in water and enabling selective elongation and different pathways to emerge. Thus, oligomers up to dodecamers were synthesized in one flask and on the minute time scale, where consecutive additions activated autonomous phase changes. Depending on the pathway, the resulting phases initially carry nonpolar peptides and amphiphilic oligomers containing phosphate esters. During elongation and phosphate release, shorter oligomers dominate in solution, while the aggregated phase favors the presence of longer oligomers due to their self-assembly propensity. Furthermore we demonstrated that the solution phases can be isolated and act as a new environment for continuous elongation, by adding various phosphate esters. These findings suggest that the systems chemistry of aminoacyl phosphate esters can activate a selection mechanism for peptide bond formation by merging aqueous synthesis and self-assembly.
Collapse
Affiliation(s)
- Kun Dai
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Mahesh D Pol
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Lenard Saile
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Arti Sharma
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bin Liu
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Ralf Thomann
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
| | - Johanna L Trefs
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sandra Moser
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Stefan Wiesler
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bizan N Balzer
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thorsten Hugel
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Henning J Jessen
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Charalampos G Pappas
- DFG Cluster of Excellence livMatS @FIT─Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
34
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
35
|
Sarkar S, Laishram R, Deb D, George SJ. Controlled Noncovalent Synthesis of Secondary Supramolecular Polymers. J Am Chem Soc 2023; 145:22009-22018. [PMID: 37754784 DOI: 10.1021/jacs.3c06844] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Dynamic supramolecular polymers, with their functional similarities to classical covalent polymers and their adaptive and self-repairing nature reminiscent of biological assemblies, have emerged as highly promising systems for the design of smart soft materials. Recent advancements in mechanistic investigations and novel synthetic strategies, such as living supramolecular polymerization, have significantly enhanced our ability to control the primary structure of these supramolecular polymers. However, realizing their full functional potential requires expanding their topological diversity in a manner akin to classical polymers as well as achieving precise molecular organization at higher hierarchical levels of self-assembly. In this paper, we present a remarkable advancement in this field, introducing an unprecedented and controlled synthesis of secondary supramolecular polymers. Our innovative strategy combines chirality-controlled surface-catalyzed secondary nucleation and a bioinspired peptide design, effectively stabilizing higher-order assembly. Furthermore, by harnessing this stereoselective nucleation process, we demonstrate the successful synthesis of racemic supramolecular polymers featuring parallelly stacked conglomerate microstructures─a previously unreported topology in synthetic self-assembled systems. Additionally, we elucidate that the extent of secondary supramolecular polymers can be regulated by modulating the enantiomeric excess of the chiral monomers. Consequently, our study unveils new topologies that exhibit enhanced higher-order structural complexity in the realm of supramolecular polymers.
Collapse
Affiliation(s)
- Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Raju Laishram
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Darshana Deb
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur, Bangalore 560064, India
| |
Collapse
|
36
|
Zhang J, Lu X, Li W, Zhang A. Dual-Responsive Supramolecular Chiral Assemblies from Amphiphilic Dendronized Tetraphenylethylenes. Molecules 2023; 28:6580. [PMID: 37764356 PMCID: PMC10537776 DOI: 10.3390/molecules28186580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Supramolecular assembly of amphiphilic molecules in aqueous solutions to form stimuli-responsive entities is attractive for developing intelligent supramolecular materials for bioapplications. Here we report on the supramolecular chiral assembly of amphiphilic dendronized tetraphenylethylenes (TPEs) in aqueous solutions. Hydrophobic TPE moieties were connected to the hydrophilic three-fold dendritic oligoethylene glycols (OEGs) through a tripeptide proline-hydroxyproline-glycol (POG) to afford the characteristic topological structural effects of dendritic OEGs and the peptide linker. Both ethoxyl- and methoxyl-terminated dendritic OEGs were used to modulate the overall hydrophilicity of the dendronized TPEs. Their supramolecular aggregates exhibited thermoresponsive behavior that originated from the dehydration and collapse of the dendritic OEGs, and their cloud point temperatures (Tcps) were tailored by solution pH conditions. Furthermore, aggregation-induced fluorescent emission (AIE) from TPE moieties was used as an indicator to follow the assembly, which was reversibly tuned by temperature variation at different pH conditions. Supramolecular assemblies from these dendronized amphiphiles exhibited enhanced supramolecular chirality, which was dominated mainly by the interaction balance between TPE with dendritic OEG and TPE with POG moieties and was modulated through different solvation by changing solution temperature or pH conditions. More interestingly, ethoxyl-terminated dendritic OEG provided a much stronger shielding effect than its methoxyl-terminated counterpart to prevent amino groups within the peptide from protonation, even in strong acidic conditions, resulting in different responsive behavior to the solution temperature and pH conditions for these supramolecular aggregates.
Collapse
Affiliation(s)
| | | | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
37
|
Sasaki N, Kikkawa J, Ishii Y, Uchihashi T, Imamura H, Takeuchi M, Sugiyasu K. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat Chem 2023; 15:922-929. [PMID: 37264101 DOI: 10.1038/s41557-023-01216-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023]
Abstract
Although the principles of noncovalent bonding are well understood and form the basis for the syntheses of many intricate supramolecular structures, supramolecular noncovalent synthesis cannot yet achieve the levels of precision and complexity that are attainable in organic and/or macromolecular covalent synthesis. Here we show the stepwise synthesis of block supramolecular polymers from metal-porphyrin derivatives (in which the metal centre is Zn, Cu or Ni) functionalized with fluorinated alkyl chains. These monomers first undergo a one-dimensional supramolecular polymerization and cyclization process to form a toroidal structure. Subsequently, successive secondary nucleation, elongation and cyclization steps result in two-dimensional assemblies with concentric toroidal morphologies. The site selectivity endowed by the fluorinated chains, reminiscent of regioselectivity in covalent synthesis, enables the precise control of the compositions and sequences of the supramolecular structures, as demonstrated by the synthesis of several triblock supramolecular terpolymers.
Collapse
Grants
- JP22H02134 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04682 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19K05592 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 20H04669 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05868 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Norihiko Sasaki
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jun Kikkawa
- Electron Microscopy Group, Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Yoshiki Ishii
- Department of Physics, Nagoya University, Nagoya, Japan
| | | | - Hitomi Imamura
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Department of Materials Science and Engineering, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazunori Sugiyasu
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
38
|
Vantomme G. Site selectivity steps in. Nat Chem 2023; 15:894-895. [PMID: 37402790 DOI: 10.1038/s41557-023-01237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Affiliation(s)
- Ghislaine Vantomme
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
39
|
Deng L, Ma DH, Xie ZL, Lin RY, Zhou ZH. Crown ether-like discrete clusters for sodium binding and gas adsorption. Dalton Trans 2023. [PMID: 37318454 DOI: 10.1039/d3dt00341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hexanuclear polyoxomolybdenum-based discrete supermolecules Nax[MoV6O6(μ2-O)9(Htrz)6-x(trz)x]·nH2O (x = 0, n = 15, 1; x = 1, n = 12, 2; x = 2, n = 10, 3; x = 2, n = 49, 4; Htrz = 1H-1,2,3-triazole) have been prepared and fully characterized with different amounts of sodium cations inside and outside the intrinsic holes. Structural analyses demonstrate that they all exist a triangular channel constructed by six molybdenum-oxygen groups with inner diameters of 2.86 (1), 2.48 (2), and 3.04 (3/4) Å, respectively. Zero, one, or two univalent enthetic guest Na+ have been hosted around the structural centers, which reflect the expansion and contraction effects at microscopic level. Water-soluble species can serve as crown ether-like metallacycles before and after the sodium binding. Diverse nanoscale pores are further formed through intermolecular accumulations with hydrogen bonding. Gas adsorption studies indicate that 2-4 can selectively adsorb CO2 and O2 but have little or even no affinities toward H2, N2, and CH4. Theoretical calculations corroborate the roles of Na+ and auxiliary ligand with different states in bond distances, molecular orbitals, electrostatic potentials, and lattice energies in these discrete clusters. The binding orders of sodium cations in 2-4 are similar with the classical crown ethers, where 2 is the strongest one with 2.226(4)av Å for sodium cation bonded to six O atoms.
Collapse
Affiliation(s)
- Lan Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Deng-Hui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, China
| | - Zhen-Lang Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Rong-Yan Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
40
|
Cheng H, Liu R, Zhang R, Huang L, Yuan Q. Recent advances in supramolecular self-assembly derived materials for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:2394-2412. [PMID: 37143817 PMCID: PMC10153478 DOI: 10.1039/d3na00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
The key preponderance of supramolecular self-assembly strategy is its ability to precisely assemble various functional units at the molecular level through non-covalent bonds to form multifunctional materials. Supramolecular materials have the merits of diverse functional groups, flexible structure, and unique self-healing properties, which make them of great value in the field of energy storage. This paper reviews the latest research progress of the supramolecular self-assembly strategy for the advanced electrode materials and electrolytes for supercapacitors, including supramolecular self-assembly for the preparation of high-performance carbon materials, metal-based materials and conductive polymer materials, and its beneficial effects on the performance of supercapacitors. The preparation of high performance supramolecular polymer electrolytes and their application in flexible wearable devices and high energy density supercapacitors are also discussed in detail. In addition, at the end of this paper, the challenges of the supramolecular self-assembly strategy are summarized and the development of supramolecular-derived materials for supercapacitors is prospected.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Ruliang Liu
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Ruyi Zhang
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Lan Huang
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Qiaoyi Yuan
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| |
Collapse
|
41
|
Akimenko SS. Tensor network construction for lattice gas models: Hard-core and triangular lattice models. Phys Rev E 2023; 107:054116. [PMID: 37329059 DOI: 10.1103/physreve.107.054116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
The representation of complex lattice models in the form of a tensor network is a promising approach to the analysis of the thermodynamics of such systems. Once the tensor network is built, various methods can be used to calculate the partition function of the corresponding model. However, it is possible to build the initial tensor network in different ways for the same model. In this work, we have proposed two ways of constructing tensor networks and demonstrated that the construction process affects the accuracy of calculations. For demonstration purposes, we have done a brief study of the 4 nearest-neighbor (NN) and 5NN models, where adsorbed particles exclude all sites up to the fourth and fifth nearest neighbors from being occupied by another particle. In addition, we have studied a 4NN model with finite repulsions with a fifth neighbor. In a sense, this model is intermediate between 4NN and 5NN models, so algorithms designed for systems with hard-core interactions may experience difficulties. We have obtained adsorption isotherms, as well as graphs of entropy and heat capacity for all models. The critical values of the chemical potential were determined from the position of the heat capacity peaks. As a result, we were able to improve our previous estimate of the position of the phase transition points for the 4NN and 5NN models. And in the model with finite interactions, we found the presence of two first-order phase transitions and made an estimate of the critical values of the chemical potential for them.
Collapse
Affiliation(s)
- Sergey S Akimenko
- Department of Chemistry and Chemical Engineering, Omsk State Technical University, Mira Ave. 11, Omsk 644050, Russian Federation
| |
Collapse
|
42
|
Wang Z, Mei L, Guo C, Huang S, Shi WQ, Li X, Feng W, Li X, Yang C, Yuan L. Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring-in-Rings Complexes with Conformational Adaptivity. Angew Chem Int Ed Engl 2023; 62:e202216690. [PMID: 36652350 DOI: 10.1002/anie.202216690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest.
Collapse
Affiliation(s)
- Zhenwen Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Song Huang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China.,University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| |
Collapse
|
43
|
Khanra P, Singh AK, Roy L, Das A. Pathway Complexity in Supramolecular Copolymerization and Blocky Star Copolymers by a Hetero-Seeding Effect. J Am Chem Soc 2023; 145:5270-5284. [PMID: 36797682 DOI: 10.1021/jacs.2c12894] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This study unravels the intricate kinetic and thermodynamic pathways involved in the supramolecular copolymerization of the two chiral dipolar naphthalene monoimide (NMI) building blocks (O-NMI and S-NMI), differing merely by a single heteroatom (oxygen vs sulfur). O-NMI exhibits distinct supramolecular polymerization features as compared to S-NMI in terms of its pathway complexity, hierarchical organization, and chiroptical properties. Two distinct self-assembly pathways in O-NMI occur due to the interplay between the competing dipolar interactions among the NMI chromophores and amide-amide hydrogen (H)-bonding that engenders distinct nanotapes and helical fibers, from its antiparallel and parallel stacking modes, respectively. In contrast, the propensity of S-NMI to form only a stable spherical assembly is ascribed to its much stronger amide-amide H-bonding, which outperforms other competing interactions. Under the thermodynamic route, an equimolar mixture of the two monomers generates a temporally controlled chiral statistical supramolecular copolymer that autocatalytically evolves from an initially formed metastable spherical heterostructure. In contrast, the sequence-controlled addition of the two monomers leads to the kinetically driven hetero-seeded block copolymerization. The ability to trap O-NMI in a metastable state allows its secondary nucleation from the surface of the thermodynamically stable S-NMI spherical "seed", which leads to the core-multiarmed "star" copolymer with reversibly and temporally controllable length of the growing O-NMI "arms" from the S-NMI "core". Unlike the one-dimensional self-assembly of O-NMI and its random co-assembly with S-NMI, which are both chiral, unprecedentedly, the preferred helical bias of the nucleating O-NMI fibers is completely inhibited by the absence of stereoregularity of the S-NMI "seed" in the "star" topology.
Collapse
Affiliation(s)
- Payel Khanra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
44
|
Sugiura S, Shintani Y, Mori D, Higashi SL, Shibata A, Kitamura Y, Kawano SI, Hirosawa KM, Suzuki KGN, Ikeda M. Design of supramolecular hybrid nanomaterials comprising peptide-based supramolecular nanofibers and in situ generated DNA nanoflowers through rolling circle amplification. NANOSCALE 2023; 15:1024-1031. [PMID: 36444534 DOI: 10.1039/d2nr04556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The artificial construction of multicomponent supramolecular materials comprising plural supramolecular architectures that are assembled orthogonally from their constituent molecules has attracted growing attention. Here, we describe the design and development of multicomponent supramolecular materials by combining peptide-based self-assembled fibrous nanostructures with globular DNA nanoflowers constructed by the rolling circle amplification reaction. The orthogonally constructed architectures were dissected by fluorescence imaging using the selective fluorescence staining procedures adapted to this study. The present, unique hybrid materials developed by taking advantage of each supramolecular architecture based on their peptide and DNA functions may offer distinct opportunities to explore their bioapplications as a soft matrix.
Collapse
Affiliation(s)
- Shintaro Sugiura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shin-Ichiro Kawano
- Department of Chemistry, Faculty of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Koichiro M Hirosawa
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kenichi G N Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
45
|
Escamilla P, Guerra WD, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo E. Metal-organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chem Commun (Camb) 2023; 59:836-851. [PMID: 36598064 DOI: 10.1039/d2cc05686k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the emergence of metal-organic frameworks (MOFs), a myriad of thrilling properties and applications, in a wide range of fields, have been reported for these materials, which mainly arise from their porous nature and rich host-guest chemistry. However, other important features of MOFs that offer great potential rewards have been only barely explored. For instance, despite the fact that MOFs are suitable candidates to be used as chemical nanoreactors for the preparation, stabilization and characterization of unique functional species, that would be hardly accessible outside the functional constrained space offered by MOF channels, only very few examples have been reported so far. In particular, we outline in this feature recent advances in the use of highly robust and crystalline oxamato- and oxamidato-based MOFs as reactors for the in situ preparation of well-defined catalytically active single atom catalysts (SACS), subnanometer metal nanoclusters (SNMCs) and supramolecular coordination complexes (SCCs). The robustness of selected MOFs permits the post-synthetic (PS) in situ preparation of the desired catalytically active metal species, which can be characterised by single-crystal X-ray diffraction (SC-XRD) taking advantage of its high crystallinity. The strategy highlighted here permits the always challenging large-scale preparation of stable and well-defined SACs, SNMCs and SCCs, exhibiting outstanding catalytic activities.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Antonio Leyva-Pérez
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
46
|
Umer Lone M, Sahu N, Kumar Roy R, Adhikari B. Introduction of Ferrocene as a Facilitator for the Construction of Supramolecular Polymers. Chemistry 2023; 29:e202202711. [PMID: 36178321 DOI: 10.1002/chem.202202711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Proper monomer design is the key to enhancing the strength of noncovalent interactions between the molecules toward the efficient formation of supramolecular polymers (SPs). We have designed and synthesized 1,n'-disubstituted ferrocene-azobenzene-long alkyl chains, Fc(CONH-Azo-TDP)2 , to afford SPs with a high probability. The design exploits the ''molecular ball-bearing'' property of the ferrocene core, which allows two azobenzene arms to rotate in the planes of cyclopentadienyl rings, generating the most suitable molecular conformation required for SP formation. This ferrocene monomer formed a supergel consisting of SPs supported by strong intermolecular (H-bonding and π-π stacking) interactions and higher enthalpy gain than the reference molecules, where the central ferrocene core was replaced by flexible aliphatic as well as rigid benzene linkers. The molecular conformation involved in SPs, the strength of noncovalent interactions, and the process of supramolecular polymerization were investigated through NMR, UV-Vis, XRD and TEM studies. The results demonstrate that ferrocene may act as a good modulator for constructing efficient SPs.
Collapse
Affiliation(s)
- Mohammad Umer Lone
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli PO, 140306, S. A. S. Nagar, Punjab, India
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, 769008, Rourkela, Odisha, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli PO, 140306, S. A. S. Nagar, Punjab, India
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, 769008, Rourkela, Odisha, India
| |
Collapse
|
47
|
Jiao Y, Mao H, Qiu Y, Wu G, Chen H, Zhang L, Han H, Li X, Zhao X, Tang C, Chen XY, Feng Y, Stern CL, Wasielewski MR, Stoddart JF. Mechanical Bond-Assisted Full-Spectrum Investigation of Radical Interactions. J Am Chem Soc 2022; 144:23168-23178. [DOI: 10.1021/jacs.2c10882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haochuan Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yunyan Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Guangcheng Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Han Han
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuesong Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingang Zhao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chun Tang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
48
|
Schnitzer T, Preuss MD, van Basten J, Schoenmakers SMC, Spiering AJH, Vantomme G, Meijer EW. How Subtle Changes Can Make a Difference: Reproducibility in Complex Supramolecular Systems. Angew Chem Int Ed Engl 2022; 61:e202206738. [PMID: 36062929 PMCID: PMC9825988 DOI: 10.1002/anie.202206738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 01/11/2023]
Abstract
The desire to construct complex molecular systems is driven by the need for technological (r)evolution and our intrinsic curiosity to comprehend the origin of life. Supramolecular chemists tackle this challenge by combining covalent and noncovalent reactions leading to multicomponent systems with emerging complexity. However, this synthetic strategy often coincides with difficult preparation protocols and a narrow window of suitable conditions. Here, we report on unsuspected observations of our group that highlight the impact of subtle "irregularities" on supramolecular systems. Based on the effects of pathway complexity, minute amounts of water in organic solvents or small impurities in the supramolecular building block, we discuss potential pitfalls in the study of complex systems. This article is intended to draw attention to often overlooked details and to initiate an open discussion on the importance of reporting experimental details to increase reproducibility in supramolecular chemistry.
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Marco D. Preuss
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Jule van Basten
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Sandra M. C. Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - A. J. H. Spiering
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 5135600 MBEindhovenThe Netherlands
| |
Collapse
|
49
|
Wang Z, Huang K, Wan X, Liu M, Chen Y, Shi X, Wang S. High‐Strength Plus Reversible Supramolecular Adhesives Achieved by Regulating Intermolecular Pt
II
⋅⋅⋅Pt
II
Interactions. Angew Chem Int Ed Engl 2022; 61:e202211495. [DOI: 10.1002/anie.202211495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kang Huang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Laboratory of Theoretical and Computational Nanoscience Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yong Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Laboratory of Theoretical and Computational Nanoscience Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
50
|
Schnitzer T, Preuss MD, van Basten J, Schoenmakers SMC, Spiering AJH, Vantomme G, Meijer EW. How Subtle Changes Can Make a Difference: Reproducibility in Complex Supramolecular Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Marco D. Preuss
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jule van Basten
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Sandra M. C. Schoenmakers
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - A. J. H. Spiering
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - E. W. Meijer
- Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|