1
|
Piñeiro-Silva C, Gadea J. Optimizing gene editing in pigs: The role of electroporation and lipofection. Anim Reprod Sci 2025; 278:107874. [PMID: 40451118 DOI: 10.1016/j.anireprosci.2025.107874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/27/2025] [Accepted: 05/29/2025] [Indexed: 06/11/2025]
Abstract
The production of genetically modified pigs is becoming increasingly important in both the agricultural and biomedical fields. Optimization of these processes is a key objective to improve the precision, scalability and viability of genetically modified animals for research and commercial applications. Among the available techniques, electroporation and lipofection have emerged as promising alternatives to traditional methods such as microinjection and somatic cell nuclear transfer (SCNT) due to their simplicity, cost-effectiveness, and potential for high-throughput applications. These methods allow the direct delivery of CRISPR/Cas components into zygotes and embryos, reducing the technical expertise required and bypassing some of the challenges associated with cloning. This review examines the application, efficacy, and outcomes of electroporation and lipofection as gene editing techniques in porcine gametes and embryos. We provide a comprehensive synthesis of recent advances, compare their efficacy, and discuss their potential in agricultural and biomedical research. The principles and mechanisms of both methods are reviewed, highlighting their advantages, such as cost-effectiveness and ease of implementation, over traditional approaches such as microinjection. In addition, we address their limitations, including variability in efficiency, and discuss recent protocol optimizations aimed at improving reproducibility and applicability. By analyzing these developments, this review provides valuable insights into the evolving role of electroporation and lipofection in porcine genetic modification strategies.
Collapse
Affiliation(s)
- Celia Piñeiro-Silva
- University of Murcia. Department of Physiology, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - Joaquín Gadea
- University of Murcia. Department of Physiology, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
2
|
Lin T, Wang X, Zhang Y, Li G, Huang X, Shi M. Developing safe and efficient CGBE editor based on Cas-embedding strategy. Synth Syst Biotechnol 2025; 10:504-510. [PMID: 40027845 PMCID: PMC11872432 DOI: 10.1016/j.synbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 03/05/2025] Open
Abstract
CGBE (C-to-G base editor) systems, pivotal components within the base editing arsenal, enable the precise conversion of cytosines to guanines. However, conventional cytidine deaminases possess non-specific single-stranded DNA binding properties, leading to off-target effects and safety concerns. The Cas-embedding strategy, which involves embedding functional proteins like deaminases within the Cas9 enzyme's architecture, emerges as a method to mitigate these off-target effects. Our study pioneers the application of the Cas-embedding strategy to CGBE systems, engineering a suite of novel CGBE editors, CE-CGBE. The CE-CGBE that incorporated eA3A, RBMX and Udgx excelled in editing efficiency, editing purity, and indel formation was named HF-CGBE. HF-CGBE showed no significant difference in off-target effects compared to the negative control group for both DNA and RNA. In summary, the novel HF-CGBE editors we propose expand the base editing toolbox and provide therapeutic approaches for related pathogenic mutations.
Collapse
Affiliation(s)
- Tian Lin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xin Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032 China
| | - Guanglei Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032 China
| | - Xingxu Huang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200032 China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
3
|
Schweitzer AY, Adams EW, Nguyen MTA, Lek M, Isaacs FJ. Precision multiplexed base editing in human cells using Cas12a-derived base editors. Nat Commun 2025; 16:5061. [PMID: 40449999 DOI: 10.1038/s41467-025-59653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/29/2025] [Indexed: 06/03/2025] Open
Abstract
Base editors enable the direct conversion of target nucleotides without introducing DNA double strand breaks, making them a powerful tool for creating point mutations in a human genome. However, current Cas9-derived base editing technologies have limited ability to simultaneously edit multiple loci with base-pair level precision, hindering the generation of polygenic phenotypes. Here, we test the ability of six Cas12a-derived base editing systems to process multiple gRNAs from a single transcript. We identify base editor variants capable of multiplexed base editing and improve the design of the respective gRNA array expression cassette, enabling multiplexed editing of 15 target sites in multiple human cell lines, increasing state-of-the-art in multiplexing by three-fold in the field of mammalian genome engineering. To reduce bystander mutations, we also develop a Cas12a gRNA engineering approach that directs editing outcomes towards a single base-pair conversion. We combine these advances to demonstrate that both strategies can be combined to drive multiplex base editing with greater precision and reduced bystander mutation rates. Overcoming these key obstacles of mammalian genome engineering technologies will be critical for their use in studying single nucleotide variant-associated diseases and engineering synthetic mammalian genomes.
Collapse
Affiliation(s)
- Anabel Y Schweitzer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Etowah W Adams
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Michael T A Nguyen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
- Systems Biology Institute, Yale University, West Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Wang J, Zhang W, Li S, Shi W, Li B, Zhang J, Liang Y, Teng X, Zhang K. RNA Editing-Mediated Correction of TP53 Nonsense Mutations via Lipid Nanoparticle-Delivered Circular ADAR-Recruiting RNAs. J Am Chem Soc 2025. [PMID: 40397606 DOI: 10.1021/jacs.4c17920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Nonsense mutations account for over 20% of disease-associated mutations, which refer to the occurrence of premature termination codons (PTCs) in gene sequences, resulting in truncated and dysfunctional proteins. Nonetheless, due to poor accessibility of precise target sites and the limitations of gene editing tools, there is still a lack of safe, effective, and site-specific approach for correction of nonsense mutations. Here, we designed a circular ADAR-recruiting RNA (Circ-arRNA) for the in vivo RNA editing-mediated repair of the TP53-W53X nonsense mutation. Compared with linear arRNA, Circ-RNA demonstrates strong intracellular stability and high efficiency for site-specific correction of the TP53-W53X nonsense mutant, with no detectable off-target effects on bystander bases. In triple-negative breast cancer TP53-W53X 4T1 cells and tumor-bearing mouse models, we used lipid nanoparticles (LNPs) to encapsulate and deliver Circ-arRNA, which achieved mutation correction efficiencies of 73.32 and 48.48%, respectively. Furthermore, Circ-arRNA LNPs effectively restored full-length p53 protein expression and its functional activity, significantly enhancing the sensitivity of tumor-bearing mice to paclitaxel chemotherapy. Our research demonstrated the safety and efficacy of LNP-based circular arRNA for specifically the repair of nonsense mutations in vivo, highlighting the immense potential of ADAR-mediated editing for correcting such mutations.
Collapse
Affiliation(s)
- Jinjin Wang
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjing Zhang
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuguang Li
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjun Shi
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Bingyu Li
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingge Zhang
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan Liang
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xucong Teng
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- Beijing Life Science Academy, Beijing 102209, P. R. China
| |
Collapse
|
5
|
Contiliani DF, Sretenovic S, Dailey M, Zhou M, Cheng Y, Creste S, Xiao S, Qi Y. Harnessing novel cytidine deaminases from the animal kingdom for robust multiplexed base editing in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1702-1712. [PMID: 39950393 PMCID: PMC12018838 DOI: 10.1111/pbi.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 04/25/2025]
Abstract
CRISPR-Cas-based cytosine base editors (CBEs) are prominent tools that perform site-specific and precise C-to-T conversions catalysed by cytidine deaminases. However, their use is often constrained by stringent editing preferences for genomic contexts, off-target effects and restricted editing windows. To expand the repertoire of CBEs, we systematically screened 66 novel cytidine deaminases sourced from various organisms, predominantly from the animal kingdom and benchmarked them in rice protoplasts using the nCas9-BE3 configuration. After selecting candidates in rice protoplasts and further validation in transgenic rice lines, we unveiled a few cytidine deaminases exhibiting high editing efficiencies and wide editing windows. CBEs based on these cytidine deaminases also displayed minimal frequencies of indels and C-to-R (R = A/G) conversions, suggesting high purity in C-to-T base editing. Furthermore, we highlight the highly efficient cytidine deaminase OoA3GX2 derived from Orca (killer whale) for its comparable activity across GC/CC/TC/AC sites, thus broadening the targeting scope of CBEs for robust multiplexed base editing. Finally, the whole-genome sequencing analyses revealed very few sgRNA-dependent and -independent off-target effects in independent T0 lines. This study expands the cytosine base-editing toolkit with many cytidine deaminases sourced from mammals, providing better-performing CBEs that can be further leveraged for sophisticated genome engineering strategies in rice and likely in other plant species.
Collapse
Affiliation(s)
- Danyel Fernandes Contiliani
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Graduate Program of Genetics, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSPBrazil
- Sugarcane CenterAgronomic Institute (IAC)Ribeirao PretoSPBrazil
| | - Simon Sretenovic
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Micah Dailey
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Man Zhou
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Yanhao Cheng
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| | - Silvana Creste
- Graduate Program of Genetics, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSPBrazil
- Sugarcane CenterAgronomic Institute (IAC)Ribeirao PretoSPBrazil
| | - Shunyuan Xiao
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| | - Yiping Qi
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandRockvilleMarylandUSA
| |
Collapse
|
6
|
Zhu M, Xu R, Yuan J, Wang J, Ren X, Cong T, You Y, Ju A, Xu L, Wang H, Zheng P, Tao H, Lin C, Yu H, Du J, Lin X, Xie W, Li Y, Lan X. Tracking-seq reveals the heterogeneity of off-target effects in CRISPR-Cas9-mediated genome editing. Nat Biotechnol 2025; 43:799-810. [PMID: 38956324 DOI: 10.1038/s41587-024-02307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
The continued development of novel genome editors calls for a universal method to analyze their off-target effects. Here we describe a versatile method, called Tracking-seq, for in situ identification of off-target effects that is broadly applicable to common genome-editing tools, including Cas9, base editors and prime editors. Through tracking replication protein A (RPA)-bound single-stranded DNA followed by strand-specific library construction, Tracking-seq requires a low cell input and is suitable for in vitro, ex vivo and in vivo genome editing, providing a sensitive and practical genome-wide approach for off-target detection in various scenarios. We show, using the same guide RNA, that Tracking-seq detects heterogeneity in off-target effects between different editor modalities and between different cell types, underscoring the necessity of direct measurement in the original system.
Collapse
Affiliation(s)
- Ming Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| | - Runda Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
| | - Junsong Yuan
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jiacheng Wang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoyu Ren
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Tingting Cong
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yaxian You
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
| | - Anji Ju
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China
| | - Longchen Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Wang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Peiyuan Zheng
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Huiying Tao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunhua Lin
- Department of Urology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Honghao Yu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, Guilin, China
| | - Juanjuan Du
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xin Lin
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Xie
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yinqing Li
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
- IDG-McGovern Institute for Brain Research, Center for Synthetic and Systems Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
| | - Xun Lan
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Yuan K, Xi X, Han S, Han J, Zhao B, Wei Q, Zhou X. Selict-seq profiles genome-wide off-target effects in adenosine base editing. Nucleic Acids Res 2025; 53:gkaf281. [PMID: 40207628 PMCID: PMC11983105 DOI: 10.1093/nar/gkaf281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Adenosine base editors (ABEs) facilitate A·T to G·C base pair conversion with significant therapeutic potential for correcting pathogenic point mutations in human genetic diseases, such as sickle cell anemia and β-thalassemia. Unlike CRISPR-Cas9 systems that induce double-strand breaks, ABEs operate through precise deamination, avoiding chromosomal instability. However, the off-target editing effects of ABEs remain inadequately characterized. In this study, we present a biochemical method Selict-seq, designed to evaluate genome-wide off-target editing by ABEs. Selict-seq specifically captures deoxyinosine-containing single-stranded DNA and precisely identifies deoxyadenosine-to-deoxyinosine (dA-to-dI) mutation sites, elucidating the off-target effects induced by ABEs. Through investigations involving three single-guide RNAs, we identified numerous unexpected off-target edits both within and outside the protospacer regions. Notably, ABE8e(V106W) exhibited distinct off-target characteristics, including high editing rates (>10%) at previously unreported sites (e.g. RNF2 and EMX1) and out-of-protospacer mutations. These findings significantly advance our understanding of the off-target landscape associated with ABEs. In summary, our approach enables an unbiased analysis of the ABE editome and provides a widely applicable tool for specificity evaluation of various emerging genome editing technologies that produce intermediate products as deoxyinosine.
Collapse
Affiliation(s)
- Kexin Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xin Xi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Jingyu Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Bin Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Qi Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, PR China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430071, PR China
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| |
Collapse
|
8
|
Cabré-Romans JJ, Cuella-Martin R. CRISPR-dependent base editing as a therapeutic strategy for rare monogenic disorders. Front Genome Ed 2025; 7:1553590. [PMID: 40242216 PMCID: PMC12000063 DOI: 10.3389/fgeed.2025.1553590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Rare monogenic disorders are caused by mutations in single genes and have an incidence rate of less than 0.5%. Due to their low prevalence, these diseases often attract limited research and commercial interest, leading to significant unmet medical needs. In a therapeutic landscape where treatments are targeted to manage symptoms, gene editing therapy emerges as a promising approach to craft curative and lasting treatments for these patients, often referred to as "one-and-done" therapeutics. CRISPR-dependent base editing enables the precise correction of genetic mutations by direct modification of DNA bases without creating potentially deleterious DNA double-strand breaks. Base editors combine a nickase version of Cas9 with cytosine or adenine deaminases to convert C·G to T·A and A·T to G·C, respectively. Together, cytosine (CBE) and adenine (ABE) base editors can theoretically correct ∼95% of pathogenic transition mutations cataloged in ClinVar. This mini-review explores the application of base editing as a therapeutic approach for rare monogenic disorders. It provides an overview of the state of gene therapies and a comprehensive compilation of preclinical studies using base editing to treat rare monogenic disorders. Key considerations for designing base editing-driven therapeutics are summarized in a user-friendly guide for researchers interested in applying this technology to a specific rare monogenic disorder. Finally, we discuss the prospects and challenges for bench-to-bedside translation of base editing therapies for rare monogenic disorders.
Collapse
Affiliation(s)
- Júlia-Jié Cabré-Romans
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Raquel Cuella-Martin
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Duan M, Gao P, Zhang YZ, Hu YL, Zhou L, Xu ZC, Qiu HY, Tong XH, Ji RJ, Lei XL, Yin H, Guo CL, Zhang Y. TOPO-seq reveals DNA topology-induced off-target activity by Cas9 and base editors. Nat Chem Biol 2025:10.1038/s41589-025-01867-7. [PMID: 40175512 DOI: 10.1038/s41589-025-01867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/25/2025] [Indexed: 04/04/2025]
Abstract
With the increasing use of CRISPR-Cas9, detecting off-target events is essential for safety. Current methods primarily focus on guide RNA (gRNA) sequence mismatches, often overlooking the impact of DNA topology in regulating off-target activity. Here we present TOPO-seq, a high-throughput and sensitive method that identifies genome-wide off-target effects of Cas9 and base editors while accounting for DNA topology. TOPO-seq revealed that topology-induced off-target sites frequently harbor higher mismatches than the relaxed DNA sequence, with over 50% of off-target sites containing six mismatches, which are usually overlooked using previous methods. Applying TOPO-seq to three therapeutic gRNAs in hematopoietic stem cells identified 47 bona fide off-target loci, six of which are specifically induced by DNA topology. These findings highlight DNA topology as a regulator of off-target editing rates, establish TOPO-seq as a robust method for capturing DNA topology-induced off-target events and underscore its importance in off-target detection for developing safe genome-editing therapies.
Collapse
Affiliation(s)
- Min Duan
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pan Gao
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yi-Zhou Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yu-Long Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Zhou
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhong-Chen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Hou-Yuan Qiu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Han Tong
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rui-Jin Ji
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xin-Lin Lei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hao Yin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology and Biosafety, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Departments of Urology and Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cun-Lan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology and Biosafety, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Zhao W, Zhu X, Huang G, Gu H, Bi Y, Tang D, Ren H. Application of Multiple Base-Editing Mediated by Polycistronic tRNA-gRNA-Processing System in Pig Cells. Biotechnol Bioeng 2025; 122:779-791. [PMID: 39844444 DOI: 10.1002/bit.28931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Gene edited pigs have extensive and important application value in the fields of agriculture and biomedicine. With the increasing demand in medical research and agricultural markets, more and more application scenarios require gene edited pigs to possess two or even more advantageous phenotypes simultaneously. The current production of multi gene edited pigs is inefficient, time-consuming, and costly, and there is an urgent need to develop efficient and accurate multi gene editing application technologies. The polycistronic tRNA-gRNA-processing system (PTG), developed based on endogenous tRNA self-processing systems, has been shown to exhibit efficient multi gene editing in plants. This study aims to combine a PTG strategy with multiple gRNA production functions with an adenine base editor (ABE) to test its feasibility for efficient and precise multi gene base editing in pig cells. The results indicate that the PTG based integrated ABE plasmid can perform efficient base editing at multiple gene loci in pig cells. And while the gene editing efficiency was significantly improved, no indel and sgRNA dependent off target effects caused by DSB were detected. This work permit will provide a solid foundation for the production of multi gene edited pigs with agricultural and medical applications.
Collapse
Affiliation(s)
- Wudi Zhao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Xiangxing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Guobin Huang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dongsheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, China
| | - Hongyan Ren
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
11
|
Koodamvetty A, Thangavel S. Advancing Precision Medicine: Recent Innovations in Gene Editing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410237. [PMID: 40025867 PMCID: PMC11984848 DOI: 10.1002/advs.202410237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Indexed: 03/04/2025]
Abstract
The advent of gene editing has significantly advanced the field of medicine, opening new frontiers in the treatment of genetic disorders, cancer, and infectious diseases. Gene editing technology remains a dynamic and promising area of research and development. Recent advancements in protein and RNA engineering within this field have addressed critical issues such as imprecise edits, poor editing efficiency, and off-target effects. Advancements in delivery methods have allowed the achievement of therapeutic or even selection-free gene editing efficiency with reduced toxicity in primary cells, thereby enhancing the safety and efficacy of gene manipulation. This progress paves the way for transformative changes in molecular biology, medicine, and other fields. This review provides a comprehensive overview of the advancements in gene editing techniques, focusing on prime editor proteins and their engineered variants. It also explores alternative systems that expand the toolkit for precise genomic modifications and highlights the potential of these innovations in treating hematological disorders, while also discussing the limitations and challenges that remain.
Collapse
Affiliation(s)
- Abhijith Koodamvetty
- Centre for Stem Cell Research (CSCR)A unit of InStem BengaluruChristian Medical College campusVelloreTamil Nadu632002India
- Manipal Academy of Higher EducationManipalKarnataka576104India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR)A unit of InStem BengaluruChristian Medical College campusVelloreTamil Nadu632002India
| |
Collapse
|
12
|
Ji RJ, Wang MY, Zhang Y. Precision epitope editing: A path to advanced immunotherapies. CELL INSIGHT 2025; 4:100226. [PMID: 39906754 PMCID: PMC11791281 DOI: 10.1016/j.cellin.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
The ability to recognize antigen epitope is crucial for generating an effective immune response. By engineering these epitopes, researchers can reduce on-target/off-tumor toxicity associated with targeted immunotherapy. Recent studies indicate that employing various gene editing tools to modify the epitopes of healthy hematopoietic stem and progenitor cells (HSPCs) can protect these cells from toxicity during tumor eradication, all while preserving their differentiation and function. This advancement greatly enhances the safety and efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Rui-Jin Ji
- Esophagus, Mediastinum and Lymphatic Oncology Department, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Mu-Yao Wang
- Esophagus, Mediastinum and Lymphatic Oncology Department, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ying Zhang
- Esophagus, Mediastinum and Lymphatic Oncology Department, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, Hubei, China
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, 430071, Hubei, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
13
|
Chen Q, Sun Y, Yao J, Lu Y, Qiu R, Zhou F, Deng Z, Sun Y. Engineering of Peptide-Inserted Base Editors with Enhanced Accuracy and Security. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411583. [PMID: 39995348 PMCID: PMC11983243 DOI: 10.1002/smll.202411583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/08/2025] [Indexed: 02/26/2025]
Abstract
Base editors are effective tools for introducing base conversions without double-strand breaks, showing broad applications in biotechnological and clinical areas. However, their non-negligible bystander mutations and off-target effects have raised extensive safety concerns. To address these issues, a novel method is developed by inserting specific peptide fragments into the substrate binding pocket of deaminases in base editors to modify these outcomes. It is validated that the composition and position of the inserted peptide can significantly impact the performance of A3A-based cytosine base editor and TadA-8e-based adenine base editor, leading to improved editing activity and precision in human HEK293T cells. Importantly, the TadA-8e variant with DPLVLRRRQ peptide inserted behind S116 residue showed a strong motif preference of Y4A5N6, which can accurately edit the A5 base in targeted protospacer with minimized bystander and off-target effects in DNA and RNA-level. By summarizing the regularity during engineering, a set of systematic procedures is established, which can potentially be used to modify other types of base editors and make them more accurate and secure. In addition, the peptide insertion strategy is also proven to be compatible with traditional amino acid changes which have been reported, exhibiting excellent compatibility.
Collapse
Affiliation(s)
- Qi Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yangning Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Jia Yao
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yingfan Lu
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Ruikang Qiu
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Zixin Deng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yuhui Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- School of PharmacyHuazhong University of Science and TechnologyWuhan430030China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| |
Collapse
|
14
|
Liu D, Cao D, Han R. Recent advances in therapeutic gene-editing technologies. Mol Ther 2025:S1525-0016(25)00200-X. [PMID: 40119516 DOI: 10.1016/j.ymthe.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/24/2025] Open
Abstract
The advent of gene-editing technologies, particularly CRISPR-based systems, has revolutionized the landscape of biomedical research and gene therapy. Ongoing research in gene editing has led to the rapid iteration of CRISPR technologies, such as base and prime editors, enabling precise nucleotide changes without the need for generating harmful double-strand breaks (DSBs). Furthermore, innovations such as CRISPR fusion systems with DNA recombinases, DNA polymerases, and DNA ligases have expanded the size limitations for edited sequences, opening new avenues for therapeutic development. Beyond the CRISPR system, mobile genetic elements (MGEs) and epigenetic editors are emerging as efficient alternatives for precise large insertions or stable gene manipulation in mammalian cells. These advances collectively set the stage for next-generation gene therapy development. This review highlights recent developments of genetic and epigenetic editing tools and explores preclinical innovations poised to advance the field.
Collapse
Affiliation(s)
- Dongqi Liu
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Di Cao
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Renzhi Han
- Department of Pediatrics, Department of Molecular and Medical Genetics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
15
|
Ai X, Ding S, Zhou S, Du F, Liu S, Cui X, Dong J, Huang X, Tang Z. Enhancing RNA editing efficiency and specificity with engineered ADAR2 guide RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102447. [PMID: 39967855 PMCID: PMC11834095 DOI: 10.1016/j.omtn.2025.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
RNA editing is a prospective therapeutic approach for correcting harmful mutations, offering the benefits of reversibility and tunability without permanently modifying the genome. However, the relatively low enzymatic activity and the occurrence of off-target editing events present significant challenges, limiting its utility. In response to this limitation, we introduced a novel strategy: strand displacement-responsive ADAR system for RNA editing (SPRING) by adding a "blocking sequence" to form a hairpin guide RNA. This modification significantly improves the efficiency of site-directed RNA editing (SDRE) at various target sites. Furthermore, the use of hairpin guide RNA within the SPRING system enhances the specificity of RNA editing through competitive reactions during target hybridization. In principle, this approach can be employed across various ADAR-based editing systems, offering a novel RNA-editing platform with wide-ranging potential for research, therapy, and biotech applications.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Sheng Ding
- School of Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610052, China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shuai Liu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
16
|
O’Donohue AK, Ginn SL, Burgio G, Berman Y, Dabscheck G, Schindeler A. The evolving landscape of NF gene therapy: Hurdles and opportunities. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102475. [PMID: 40034205 PMCID: PMC11872496 DOI: 10.1016/j.omtn.2025.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neurofibromatosis type 1 (NF1)- and NF2-related schwannomatosis are rare autosomal dominant monogenic disorders characterized by a predisposition for nerve-associated tumors. Current treatments focus on symptomatic management, but advancements in the gene therapy field present unique opportunities to treat the genetic underpinnings and develop curative therapies for NF. Approaches such as nonsense suppression agents and oligonucleotide therapies are becoming more mature and have emerging preclinical data in the context of NF. Furthermore, there has been progress in developing gene therapy vectors that can be delivered locally into tumors to ablate or shrink their size. While still a nascent research area, gene addition and gene repair strategies hold tremendous promise for the prevention and treatment of NF-related tumors. These technologies will also require parallel development of delivery vectors able to target the Schwann cells from which tumors most commonly arise. This review seeks to contextualize these advancements and which hurdles remain for their clinical adoption.
Collapse
Affiliation(s)
- Alexandra K. O’Donohue
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospitals Network, Westmead, NSW 2145, Australia
| | - Gaetan Burgio
- The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Yemima Berman
- Department of Clinical Genetics, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Gabriel Dabscheck
- Department of Neurology, Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, VIC 3050, Australia
| | - Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratory, The Children’s Hospital at Westmead and Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- School of Chemical & Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
17
|
Mach RQ, Miller SM. Bacterial directed evolution of CRISPR base editors. Methods Enzymol 2025; 712:317-350. [PMID: 40121078 DOI: 10.1016/bs.mie.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Base editing and other precision editing agents have transformed the utility and therapeutic potential of CRISPR-based genome editing. While some native enzymes edit efficiently with their nature-derived function, many enzymes require rational engineering or directed evolution to enhance the compatibility with mammalian cell genome editing. While many methods of engineering and directed evolution exist, plate-based discrete evolution offers an ideal balance between ease of use and engineering power. Here, we describe a detailed method for the bacterial directed evolution of CRISPR base editors that compounds technical ease with flexibility of application.
Collapse
|
18
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
19
|
McAndrew MJ, King MB, Lapinaite A. Preparation of high-purity RNPs of CRISPR-based DNA base editors. Methods Enzymol 2025; 712:277-315. [PMID: 40121077 DOI: 10.1016/bs.mie.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Since their introduction, CRISPR-based DNA base editors (BEs) have become essential in the field of precision genome editing, revolutionizing the correction of pathogenic SNPs for both basic research and therapeutic applications. As this technology advances, more laboratories are implementing these tools into their workflow. The delivery of BEs as BE-guide RNA complexes (RNPs), rather than as mRNA or plasmids, has been shown to exhibit lower off-target effects, establishing it as the preferred method of delivery. However, there are no protocols describing in detail how to obtain high-purity and highly active BE RNPs. Here, we offer a comprehensive guide for the expression, purification, RNP reconstitution, and in vitro activity assessment of TadA-based BEs. The protocol includes guidance on performing activity assays using commercial denaturing gels, which is convenient and uses standard molecular biology equipment. This allows for rapid quality control testing of reconstituted BE RNPs prior to more expensive and time-consuming in vivo genome editing experiments. Overall, this protocol aims to empower more laboratories to generate tailored BE RNPs for diverse in vitro and in vivo applications.
Collapse
Affiliation(s)
- Mitchell J McAndrew
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States; Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Madeleine B King
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States; Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Audrone Lapinaite
- Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California Irvine, School of Medicine, Irvine, CA, United States; Department of Ophthalmology, University of California Irvine, School of Medicine, Irvine, CA, United States; Department of Biomedical Engineering, University of California Irvine, Irvine, CA, United States.
| |
Collapse
|
20
|
Wu YF, Chen JA, Jong YJ. Treating neuromuscular diseases: unveiling gene therapy breakthroughs and pioneering future applications. J Biomed Sci 2025; 32:30. [PMID: 39985020 PMCID: PMC11844187 DOI: 10.1186/s12929-025-01123-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/21/2025] [Indexed: 02/23/2025] Open
Abstract
In this review, we highlight recent advancements in adeno-associated virus (AAV)-based gene therapy for genetic neuromuscular diseases (NMDs), focusing on spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). We discuss the current FDA-approved gene therapies for NMDs and provide updates on preclinical studies that demonstrate the potential of various AAV-based gene therapies to reduce SMA severity and serve as effective treatments for DMD. Additionally, we explore the transformative impact of CRISPR/Cas9 technology on the future of gene therapy for NMDs. Despite these encouraging developments, further research is required to identify robust biomarkers that can guide treatment decisions and predict outcomes. Overall, these pioneering advancements in AAV-based gene therapy lay the groundwork for future efforts aimed at curing genetic NMDs and offer a roadmap for developing gene therapies for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Fu Wu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| | - Yuh-Jyh Jong
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Division of Pediatric Neurology, and Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
21
|
Zhang D, Parth F, da Silva LM, Ha TC, Schambach A, Boch J. Engineering a bacterial toxin deaminase from the DYW-family into a novel cytosine base editor for plants and mammalian cells. Genome Biol 2025; 26:18. [PMID: 39901278 PMCID: PMC11789416 DOI: 10.1186/s13059-025-03478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
Base editors are precise editing tools that employ deaminases to modify target DNA bases. The DYW-family of cytosine deaminases is structurally and phylogenetically distinct and might be harnessed for genome editing tools. We report a novel CRISPR/Cas9-cytosine base editor using SsdA, a DYW-like deaminase and bacterial toxin. A G103S mutation in SsdA enhances C-to-T editing efficiency while reducing its toxicity. Truncations result in an extraordinarily small enzyme. The SsdA-base editor efficiently converts C-to-T in rice and barley protoplasts and induces mutations in rice plants and mammalian cells. The engineered SsdA is a highly efficient genome editing tool.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
- Research Institute of Biology and Agriculture, University of Science and Technology, Beijing, 100083, China
| | - Fiona Parth
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Laura Matos da Silva
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany.
| |
Collapse
|
22
|
Tan YY, Liew YY, Lee RRQ, Castel B, Chan NM, Wan WL, Zhang Y, Hu D, Chan P, Kim ST, Chae E. Generation of Inheritable A-to-G Transitions Using Adenine Base Editing and NG-PAM Cas9 in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:30-42. [PMID: 39585742 DOI: 10.1094/mpmi-10-24-0127-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Towards precise genome editing, base editors have been developed by fusing catalytically compromised Cas9 with deaminase components, mediating C-to-T (cytosine base editors) or A-to-G (adenine base editors) transition. We developed a set of vectors consisting of a 5'-NG-3' PAM-recognizing variant of SpCas9 with adenosine deaminases TadA7.10 or TadA8e. Using a phenotype-based screen in Arabidopsis thaliana targeting multiple PDS3 intron splice sites, we achieved up to 81% somatic A-to-G editing in primary transformants at a splice acceptor site with NGG PAM, while 35% was achieved for the same target adenine with NGA PAM. Among tested vectors, pECNUS4 (Addgene #184887), carrying TadA8e, showed the highest adenine base editor (ABE) efficiency. With pECNUS4, we recreated a naturally occurring allele of DANGEROUS MIX3 (DM3) in two generations, transgene-free, for NGC PAM. We also simultaneously base-edited four redundant DM1/SSI4 homologs, encoding nucleotide-binding leucine-rich repeat (NLR) proteins, using a single gRNA with NGA PAM targeting the conserved yet functionally crucial P-loop motif of NLR proteins. We found fixation of A-to-G in three NLR genes for all three possible adenine sites within base-editing window 3-9, as the edited genes segregate in T2. Multigene targeting succeeded in rescuing the previously reported autoimmune phenotype in two generations. Mediating desired ABE on seven NLR genes simultaneously was successful as well; above 77% editing was achieved in six of the seven possible targets in a T1 plant, with the remaining having a moderately high (32%) editing. ABE application to specifically inactivate functional motifs is anticipated to expedite the discovery of novel roles for proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Yi Yun Tan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yin Yin Liew
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Rachelle R Q Lee
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Nga Man Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Yizhong Zhang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Donghui Hu
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Persis Chan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Medical & Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
23
|
Bhakta S, Tsukahara T. Restoration of cytidine to uridine genetic code using an MS2-APOBEC1 artificial enzymatic approach. Methods Enzymol 2025; 713:271-285. [PMID: 40250957 DOI: 10.1016/bs.mie.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
By employing site-directed RNA editing (SDRE) to restore point-mutated RNA molecules, it is possible to change gene-encoded information and synthesize proteins with different functionality from a single gene. Thymine (T) to cytosine (C) point mutations cause various genetic disorders, and when they occur in protein-coding regions, C-to-uridine (U) RNA changes can lead to non-synonymous alterations. By joining the deaminase domain of apolipoprotein B messenger RNA (mRNA) editing catalytic polypeptide 1 (APOBEC1) with a guide RNA (gRNA) complementary to a target mRNA, we created an artificial RNA editase. We used an mRNA encoding blue fluorescent protein (BFP), obtained from the green fluorescent protein (GFP) gene through the introduction of a T > C mutation, as our target RNA. In a proof of principle experiment, we reverted the T > C mutation at the RNA level using our APOBEC1 site-directed RNA editing system, recovering GFP signal. Sanger sequencing of cDNA from transfected cells and polymerase chain reaction-restriction length polymorphism analysis validated this result, indicating an editing of approximately 21 %. Our successful development of an artificial RNA editing system using the deaminase APOBEC1, in conjunction with the MS2 system, may lead to the development of treatments for genetic diseases based on the restoration of specific types of wild type sequences at the mRNA level.
Collapse
Affiliation(s)
- Sonali Bhakta
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa 923-1292, Japan; Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Toshifumi Tsukahara
- Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomicity, Ishikawa 923-1292, Japan; GeCoRT Co., Ltd., Kanagawa, 220-0011, Japan.
| |
Collapse
|
24
|
Akira A, Levanon E, Ben Aroya S. Leveraging Saccharomyces cerevisiae for ADAR research: From high-yield purification to high-throughput screening and therapeutic applications. Methods Enzymol 2025; 710:1-18. [PMID: 39870441 DOI: 10.1016/bs.mie.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Saccharomyces cerevisiae, a model eukaryotic organism with a rich history in research and industry, has become a pivotal tool for studying Adenosine Deaminase Acting on RNA (ADAR) enzymes despite lacking these enzymes endogenously. This chapter reviews the diverse methodologies harnessed using yeast to elucidate ADAR structure and function, emphasizing its role in advancing our understanding of RNA editing. Initially, Saccharomyces cerevisiae was instrumental in the high-yield purification of ADARs, addressing challenges associated with enzyme stability and activity in other systems. The chapter highlights the successful application of yeast in high-throughput screening platforms that identify key structural motifs and substrate preferences of ADARs, showcasing its utility in revealing complex enzyme mechanics. Furthermore, we discuss the development of yeast-based systems to optimize guide RNA sequences for site-directed RNA editing (SDRE), demonstrating how these systems can be employed to refine therapeutic strategies targeting genetic mutations. Additionally, exogenous expression of ADARs from various species in yeast has shed light on enzyme potency and substrate recognition across different temperatures, offering insights into evolutionary adaptations. Overall, Saccharomyces cerevisiae has proven to be an invaluable asset in ADAR research, facilitating significant advances in our understanding of RNA editing mechanisms and therapeutic applications.
Collapse
Affiliation(s)
- Adi Akira
- Life Science, Bar Ilan University, Ramat Gan, Israel
| | - Erez Levanon
- Life Science, Bar Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
25
|
Yin S, Gao L, Sun X, Zhang M, Gao H, Chen X, Zhang D, Ming X, Yang L, Hu Y, Chen X, Liu M, Zhan X, Guan Y, Wang L, Han L, Zhu P, Li D. Amelioration of metabolic and behavioral defects through base editing in the Pah R408W phenylketonuria mouse model. Mol Ther 2025; 33:119-132. [PMID: 39600089 PMCID: PMC11764323 DOI: 10.1016/j.ymthe.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Phenylketonuria (PKU) is a liver metabolic disorder mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the PahR408W PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1%-34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8-treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L-1 and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the PahR408W PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.
Collapse
Affiliation(s)
- Shuming Yin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510100, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyue Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoqing Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinyu Ming
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiang Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xi Chen
- BRL Medicine, Inc., Shanghai 200241, China
| | - Meizhen Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetics Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510100, China; Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong 510080, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
26
|
Lee JM, Zeng J, Liu P, Nguyen MA, Suchenski Loustaunau D, Bauer DE, Kurt Yilmaz N, Wolfe SA, Schiffer CA. Direct delivery of Cas-embedded cytosine base editors as ribonucleoprotein complexes for efficient and accurate editing of clinically relevant targets. Nucleic Acids Res 2025; 53:gkae1217. [PMID: 39676659 PMCID: PMC11724287 DOI: 10.1093/nar/gkae1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Recently, cytosine base editors (CBEs) have emerged as a promising therapeutic tool for specific editing of single nucleotide variants and disrupting specific genes associated with disease. Despite this promise, the currently available CBEs have the significant liabilities of off-target and bystander editing activities, partly due to the mechanism by which they are delivered, causing limitations in their potential applications. In this study, we engineered optimized, soluble and stable Cas-embedded CBEs (CE_CBEs) that integrate several recent advances, which were efficiently formulated for direct delivery into cells as ribonucleoprotein (RNP) complexes. Our resulting CE_CBE RNP complexes efficiently target cytosines in TC dinucleotides with minimal off-target or bystander mutations. Delivery of additional uracil glycosylase inhibitor protein in trans further increased C-to-T editing efficiency and target purity in a dose-dependent manner, minimizing indel formation. A single electroporation was sufficient to effectively edit the therapeutically relevant locus BCL11A for sickle cell disease in hematopoietic stem and progenitor cells in a dose-dependent manner without cellular toxicity. Significantly, these CE_CBE RNPs permitted highly efficient editing and engraftment of transplanted cells in mice. Thus, our designed CBE proteins provide promising reagents for RNP-based editing at disease-related sites.
Collapse
Affiliation(s)
- Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Pengpeng Liu
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA01605, USA
| | - My Anh Nguyen
- Division of Hematology/Oncology, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Diego Suchenski Loustaunau
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, 1 Blackfan Circle, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute of Harvard and MIT, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA01605, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
27
|
Shi W, Jin E, Fang L, Sun Y, Fan Z, Zhu J, Liang C, Zhang YP, Zhang YQ, Wang GD, Zhao W. VDGE: a data repository of variation database for gene-edited animals across multiple species. Nucleic Acids Res 2025; 53:D1250-D1260. [PMID: 39470732 PMCID: PMC11701559 DOI: 10.1093/nar/gkae956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024] Open
Abstract
Gene-edited animals are crucial for addressing fundamental questions in biology and medicine and hold promise for practical applications. In light of the rapid advancement of gene editing technologies over the past decade, a dramatically increased number of gene-edited animals have been generated. Genome editing at off-target sites can, however, introduce genomic variations, potentially leading to unintended functional consequences in these animals. So, there is an urgent need to systematically collect and collate these variations in gene-edited animals to aid data mining and integrative in-depth analyses. However, existing databases are currently insufficient to meet this need. Here, we present the Variation Database of Gene-Edited animals (VDGE, https://ngdc.cncb.ac.cn/vdge), the first open-access repository to present genomic variations and annotations in gene-edited animals, with a particular focus on larger animals such as monkeys. At present, VDGE houses 151 on-target mutations from 210 samples, and 115,710 variations identified from 107 gene-edited and wild-type animal trios through unified and standardized analysis and concurrently provides comprehensive annotation details for each variation, thus facilitating the assessment of their functional consequences and promoting mechanistic studies and practical applications for gene-edited animals.
Collapse
Affiliation(s)
- Wenwen Shi
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Enhui Jin
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lu Fang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yanling Sun
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Junwei Zhu
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- School of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan 430062, China
| | - Guo-Dong Wang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Wenming Zhao
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| |
Collapse
|
28
|
Watson LE, MacRae CL, Kallingappa P, Cao Y, Li X, Hedges CP, D'Souza RF, Fleming N, Mellor KM, Merry TL. An IL-6 promoter variant (-174 G/C) augments IL-6 production and alters skeletal muscle transcription in response to exercise in mice. J Appl Physiol (1985) 2025; 138:213-225. [PMID: 39665197 DOI: 10.1152/japplphysiol.00391.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/17/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Interleukin-6 (IL-6) is produced and secreted by skeletal muscle cells during exercise and plays an important role in mediating metabolic responses to exercise. The promoter region of the IL-6 gene contains a common genetic variant (-174 G/C, rs1800795), which may alter responses to exercise training. To isolate the impact of this gene variant on exercise-induced IL-6 expression and skeletal muscle transcription responses following exercise, we generated knock-in mice with a GG or variant CC genotype for the murine homolog of rs1800795. The overall gross metabolic phenotype of resting mice was similar between genotypes; however, following acute treadmill running, the variant CC genotype was associated with a greater increase in skeletal muscle Il6 mRNA and circulating IL-6. Furthermore, we observed that mice with the variant CC genotype exhibited sex-specific differences in skeletal muscle master metabolism regulatory genes and had greater increases in genes controlling mitochondrial biogenesis in skeletal muscle post exercise. However, there was no effect of genotype on exercise-induced skeletal muscle glycogen depletion, circulating free fatty acids, blood glucose and lactate production, or exercise-responsive gene expression in subcutaneous fat. These findings suggest that the IL-6 promoter variant -174 G/C may result in enhanced skeletal muscle adaptations in response to exercise training and could mean that individuals with the "C" allele may more readily gain improvements in metabolic health in response to exercise training.NEW & NOTEWORTHY Interleukin-6 (IL-6) is produced and secreted by skeletal muscle during exercise and mediates metabolic responses to exercise. A common variant in the IL-6 promoter region (-174G/C) may alter responses to exercise training. Mice with the variant "CC" genotype exhibited higher skeletal muscle IL-6 mRNA and circulating IL-6 levels post exercise, as well as altered skeletal muscle gene transcription. This suggests that this variant might enhance muscle adaptations to exercise, potentially benefiting metabolic health.
Collapse
Affiliation(s)
- L E Watson
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - C L MacRae
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| | - P Kallingappa
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Y Cao
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - X Li
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - C P Hedges
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - R F D'Souza
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - N Fleming
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| | - K M Mellor
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - T L Merry
- Department of Nutrition, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre of Research Excellence (CoRE), Auckland, New Zealand
| |
Collapse
|
29
|
Xu K, Feng H, Zhang H, He C, Kang H, Yuan T, Shi L, Zhou C, Hua G, Cao Y, Zuo Z, Zuo E. Structure-guided discovery of highly efficient cytidine deaminases with sequence-context independence. Nat Biomed Eng 2025; 9:93-108. [PMID: 38831042 PMCID: PMC11754093 DOI: 10.1038/s41551-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/20/2024] [Indexed: 06/05/2024]
Abstract
The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.
Collapse
Affiliation(s)
- Kui Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haihang Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huifang Kang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chikai Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yaqi Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhenrui Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
30
|
Hu S, Chen Y, Zhou Y, Cao T, Liu S, Ding C, Xie D, Liang P, Huang L, Liu H, Huang J. In vivo adenine base editing ameliorates Rho-associated autosomal dominant retinitis pigmentosa. J Genet Genomics 2024:S1673-8527(24)00365-5. [PMID: 39725189 DOI: 10.1016/j.jgg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo. The correctable pathogenic mutations are screened and verified, including T17M, Q344ter, and P347L. Two adRP animal models are created carrying the class 1 (Q344ter) and class 2 (T17M) mutations, and dual AAV-delivered ABE can effectively repair both mutations in vivo. The early intervention of ABE8e efficiently corrects the Q344ter mutation that causes a severe form of adRP, delays photoreceptor death, and restores retinal function and visual behavior. These results suggest that ABE is a promising alternative to treat RHO mutation-associated adRP. Our work provides an effective spacer-mediated point mutation correction therapy for dominantly inherited ocular disorders.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yitong Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Simiao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Chenhui Ding
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Li Huang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
31
|
Jiang C, Li Y, Wang R, Sun X, Zhang Y, Zhang Q. Development and optimization of base editors and its application in crops. Biochem Biophys Res Commun 2024; 739:150942. [PMID: 39547118 DOI: 10.1016/j.bbrc.2024.150942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Genome editing technologies hold significant potential for targeted mutagenesis in crop development, aligning with evolving agricultural needs. Point mutations, or single nucleotide polymorphisms (SNPs), define key agronomic traits in various crop species and play a pivotal role. The implementation of single nucleotide variations through genome editing-based base editing offers substantial promise in expediting crop improvement by inducing advantageous trait variations. Among many genome editing techniques, base editing stands out as an advanced next-generation technology, evolved from the CRISPR/Cas9 system.Base editing, a recent advancement in genome editing, enables precise DNA modification without the risks associated with double-strand breaks. Base editors, designed as precise genome editing tools, enable the direct and irreversible conversion of specific target bases. Base editors consist of catalytically active CRISPR-Cas9 domains, including Cas9 variants, fused with domains like cytidine deaminase, adenine deaminase, or reverse transcriptase. These fusion proteins enable the introduction of specific point mutations in target genomic regions. Currently developed are cytidine base editors (CBEs), mutating C to T; adenine base editors (ABEs), changing A to G; and prime editors (PEs), enabling arbitrary base conversions, precise insertions, and deletions. In this review, the research, development, and progress of various base editing systems, along with their potential applications in crop improvement, were intended to be summarized. The limitations of this technology will also be discussed. Finally, an outlook on the future of base editors will be provided.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Ran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
32
|
Steiner S, Roy CR. CRISPR-Cas9-based approaches for genetic analysis and epistatic interaction studies in Coxiella burnetii. mSphere 2024; 9:e0052324. [PMID: 39560384 DOI: 10.1128/msphere.00523-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen that replicates to high numbers in an acidified lysosome-derived vacuole. Intracellular replication requires the Dot/Icm type IVB secretion system, which translocates over 100 different effector proteins into the host cell. Screens employing random transposon mutagenesis have identified several C. burnetii effectors that play an important role in intracellular replication; however, the difficulty in conducting directed mutagenesis has been a barrier to the systematic analysis of effector mutants and to the construction of double mutants to assess epistatic interactions between effectors. Here, two CRISPR-Cas9 technology-based approaches were developed to study C. burnetii phenotypes resulting from targeted gene disruptions. CRISPRi was used to silence gene expression and demonstrated that silencing of effectors or Dot/Icm system components resulted in phenotypes similar to those of transposon insertion mutants. A CRISPR-Cas9-mediated cytosine base editing protocol was developed to generate targeted loss-of-function mutants through the introduction of premature stop codons into C. burnetii genes. Cytosine base editing successfully generated double mutants in a single step. A double mutant deficient in both cig57 and cig2 had a robust and additive intracellular replication defect when compared to either single mutant, which is consistent with Cig57 and Cig2 functioning in independent pathways that both contribute to a vacuole that supports C. burnetii replication. Thus, CRISPR-Cas9-based technologies expand the genetic toolbox for C. burnetii and will facilitate genetic studies aimed at investigating the mechanisms this pathogen uses to replicate inside host cells. IMPORTANCE Understanding the genetic mechanisms that enable C. burnetii to replicate in mammalian host cells has been hampered by the difficulty in making directed mutations. Here, a reliable and efficient system for generating targeted loss-of-function mutations in C. burnetii using a CRISPR-Cas9-assisted base editing approach is described. This technology was applied to make double mutants in C. burnetii that enabled the genetic analysis of two genes that play independent roles in promoting the formation of vacuoles that support intracellular replication. This advance will accelerate the discovery of mechanisms important for C. burnetii host infection and disease.
Collapse
Affiliation(s)
- Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
33
|
Eidelman M, Eisenberg E, Levanon EY. Global quantification of off-target activity by base editors. Methods Enzymol 2024; 713:255-270. [PMID: 40250956 DOI: 10.1016/bs.mie.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
Base editors are engineered deaminases combined with CRISPR components. These engineered deaminases are designed to target specific sites within DNA or RNA to make a precise change in the molecule. In therapeutics, they hold promise for correcting mutations associated with genetic diseases. However, a key challenge is minimizing unintended edits at off-target sites, which could lead to harmful mutations. Researchers are actively addressing this concern through a variety of optimization efforts that aim to improve the precision of base editors and minimize off-target activity. Here, we examine the various types of off-target activity, and the methods used to evaluate them. Current methods for finding off-target activity focus on identifying similar sequences in the genome or in the transcriptome, assuming the guide RNA misdirects the editor. The main method presented here, that was originally developed to quantify editing levels mediated by the ADAR enzyme, takes a different approach, investigating the inherent activity of base editors themselves, which might lead to off-target edits beyond sequence similarity. The editing index tool quantifies global off-target editing, eliminates the need to detect individual off-target sites, and allows for assessment of the global load of mutations.
Collapse
Affiliation(s)
- Michelle Eidelman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel; The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
34
|
Ai X, Tang Z. Aptazyme-directed A-to-I RNA editing. Methods Enzymol 2024; 710:267-283. [PMID: 39870449 DOI: 10.1016/bs.mie.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods. Moreover, ADAR-based RNA editing tools are less likely to elicit immune reactions because ADAR proteins are of human origin, and their small size makes them relatively easy to incorporate into gene therapy vectors, such as adeno-associated virus vectors (AAVs), which have limited space. Despite the promise of RNA editing as a therapeutic approach, precise temporal and spatial control of RNA editing is still lacking. Therefore, we have developed a small molecule-inducible RNA editing strategy by incorporating aptazymes into the guide RNA of the BoxB-λN-ADAR system. This chapter provides detailed protocols for targeted RNA editing by ADAR deaminases using aptazyme-based guide RNAs controlled by exogenous small molecules, marking the earliest use of aptazymes to regulate RNA editing strategies. Once small molecules are added or removed, aptazymes trigger self-cleavage to release the guide RNA, thus achieving small molecule-controlled RNA editing. To satisfy different RNA editing applications, we have realized the conditional activation and deactivation of A-to-I RNA editing of target mRNA using switch aptazymes. We provide step-by-step protocols for constructing guide RNA plasmids for regulatory purposes and conducting small molecule-induced RNA regulatory editing experiments in cells.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China.
| |
Collapse
|
35
|
Kim-Yip RP, McNulty R, Joyce B, Mollica A, Chen PJ, Ravisankar P, Law BK, Liu DR, Toettcher JE, Ivakine EA, Posfai E, Adamson B. Efficient prime editing in two-cell mouse embryos using PEmbryo. Nat Biotechnol 2024; 42:1822-1830. [PMID: 38321114 PMCID: PMC11631759 DOI: 10.1038/s41587-023-02106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Prime Medicine, Inc., Cambridge, MA, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Benjamin K Law
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
36
|
Xie L, Cao Y, Li D, Ma M, Jiao D, Feng H, Zuo Z, Zuo E. Reducing off-target effects of DdCBEs by reversing amino acid charge near DNA interaction sites. Cell Res 2024; 34:877-881. [PMID: 39256612 PMCID: PMC11615329 DOI: 10.1038/s41422-024-01028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/22/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yaqi Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Di Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Mengxue Ma
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Danrong Jiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Zhenrui Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
37
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: a highly efficient base editing toolbox that enables in vivo therapeutic exon skipping. Nat Commun 2024; 15:10354. [PMID: 39609418 PMCID: PMC11604662 DOI: 10.1038/s41467-024-54529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which have broad applications in medicine and biotechnology. Existing techniques including antisense oligonucleotides, targetable nucleases, and base editors, while effective for specific applications, remain hindered by transient effects, genotoxicity, and inconsistent exon skipping. To overcome these limitations, here we develop SPLICER, a toolbox of next-generation base editors containing near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing improves exon skipping, reduces aberrant splicing, and enables skipping of exons refractory to single splice site editing. To demonstrate the therapeutic potential of SPLICER, we target APP exon 17, which encodes amino acids that are cleaved to form Aβ plaques in Alzheimer's disease. SPLICER reduces the formation of Aβ42 peptides in vitro and enables efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient exon skipping toolbox.
Collapse
Affiliation(s)
- Angelo Miskalis
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shraddha Shirguppe
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson Winter
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gianna Elias
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Devyani Swami
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ananthan Nambiar
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michelle Stilger
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wendy S Woods
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Gosstola
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael Gapinske
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandra Zeballos
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hayden Moore
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sergei Maslov
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
38
|
Wu L, Jiang S, Shi M, Yuan T, Li Y, Huang P, Li Y, Zuo E, Zhou C, Sun Y. Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells. Genome Biol 2024; 25:291. [PMID: 39529170 PMCID: PMC11552398 DOI: 10.1186/s13059-024-03434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The safety of CRISPR-based gene editing methods is of the utmost priority in clinical applications. Previous studies have reported that Cas9 cleavage induced frequent aneuploidy in primary human T cells, but whether cleavage-mediated editing of base editors would generate off-target structure variations remains unknown. Here, we investigate the potential off-target structural variations associated with CRISPR/Cas9, ABE, and CBE editing in mouse embryos and primary human T cells by whole-genome sequencing and single-cell RNA-seq analyses. RESULTS The results show that both Cas9 and ABE generate off-target structural variations (SVs) in mouse embryos, while CBE induces rare SVs. In addition, off-target large deletions are detected in 32.74% of primary human T cells transfected with Cas9 and 9.17% of cells transfected with ABE. Moreover, Cas9-induced aneuploid cells activate the P53 and apoptosis pathways, whereas ABE-associated aneuploid cells significantly upregulate cell cycle-related genes and are arrested in the G0 phase. A percentage of 16.59% and 4.29% aneuploid cells are still observable at 3 weeks post transfection of Cas9 or ABE. These off-target phenomena in ABE are universal as observed in other cell types such as B cells and Huh7. Furthermore, the off-target SVs are significantly reduced in cells treated with high-fidelity ABE (ABE-V106W). CONCLUSIONS This study shows both CRISPR/Cas9 and ABE induce off-target SVs in mouse embryos and primary human T cells, raising an urgent need for the development of high-fidelity gene editing tools.
Collapse
Affiliation(s)
- Leilei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Shutan Jiang
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Meisong Shi
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yaqin Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | | | - Yingqi Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Changyang Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
39
|
Araki K, Torii T, Takeuchi K, Kinoshita N, Urano R, Nakajima R, Zhou Y, Kobayashi T, Hanyu T, Ohtani K, Ambe K, Kawauchi K. Non-canonical olfactory pathway activation induces cell fusion of cervical cancer cells. Neoplasia 2024; 57:101044. [PMID: 39222591 PMCID: PMC11402306 DOI: 10.1016/j.neo.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Multinucleation occurs in various types of advanced cancers and contributes to their malignant characteristics, including anticancer drug resistance. Therefore, inhibiting multinucleation can improve cancer prognosis; however, the molecular mechanisms underlying multinucleation remain elusive. Here, we introduced a genetic mutation in cervical cancer cells to induce cell fusion-mediated multinucleation. The olfactory receptor OR1N2 was heterozygously mutated in these fused cells; the same OR1N2 mutation was detected in multinucleated cells from clinical cervical cancer specimens. The mutation-induced structural change in the OR1N2 protein activated protein kinase A (PKA), which, in turn, mediated the non-canonical olfactory pathway. PKA phosphorylated and activated furin protease, resulting in the cleavage of the fusogenic protein syncytin-1. Because this cleaved form of syncytin-1, processed by furin, participates in cell fusion, furin inhibitors could suppress multinucleation and reduce surviving cell numbers after anticancer drug treatment. The improved anticancer drug efficacy indicates a promising therapeutic approach for advanced cervical cancers.
Collapse
Affiliation(s)
- Keigo Araki
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan.
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Kohei Takeuchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Ryoto Urano
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| | - Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Tokuo Kobayashi
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Tadayoshi Hanyu
- Department of Gynecology, Tsuboi Cancer Center Hospital, Koriyama, Fukushima 963-0197, Japan
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kimiharu Ambe
- Department of Morphological Biology, School of Dentistry, Ohu University, Koriyama, Fukushima 963-8611, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
40
|
Song X, Liu J, Chen T, Zheng T, Wang X, Guo X. Gene therapy and gene editing strategies in inherited blood disorders. J Genet Genomics 2024; 51:1162-1172. [PMID: 38986807 DOI: 10.1016/j.jgg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies, and reduction of its expression using the commercialized gene therapy product Casgevy has been approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.
Collapse
Affiliation(s)
- Xuemei Song
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - JinLei Liu
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tangcong Chen
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tingfeng Zheng
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiaolong Wang
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China.
| |
Collapse
|
41
|
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, Yuan S, Liu X, Liu M, Li J, Yin J, Xin C, Tian Y, Hu J. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nat Commun 2024; 15:9438. [PMID: 39487167 PMCID: PMC11530683 DOI: 10.1038/s41467-024-53806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Mitochondria serve as the cellular powerhouse, and their distinct DNA makes them a prospective target for gene editing to treat genetic disorders. However, the impact of genome editing on mitochondrial DNA (mtDNA) stability remains a mystery. Our study reveals previously unknown risks of genome editing that both nuclear and mitochondrial editing cause discernible transfer of mitochondrial DNA segments into the nuclear genome in various cell types including human cell lines, primary T cells, and mouse embryos. Furthermore, drug-induced mitochondrial stresses and mtDNA breaks exacerbate this transfer of mtDNA into the nuclear genome. Notably, we observe that mitochondrial editors, including mitoTALEN and recently developed base editor DdCBE, can also enhance crosstalk between mtDNA and the nuclear genome. Moreover, we provide a practical solution by co-expressing TREX1 or TREX2 exonucleases during DdCBE editing. These findings imply genome instability of mitochondria during induced DNA breaks and explain the origins of mitochondrial-nuclear DNA segments.
Collapse
Affiliation(s)
- Jinchun Wu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Liqiong Ou
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Shaopeng Yuan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Mengzhu Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhang Yin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Changchang Xin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
42
|
Zhou X, Gao J, Luo L, Huang C, Wu J, Wang X. Comprehensive evaluation and prediction of editing outcomes for near-PAMless adenine and cytosine base editors. Commun Biol 2024; 7:1389. [PMID: 39455714 PMCID: PMC11511846 DOI: 10.1038/s42003-024-07078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Base editors enable the direct conversion of target bases without inducing double-strand breaks, showing great potential for disease modeling and gene therapy. Yet, their applicability has been constrained by the necessity for specific protospacer adjacent motif (PAM). We generate four versions of near-PAMless base editors and systematically evaluate their editing patterns and efficiencies using an sgRNA-target library of 45,747 sequences. Near-PAMless base editors significantly expanded the targeting scope, with both PAM and target flanking sequences as determinants for editing outcomes. We develop BEguider, a deep learning model, to accurately predict editing results for near-PAMless base editors. We also provide experimentally measured editing outcomes of 20,541 ClinVar sites, demonstrating that variants previously inaccessible by NGG PAM base editors can now be precisely generated or corrected. We make our predictive tool and data available online to facilitate development and application of near-PAMless base editors in both research and clinical settings.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, Wenzhou, China
| | - Liheng Luo
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changcai Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jiayu Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases; Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
43
|
Deng J, Li X, Yu H, Yang L, Wang Z, Yi W, Liu Y, Xiao W, Xiang H, Xie Z, Lv D, Ouyang H, Pang D, Yuan H. Accelerated discovery and miniaturization of novel single-stranded cytidine deaminases. Nucleic Acids Res 2024; 52:11188-11202. [PMID: 39271120 PMCID: PMC11472066 DOI: 10.1093/nar/gkae800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Cytidine base editors (CBEs) hold significant potential in genetic disease treatment and in breeding superior traits into animals. However, their large protein sizes limit their delivery by adeno-associated virus (AAV), given its packing capacity of <4.7 kb. To overcome this, we employed a web-based fast generic discovery (WFG) strategy, identifying several small ssDNA deaminases (Sdds) and constructing multiple Sdd-CBE 1.0 versions. SflSdd-CBE 1.0 demonstrated high C-to-T editing efficiency, comparable to AncBE4max, while SviSdd-CBE 1.0 exhibited moderate C-to-T editing efficiency with a narrow editing window (C3 to C5). Utilizing AlphaFold2, we devised a one-step miniaturization strategy, reducing the size of Sdds while preserving their efficiency. Notably, we administered AAV8 expressing PCSK9 targeted sgRNA and SflSdd-CBEs (nSaCas9) 2.0 into mice, leading to gene-editing events (with editing efficiency up to 15%) and reduced serum cholesterol levels, underscoring the potential of Sdds in gene therapy. These findings offer new single-stranded editing tools for the treatment of rare genetic diseases.
Collapse
Affiliation(s)
- Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xueyuan Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ziru Wang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenfeng Yi
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Ying Liu
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Wenyu Xiao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongyong Xiang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zicong Xie
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Dongmei Lv
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing 401123, China
| |
Collapse
|
44
|
Allemailem KS, Almatroudi A, Alrumaihi F, Alradhi AE, Theyab A, Algahtani M, Alhawas MO, Dobie G, Moawad AA, Rahmani AH, Khan AA. Current Updates of CRISPR/Cas System and Anti-CRISPR Proteins: Innovative Applications to Improve the Genome Editing Strategies. Int J Nanomedicine 2024; 19:10185-10212. [PMID: 39399829 PMCID: PMC11471075 DOI: 10.2147/ijn.s479068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated sequence (CRISPR/Cas) system is a cutting-edge genome-editing tool employed to explore the functions of normal and disease-related genes. The CRISPR/Cas system has a remarkable diversity in the composition and architecture of genomic loci and Cas protein sequences. Owing to its excellent efficiency and specificity, this system adds an outstanding dimension to biomedical research on genetic manipulation of eukaryotic cells. However, safe, efficient, and specific delivery of this system to target cells and tissues and their off-target effects are considered critical bottlenecks for the therapeutic applications. Recently discovered anti-CRISPR proteins (Acr) play a significant role in limiting the effects of this system. Acrs are relatively small proteins that are highly specific to CRISPR variants and exhibit remarkable structural diversity. The in silico approaches, crystallography, and cryo-electron microscopy play significant roles in elucidating the mechanisms of action of Acrs. Acrs block the CRISPR/Cas system mainly by employing four mechanisms: CRISPR/Cas complex assembly interruption, target-binding interference, target cleavage prevention, and degradation of cyclic oligonucleotide signaling molecules. Engineered CRISPR/Cas systems are frequently used in gene therapy, diagnostics, and functional genomics. Understanding the molecular mechanisms underlying Acr action may help in the safe and effective use of CRISPR/Cas tools for genetic modification, particularly in the context of medicine. Thus, attempts to regulate prokaryotic CRISPR/Cas surveillance complexes will advance the development of antimicrobial drugs and treatment of human diseases. In this review, recent updates on CRISPR/Cas systems, especially CRISPR/Cas9 and Acrs, and their novel mechanistic insights are elaborated. In addition, the role of Acrs in the novel applications of CRISPP/Cas biotechnology for precise genome editing and other applications is discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | | | - Gasim Dobie
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Gizan, 82911, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena 07743, Germany
- Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
45
|
Wang Y, Liu KI, Liu MM, Ooi KH, Nguyen TA, Chee JE, Teo SXD, He S, Tay JWD, Teo SY, Liew KS, Ge XY, Ng ZJ, Avagyan H, Liu H, Yi Z, Chang K, Kok EPL, Chen R, Yau CE, Koh JW, Wan Y, Tan MH. A circularly permuted CasRx platform for efficient, site-specific RNA editing. Nat Biotechnol 2024:10.1038/s41587-024-02430-w. [PMID: 39385008 DOI: 10.1038/s41587-024-02430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Inactive Cas13 orthologs have been fused to a mutant human ADAR2 deaminase domain at the C terminus to enable programmable adenosine-to-inosine (A-to-I) RNA editing in selected transcripts. Although promising, existing RNA-editing tools generally suffer from a trade-off between efficacy and specificity, and off-target editing remains an unsolved problem. Here we describe the development of an optimized RNA-editing platform by rational protein engineering, CasRx-based Programmable Editing of RNA Technology (xPERT). We demonstrate that the topological rearrangement of a CasRx K940L mutant by circular permutation results in a robust scaffold for the tethering of a deaminase domain. We benchmark our tool against the REPAIR system and show that xPERT exhibits strong on-target activity like REPAIRv1 but low off-target editing like REPAIRv2. Our xPERT platform can be used to alter RNA sequence information without risking genome damage, effect temporary cellular changes and customize protein function.
Collapse
Affiliation(s)
- Yuanming Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kaiwen Ivy Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Mengying Mandy Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kean Hean Ooi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tram Anh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jiunn En Chee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shun Xiang Danny Teo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore
| | - Shan He
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jie Wen Douglas Tay
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Seok Yee Teo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kai Shin Liew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Xiao Yu Ge
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Zhi Jian Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hasmik Avagyan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hao Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Zirong Yi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Keziah Chang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eng Piew Louis Kok
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Runjia Chen
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- National Junior College, Singapore, Singapore
| | - Chun En Yau
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Hwa Chong Institution, Singapore, Singapore
| | - Jun Wei Koh
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Hwa Chong Institution, Singapore, Singapore
| | - Yue Wan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.
- HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
46
|
Pierson Smela M, Pepe V, Lubbe S, Kiskinis E, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. Stem Cell Reports 2024; 19:1505-1515. [PMID: 39270651 PMCID: PMC11561455 DOI: 10.1016/j.stemcr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities. However, this approach has been held back by a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended genome edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
| | - Valerio Pepe
- Wyss Institute at Harvard University, Boston MA, USA
| | - Steven Lubbe
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - George M Church
- Wyss Institute at Harvard University, Boston MA, USA; Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
47
|
Ye L, Zhao D, Li J, Wang Y, Li B, Yang Y, Hou X, Wang H, Wei Z, Liu X, Li Y, Li S, Liu Y, Zhang X, Bi C. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat Biotechnol 2024; 42:1538-1547. [PMID: 38168994 DOI: 10.1038/s41587-023-02050-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity-CDG-nCas9 and TDG-nCas9-with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5' end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.
Collapse
Affiliation(s)
- Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yiran Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueting Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huibin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhandong Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoqi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yajing Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
48
|
Li G, Dong X, Luo J, Yuan T, Li T, Zhao G, Zhang H, Zhou J, Zeng Z, Cui S, Wang H, Wang Y, Yu Y, Yuan Y, Zuo E, Xu C, Huang J, Zhou Y. Engineering TadA ortholog-derived cytosine base editor without motif preference and adenosine activity limitation. Nat Commun 2024; 15:8090. [PMID: 39284833 PMCID: PMC11405849 DOI: 10.1038/s41467-024-52485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
The engineered TadA variants used in cytosine base editors (CBEs) present distinctive advantages, including a smaller size and fewer off-target effects compared to cytosine base editors that rely on natural deaminases. However, the current TadA variants demonstrate a preference for base editing in DNA with specific motif sequences and possess dual deaminase activity, acting on both cytosine and adenosine in adjacent positions, limiting their application scope. To address these issues, we employ TadA orthologs screening and multi sequence alignment (MSA)-guided protein engineering techniques to create a highly effective cytosine base editor (aTdCBE) without motif and adenosine deaminase activity limitations. Notably, the delivery of aTdCBE to a humanized mouse model of Duchenne muscular dystrophy (DMD) mice achieves robust exon 55 skipping and restoration of dystrophin expression. Our advancement in engineering TadA ortholog for cytosine editing enriches the base editing toolkits for gene-editing therapy and other potential applications.
Collapse
Affiliation(s)
- Guoling Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Xue Dong
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Jiamin Luo
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tong Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Guoli Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Hainan Zhang
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Jingxing Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Zhenhai Zeng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Shuna Cui
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Haoqiang Wang
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yin Wang
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yuyang Yu
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | | | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China.
| | - Yingsi Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
49
|
Xiao YL, Wu Y, Tang W. An adenine base editor variant expands context compatibility. Nat Biotechnol 2024; 42:1442-1453. [PMID: 38168987 DOI: 10.1038/s41587-023-01994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024]
Abstract
Adenine base editors (ABEs) are precise gene-editing agents that convert A:T pairs into G:C through a deoxyinosine intermediate. Existing ABEs function most effectively when the target A is in a TA context. Here we evolve the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to generate TadA8r, which extends potent deoxyadenosine deamination to RA (R = A or G) and is faster in processing GA than TadA8.20 and TadA8e, the two most active TadA variants reported so far. ABE8r, comprising TadA8r and a Streptococcus pyogenes Cas9 nickase, expands the editing window at the protospacer adjacent motif-distal end and outperforms ABE7.10, ABE8.20 and ABE8e in correcting disease-associated G:C-to-A:T transitions in the human genome, with a controlled off-target profile. We show ABE8r-mediated editing of clinically relevant sites that are poorly accessed by existing editors, including sites in PCSK9, whose disruption reduces low-density lipoprotein cholesterol, and ABCA4-p.Gly1961Glu, the most frequent mutation in Stargardt disease.
Collapse
Affiliation(s)
- Yu-Lan Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Yang L, Huo Y, Wang M, Zhang D, Zhang T, Wu H, Rao X, Meng H, Yin S, Mei J, Zhang D, Chen X, Lv J, Liu M, Cheng Y, Guan Y, Feng B, Song G, Yi C, Liu M, Zeng F, Wang L, Li D. Engineering APOBEC3A deaminase for highly accurate and efficient base editing. Nat Chem Biol 2024; 20:1176-1187. [PMID: 38553609 DOI: 10.1038/s41589-024-01595-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/29/2024] [Indexed: 08/30/2024]
Abstract
Cytosine base editors (CBEs) are effective tools for introducing C-to-T base conversions, but their clinical applications are limited by off-target and bystander effects. Through structure-guided engineering of human APOBEC3A (A3A) deaminase, we developed highly accurate A3A-CBE (haA3A-CBE) variants that efficiently generate C-to-T conversion with a narrow editing window and near-background level of DNA and RNA off-target activity, irrespective of methylation status and sequence context. The engineered deaminase domains are compatible with PAM-relaxed SpCas9-NG variant, enabling accurate correction of pathogenic mutations in homopolymeric cytosine sites through flexible positioning of the single-guide RNAs. Dual adeno-associated virus delivery of one haA3A-CBE variant to a mouse model of tyrosinemia induced up to 58.1% editing in liver tissues with minimal bystander editing, which was further reduced through single dose of lipid nanoparticle-based messenger RNA delivery of haA3A-CBEs. These results highlight the tremendous promise of haA3A-CBEs for precise genome editing to treat human diseases.
Collapse
Affiliation(s)
- Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanan Huo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Man Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tianai Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xichen Rao
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Haowei Meng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiale Mei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dexin Zhang
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Chen
- BRL Medicine Inc., Shanghai, China
| | - Jia Lv
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine Inc., Shanghai, China
| | - Fanyi Zeng
- Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|