1
|
Huang X, Yu W, Gu W, Liang S, Zhou L, Zhang L. Mimicking natural biomineralization enabling biodegradable and highly lipophobic alginate hydrogels. Carbohydr Polym 2025; 357:123438. [PMID: 40158976 DOI: 10.1016/j.carbpol.2025.123438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Microorganisms can induce biomineralization of inorganic ions to form a lipophobic layer on the surface of cave rocks. Mimicking this, we developed and propose a protocol that produces a highly lipophobic hybrid layer of CaCO3 nanoparticles on hydrogel surfaces. This lipophobic layer endows hydrogels with an oil contact angle of 162°, causing oil droplets placed on the surface to bead up and roll off immediately. The lipophobic surface effectively resists staining from lipophilic dyes, and does not adhere to double-sided tapes. A lipophobic layer on hydrogel tubes effectively prevents the adhesion of thrombus and axunge during a three-day implantation period in rabbits. The hydrogel tubes, made of biodegradable sodium alginate, can serve as implantable scaffolds, degrading in the body, and avoiding the need for removal surgery. These properties make hydrogel tubes promising for medical devices like absorbable stents and catheters.
Collapse
Affiliation(s)
- Xiaowen Huang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Wenwen Yu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Weinan Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Shumin Liang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Limin Zhou
- School of Geographic Sciences, East China Normal University, Shanghai 200241, People's Republic of China.
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China.
| |
Collapse
|
2
|
Chille EE, Stephens TG, Nandi S, Jiang H, Gerdes MJ, Williamson OM, Neufeld A, Montoya-Maya P, Bhattacharya D. Coral Restoration in the Omics Era: Development of Point-of-Care Tools for Monitoring Disease, Reproduction, and Thermal Stress. Bioessays 2025:e70007. [PMID: 40285547 DOI: 10.1002/bies.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Coral reef degradation has captured global attention from governments, conservationists, and researchers, who are making concerted efforts to develop sustainable solutions to support reef resilience in the face of environmental degradation. The goal is to empower local community efforts for effective marine resource management. However, one of the major barriers to coral conservation is the lack of timely and affordable population-level health data, which can delay effective management responses. Although progress has been made in understanding the molecular basis of coral health outcomes, more translational work is needed to develop cost-effective, point-of-care (POC) diagnostic tools for real-time monitoring. This review assesses the current state of translational omics-based research for coral health monitoring, focusing on highlighting key gaps and actionable next steps to guide the implementation of effective, field-ready tools for monitoring coral disease, reproduction, and thermal stress. These advancements can be used to advance urgent conservation needs and promote reef management by local communities.
Collapse
Affiliation(s)
- Erin E Chille
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Shrinivas Nandi
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Haoyu Jiang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | | | | | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Navon G, Nordland O, Kaplan A, Avisar D, Shenkar N. Detection of 10 commonly used pharmaceuticals in reef-building stony corals from shallow (5-12 m) and deep (30-40 m) sites in the Red Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124698. [PMID: 39122171 DOI: 10.1016/j.envpol.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although pharmaceutically-active compounds (PhACs) are increasingly being found to be present in marine environments, their presence in coral reefs, already under threat from various stressors, has remains unexplored. This study focused on PhAC presence in two stony-coral genera, collected from different depths and sites in the Red Sea. The findings reveal the presence of ten different PhACs, with elevated concentrations detected in corals from shallow sites and in areas with heavy human activity. Notably, all samples contained at least one PhAC, with the antibiotic sulfamethoxazole being the most prevalent compound, detected in 93% of the samples, at concentrations ranging from 1.5 to 2080 ng/g dry weight (dw) tissue, with an average concentration of 106 ng/g dw. These findings underscore the urgent need for conservation initiatives aimed at protecting coral-reef ecosystems from the escalating threat of anthropogenic contamination, including such potential risks as the development of antibiotic resistance in marine organisms and the disruption of critical spawning synchrony among coral populations.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Olivia Nordland
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
4
|
Edmunds PJ. Decadal-scale time series highlight the role of chronic disturbances in driving ecosystem collapse in the Anthropocene. Ecology 2024; 105:e4360. [PMID: 38899537 DOI: 10.1002/ecy.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Biome degradation characterizes the Anthropocene Epoch, and modern ecology is deeply involved with describing the changes underway. Most research has focused on the role of acute disturbances in causing conspicuous changes in ecosystem structure, which leads to an underappreciation of the chronic effects causing large changes through the cumulative effects of small perturbations over decades. Coral reefs epitomize this trend, because the changes in community structure are profound, yet the data to quantify these effects are usually insufficient to evaluate the relative roles of different disturbance types. Here, four decades of surveys from two coral reefs (9 and 14 m depth) off St. John, US Virgin Islands, are used to quantify the associations of acute and chronic events with the changes in benthic community structure. These reefs profoundly changed over 36 years, with coral death altering species assemblages to depress abundances of the ecologically important coral Orbicella spp. and elevating the coverage of macroalgae and crustose coralline algae/turf/bare space (CTB). Linear mixed models revealed the prominent role of chronic variation in temperature in accounting for changes in coverage of corals, macroalgae, and CTB, with rising temperature associated with increases in coral cover on the deep reef, and declines on the shallow reef. Hurricanes were also associated with declines in coral cover on the shallow reef, and increases on the deep reef. Multivariate analyses revealed strong associations between community structure and temperature, but weaker associations with hurricanes, bleaching, and diseases. These results highlight the overwhelming importance of chronically increasing temperature in altering the benthic community structure of Caribbean reefs.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, Northridge, California, USA
| |
Collapse
|
5
|
Monecke S. Threatened chronotopes: can chronobiology help endangered species? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:717-733. [PMID: 38421416 DOI: 10.1007/s00359-024-01692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Pittendrigh and Daan's 1976 article "Pacemaker structure: A clock for all seasons" marks the foundation of modern seasonal chronobiology. It proposed the internal coincidence model comprised of a Morning (M) and Evening (E) oscillator, which are coupled but synchronized separately by dawn and dusk. It has become an attractive model to explain the seasonal adaptation of circadian rhythms. Using the example of the European hamster, this article connects the classical entrainment concept to species decline and, ultimately, conservation concepts. Seasonality of this species is well studied and circannual rhythms have been described in at least 32 parameters. The European hamster is listed as critically endangered on the International Union for Conservation of Nature (IUCN) red list. Changes in the temporal structure of the environment (the chronotope) caused by climate change and light pollution might be responsible for the global decline. The article shows that classical chronobiological concepts such as the internal coincidence model (Pittendrigh and Daan Pittendrigh and Daan, J Comp Physiol [a] 106:333-355, 1976) are helpful to understand the (chronobiological) causes of the decline and can potentially support species conservation. Knowing the species' physiological limitations as well as its adaptation capacities can potentially prevent its extinction at a time when classical conservation concepts have reached their limits.
Collapse
|
6
|
Mellin C, Brown S, Cantin N, Klein-Salas E, Mouillot D, Heron SF, Fordham DA. Cumulative risk of future bleaching for the world's coral reefs. SCIENCE ADVANCES 2024; 10:eadn9660. [PMID: 38924396 PMCID: PMC11204209 DOI: 10.1126/sciadv.adn9660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Spatial and temporal patterns of future coral bleaching are uncertain, hampering global conservation efforts to protect coral reefs against climate change. Our analysis of daily projections of ocean warming establishes the severity, annual duration, and onset of severe bleaching risk for global coral reefs this century, pinpointing vital climatic refugia. We show that low-latitude coral regions are most vulnerable to thermal stress and will experience little reprieve from climate mitigation. By 2080, coral bleaching is likely to start on most reefs in spring, rather than late summer, with year-round bleaching risk anticipated to be high for some low-latitude reefs regardless of global efforts to mitigate harmful greenhouse gasses. By identifying Earth's reef regions that are at lowest risk of accelerated bleaching, our results will prioritize efforts to limit future loss of coral reef biodiversity.
Collapse
Affiliation(s)
- Camille Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stuart Brown
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | | | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- Institut Universitaire de France, IUF, Paris 75231, France
| | - Scott F. Heron
- Physics and Marine Geophysical Laboratory, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Damien A. Fordham
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Slattery M, Lesser MP, Rocha LA, Spalding HL, Smith TB. Function and stability of mesophotic coral reefs. Trends Ecol Evol 2024; 39:585-598. [PMID: 38413283 DOI: 10.1016/j.tree.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
The function and stability of mesophotic coral ecosystems (MCEs) have been extensively studied in recent years. These deep reefs are characterized by local physical processes, particularly the steep gradient in irradiance with increasing depth, and their impact on trophic resources. Mesophotic reefs exhibit distinct zonation patterns that segregate shallow reef biodiversity from ecologically unique deeper communities of endemic species. While mesophotic reefs are hypothesized as relatively stable refuges from anthropogenic stressors and a potential seed bank for degraded shallow reefs, these are site-specific features, if they occur at all. Mesophotic reefs are now known to be susceptible to many of the same stressors that are degrading shallow reefs, suggesting that they require their own specific conservation and management strategies.
Collapse
Affiliation(s)
- Marc Slattery
- Department of BioMolecular Science, University of Mississippi, Oxford, MS 38677, USA.
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA; School of Marine Science and Ocean Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Luiz A Rocha
- Department of Ichthyology, California Academy of Sciences, San Francisco, CA 94118, USA
| | | | - Tyler B Smith
- University of the Virgin Islands, Center for Marine and Environmental Studies, St Thomas, VI 00802-9990, USA
| |
Collapse
|
8
|
Randall CJ, Giuliano C, Stephenson B, Whitman TN, Page CA, Treml EA, Logan M, Negri AP. Larval precompetency and settlement behaviour in 25 Indo-Pacific coral species. Commun Biol 2024; 7:142. [PMID: 38297134 PMCID: PMC10830509 DOI: 10.1038/s42003-024-05824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Knowledge of coral larval precompetency periods and maximum competency windows is fundamental to understanding coral population dynamics, informing biogeography and connectivity patterns, and predicting reef recovery following disturbances. Yet for many species, estimates of these early-life history metrics are scarce and vary widely. Furthermore, settlement cues for many taxa are not known despite consequences to habitat selection. Here we performed a comprehensive experimental time-series investigation of larval settlement behaviour, for 25 Indo-Pacific broadcast-spawning species. To investigate the duration of precompetency, improve predictions of the competency windows, and compare settlement responses within and amongst species, we completed replicated and repeated 24-hour assays that exposed larvae to five common settlement cues. Our study revealed that larval competency in some broadcast-spawning species begins as early as two days post fertilization, but that the precompetency period varies within and between species from about two to six days, with consequences for local retention and population connectivity. We also found that larvae of some species are competent to settle beyond 70 days old and display complex temporal settlement behaviour, challenging the assumption that competency gradually wanes over time and adding to the evidence that larval longevity can support genetic connectivity and long-distance dispersal. Using these data, we grouped coral taxa by short, mid and long precompetency periods, and identified their preferred settlement cues. Taken together, these results inform our understanding of larval dynamics across a broad range of coral species and can be applied to investigations of population dynamics, connectivity, and reef recovery.
Collapse
Affiliation(s)
- Carly J Randall
- Australian Institute of Marine Science, Townsville, QLD, Australia.
- AIMS@JCU, Townsville, QLD, Australia.
| | | | | | - Taylor N Whitman
- Australian Institute of Marine Science, Townsville, QLD, Australia
- AIMS@JCU, Townsville, QLD, Australia
| | - Cathie A Page
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Eric A Treml
- Australian Institute of Marine Science, Perth, WA, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, Townsville, QLD, Australia
| |
Collapse
|
9
|
Fobert EK, Miller CR, Swearer SE, Mayer-Pinto M. The impacts of artificial light at night on the ecology of temperate and tropical reefs. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220362. [PMID: 37899007 PMCID: PMC10613546 DOI: 10.1098/rstb.2022.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Despite 22% of the world's coastal regions experiencing some degree of light pollution, and biologically important artificial light at night (ALAN) reaching large portions of the seafloor (greater than 75%) near coastal developments, the impacts of ALAN on temperate and tropical reefs are still relatively unknown. Because many reef species have evolved in response to low-light nocturnal environments, consistent daily, lunar, and seasonal light cycles, and distinct light spectra, these impacts are likely to be profound. Recent studies have found ALAN can decrease reproductive success of fishes, alter predation rates of invertebrates and fishes, and impact the physiology and biochemistry of reef-building corals. In this paper, we integrate knowledge of the role of natural light in temperate and tropical reefs with a synthesis of the current literature on the impacts of ALAN on reef organisms to explore potential changes at the system level in reef communities exposed to ALAN. Specifically, we identify the direct impacts of ALAN on individual organisms and flow on effects for reef communities, and present potential scenarios where ALAN could significantly alter system-level dynamics, possibly even creating novel ecosystems. Lastly, we highlight large knowledge gaps in our understanding of the overall impact of ALAN on reef systems. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Emily K. Fobert
- School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Colleen R. Miller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Stephen E. Swearer
- National Centre for Coasts and Climate (NCCC), School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
10
|
Ip YCA, Chang JJM, Tun KPP, Meier R, Huang D. Multispecies environmental DNA metabarcoding sheds light on annual coral spawning events. Mol Ecol 2023; 32:6474-6488. [PMID: 35852023 DOI: 10.1111/mec.16621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Synchronous multispecific coral spawning generally occurs annually and forms an integral part of the coral life cycle. Apart from spawning times and species participation, however, much else remains unknown. Here, we applied environmental DNA (eDNA) metabarcoding to study two tropical reef sites of contrasting coral cover before, during and after coral spawning. Using coral-ITS2 and vertebrate-12S markers, we evaluated eDNA as an alternative monitoring tool by assessing its capabilities in detecting spawning species and tracking relative abundances of coral and fish eDNA. Over 3 years, elevated eDNA coral signals during the event (proportional read increase of up to five-fold) were observed, detecting a total of 38 coral and 133 fish species with all but one of the coral species visually observed to be spawning. This is also the first demonstration that eDNA metabarcoding can be used to infer the diurnal partitioning of night- and day-time spawning, spawning in coral species overlooked by visual surveys, and the associated changes in fish trophic structures as an indicator of spawning events. Our study paves the way for applied quantitative eDNA metabarcoding approaches to better study ephemeral and important biological events.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| |
Collapse
|
11
|
Edmunds PJ. Coral recruitment: patterns and processes determining the dynamics of coral populations. Biol Rev Camb Philos Soc 2023; 98:1862-1886. [PMID: 37340617 DOI: 10.1111/brv.12987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Coral recruitment describes the addition of new individuals to populations, and it is one of the most fundamental demographic processes contributing to population size. As many coral reefs around the world have experienced large declines in coral cover and abundance, there has been great interest in understanding the factors causing coral recruitment to vary and the conditions under which it can support community resilience. While progress in these areas is being facilitated by technological and scientific advances, one of the best tools to quantify recruitment remains the humble settlement tile, variants of which have been in use for over a century. Here I review the biology and ecology of coral recruits and the recruitment process, largely as resolved through the use of settlement tiles, by: (i) defining how the terms 'recruit' and 'recruitment' have been used, and explaining why loose terminology has impeded scientific advancement; (ii) describing how coral recruitment is measured and why settlement tiles have value for this purpose; (iii) summarizing previous efforts to review quantitative analyses of coral recruitment; (iv) describing advances from hypothesis-driven studies in determining how refuges, seawater flow, and grazers can modulate coral recruitment; (v) reviewing the biology of small corals (i.e. recruits) to understand better how they respond to environmental conditions; and (vi) updating a quantitative compilation of coral recruitment studies extending from 1974 to present, thus revealing long-term global declines in density of recruits, juxtaposed with apparent resilience to coral bleaching. Finally, I review future directions in the study of coral recruitment, and highlight the need to expand studies to deliver taxonomic resolution, and explain why time series of settlement tile deployments are likely to remain pivotal in quantifying coral recruitment.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, CA, 91330-8303, USA
| |
Collapse
|
12
|
Lopes ACC, de Mattos BO, Marcon JL, Vera LM, López-Olmeda JF, Sánchez-Vázquez FJ, Carvalho TB. Does exposure to moonlight affect day/night changes in melatonin and metabolic parameters in Amazonian fish? Comp Biochem Physiol A Mol Integr Physiol 2023; 284:111489. [PMID: 37474098 DOI: 10.1016/j.cbpa.2023.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Lunar cycle modulates the rhythmic activity patterns of many animals, including fish. The effect of the moonlight cycle on daily melatonin and metabolic parameters was evaluated in matrinxã (Brycon amazonicus) subjected to external natural lighting. Eighty juvenile were distributed in 4 tanks of 1m3 (20 fish/tank) and divided into two groups. One group was exposed to the full moon and the other group to the new moon for 30 days, which corresponds to the duration of the lunar period. At the end of the lunar phase, 6 fish from each group were anesthetized to collect blood, tissue and eye samples at midday and midnight. The comparison between the light and dark periods revealed a significant increase in plasma and ocular melatonin in the last period. However, there was no significant difference for plasma melatonin between moons. Ocular melatonin presented higher concentrations during the new moon. Glucose, total proteins, cortisol, liver glutathione and gill lipid peroxidation were higher in the full moon compared to in the new moon. Plasma triglyceride was higher during the night for the full moon, and the opposite was found for the new moon. Total cholesterol values were higher at night regardless the moon phase. Glutathione in the gills and lipid peroxidation in the liver showed no significant differences. These results highlight the importance of considering both the day and lunar cycles for melatonin and metabolic parameters in species of commercial interest and susceptible to stressful situations in rearing conditions.
Collapse
Affiliation(s)
| | - Bruno Olivetti de Mattos
- Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil.
| | - Jaydione Luiz Marcon
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Institute of Biological Sciences, Department of Physiological Sciences, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil
| | - Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Thaís Billalba Carvalho
- Postgraduate Program in Zoology, Federal University of Amazonas (UFAM), 69080-900, Amazonas, Brazil; Laboratory of Feeding Behavior and Fish Nutrition, Center of Agricultural Sciences, Environmental and Biological, Campus Cruz das Almas, Federal University of Recôncavo Bahia (UFRB), 44380-000, Bahia, Brazil
| |
Collapse
|
13
|
Davies TW, Levy O, Tidau S, de Barros Marangoni LF, Wiedenmann J, D'Angelo C, Smyth T. Global disruption of coral broadcast spawning associated with artificial light at night. Nat Commun 2023; 14:2511. [PMID: 37188683 DOI: 10.1038/s41467-023-38070-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Coral broadcast spawning events - in which gametes are released on certain nights predictably in relation to lunar cycles - are critical to the maintenance and recovery of coral reefs following mass mortality. Artificial light at night (ALAN) from coastal and offshore developments threatens coral reef health by masking natural light:dark cycles that synchronize broadcast spawning. Using a recently published atlas of underwater light pollution, we analyze a global dataset of 2135 spawning observations from the 21st century. For the majority of genera, corals exposed to light pollution are spawning between one and three days closer to the full moon compared to those on unlit reefs. ALAN possibly advances the trigger for spawning by creating a perceived period of minimum illuminance between sunset and moonrise on nights following the full moon. Advancing the timing of mass spawning could decrease the probability of gamete fertilization and survival, with clear implications for ecological processes involved in the resilience of reef systems.
Collapse
Affiliation(s)
- Thomas W Davies
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
- Israel The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, P.O. Box 469, Eilat, 88103, Israel
| | - Svenja Tidau
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | | | - Joerg Wiedenmann
- Coral Reef Laboratory, University of Southampton, European Way, Southampton, SO143ZH, UK
| | - Cecilia D'Angelo
- Coral Reef Laboratory, University of Southampton, European Way, Southampton, SO143ZH, UK
| | - Tim Smyth
- Plymouth Marine Laboratory, Prospect Place, Plymouth, Devon, PL1 3DH, UK
| |
Collapse
|
14
|
Williamson OM, Mustard AT, Bright AJ, Williams DE, Ladd MC, Baker AC. Opportunistic consumption of coral spawn by the ruby brittle star ( Ophioderma rubicundum). Ecol Evol 2023; 13:e10096. [PMID: 37214603 PMCID: PMC10196216 DOI: 10.1002/ece3.10096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
Many reef invertebrates reproduce through simultaneous broadcast spawning, with an apparent advantage of overwhelming potential predators and maximizing propagule survival. Although reef fish have been observed to consume coral gamete bundles during spawning events, there are few records of such predation by benthic invertebrates. Here, we document several instances of the ruby brittle star, Ophioderma rubicundum, capturing and consuming egg-sperm bundles of the mountainous star coral, Orbicella faveolata, and the symmetrical brain coral, Pseudodiploria strigosa, during spawning events in the Cayman Islands in 2012 and the Florida Keys in 2022. These observations are widely separated in space and time (>600 km, 10 years), suggesting that this behavior may be prevalent on western Atlantic reefs. Since O. rubicundum spawns on the same or subsequent nights as these coral species, we hypothesize that this opportunistic feeding behavior takes advantage of lipid-rich coral gamete bundles to recover energy reserves expended by the brittle star during gametogenesis. The consumption of coral gametes by adult brittle stars suggests an underexplored trophic link between reef invertebrates and also provides evidence that ophiuroid-coral symbioses may oscillate between commensalism and parasitism depending on the ontogeny and reproductive status of both animals. Our observations provide insights into the nuanced, dynamic associations between coral reef invertebrates and may have implications for coral reproductive success and resilience.
Collapse
Affiliation(s)
- Olivia M. Williamson
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiMiamiFloridaUSA
| | | | - Allan J. Bright
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiMiamiFloridaUSA
- Southeast Fisheries Science Center, NOAA – National Marine Fisheries ServiceMiamiFloridaUSA
| | - Dana E. Williams
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiMiamiFloridaUSA
- Southeast Fisheries Science Center, NOAA – National Marine Fisheries ServiceMiamiFloridaUSA
| | - Mark C. Ladd
- Southeast Fisheries Science Center, NOAA – National Marine Fisheries ServiceMiamiFloridaUSA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
15
|
Komoto H, Lin CH, Nozawa Y, Satake A. An External Coincidence Model for the Lunar Cycle Reveals Circadian Phase-Dependent Moonlight Effects on Coral Spawning. J Biol Rhythms 2023; 38:148-158. [PMID: 36461677 DOI: 10.1177/07487304221135916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Many marine organisms synchronously spawn at specific times to ensure the success of external fertilization in the ocean. Corals are famous examples of synchronized spawning at specific lunar phases, and two distinct spawning patterns have been observed in two dominant taxa: merulinid corals spawn at regular lunar phases, several days after the full moon, whereas Acropora corals spawn at more irregular lunar phases around the full moon. Although it has been suggested that the two coral taxa have different responses to moonlight and seawater temperature, their spawning times have never been analyzed by integrating the two environmental factors, resulting in an incomplete understanding of the regulatory mechanisms of spawning. In this study, we developed a new predictive model of coral spawning days by integrating moonlight and temperature effects based on the external coincidence model for the lunar cycle. We performed model fitting using a 10-year monitoring record of coral spawning time in Taiwan. Our model successfully demonstrated the synergistic effects of moonlight and temperature on coral spawning time (days) and provided two testable hypotheses to explain the different spawning patterns regarding the preparation (maturation) process for spawning and the sensitivity to moonlight at different circadian phases: (1) Acropora corals may have an earlier onset and longer period of preparation for spawning than merulinid corals; and (2) merulinid corals may use moonlight signals near sunset, while Acropora corals may have a similar onset at approximately midnight. This is the first study to indicate the difference in circadian phase-dependent moonlight sensitivities between coral taxa, providing a basis for underlying coral spawning mechanisms for rhythmic studies.
Collapse
Affiliation(s)
- Hideyuki Komoto
- Graduate School of Systems Life Science, Kyushu University, Fukuoka, Japan
| | - Che-Hung Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Tropical Biosphere Research Center, University of Ryukyus, Okinawa, Japan
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Solar radiation, temperature and the reproductive biology of the coral Lobactis scutaria in a changing climate. Sci Rep 2023; 13:246. [PMID: 36604569 PMCID: PMC9816315 DOI: 10.1038/s41598-022-27207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Coral reefs worldwide are at risk due to climate change. Coral bleaching is becoming increasingly common and corals that survive bleaching events can suffer from temporary reproductive failure for several years. While water temperature is a key driver in causing coral bleaching, other environmental factors are involved, such as solar radiation. We investigated the individual and combined effects of temperature, photosynthetically active radiation (PAR), and ultraviolet radiation (UVR) on the spawning patterns and reproductive physiology of the Hawaiian mushroom coral Lobactis scutaria, using long-term experiments in aquaria. We examined effects on spawning timing, fertilisation success, and gamete physiology. Both warmer temperatures and filtering UVR altered the timing of spawning. Warmer temperatures caused a drop in fertilisation success. Warmer temperatures and higher PAR both negatively affected sperm and egg physiology. These results are concerning for the mushroom coral L. scutaria and similar reproductive data are urgently needed to predict future reproductive trends in other species. Nonetheless, thermal stress from global climate change will need to be adequately addressed to ensure the survival of reef-building corals in their natural environment throughout the next century and beyond. Until then, reproduction is likely to be increasingly impaired in a growing number of coral species.
Collapse
|
17
|
Viladrich N, Linares C, Padilla‐Gamiño JL. Lethal and sublethal effects of thermal stress on octocorals early life-history stages. GLOBAL CHANGE BIOLOGY 2022; 28:7049-7062. [PMID: 36106689 PMCID: PMC9828436 DOI: 10.1111/gcb.16433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 05/03/2023]
Abstract
The frequency and severity of marine heatwaves causing mass mortality events in tropical and temperate coral species increases every year, with serious consequences on the stability and resilience of coral populations. Although recovery and persistence of coral populations after stress events is closely related to adult fitness, as well as larval survival and settlement, much remains unknown about the effects of thermal stress on early life-history stages of temperate coral species. In the present study, the reproductive phenology and the effect of increased water temperature (+4°C and +6°C above ambient, 20°C) on larval survival and settlement was evaluated for two of the most representative Mediterranean octocoral species (Eunicella singularis and Corallium rubrum). Our study shows that reproductive behavior is more variable than previously reported and breeding period occurs over a longer period in both species. Thermal stress did not affect the survival of symbiotic E. singularis larvae but drastically reduced the survival of the non-symbiotic C. rubrum larvae. Results on larval biomass and caloric consumption suggest that higher mortality rates of C. rubrum exposed to increased temperature were not related to depletion of endogenous energy in larvae. The results also show that settlement rates of E. singularis did not change in response to elevated temperature after 20 days of exposure, but larvae may settle fast and close to their native population at 26°C (+6°C). Although previous experimental studies found that adult colonies of both octocoral species are mostly resistant to thermal stress, our results on early life-history stages suggest that the persistence and inter-connectivity of local populations may be severely compromised under continued trends in ocean warming.
Collapse
Affiliation(s)
- Núria Viladrich
- School of Aquatic and Fishery SciencesUniversity of Washington (UW)SeattleWashingtonUSA
- Departament de Biologia EvolutivaEcologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | - Cristina Linares
- Departament de Biologia EvolutivaEcologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| | | |
Collapse
|
18
|
Poehn B, Krishnan S, Zurl M, Coric A, Rokvic D, Häfker NS, Jaenicke E, Arboleda E, Orel L, Raible F, Wolf E, Tessmar-Raible K. A Cryptochrome adopts distinct moon- and sunlight states and functions as sun- versus moonlight interpreter in monthly oscillator entrainment. Nat Commun 2022; 13:5220. [PMID: 36064778 PMCID: PMC9445029 DOI: 10.1038/s41467-022-32562-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
The moon's monthly cycle synchronizes reproduction in countless marine organisms. The mass-spawning bristle worm Platynereis dumerilii uses an endogenous monthly oscillator set by full moon to phase reproduction to specific days. But how do organisms recognize specific moon phases? We uncover that the light receptor L-Cryptochrome (L-Cry) discriminates between different moonlight durations, as well as between sun- and moonlight. A biochemical characterization of purified L-Cry protein, exposed to naturalistic sun- or moonlight, reveals the formation of distinct sun- and moonlight states characterized by different photoreduction- and recovery kinetics of L-Cry's co-factor Flavin Adenine Dinucleotide. In Platynereis, L-Cry's sun- versus moonlight states correlate with distinct subcellular localizations, indicating different signaling. In contrast, r-Opsin1, the most abundant ocular opsin, is not required for monthly oscillator entrainment. Our work reveals a photo-ecological concept for natural light interpretation involving a "valence interpreter" that provides entraining photoreceptor(s) with light source and moon phase information.
Collapse
Affiliation(s)
- Birgit Poehn
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Shruthi Krishnan
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Martin Zurl
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Aida Coric
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Dunja Rokvic
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Elmar Jaenicke
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Enrique Arboleda
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007, Lyon, France
| | - Lukas Orel
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria.
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria.
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
- Carl-von-Ossietzky University, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany.
| |
Collapse
|
19
|
Liberman R, Shlesinger T, Loya Y, Benayahu Y. Soft coral reproductive phenology along a depth gradient: Can "going deeper" provide a viable refuge? Ecology 2022; 103:e3760. [PMID: 35582927 PMCID: PMC9540190 DOI: 10.1002/ecy.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Many species across a wide range of taxa and habitats display phenological shifts and differences in response to both environmental gradients and climate change. Moreover, the wide‐scale decline of numerous ecosystems is leading to increasing efforts to identify zones that might serve as natural refuges from various disturbances, including ocean warming. One such refuge was suggested to be that of the deep coral reefs, but whether depth can provide coral populations with a viable and reproductive refuge remains unclear. Given the global coral‐reef degradation and the key role that corals play as ecosystem engineers, their reproductive ecology has been widely studied. A particular knowledge gap nonetheless exists regarding coral reproductive phenology along a depth gradient. Filling in this gap may uncover the environmental cues that regulate coral reproduction, leading to better predictions of population connectivity, and their possible responses to climate change and other environmental changes. Here, using long‐term in situ observations of the soft coral Rhytisma fulvum's reproductive activity along its entire depth range (0–45 m), we examined the relationship among several environmental factors and the coral's reproductive phenology and activity over five successive annual breeding seasons. Compared with the shallow depths, a lower number of reproducing colonies was found in habitats deeper than 30 m, highlighting possible constraints on coral reproduction at the deeper end of their range. Our results further revealed that an increase in seawater temperature over 1–2‐day intervals during the breeding season correlated with the onset of reproductive activity along the depth gradient, leading to different reproductive periodicities in different depths. These differences suggest that differential temperature regimes and reproductive timing across depth may create intraspecific temporal reproductive segregation, possibly reducing connectivity among populations along a depth gradient. Moreover, we found high variability among years in both the timing of breeding activities and in the level of reproductive synchrony among corals from different depths. Overall, our study questions whether depth can provide a long‐term and viable refuge for corals in the face of global environmental changes.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Tom Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Current address: Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Yossi Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
20
|
Rosenberg Y, Simon‐Blecher N, Lalzar M, Yam R, Shemesh A, Alon S, Perna G, Cárdenas A, Voolstra CR, Miller DJ, Levy O. Urbanization comprehensively impairs biological rhythms in coral holobionts. GLOBAL CHANGE BIOLOGY 2022; 28:3349-3364. [PMID: 35218086 PMCID: PMC9311646 DOI: 10.1111/gcb.16144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/28/2023]
Abstract
Coral reefs are in global decline due to climate change and anthropogenic influences (Hughes et al., Conservation Biology, 27: 261-269, 2013). Near coastal cities or other densely populated areas, coral reefs face a range of additional challenges. While considerable progress has been made in understanding coral responses to acute individual stressors (Dominoni et al., Nature Ecology & Evolution, 4: 502-511, 2020), the impacts of chronic exposure to varying combinations of sensory pollutants are largely unknown. To investigate the impacts of urban proximity on corals, we conducted a year-long in-natura study-incorporating sampling at diel, monthly, and seasonal time points-in which we compared corals from an urban area to corals from a proximal non-urban area. Here we reveal that despite appearing relatively healthy, natural biorhythms and environmental sensory systems were extensively disturbed in corals from the urban environment. Transcriptomic data indicated poor symbiont performance, disturbance to gametogenic cycles, and loss or shifted seasonality of vital biological processes. Altered seasonality patterns were also observed in the microbiomes of the urban coral population, signifying the impact of urbanization on the holobiont, rather than the coral host alone. These results should raise alarm regarding the largely unknown long-term impacts of sensory pollution on the resilience and survival of coral reefs close to coastal communities.
Collapse
Affiliation(s)
- Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Noa Simon‐Blecher
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Maya Lalzar
- Bioinformatics Service UnitUniversity of HaifaHaifaIsrael
| | - Ruth Yam
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Aldo Shemesh
- Department of Earth and Planetary SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Shahar Alon
- Faculty of EngineeringBar‐Ilan UniversityRamat GanIsrael
| | - Gabriela Perna
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Anny Cárdenas
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | | - David J. Miller
- ARC Centre of Excellence for Coral Reef Studies and School of Pharmacy and Molecular SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
- The H. Steinitz Marine Biology LaboratoryThe Interuniversity Institute for Marine Sciences of EilatEilatIsrael
| |
Collapse
|
21
|
Frada MJ, Keuter S, Koplovitz G, Avrahami Y. Divergent fate of coccolithophores in a warming tropical ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:1560-1568. [PMID: 34808010 DOI: 10.1111/gcb.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rising ocean temperatures will alter the diversity of marine phytoplankton communities, likely leading to modifications in food-web and biogeochemical dynamics. Here we focus on coccolithophores, a prominent group of calcifying phytoplankton that plays a central role in the global carbon cycle. Using both new (2017-2020) and historical (1975-1976) data from the northern Red Sea, we found that during 'mild summers', the most common coccolithophores - Emiliania huxleyi and Gephyrocapsa ericsonii - co-exist at similar densities. Both species then particularly flourish during subsequent winter periods where nutrient availability is higher due to convective mixing. However, during 'hot summers', which have become progressively the norm over the last decades with average surface temperatures exceeding 27°C for long time-periods, G. ericsonii density markedly declined. Moreover, G. ericsonii remains at low background levels even during winter mixing periods, while E. huxleyi succession and development during winter appears unchanged. Further incubation assays using native assemblages confirmed that G. ericsonii's growth over 27°C is significantly reduced relative to E. huxleyi. Additional factors likely contribute to impair G. ericsonii populations at sea, but temperature is a key factor. Our results illustrate the divergent impact of ongoing ocean warming in tropical phytoplankton species.
Collapse
Affiliation(s)
- Miguel José Frada
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sabine Keuter
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yoav Avrahami
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
22
|
Leinbach SE, Speare KE, Rossin AM, Holstein DM, Strader ME. Energetic and reproductive costs of coral recovery in divergent bleaching responses. Sci Rep 2021; 11:23546. [PMID: 34876599 PMCID: PMC8651640 DOI: 10.1038/s41598-021-02807-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022] Open
Abstract
Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo'orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observed Acropora hyacinthus individuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments from A. hyacinthus colonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance.
Collapse
Affiliation(s)
- Sarah E Leinbach
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Kelly E Speare
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93117, USA
| | - Ashley M Rossin
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Daniel M Holstein
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Marie E Strader
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
23
|
Shallow-emerged coral may warn of deep-sea coral response to thermal stress. Sci Rep 2021; 11:22439. [PMID: 34789855 PMCID: PMC8599838 DOI: 10.1038/s41598-021-01948-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
In the Gulf of Alaska, commercially harvested fish species utilize habitats dominated by red tree corals (Primnoa pacifica) for shelter, feeding, and nurseries, but recent studies hint that environmental conditions may be interrupting the reproductive lifecycle of the corals. The North Pacific has experienced persistent and extreme thermal variability in recent years and this pattern is predicted to continue in coming decades. Recent discovery of deep-water emerged coral populations in Southeast Alaska fjords provided opportunity for detailed life-history studies and comparison to corals in managed habitats on the continental shelf. Here we show that sperm from deep colonies develops completely, but in shallow colonies, sperm development is prematurely halted, likely preventing successful production of larvae. We hypothesize that the divergence is due to differing temperature regimes presently experienced by the corals. Compared to deep populations below the thermocline, shallow populations experience much greater seasonal thermal variability and annual pulses of suspected near-lethal temperatures that appear to interrupt the production of viable gametes. The unique opportunity to comprehensively study emerged populations presently affected by thermal stress provides advance warning of the possible fate of deep corals in the Gulf of Alaska that will soon experience similar ocean conditions.
Collapse
|
24
|
Kramer N, Tamir R, Ben‐Zvi O, Jacques SL, Loya Y, Wangpraseurt D. Efficient light‐harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Raz Tamir
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Or Ben‐Zvi
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Steven L. Jacques
- Department of Bioengineering University of Washington Seattle WA USA
| | - Yossi Loya
- School of Zoology Tel‐Aviv University Tel Aviv Israel
| | - Daniel Wangpraseurt
- Department of Nanoengineering University of California San Diego San Diego CA USA
- Department of Chemistry University of Cambridge Cambridge UK
| |
Collapse
|
25
|
Marchini C, Gizzi F, Pondrelli T, Moreddu L, Marisaldi L, Montori F, Lazzari V, Airi V, Caroselli E, Prada F, Falini G, Dubinsky Z, Goffredo S. Decreasing pH impairs sexual reproduction in a Mediterranean coral transplanted at a CO 2 vent. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:3990-4000. [PMID: 35873528 PMCID: PMC9293323 DOI: 10.1002/lno.11937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/19/2021] [Accepted: 09/01/2021] [Indexed: 06/15/2023]
Abstract
Ocean acidification, due to the increase of carbon dioxide (CO2) concentration in the atmosphere and its absorption by the oceans, affects many aspects of marine calcifying organisms' biology, including reproduction. Most of the available studies on low pH effects on coral reproduction have been conducted on tropical species under controlled conditions, while little information is reported for either tropical or temperate species in the field. This study describes the influence of decreasing pH on sexual reproduction of the temperate non-zooxanthellate colonial scleractinian Astroides calycularis, transplanted in four sites along a natural pH gradient at the underwater volcanic crater of Panarea Island (Tyrrhenian Sea, Italy). The average pH values of each site (range: pHTS 8.07-7.40) match different scenarios of the Intergovernmental Panel on Climate Change (IPCC) for the end of the century. After 3 months under experimental conditions, the reproductive parameters of both oocytes and spermaries (abundance, gonadal index, and diameters) seem to be unaffected by low pH. However, a delay in spermary development in the pre-fertilization period and a persistence of mature oocytes in the fertilization period were observed in the most acidic site. Furthermore, no embryos were found in colonies from the two most acidic sites, suggesting a delay or an interruption of the fertilization process due to acidified conditions. These findings suggest a negative effect of low pH on A. calycularis sexual reproduction. However, long-term experiments, including the synergistic impact of pH and temperature, are needed to predict if this species will be able to adapt to climate change over the next century.
Collapse
Affiliation(s)
- Chiara Marchini
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Francesca Gizzi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- MARE ‐ Marine and Environmental Sciences CentreAgência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação (ARDITI)FunchalMadeiraPortugal
| | - Thomas Pondrelli
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Lisa Moreddu
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Luca Marisaldi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Francesco Montori
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Lazzari
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Valentina Airi
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| | - Giuseppe Falini
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life SciencesBar‐Ilan UniversityRamat GanIsrael
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Fano Marine CenterThe Inter‐Institute Center for Research on Marine Biodiversity, Resources and BiotechnologiesFanoItaly
| |
Collapse
|
26
|
Gornik SG, Bergheim BG, Morel B, Stamatakis A, Foulkes NS, Guse A. Photoreceptor Diversification Accompanies the Evolution of Anthozoa. Mol Biol Evol 2021; 38:1744-1760. [PMID: 33226083 PMCID: PMC8097283 DOI: 10.1093/molbev/msaa304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anthozoan corals are an ecologically important group of cnidarians, which power the productivity of reef ecosystems. They are sessile, inhabit shallow, tropical oceans and are highly dependent on sun- and moonlight to regulate sexual reproduction, phototaxis, and photosymbiosis. However, their exposure to high levels of sunlight also imposes an increased risk of UV-induced DNA damage. How have these challenging photic environments influenced photoreceptor evolution and function in these animals? To address this question, we initially screened the cnidarian photoreceptor repertoire for Anthozoa-specific signatures by a broad-scale evolutionary analysis. We compared transcriptomic data of more than 36 cnidarian species and revealed a more diverse photoreceptor repertoire in the anthozoan subphylum than in the subphylum Medusozoa. We classified the three principle opsin classes into distinct subtypes and showed that Anthozoa retained all three classes, which diversified into at least six subtypes. In contrast, in Medusozoa, only one class with a single subtype persists. Similarly, in Anthozoa, we documented three photolyase classes and two cryptochrome (CRY) classes, whereas CRYs are entirely absent in Medusozoa. Interestingly, we also identified one anthozoan CRY class, which exhibited unique tandem duplications of the core functional domains. We next explored the functionality of anthozoan photoreceptors in the model species Exaiptasia diaphana (Aiptasia), which recapitulates key photo-behaviors of corals. We show that the diverse opsin genes are differentially expressed in important life stages common to reef-building corals and Aiptasia and that CRY expression is light regulated. We thereby provide important clues linking coral evolution with photoreceptor diversification.
Collapse
Affiliation(s)
- Sebastian G Gornik
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nicholas S Foulkes
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Annika Guse
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
27
|
Shlesinger T, Akkaynak D, Loya Y. Who is smashing the reef at night? A nocturnal mystery. Ecology 2021; 102:e03420. [PMID: 34086985 DOI: 10.1002/ecy.3420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Affiliation(s)
- T Shlesinger
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - D Akkaynak
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 N US 1, Fort Pierce, Florida, 34946, USA
| | - Y Loya
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 69978, Tel-Aviv, Israel
| |
Collapse
|
28
|
Shlesinger T, van Woesik R. Different population trajectories of two reef-building corals with similar life-history traits. J Anim Ecol 2021; 90:1379-1389. [PMID: 33666226 PMCID: PMC8252767 DOI: 10.1111/1365-2656.13463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures. We investigated the population dynamics of two key reef‐building Merulinid coral species, Dipsastraea favus and Platygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories. Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species. The survival and reproduction rates of both D. favus and P. lamellina were positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favus appears to be increasing whereas P. lamellina appears to be decreasing. As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
29
|
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol 2021; 224:224/Suppl_1/jeb239319. [DOI: 10.1242/jeb.239319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
30
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
31
|
Veedin Rajan VB, Häfker NS, Arboleda E, Poehn B, Gossenreiter T, Gerrard E, Hofbauer M, Mühlestein C, Bileck A, Gerner C, Ribera d'Alcala M, Buia MC, Hartl M, Lucas RJ, Tessmar-Raible K. Seasonal variation in UVA light drives hormonal and behavioural changes in a marine annelid via a ciliary opsin. Nat Ecol Evol 2021; 5:204-218. [PMID: 33432133 PMCID: PMC7611595 DOI: 10.1038/s41559-020-01356-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
The right timing of animal physiology and behaviour ensures the stability of populations and ecosystems. To predict anthropogenic impacts on these timings, more insight is needed into the interplay between environment and molecular timing mechanisms. This is particularly true in marine environments. Using high-resolution, long-term daylight measurements from a habitat of the marine annelid Platynereis dumerilii, we found that temporal changes in ultraviolet A (UVA)/deep violet intensities, more than longer wavelengths, can provide annual time information, which differs from annual changes in the photoperiod. We developed experimental set-ups that resemble natural daylight illumination conditions, and automated, quantifiable behavioural tracking. Experimental reduction of UVA/deep violet light (approximately 370-430 nm) under a long photoperiod (16 h light and 8 h dark) significantly decreased locomotor activities, comparable to the decrease caused by a short photoperiod (8 h light and 16 h dark). In contrast, altering UVA/deep violet light intensities did not cause differences in locomotor levels under a short photoperiod. This modulation of locomotion by UVA/deep violet light under a long photoperiod requires c-opsin1, a UVA/deep violet sensor employing Gi signalling. C-opsin1 also regulates the levels of rate-limiting enzymes for monogenic amine synthesis and of several neurohormones, including pigment-dispersing factor, vasotocin (vasopressin/oxytocin) and neuropeptide Y. Our analyses indicate a complex inteplay between UVA/deep violet light intensities and photoperiod as indicators of annual time.
Collapse
Affiliation(s)
- Vinoth Babu Veedin Rajan
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | - N Sören Häfker
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Enrique Arboleda
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France
| | - Birgit Poehn
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
| | | | - Elliot Gerrard
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Maximillian Hofbauer
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | | | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Markus Hartl
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Robert J Lucas
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Kristin Tessmar-Raible
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria.
- Research Platform 'Rhythms of Life', Vienna BioCenter, University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Baird AH, Guest JR, Edwards AJ, Bauman AG, Bouwmeester J, Mera H, Abrego D, Alvarez-Noriega M, Babcock RC, Barbosa MB, Bonito V, Burt J, Cabaitan PC, Chang CF, Chavanich S, Chen CA, Chen CJ, Chen WJ, Chung FC, Connolly SR, Cumbo VR, Dornelas M, Doropoulos C, Eyal G, Eyal-Shaham L, Fadli N, Figueiredo J, Flot JF, Gan SH, Gomez E, Graham EM, Grinblat M, Gutiérrez-Isaza N, Harii S, Harrison PL, Hatta M, Ho NAJ, Hoarau G, Hoogenboom M, Howells EJ, Iguchi A, Isomura N, Jamodiong EA, Jandang S, Keyse J, Kitanobo S, Kongjandtre N, Kuo CY, Ligson C, Lin CH, Low J, Loya Y, Maboloc EA, Madin JS, Mezaki T, Min C, Morita M, Moya A, Neo SH, Nitschke MR, Nojima S, Nozawa Y, Piromvaragorn S, Plathong S, Puill-Stephan E, Quigley K, Ramirez-Portilla C, Ricardo G, Sakai K, Sampayo E, Shlesinger T, Sikim L, Simpson C, Sims CA, Sinniger F, Spiji DA, Tabalanza T, Tan CH, Terraneo TI, Torda G, True J, Tun K, Vicentuan K, Viyakarn V, Waheed Z, Ward S, Willis B, Woods RM, Woolsey ES, Yamamoto HH, Yusuf S. An Indo-Pacific coral spawning database. Sci Data 2021; 8:35. [PMID: 33514754 PMCID: PMC7846567 DOI: 10.1038/s41597-020-00793-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/19/2020] [Indexed: 01/30/2023] Open
Abstract
The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology.
Collapse
Affiliation(s)
- Andrew H. Baird
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - James R. Guest
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Alasdair J. Edwards
- grid.1006.70000 0001 0462 7212School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Andrew G. Bauman
- grid.4280.e0000 0001 2180 6431Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Jessica Bouwmeester
- grid.410445.00000 0001 2188 0957Smithsonian Conservation Biology Institute, Smithsonian Institution, Hawai’i Institute of Marine Biology, 46-007 Lilipuna Rd, Kaneohe, Hawaii 96744 USA
| | - Hanaka Mera
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - David Abrego
- grid.1031.30000000121532610National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, New South Wales 2450 Australia
| | - Mariana Alvarez-Noriega
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Russel C. Babcock
- grid.1016.60000 0001 2173 2719Oceans and Atmosphere, CSIRO, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4072 Australia
| | - Miguel B. Barbosa
- grid.11914.3c0000 0001 0721 1626School of Biology, University of St Andrews, Sir Harold Mitchell Building, St Andrews, KY16 9TH United Kingdom
| | - Victor Bonito
- Reef Explorer Fiji, Coral Coast Conservation Center, Votua Village, Korolevu, Nadroga Fiji
| | - John Burt
- grid.440573.1Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| | - Patrick C. Cabaitan
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Ching-Fong Chang
- grid.260664.00000 0001 0313 3026Aquaculture, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Suchana Chavanich
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Chaolun A. Chen
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Chieh-Jhen Chen
- grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Wei-Jen Chen
- grid.260664.00000 0001 0313 3026Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Beining Rd, Keelung, 20224 Taiwan
| | - Fung-Chen Chung
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Sean R. Connolly
- grid.438006.90000 0001 2296 9689Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Vivian R. Cumbo
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales 2109 Australia
| | - Maria Dornelas
- grid.11914.3c0000 0001 0721 1626Centre for Biological Diversity, University of St Andrews, St Andrews, KY16 9TH United Kingdom
| | - Christopher Doropoulos
- grid.1016.60000 0001 2173 2719Oceans and Atmosphere, CSIRO, Queensland Biosciences Precinct, 306 Carmody Rd, St Lucia, Queensland 4072 Australia
| | - Gal Eyal
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Lee Eyal-Shaham
- grid.22098.310000 0004 1937 0503The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002 Israel
| | - Nur Fadli
- grid.440768.90000 0004 1759 6066Faculty of Marine Science and Fisheries, Syiah Kuala University, Banda Aceh, Aceh Indonesia
| | - Joana Figueiredo
- grid.261241.20000 0001 2168 8324Halmos College of Natural Sciences and Oceanography, Department of Marine and Environmental Science, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, Florida 33004 USA
| | - Jean-François Flot
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, B-1050 Belgium
| | - Sze-Hoon Gan
- grid.265727.30000 0001 0417 0814Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400 Malaysia
| | - Elizabeth Gomez
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Erin M. Graham
- grid.1011.10000 0004 0474 1797eResearch Centre, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Mila Grinblat
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia ,grid.1011.10000 0004 0474 1797Molecular & Cell biology, College of Public Health, Medical & Vet Sciences, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Nataly Gutiérrez-Isaza
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Saki Harii
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Peter L. Harrison
- grid.1031.30000000121532610Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| | - Masayuki Hatta
- grid.412314.10000 0001 2192 178XDepartment of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610 Japan
| | - Nina Ann Jin Ho
- grid.503008.eChina-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang Selangor, Darul Ehsan, 43900 Malaysia
| | - Gaetan Hoarau
- 12 Rue Caumont, Saint-Pierre Reunion Island, 97410 France
| | - Mia Hoogenboom
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Emily J. Howells
- grid.1007.60000 0004 0486 528XCentre for Sustainable Ecosystem Solutions and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522 Australia
| | - Akira Iguchi
- grid.466781.a0000 0001 2222 3430Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567 Japan
| | - Naoko Isomura
- grid.471922.b0000 0004 4672 6261Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa, 905-2192 Japan
| | - Emmeline A. Jamodiong
- grid.267625.20000 0001 0685 5104Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa 902-0213 Japan
| | - Suppakarn Jandang
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Jude Keyse
- Glenala State High School, Durack, Queensland 4077 Australia
| | - Seiya Kitanobo
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Narinratana Kongjandtre
- grid.411825.b0000 0000 9482 780XAquatic Science, Faculty of Science, Burapha University, 169 LongHaad Bangsaen Rd, Saensook, Mueang Chonburi 20131 Thailand
| | - Chao-Yang Kuo
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Charlon Ligson
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Che-Hung Lin
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | - Jeffrey Low
- Coastal and Marine Branch, National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore, Singapore
| | - Yossi Loya
- grid.12136.370000 0004 1937 0546School of Zoology, Tel-Aviv University, Ramat Aviv, 6997801 Israel
| | - Elizaldy A. Maboloc
- grid.24515.370000 0004 1937 1450Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Joshua S. Madin
- grid.410445.00000 0001 2188 0957Hawai’i Institute of Marine Biology, University of Hawaii at Manoa, 46-007 Lilipuna Rd, Kaneohe, Hawaii 96744 USA
| | - Takuma Mezaki
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki Town, Hata Kochi, 788-0333 Japan
| | - Choo Min
- grid.4280.e0000 0001 2180 6431Reef Ecology Lab, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Masaya Morita
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Aurelie Moya
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Su-Hwei Neo
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558 Singapore, Singapore
| | - Matthew R. Nitschke
- grid.267827.e0000 0001 2292 3111School of Biological Sciences, Victoria University of Wellington, Wellington, 2820 New Zealand
| | | | - Yoko Nozawa
- grid.506939.0Biodiversity Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529 Taiwan
| | | | - Sakanan Plathong
- grid.7130.50000 0004 0470 1162Department of Biology, Faculty of Science, Prince of Songkla University, 15 Karnjanavanich Rd, Hat Yai, 90110 Thailand
| | | | - Kate Quigley
- grid.1046.30000 0001 0328 1619Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia
| | - Catalina Ramirez-Portilla
- grid.4989.c0000 0001 2348 0746Evolutionary Biology and Ecology, Université libre de Bruxelles, Brussels, B-1050 Belgium
| | - Gerard Ricardo
- grid.1046.30000 0001 0328 1619Australian Institute of Marine Science, PMB 3, Townsville, Queensland 4810 Australia
| | - Kazuhiko Sakai
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Eugenia Sampayo
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Tom Shlesinger
- grid.255966.b0000 0001 2229 7296Institute for Global Ecology, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901-6988 USA
| | - Leony Sikim
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Chris Simpson
- 25 Mettam Street, Trigg, Western Australia 6029 Australia
| | - Carrie A. Sims
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Frederic Sinniger
- grid.267625.20000 0001 0685 5104Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227 Japan
| | - Davies A. Spiji
- Reef Guardian Sdn. Bhd., Bandar Tyng, Mile 6, North Road, Sandakan, Sabah 90000 Malaysia
| | - Tracy Tabalanza
- grid.11159.3d0000 0000 9650 2179Marine Science Institute, College of Science, University of the Philippines, Velasquez Street, Diliman, Quezon City, Manila, 1101 Philippines
| | - Chung-Hong Tan
- grid.412255.50000 0000 9284 9319Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030 Malaysia
| | - Tullia I. Terraneo
- grid.45672.320000 0001 1926 5090Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Gergely Torda
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - James True
- grid.419784.70000 0001 0816 7508Faculty of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd, Ladkrabang, Bangkok 10520 Thailand
| | - Karenne Tun
- Coastal and Marine Branch, National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore, Singapore
| | - Kareen Vicentuan
- grid.4280.e0000 0001 2180 6431Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227 Singapore, Singapore
| | - Voranop Viyakarn
- grid.7922.e0000 0001 0244 7875Reef Biology Research Group, Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Bangkok, 10330 Thailand
| | - Zarinah Waheed
- grid.265727.30000 0001 0417 0814Endangered Marine Species Research Unit, Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400 Malaysia
| | - Selina Ward
- grid.1003.20000 0000 9320 7537ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland 4072 Australia ,grid.1003.20000 0000 9320 7537School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072 Australia
| | - Bette Willis
- grid.1011.10000 0004 0474 1797ARC Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia ,grid.1011.10000 0004 0474 1797College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Queensland 4811 Australia
| | - Rachael M. Woods
- grid.1004.50000 0001 2158 5405Department of Biological Sciences, Macquarie University, Macquarie Park, New South Wales 2109 Australia
| | | | - Hiromi H. Yamamoto
- grid.505718.eOkinawa Churashima Research Center, Okinawa Churashima Foundation, 888 Ishikawa, Motobu, Okinawa, 905-0206 Japan
| | - Syafyudin Yusuf
- grid.412001.60000 0000 8544 230XFaculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
33
|
Gilbert SF. Evolutionary developmental biology and sustainability: A biology of resilience. Evol Dev 2021; 23:273-291. [PMID: 33400344 DOI: 10.1111/ede.12366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Evolutionary developmental biology, and especially ecological developmental biology, is essential for discussions of sustainability and the responses to global climate change. First, this paper explores examples of animals that have successfully altered their development to accommodate human-made changes to their environments. We next document the ability of global warming to disrupt the development of those organisms with temperature-dependent sex-determination or with phenologies coordinating that organism's development with those of other species. The thermotolerance of Homo sapiens is also related to key developmental factors concerning brain development and maintenance, and the development of corals, the keystone organisms of tropical reefs, is discussed in relation to global warming as well as to other anthropogenic changes. While teratogenic and endocrine-disrupting compounds are not discussed in this essay, the ability of glyphosate herbicides to block insect development is highlighted. Last, the paper discusses the need to creatively integrate developmental biology with ecological, political, religious, and economic perspectives, as the flourishing of contemporary species may require altering the ways that Western science has considered the categories of nature, culture, and self.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
34
|
Liberman R, Fine M, Benayahu Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105215. [PMID: 33360640 DOI: 10.1016/j.marenvres.2020.105215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Coral reefs are threatened worldwide by global climate change, manifested in anthropogenic ocean warming and acidification. Despite the importance of coral sexual reproduction for the continuity of coral reefs, our understanding of the extent of the impact of climate change on coral sexual reproduction, particularly on coral reproductive phenology and early life stages, is limited. Here, we experimentally examined the effects of predicted end-of-the-century seawater conditions on the sexual reproduction and photosynthetic capacity of a Red-Sea zooxanthellate octocoral, Rhytisma fulvum. Sexually mature colonies were exposed to ambient temperature and pH conditions and to Representative Concentration Pathway (RCP) conditions (4.5 and 8.5), five weeks prior to their expected surface-brooding event. The reproductive phenology of the colonies under the simulated seawater conditions was compared to that on the natural reef. In addition, subsequent planulae development and their metamorphosis into primary polyps under the same RCP conditions as their parent colonies were monitored in a running seawater system. The results reveal that both RCP conditions led to a change in the timing of onset of the surface-brooding event and its synchronicity. In contrast, the surface-brooding event under ambient conditions co-occurred with that of the in-situ reef colonies and maintained its synchrony. Similarly, planula survival and polyp metamorphosis rate were significantly reduced under both RCP conditions compared to propagules reared under ambient conditions. In addition, the photosynthetic capacity of the parent colonies under both RCPs showed a reduction relative to that under the ambient conditions in the experiment, suggesting a reduction in carbon fixation during the late stages of gametogenesis. While our findings indicate that octocoral reproductive phenology is affected by environmental changes, further work is required in order to elucidate the long-term implications for the R. fulvum population in the northern Red Sea.
Collapse
Affiliation(s)
- Ronen Liberman
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel; The Interuniversity Institute for Marine Sciences, Eilat, 8810302, Israel.
| | - Maoz Fine
- The Interuniversity Institute for Marine Sciences, Eilat, 8810302, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Yehuda Benayahu
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
35
|
McRae CJ, Huang WB, Fan TY, Côté IM. Effects of thermal conditioning on the performance of Pocillopora acuta adult coral colonies and their offspring. CORAL REEFS (ONLINE) 2021; 40:1491-1503. [PMID: 34720373 PMCID: PMC8550305 DOI: 10.1007/s00338-021-02123-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 05/25/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Ocean warming induced by climate change is the greatest threat to the persistence of coral reefs globally. Given the current rate of ocean warming, there may not be sufficient time for natural acclimation or adaptation by corals. This urgency has led to the exploration of active management techniques aimed at enhancing thermal tolerance in corals. Here, we test the capacity for transgenerational acclimation in the reef-building coral Pocillopora acuta as a means of increasing offspring performance in warmer waters. We exposed coral colonies from a reef influenced by intermittent upwelling and constant warm-water effluent from a nuclear power plant to temperatures that matched (26 °C) or exceeded (29.5 °C) season-specific mean temperatures for three reproductive cycles; offspring were allowed to settle and grow at both temperatures. Heated colonies reproduced significantly earlier in the lunar cycle and produced fewer and smaller planulae. Recruitment was lower at the heated recruitment temperature regardless of parent treatment. Recruit survival did not differ based on parent or recruitment temperature. Recruits from heated parents were smaller and had lower maximum quantum yield (Fv/Fm), a measurement of symbiont photochemical performance. We found no direct evidence that thermal conditioning of adult P. acuta corals improves offspring performance in warmer water; however, chronic exposure of parent colonies to warmer temperatures at the source reef site may have limited transgenerational acclimation capacity. The extent to which coral response to this active management approach might vary across species and sites remains unclear and merits further investigation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00338-021-02123-9.
Collapse
Affiliation(s)
- Crystal J. McRae
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| | - Wen-Bin Huang
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | - Tung-Yung Fan
- Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Isabelle M. Côté
- Department of Biological Sciences, Simon Fraser University, British Columbia, Canada
| |
Collapse
|
36
|
Ayalon I, Rosenberg Y, Benichou JIC, Campos CLD, Sayco SLG, Nada MAL, Baquiran JIP, Ligson CA, Avisar D, Conaco C, Kuechly HU, Kyba CCM, Cabaitan PC, Levy O. Coral Gametogenesis Collapse under Artificial Light Pollution. Curr Biol 2020; 31:413-419.e3. [PMID: 33157030 DOI: 10.1016/j.cub.2020.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023]
Abstract
Artificial light at night (ALAN) can have negative impacts on the health of humans and ecosystems.1-4 Marine organisms, including coral reefs in particular, rely on the natural light cycles of sunlight and moonlight to regulate various physiological, biological, and behavioral processes.5-8 Here, we demonstrate that light pollution caused delayed gametogenesis and unsynchronized gamete release in two coral species, Acropora millepora and Acropora digitifera, from the Indo-Pacific Ocean. Given the urbanization along major coasts, light pollution could thus further threaten coral communities' populations, which are already under severe degradation. A worldwide-modeled light pollution impact assessment is provided, which can help incorporate an important variable in coral reef conservation planning.
Collapse
Affiliation(s)
- Inbal Ayalon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel; The H. Steinitz Marine Biology Laboratory, The Interuniversity Institute for Marine Sciences of Eilat, PO Box 469, Eilat 88103, Israel; Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Jennifer I C Benichou
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Celine Luisa D Campos
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Sherry Lyn G Sayco
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Michael Angelou L Nada
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Jake Ivan P Baquiran
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Charlon A Ligson
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Dror Avisar
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 39040, Israel
| | - Cecilia Conaco
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Helga U Kuechly
- GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
| | - Christopher C M Kyba
- GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Patrick C Cabaitan
- The Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
37
|
Bernhardt JR, O'Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190454. [PMID: 33131443 PMCID: PMC7662201 DOI: 10.1098/rstb.2019.0454] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Variability in the environment defines the structure and dynamics of all living systems, from organisms to ecosystems. Species have evolved traits and strategies that allow them to detect, exploit and predict the changing environment. These traits allow organisms to maintain steady internal conditions required for physiological functioning through feedback mechanisms that allow internal conditions to remain at or near a set-point despite a fluctuating environment. In addition to feedback, many organisms have evolved feedforward processes, which allow them to adjust in anticipation of an expected future state of the environment. Here we provide a framework describing how feedback and feedforward mechanisms operating within organisms can generate effects across scales of organization, and how they allow living systems to persist in fluctuating environments. Daily, seasonal and multi-year cycles provide cues that organisms use to anticipate changes in physiologically relevant environmental conditions. Using feedforward mechanisms, organisms can exploit correlations in environmental variables to prepare for anticipated future changes. Strategies to obtain, store and act on information about the conditional nature of future events are advantageous and are evidenced in widespread phenotypes such as circadian clocks, social behaviour, diapause and migrations. Humans are altering the ways in which the environment fluctuates, causing correlations between environmental variables to become decoupled, decreasing the reliability of cues. Human-induced environmental change is also altering sensory environments and the ability of organisms to detect cues. Recognizing that living systems combine feedback and feedforward processes is essential to understanding their responses to current and future regimes of environmental fluctuations. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Joey R Bernhardt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, Canada V6T 1Z4
| | - Jennifer M Sunday
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| |
Collapse
|
38
|
Prasetia R, Lim ZW, Teo A, Shlesinger T, Loya Y, Todd PA. Population dynamics and growth rates of free-living mushroom corals (Scleractinia: Fungiidae) in the sediment-stressed reefs of Singapore. ADVANCES IN MARINE BIOLOGY 2020; 87:115-140. [PMID: 33293008 DOI: 10.1016/bs.amb.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The reefs of Singapore provide an excellent opportunity to study the population dynamics and growth rates of free-living mushroom corals (Fungiidae) under sediment-stressed conditions. Transect surveys at four study sites revealed a total of 11 free-living mushroom coral species-the same 11 species as those found by local studies since the 1980s. The abundance of the four most common species ranged from 1.0 to 68.3 Ind. per 100m2, while their population size-structure showed a common pattern of a higher proportion of small-sized corals than large-sized ones (i.e. positively skewed size-structure), although very few individuals of the smallest-size classes were recorded for any of the four species. A more positively skewed size-structure for each of the four most common species was observed at the reef slope (5-6m depth) than at the reef crest (2-3m depth), possibly due to a slower growth rate caused by light reduction with depth. All the mushroom corals studied exhibited a decline in growth rate with increasing size and weight, indicating determinate growth. Growth rate of each of the four most common species was similar among the study sites, despite variation in environmental conditions. Our results demonstrate species richness stability over the past three decades, suggesting that these free-living mushroom coral assemblages comprise species that are well-adapted to the chronic high sedimentation characteristic of Singapore's reefs. However, if the paucity of individuals of the smallest-size classes reflects poor recruitment and/or early mortality, there may be some cause for concern. Our robust baseline data can contribute to a long-term monitoring strategy for determination of changes in mushroom coral population dynamics.
Collapse
Affiliation(s)
- Rian Prasetia
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | - Zi Wei Lim
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Aaron Teo
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, United States
| | - Yossi Loya
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Riegl BM, Glynn PW. Population dynamics of the reef crisis: Consequences of the growing human population. ADVANCES IN MARINE BIOLOGY 2020; 87:1-30. [PMID: 33293007 DOI: 10.1016/bs.amb.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An unequivocal link exists between human population density and environmental degradation, both in the near field (local impacts) and far field (impacts due to teleconnections). Human population is most widely predicted to reach 9-11 billion by 2100, when the demographic transition is expected in all but a handful of countries. Strongest population growth is in the tropics, where coral reefs face dense human population and concomitant heavy usage. In most countries, >50% will be urbanized but growth of rural population and need for food in urban centres will not alleviate pressure on reef resources. Aquaculture will alleviate some fishing pressure, but still utilizes reef surface and is also destructive. Denser coastal populations and greater wealth will lead to reef degradation by coastal construction. Denser populations inland will lead to more runoff and siltation. Effects of human perturbations can be explored with metapopulation theory since they translate to increases in patch-mortality and decreases in patch-colonization (=regeneration). All such changes will result in a habitat with overall fewer settled patches, so fewer live reefs. If rescue effects are included, bifurcations in system dynamics will allow for many empty patches and, depending on system state relative to stable and unstable equilibria, a part-empty system may either trend towards stability at higher patch occupancy or extinction. Thus, unless the disturbance history is known, it may be difficult to assess the direction of system trajectory-making management difficult. If habitat is decreased by destruction, rescue effects become even more important as extinction-debt, accumulated by efficient competitors with weaker dispersal ability, is realized. Easily visible trends in human population dynamics combined with well-established and tested ecological theory give a clear, intuitive, yet quantifiable guide to the severity of survival challenges faced by coral reefs. Management challenges and required actions can be clearly shown and, contrary to frequent claims, no scientific ambiguity exists with regards to the serious threat posed to coral reefs by humankind's continued numerical increase.
Collapse
Affiliation(s)
- Bernhard M Riegl
- Department of Marine and Environmental Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, United States.
| | - Peter W Glynn
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
40
|
Quigley KM, Bay LK, van Oppen MJH. Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol Ecol 2020; 29:2176-2188. [PMID: 32453867 DOI: 10.1111/mec.15482] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
Marine heat waves are increasing in magnitude, duration, and frequency as a result of climate change and are the principal global driver of mortality in reef-building corals. Resilience-based genetic management may increase coral heat tolerance, but it is unclear how temperature responses are regulated at the genome level and thus how corals may adapt to warming naturally or through selective breeding. Here we combine phenotypic, pedigree, and genomic marker data from colonies sourced from a warm reef on the Great Barrier Reef reproductively crossed with conspecific colonies from a cooler reef to produce combinations of warm purebreds and warm-cool hybrid larvae and juveniles. Interpopulation breeding created significantly greater genetic diversity across the coral genome compared to breeding between populations and maintained diversity in key regions associated with heat tolerance and fitness. High-density genome-wide scans of single nucleotide polymorphisms (SNPs) identified alleles significantly associated with larval families reared at 27.5°C (87-2,224 loci), including loci putatively associated with proteins involved in responses to heat stress (cell membrane formation, metabolism, and immune responses). Underlying genetics of these families explained 43% of PCoA multilocus variation in survival, growth, and bleaching responses at 27.5°C and 31°C at the juvenile stage. Genetic marker contribution to total variation in fitness traits (narrow-sense heritability) was high for survival but not for growth and bleaching in juveniles, with heritability of these traits being higher at 31°C relative to 27.5°C. While based on only a limited number of crosses, the mechanistic understanding presented here demonstrates that allele frequencies are affected by one generation of selective breeding, key information for the assessments of genetic intervention feasibility and modelling of reef futures.
Collapse
Affiliation(s)
- Kate M Quigley
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, Qld, Australia.,School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
41
|
How Does the Sexual Reproduction of Marine Life Respond to Ocean Acidification? DIVERSITY 2020. [DOI: 10.3390/d12060241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent research indicates that synchronicity of sexual reproduction in coral spawning events is breaking down, leading to aging populations and decreased recruitment success. In this perspective, we develop a hypothesis that this phenomenon could be caused by ongoing ocean acidification (OA). We hypothesize, that the underlying physiological machinery could be the carbon concentrating mechanism (CCM). The endosymbiotic zooxanthellae of corals could use this mechanism to sense calm water motion states in a comparable way to that known from macroalgae. In macroalgae, it is well-established that dissolved inorganic carbon (DIC) acts as the trigger for signaling low water motion. Hence, evolutionarily developed signals of low water motion, suited for gamete-release, may be misleading in the future, potentially favoring opportunistic species in a broad range of marine organisms.
Collapse
|
42
|
Andreatta G, Tessmar-Raible K. The Still Dark Side of the Moon: Molecular Mechanisms of Lunar-Controlled Rhythms and Clocks. J Mol Biol 2020; 432:3525-3546. [PMID: 32198116 PMCID: PMC7322537 DOI: 10.1016/j.jmb.2020.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Starting with the beginning of the last century, a multitude of scientific studies has documented that the lunar cycle times behaviors and physiology in many organisms. It is plausible that even the first life forms adapted to the different rhythms controlled by the moon. Consistently, many marine species exhibit lunar rhythms, and also the number of documented "lunar-rhythmic" terrestrial species is increasing. Organisms follow diverse lunar geophysical/astronomical rhythms, which differ significantly in terms of period length: from hours (circalunidian and circatidal rhythms) to days (circasemilunar and circalunar cycles). Evidence for internal circatital and circalunar oscillators exists for a range of species based on past behavioral studies, but those species with well-documented behaviorally free-running lunar rhythms are not typically used for molecular studies. Thus, the underlying molecular mechanisms are largely obscure: the dark side of the moon. Here we review findings that start to connect molecular pathways with moon-controlled physiology and behaviors. The present data indicate connections between metabolic/endocrine pathways and moon-controlled rhythms, as well as interactions between circadian and circatidal/circalunar rhythms. Moreover, recent high-throughput analyses provide useful leads toward pathways, as well as molecular markers. However, for each interpretation, it is important to carefully consider the, partly substantially differing, conditions used in each experimental paradigm. In the future, it will be important to use lab experiments to delineate the specific mechanisms of the different solar- and lunar-controlled rhythms, but to also start integrating them together, as life has evolved equally long under rhythms of both sun and moon.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
43
|
Shaffer MR, Davy SK, Maldonado M, Bell JJ. Seasonally Driven Sexual and Asexual Reproduction in Temperate Tethya Species. THE BIOLOGICAL BULLETIN 2020; 238:89-105. [PMID: 32412844 DOI: 10.1086/708624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Marine organisms that rely on environmental cues for reproduction are likely to experience shifts in reproductive phenology and output due to global climate change. To assess the role that the environment may play in the reproductive timing for temperate sponges, this study examined sexual and asexual reproduction in New Zealand sponge species (Tethya bergquistae and the Tethya burtoni complex) and correlated reproductive output with temperature, chlorophyll-a concentration, and rainfall. Histological analyses of sponges collected monthly (from February 2015 to February 2017) revealed that these sponges are oviparous and gonochoristic and that they sexually reproduce annually during the austral summer. Both monthly collections and in situ monitoring revealed that Tethya spp. asexually bud continuously, but with greater intensity in the austral spring and summer. Temperature was positively associated with both sexual reproduction and budding, with seasonal cues appearing important. Future shifts in the environment that alter such cues are expected to affect population dynamics of these sponges.
Collapse
|
44
|
Kleinhaus K, Al-Sawalmih A, Barshis DJ, Genin A, Grace LN, Hoegh-Guldberg O, Loya Y, Meibom A, Osman EO, Ruch JD, Shaked Y, Voolstra CR, Zvuloni A, Fine M. Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action. FRONTIERS IN MARINE SCIENCE 2020; 7. [PMID: 0 DOI: 10.3389/fmars.2020.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
45
|
Ainsworth TD, Hurd CL, Gates RD, Boyd PW. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? GLOBAL CHANGE BIOLOGY 2020; 26:343-354. [PMID: 31873988 DOI: 10.1111/gcb.14901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 05/06/2023]
Abstract
Extreme heat wave events are now causing ecosystem degradation across marine ecosystems. The consequences of this heat-induced damage range from the rapid loss of habitat-forming organisms, through to a reduction in the services that ecosystems support, and ultimately to impacts on human health and society. How we tackle the sudden emergence of ecosystem-wide degradation has not yet been addressed in the context of marine heat waves. An examination of recent marine heat waves from around Australia points to the potential important role that respite or refuge from environmental extremes can play in enabling organismal survival. However, most ecological interventions are being devised with a target of mid to late-century implementation, at which time many of the ecosystems, that the interventions are targeted towards, will have already undergone repeated and widespread heat wave induced degradation. Here, our assessment of the merits of proposed ecological interventions, across a spectrum of approaches, to counter marine environmental extremes, reveals a lack preparedness to counter the effects of extreme conditions on marine ecosystems. The ecological influence of these extremes are projected to continue to impact marine ecosystems in the coming years, long before these interventions can be developed. Our assessment reveals that approaches which are technologically ready and likely to be socially acceptable are locally deployable only, whereas those which are scalable-for example to features as large as major reef systems-are not close to being testable, and are unlikely to obtain social licence for deployment. Knowledge of the environmental timescales for survival of extremes, via respite or refuge, inferred from field observations will help test such intervention tools. The growing frequency of extreme events such as marine heat waves increases the urgency to consider mitigation and intervention tools that support organismal and ecosystem survival in the immediate future, while global climate mitigation and/or intervention are formulated.
Collapse
Affiliation(s)
- Tracy D Ainsworth
- Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
46
|
Häfker NS, Tessmar-Raible K. Rhythms of behavior: are the times changin’? Curr Opin Neurobiol 2020; 60:55-66. [DOI: 10.1016/j.conb.2019.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
|
47
|
Tamir R, Eyal G, Cohen I, Loya Y. Effects of Light Pollution on the Early Life Stages of the Most Abundant Northern Red Sea Coral. Microorganisms 2020; 8:microorganisms8020193. [PMID: 32023896 PMCID: PMC7074826 DOI: 10.3390/microorganisms8020193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
The growth in human population along coastal areas is exposing marine environments to increasing anthropogenic light sources. Despite the potential effects of this modern phenomenon, very few studies have examined its implications for corals. Here, we present a long-term study of coral early life stages under light pollution conditions at night. Coral larvae were collected from Stylophora pistillata colonies, and then settled and grown under experimental conditions of two different common city lighting methods (fluorescent or LED). Effects of the artificial lighting on the coral settlement success, survivorship, growth rate, photosynthetic efficiency, and calcification rate were examined over a period of one year. The control exhibited ~30% higher settlement success compared to the two light treatments, while under the light treatments corals showed higher survivorship, growth, and calcification rates. In addition, an indication of damage to the photosynthetic system was found in the light-polluted corals, which was reflected in their photosynthesis efficiency parameters: i.e., lower maximum light utilization coefficient (α), lower maximum potential photosynthetic rate (Pmax), and lower photosynthetic maximal quantum yield (Fv/Fm). Our findings provide evidence of the potential adverse effects of artificial lighting methods on the natural environment of coral reefs. We conclude that the use of the LED lighting method has high interference potential for the early life stages of corals.
Collapse
Affiliation(s)
- Raz Tamir
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat 8810302, Israel;
- Correspondence:
| | - Gal Eyal
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia;
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Itay Cohen
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat 8810302, Israel;
- Department of Oceanography, The Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yossi Loya
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
48
|
Sakai Y, Hatta M, Furukawa S, Kawata M, Ueno N, Maruyama S. Environmental factors explain spawning day deviation from full moon in the scleractinian coral Acropora. Biol Lett 2020; 16:20190760. [PMID: 31964259 PMCID: PMC7013481 DOI: 10.1098/rsbl.2019.0760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Broadcast-spawning scleractinian corals annually release their gametes with high levels of synchrony, both within and among species. However, the timing of spawning can vary inter-annually. In particular, the night of spawning relative to the full moon phase can vary considerably among years at some locations. Although multiple environmental factors can affect the night of spawning, their effects have not been quantitatively assessed at the multi-regional level. In this study, we analysed environmental factors that are potentially correlated with spawning day deviation, in relation to the full moon phase, in Acropora corals inhabiting seven reefs in Australia and Japan. We accordingly found that sea surface temperature and wind speed within one to two months prior to the full moon of the spawning month were strongly correlated with spawning day deviations. In addition, solar flux had a weak effect on the night of spawning. These findings indicate that Acropora have the capacity to adjust their development and physiology in response to environmental factors for fine-tuning the timing of synchronous spawning, thereby maximizing reproductive success and post-fertilization survival.
Collapse
Affiliation(s)
- Yusuke Sakai
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Seishiro Furukawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | | |
Collapse
|
49
|
Sage RF. Global change biology: A primer. GLOBAL CHANGE BIOLOGY 2020; 26:3-30. [PMID: 31663217 DOI: 10.1111/gcb.14893] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/09/2019] [Indexed: 05/17/2023]
Abstract
Because of human action, the Earth has entered an era where profound changes in the global environment are creating novel conditions that will be discernable far into the future. One consequence may be a large reduction of the Earth's biodiversity, potentially representing a sixth mass extinction. With effective stewardship, the global change drivers that threaten the Earth's biota could be alleviated, but this requires clear understanding of the drivers, their interactions, and how they impact ecological communities. This review identifies 10 anthropogenic global change drivers and discusses how six of the drivers (atmospheric CO2 enrichment, climate change, land transformation, species exploitation, exotic species invasions, eutrophication) impact Earth's biodiversity. Driver impacts on a particular species could be positive or negative. In either case, they initiate secondary responses that cascade along ecological lines of connection and in doing so magnify the initial impact. The unique nature of the threat to the Earth's biodiversity is not simply due to the magnitude of each driver, but due to the speed of change, the novelty of the drivers, and their interactions. Emphasizing one driver, notably climate change, is problematic because the other global change drivers also degrade biodiversity and together threaten the stability of the biosphere. As the main academic journal addressing global change effects on living systems, GCB is well positioned to provide leadership in solving the global change challenge. If humanity cannot meet the challenge, then GCB is positioned to serve as a leading chronicle of the sixth mass extinction to occur on planet Earth.
Collapse
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
|