1
|
de Jong TJ, Demertzi AD, Robinson WE, Huck WTS. Environmental History is Transferred via Minerals Altering Formose Reaction Pathways. Angew Chem Int Ed Engl 2025; 64:e202504659. [PMID: 40116706 DOI: 10.1002/anie.202504659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
It is generally accepted that minerals were an important source of prebiotic catalysis. In this work we demonstrate how the prebiotic sugar forming formose reaction is guided to unique reaction compositions in the presence of a variety of minerals. When the same mineral is transferred between multiple sequential batch reactions, a new reaction composition is obtained after each reaction cycle. We attribute this effect to the adsorption of catalytic Ca(OH)2 to mineral surfaces. Further exploration shows that first exposing the mineral surface to the aqueous catalyst allows the mineral to subsequently produce formose outputs without the need for any additional catalyst to be present. As such, the mineral surface functions as storage of the preceding environmental conditions. Our work supports the development of chemical complexity through the transfer of information between sequences of chemical environments.
Collapse
Affiliation(s)
- Thijs J de Jong
- Department of Physical Organic Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, Netherlands
| | - Astra D Demertzi
- Department of Physical Organic Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, Netherlands
| | - William E Robinson
- Department of Physical Organic Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, Netherlands
| | - Wilhelm T S Huck
- Department of Physical Organic Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
2
|
Rossetto D, Nader S, Kufner CL, Lozano GG, Cerofolini L, Fragai M, Martin-Diaconescu V, Zambelli B, Ciurli S, Guella G, Szabla R, Sasselov DD, Mansy SS. Preferential survival of prebiotic metallopeptides in the presence of ultraviolet light. Chem Sci 2025:d5sc02170g. [PMID: 40438176 PMCID: PMC12108965 DOI: 10.1039/d5sc02170g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
The transition from unregulated, prebiotic chemistry to metabolic-like systems capable of supporting an evolving protocell has remained difficult to explain. One hypothesis is that early catalysts began to prune the chemical landscape in a manner that facilitated the emergence of modern-day enzymes. As enzymes frequently rely on the intrinsic reactivity of metal ions, it follows that these early catalysts may have been metal ions coordinated to prebiotic peptides that have remained as core structures within extant proteins. Here, we demonstrate that UV light directly selects for the types of metal-binding peptide motifs found in biology. This is because bare cysteine is much more susceptible to photolysis than cysteine bound by a metal ion. Therefore, peptides with greater affinity for environmentally available metal ions, such as Fe2+ or Zn2+, are more stable. Our results are supported by mass spectrometry, calorimetry, X-ray absorption, NMR spectroscopy, transient absorption pump probe spectroscopy, and excited-state quantum-chemical calculations. Photostability arises from the ability of the metal ion to engage transiently generated reactive radical centers in a manner that prevents subsequent degradative processes. The data are consistent with the enrichment of a restricted set of high affinity, extant-like metallopeptides in surficial environments on the early Earth.
Collapse
Affiliation(s)
- Daniele Rossetto
- DiCIBIO, University of Trento 38123 Povo Italy
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Serge Nader
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Corinna L Kufner
- Department of Astronomy, Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
| | - Gabriella G Lozano
- Department of Astronomy, Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
| | - Linda Cerofolini
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino Italy
| | - Marco Fragai
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino Italy
| | | | - Barbara Zambelli
- Laboratory of Bio-Inorganic Chemistry (LBIC), Department of Pharmacy and Biotechnology, University of Bologna Bologna Italy
| | - Stefano Ciurli
- Laboratory of Bio-Inorganic Chemistry (LBIC), Department of Pharmacy and Biotechnology, University of Bologna Bologna Italy
| | - Graziano Guella
- Department of Physics, University of Trento 38123 Povo Italy
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wrocław Poland
- Department of Physics, Faculty of Science, University of Ostrava 30. dubna 22 701 03 Ostrava Czech Republic
| | - Dimitar D Sasselov
- Department of Astronomy, Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
| | - Sheref S Mansy
- DiCIBIO, University of Trento 38123 Povo Italy
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
3
|
Noriega L, Gonzalez-Ortiz LA, Ortíz-Chi F, Merino G. Astrochemical Significance of C 2H 7NO Isomers: A Computational Perspective on Their Stability and Detectability. J Phys Chem A 2025. [PMID: 40372245 DOI: 10.1021/acs.jpca.5c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Nitrogen- and oxygen-containing molecules play a key role in interstellar chemistry, particularly as precursors to biologically relevant species such as amino acids. Among the C2H7NO isomers, 2-aminoethanol is the only one detected in the ISM. This study systematically explores the C2H7NO chemical space, identifying eight structural isomers, with 1-aminoethanol as the global minimum and methylaminomethanol, 11.5 kcal/mol higher in energy, as a viable higher-energy species. To assess their astrochemical relevance, we conducted a comprehensive conformational analysis and computed rotational constants to guide future spectroscopic searches. These findings provide critical insights into C2H7NO isomers, identifying new candidates for ISM detection and expanding our understanding of nitrogen- and oxygen-containing organic species in space.
Collapse
Affiliation(s)
- Lisset Noriega
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex 97310 Mérida, Yucatán, Mexico
| | - Luis Armando Gonzalez-Ortiz
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex 97310 Mérida, Yucatán, Mexico
| | - Filiberto Ortíz-Chi
- Secihti-Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex 97310 Mérida, Yucatán, Mexico
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex 97310 Mérida, Yucatán, Mexico
| |
Collapse
|
4
|
Howard T, Maheshwari S, Yeh GJ, Ganley SE, Dodson LG. The 1.5 μm Band of Cyanoacetylene as a Spectroscopic Target in Astrochemistry. J Phys Chem Lett 2025; 16:3748-3753. [PMID: 40189835 DOI: 10.1021/acs.jpclett.5c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The search for prebiotic molecules officially entered a new era with the launch of the James Webb Space Telescope. The capabilities of the near-infrared instrumentation on board offer greater sensitivity and resolution than have ever been available in a space-based instrument. With the planned launch of more near-infrared telescopes, such as SPHEREx in 2025, it is essential to have laboratory data for important molecules on hand to guide observations in this spectral region. We present here the first published line list of the prebiotic cyanoacetylene (HC3N) molecule in the 1.5 μm region. Molecules were cooled to 20 K through the use of cryogenic buffer-gas cooling yielding well-resolved ro-vibrational states of the 2ν1 band that were probed and assigned using cavity-ringdown spectroscopy. Rotational constants were calculated using PGOPHER, and spectral line intensities were measured relative to hydrogen cyanide. We recommend the HC3N 1.5 μm band as an observational target for transmission spectroscopy at Hycean and Super-Earth exoplanetary bodies.
Collapse
Affiliation(s)
- Thomas Howard
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sanjana Maheshwari
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Grace J Yeh
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shannon E Ganley
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Leah G Dodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
5
|
Décout JL, Maurel MC. Purine Chemistry in the Early RNA World at the Origins of Life: From RNA and Nucleobases Lesions to Current Key Metabolic Routes. Chembiochem 2025:e2500035. [PMID: 40237374 DOI: 10.1002/cbic.202500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Indexed: 04/18/2025]
Abstract
In early life, RNA probably played the central role and, in the corresponding RNA world, the main produced amino acids and small peptides had to react continuously with RNA, ribonucleos(t)ides and nucleobases, especially with purines. A RNA-peptide world and key metabolic pathways have emerged from the corresponding chemical modifications such as the translation process performed by the ribosome. Some interesting reactions of the purine bicycle and of the corresponding ribonucleos(t)ides are performed under plausible prebiotic conditions and described RNA chemical lesions are reviewed with the prospect to highlight their connection with some major steps of the purine and histidine biosynthetic pathways that are, in an intriguingly way, related through two key metabolites, adenosine 5'-triphosphate and the imidazole ribonucleotide 5-aminoimidazole-4-carboxamide ribonucleotide. Ring-opening reactions of purines stand out as efficient accesses to imidazole ribonucleotides and to formamidopyrimidine (Fapy) ribonucleotides suggesting that biosynthetic pathway' first steps have emerged from RNA and ribonucleos(t)ide damages. Also, are summarized the works on the formation and catalytic properties, under plausible prebiotic conditions, of N6-derivatives of the purine base adenine as potential surrogates of histidine in catalysis accordingly to their structural relationship.
Collapse
Affiliation(s)
- Jean-Luc Décout
- Département de Pharmacochimie Moléculaire, UMR 5063, Université Grenoble Alpes, CNRS, Faculté de Pharmacie, 38000, Grenoble, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
6
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
7
|
Kufner C, Krebs S, Fischaleck M, Philippou-Massier J, Blum H, Bucher DB, Braun D, Zinth W, Mast CB. Selection of Early Life Codons by Ultraviolet Light. ACS CENTRAL SCIENCE 2025; 11:147-156. [PMID: 39866696 PMCID: PMC11758376 DOI: 10.1021/acscentsci.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.
Collapse
Affiliation(s)
- Corinna
L. Kufner
- Harvard-Smithsonian
Center for Astrophysics, Department of Astronomy,
Harvard University, 60
Garden Street, Cambridge, Massachusetts 02138, United States
| | - Stefan Krebs
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Marlis Fischaleck
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Julia Philippou-Massier
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dominik B. Bucher
- Department
of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Dieter Braun
- Systems
Biophysics, Ludwig-Maximilians-University
Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Wolfgang Zinth
- Biomolecular
Optics and Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Öttingenstrasse 67, 80538 Munich, Germany
| | - Christof B. Mast
- Systems
Biophysics, Ludwig-Maximilians-University
Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
8
|
Seelig B, Chen IA. Intellectual frameworks to understand complex biochemical systems at the origin of life. Nat Chem 2025; 17:11-19. [PMID: 39762573 DOI: 10.1038/s41557-024-01698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Understanding the emergence of complex biochemical systems, such as protein translation, is a great challenge. Although synthetic approaches can provide insight into the potential early stages of life, they do not address the equally important question of why the complex systems of life would have evolved. In particular, the intricacies of the mechanisms governing the transfer of information from nucleic acid sequences to proteins make it difficult to imagine how coded protein synthesis could have emerged from a prebiotic soup. Here we discuss the use of intellectual frameworks in studying the emergence of life. We discuss how one such framework, namely the RNA world theory, has spurred research, and provide an overview of its limitations. We suggest that the emergence of coded protein synthesis could be broken into experimentally tractable problems by treating it as a molecular bricolage-a complex system integrating many different parts, each of which originally evolved for uses unrelated to its modern function-to promote a concrete understanding of its origin.
Collapse
Affiliation(s)
- Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Song X, Simonis P, Deamer D, Zare RN. Wet-dry cycles cause nucleic acid monomers to polymerize into long chains. Proc Natl Acad Sci U S A 2024; 121:e2412784121. [PMID: 39585974 PMCID: PMC11626162 DOI: 10.1073/pnas.2412784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The key first step in the oligomerization of monomers is to find an initiator, which is usually done by thermolysis or photolysis. We present a markedly different approach that initiates acid-catalyzed polymerization at the surface of water films or water droplets, which is the reactive phase during a wet-dry cycle in freshwater hot springs associated with subaerial volcanic landmasses. We apply this method to the oligomerization of different nucleic acids, a topic relevant to how it might be possible to go from simple nucleic acid monomers to long-chain polymers, a key step in forming the building blocks of life. It has long been known that dehydration at elevated temperatures can drive the synthesis of ester and peptide bonds, but this reaction has typically been carried out by incubating dry monomers at elevated temperatures. We report that single or multiple cycles of wetting and drying link mononucleotides by forming phosphodiester bonds. Mass spectrometric analysis reveals uridine monophosphate oligomers up to 53 nucleotides, with an abundance of 35 and 43 nt in length. Long-chain oligomers are also observed for thymidine monophosphate, adenosine monophosphate, and deoxyadenosine monophosphate after exposure to a few wet-dry cycles. Nanopore sequencing confirms that long linear chains are formed. Enzyme digestion shows that the linkage is the phosphodiester bond, which is further confirmed by 31P NMR and Fourier transform infrared spectroscopy. This suggests that nucleic acid oligomers were likely to be present on early Earth in a steady state of synthesis and hydrolysis.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Povilas Simonis
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, VilniusLT-01513, Lithuania
- State Research Institute Center for Physical Sciences and Technology, VilniusLT-02300, Lithuania
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Tagawa S, Hatami R, Morino K, Terazawa S, Akıl C, Johnson-Finn K, Shibuya T, Fujishima K. Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. ASTROBIOLOGY 2024; 24:1151-1165. [PMID: 39560458 DOI: 10.1089/ast.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Prebiotic synthesis of complex organic molecules in water-rich environments has been a long-standing challenge. In the modern deep sea, emission of liquid CO2 has been observed in multiple locations, which indicates the existence of benthic CO2 pools. Recently, a liquid/supercritical CO2 (ScCO2) hypothesis has been proposed that a two-phase ScCO2-water environment could lead to efficient dehydration and condensation of organics. To confirm this hypothesis, we conducted a nucleoside phosphorylation reaction in a hydrothermal reactor creating ScCO2-water two-phase environment. After 120 h of uridine, cytosine, guanosine, and adenosine phosphorylation at 68.9°C, various nucleoside monophosphates (NMPs), nucleotide diphosphates, and carbamoyl nucleosides were produced. The addition of urea enhanced the overall production of phosphorylated species with 5'-NMPs, the major products that reached over 10% yield. As predicted, phosphorylation did not proceed in the fully aqueous environment without ScCO2. Further, a glass window reactor was introduced for direct observation of the two-phase environment, where the escape of water into the ScCO2 phase was observed. These results are similar to those of a wet-dry cycle experiment simulating the terrestrial hot spring environment, indicating that the presence of ScCO2 can create a comparatively dry condition in the deep sea. In addition, the high acidity present in the aqueous phase further supports nucleotide synthesis by enabling the release of orthophosphate from the hydroxyapatite mineral solving the phosphate problem. Thus, the present study highlights the potential of the unique ScCO2-water two-phase environment to drive prebiotic nucleotide synthesis and likely induce condensation reactions of various organic and inorganic compounds in the deep-sea CO2 pool on Earth and potentially other ocean worlds.
Collapse
Affiliation(s)
- Shotaro Tagawa
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ryota Hatami
- Astronomical Science Program, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
- National Astronomical Observatory of Japan, Mitaka, Japan
| | - Kohei Morino
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Shohei Terazawa
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Caner Akıl
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kristin Johnson-Finn
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takazo Shibuya
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
11
|
Deamer D. Perspective: Protocells and the Path to Minimal Life. J Mol Evol 2024; 92:530-538. [PMID: 39230713 PMCID: PMC11458682 DOI: 10.1007/s00239-024-10197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The path to minimal life involves a series of stages that can be understood in terms of incremental, stepwise additions of complexity ranging from simple solutions of organic compounds to systems of encapsulated polymers capable of capturing nutrients and energy to grow and reproduce. This brief review will describe the initial stages that lead to populations of protocells capable of undergoing selection and evolution. The stages incorporate knowledge of chemical and physical properties of organic compounds, self-assembly of membranous compartments, non-enzymatic polymerization of amino acids and nucleotides followed by encapsulation of polymers to produce protocell populations. The results are based on laboratory simulations related to cyclic hydrothermal conditions on the prebiotic Earth. The final portion of the review looks ahead to what remains to be discovered about this process in order to understand the evolutionary path to minimal life.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
12
|
Yu M, Ouyang D, Wang L, Liu YN. Catalytic Reduction of Aromatic Nitro Compounds to Phenylhydroxylamine and Its Derivatives. Molecules 2024; 29:4353. [PMID: 39339349 PMCID: PMC11433948 DOI: 10.3390/molecules29184353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Phenylhydroxylamine and its derivates (PHAs) are important chemical intermediates. Phenylhydroxylamines are mainly produced via the catalytic reduction of aromatic nitro compounds. However, this catalytic reduction method prefers to generate thermodynamically stable aromatic amine. Thus, designing suitable catalytic systems, especially catalysts to selectively convert aromatic nitro compounds to PHAs, has received increasing attention but remains challenging. In this review, we initially provide a brief overview of the various strategies employed for the synthesis of PHAs, focusing on reducing aromatic nitro compounds. Subsequently, an in-depth analysis is presented on the catalytic reduction process, encompassing discussions on catalysts, reductants, hydrogen sources, and a comprehensive assessment of the merits and drawbacks of various catalytic systems. Furthermore, a concise overview is provided regarding the progress made in comprehending the mechanisms involved in this process of catalytic reduction of aromatic nitro compounds. Finally, the main challenges and prospects in PHAs' production via catalytic reduction are outlined.
Collapse
Affiliation(s)
- Min Yu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Dachen Ouyang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liqiang Wang
- Henan Province Industrial Technology Research Institute of Resources and Materials, School of Material Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
13
|
Arriola JT, Poordian S, Valdivia EM, Le T, Leman LJ, Schellinger JG, Müller UF. Weak effects of prebiotically plausible peptides on self-triphosphorylation ribozyme function. RSC Chem Biol 2024:d4cb00129j. [PMID: 39279875 PMCID: PMC11391260 DOI: 10.1039/d4cb00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Catalytic RNAs (ribozymes) were central to early stages of life on earth. The first ribozymes probably emerged in the presence of prebiotically generated peptides because amino acids can be generated under abiotic conditions, and amino acids can oligomerize into peptides under prebiotically plausible conditions. Here we tested whether the presence of prebiotically plausible peptides could have aided the emergence of ribozymes, by an in vitro selection of self-triphosphorylation ribozymes from random sequence in the presence of ten different octapeptides. These peptides were composed of ten different, prebiotically plausible amino acids, each as mixture of d- and l-stereoisomers. After five rounds of selection and high throughput sequencing analysis, ten ribozymes that appeared most promising for peptide benefits were tested biochemically for possible benefits from each of the ten peptides. The strongest peptide benefit enhanced ribozyme activity by 2.6-fold, similar to the effect from an increase in the pH by one-half unit. Four arbitrarily chosen ribozymes from a previous selection without peptides showed no significant change in their activity in the presence of the ten peptides. Therefore, the used prebiotically plausible peptides - peptides without evolutionarily optimized sequence, without cationic or aromatic side chains - did not provide a strong benefit for the emergence of ribozyme activity. This finding stands in contrast to previously identified polycationic peptides, conjugates between peptides and polyaromatic hydrocarbons, and modern mRNA encoded proteins, all of which can strongly increase ribozyme function. The results are discussed in the context of origins of life.
Collapse
Affiliation(s)
- Joshua T Arriola
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| | - Shayan Poordian
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| | | | - Tommy Le
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| | - Luke J Leman
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Joan G Schellinger
- Department of Chemistry & Biochemistry, University of San Diego San Diego CA 92110 USA
| | - Ulrich F Müller
- Department of Chemistry & Biochemistry, University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
14
|
Muñoz-Velasco I, Cruz-González A, Hernández-Morales R, Campillo-Balderas JA, Cottom-Salas W, Jácome R, Vázquez-Salazar A. Pioneering role of RNA in the early evolution of life. Genet Mol Biol 2024; 47Suppl 1:e20240028. [PMID: 39437147 PMCID: PMC11445735 DOI: 10.1590/1678-4685-gmb-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024] Open
Abstract
The catalytic, regulatory and structural properties of RNA, combined with their extraordinary ubiquity in cellular processes, are consistent with the proposal that this molecule played a much more conspicuous role in heredity and metabolism during the early stages of biological evolution. This review explores the pivotal role of RNA in the earliest life forms and its relevance in modern biological systems. It examines current models that study the early evolution of life, providing insights into the primordial RNA world and its legacy in contemporary biology.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Celular, Mexico City, Mexico
| | - Adrián Cruz-González
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Ricardo Hernández-Morales
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Rodrigo Jácome
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- University of California Los Angeles, Department of Chemical and Biomolecular Engineering, California, USA
| |
Collapse
|
15
|
Wogan NF, Catling DC, Zahnle KJ. Timing and Likelihood of the Origin of Life Derived from Post-Impact Highly Reducing Atmospheres. ASTROBIOLOGY 2024; 24:881-891. [PMID: 39344973 DOI: 10.1089/ast.2023.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Big impacts on the early Earth would have created highly reducing atmospheres that generated molecules needed for the origin of life, such as nitriles. However, such impactors could have been followed by collisions that were sufficiently big to vaporize the ocean and destroy any pre-existing life. Thus, a post-impact-reducing atmosphere that gives rise to life needs to be followed by a lack of subsequent sterilizing impacts for life to persist. We assume that prebiotic chemistry required a post-impact-reducing atmosphere. Then, using statistics for the impact history on Earth and the minimum impact mass needed to generate post-impact highly reducing atmospheres, we show that the median timing of impact-driven biopoiesis is favored early in the Hadean, ∼4.35 Ga. However, uncertainties are large because impact bombardment is stochastic, and so biopoiesis could have occurred between 4.45 and 3.9 Ga within 95% uncertainty. In an optimistic scenario for biopoiesis from post-impact-reducing atmospheres, we find that the origin of life is favorable in ∼90% of stochastic impact realizations. In our most pessimistic case, biopoiesis is still fairly likely (∼20% chance). This potentially bodes well for life on rocky exoplanets that have experienced an early episode of impact bombardment given how planets form.
Collapse
Affiliation(s)
- Nicholas F Wogan
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| | - David C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Kevin J Zahnle
- Space Science Division, NASA Ames Research Center, Moffett Field, California, USA
| |
Collapse
|
16
|
Jiang HJ, Underwood TC, Bell JG, Lei J, Gonzales JC, Emge L, Tadese LG, Abd El-Rahman MK, Wilmouth DM, Brazaca LC, Ni G, Belding L, Dey S, Ashkarran AA, Nagarkar A, Nemitz MP, Cafferty BJ, Sayres DS, Ranjan S, Crocker DR, Anderson JG, Sasselov DD, Whitesides GM. Mimicking lightning-induced electrochemistry on the early Earth. Proc Natl Acad Sci U S A 2024; 121:e2400819121. [PMID: 39074283 PMCID: PMC11317556 DOI: 10.1073/pnas.2400819121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
To test the hypothesis that an abiotic Earth and its inert atmosphere could form chemically reactive carbon- and nitrogen-containing compounds, we designed a plasma electrochemical setup to mimic lightning-induced electrochemistry under steady-state conditions of the early Earth. Air-gap electrochemical reactions at air-water-ground interfaces lead to remarkable yields, with up to 40 moles of carbon dioxide being reduced into carbon monoxide and formic acid, and 3 moles of gaseous nitrogen being fixed into nitrate, nitrite, and ammonium ions, per mole of transmitted electrons. Interfaces enable reactants (e.g., minerals) that may have been on land, in lakes, and in oceans to participate in radical and redox reactions, leading to higher yields compared to gas-phase-only reactions. Cloud-to-ground lightning strikes could have generated high concentrations of reactive molecules locally, establishing diverse feedstocks for early life to emerge and survive globally.
Collapse
Affiliation(s)
- Haihui Joy Jiang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Astronomy, Harvard University, Cambridge, MA02138
| | - Thomas C. Underwood
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX78705
| | - Jeffrey G. Bell
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Jonathan Lei
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Joe C. Gonzales
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lukas Emge
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Leah G. Tadese
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | | | - David M. Wilmouth
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Lais C. Brazaca
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Gigi Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Lee Belding
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Supriya Dey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Ali Akbar Ashkarran
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Amit Nagarkar
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Markus P. Nemitz
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Brian J. Cafferty
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - David S. Sayres
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Sukrit Ranjan
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ85721
- Department of Planetary Sciences, University of Arizona, Tucson, AZ85721
| | - Daniel R. Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | - James G. Anderson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA02138
| | | | - George M. Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
17
|
Kriebisch CME, Burger L, Zozulia O, Stasi M, Floroni A, Braun D, Gerland U, Boekhoven J. Template-based copying in chemically fuelled dynamic combinatorial libraries. Nat Chem 2024; 16:1240-1249. [PMID: 39014158 PMCID: PMC11321992 DOI: 10.1038/s41557-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/06/2024] [Indexed: 07/18/2024]
Abstract
One of science's greatest challenges is determining how life can spontaneously emerge from a mixture of molecules. A complicating factor is that life and its molecules are inherently unstable-RNA and proteins are prone to hydrolysis and denaturation. For the de novo synthesis of life or to better understand its emergence at its origin, selection mechanisms are needed for unstable molecules. Here we present a chemically fuelled dynamic combinatorial library to model RNA oligomerization and deoligomerization and shine new light on selection and purification mechanisms under kinetic control. In the experiments, oligomers can only be sustained by continuous production. Hybridization is a powerful tool for selecting unstable molecules, offering feedback on oligomerization and deoligomerization rates. Moreover, we find that templation can be used to purify libraries of oligomers. In addition, template-assisted formation of oligomers within coacervate-based protocells changes its compartment's physical properties, such as their ability to fuse. Such reciprocal coupling between oligomer production and physical properties is a key step towards synthetic life.
Collapse
Affiliation(s)
- Christine M E Kriebisch
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Ludwig Burger
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Oleksii Zozulia
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Michele Stasi
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Alexander Floroni
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Braun
- Systems Biophysics Center for Nano-Science and Origins Cluster Initiative, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Gerland
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Job Boekhoven
- School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching, Germany.
| |
Collapse
|
18
|
Thøgersen J, Madzharova F, Weidner T, Jensen F. Deep-Ultraviolet Photoexcitation of Aqueous Urea Forms Carbamic Acid/Carbamate in Less Than One Picosecond. Chemistry 2024; 30:e202400728. [PMID: 38804868 DOI: 10.1002/chem.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/29/2024]
Abstract
Urea is believed to have been essential to the synthesis of prebiotic nucleotides and thereby the RNA or DNA of the first lifeforms. Models suggesting that life began in wet-dry cycles around shallow aquatic ponds imply that reactants such as urea were exposed to deep ultraviolet irradiation from the young sun. Detrimental photodissociation of urea induced by deep UV excitation potentially challenges these models. We here follow the primary deep ultraviolet photochemistry of aqueous urea. The data show that urea is barely excited at 200 nm due to weak ultraviolet absorption. The likelihood of photodissociation is further reduced by strong intra-molecular coupling of the CN and CO stretch vibrations accompanied by an efficient dissipation of the excitation energy to the surrounding water molecules mitigated by urea-water hydrogen bonds. We find that 54±5 % of the excited urea molecules dissociate. Reactions between the photoproducts and surrounding solvent molecules form carbamic acid or the carbamate anions within 0.6 ps. The molecules that do not dissociate return to the electronic ground state in 2 ps. Interestingly, the photodissociation processes of urea in the aqueous phase is different from earlier reported reactions observed following the VUV photolysis of urea in noble gas matrices and highlight the potential influence of water on the prebiotic photochemistry.
Collapse
Affiliation(s)
- Jan Thøgersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| |
Collapse
|
19
|
Del Val C, Díaz de la Guardia-Bolívar E, Zwir I, Mishra PP, Mesa A, Salas R, Poblete GF, de Erausquin G, Raitoharju E, Kähönen M, Raitakari O, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR. Gene expression networks regulated by human personality. Mol Psychiatry 2024; 29:2241-2260. [PMID: 38433276 PMCID: PMC11408262 DOI: 10.1038/s41380-024-02484-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Genome-wide association studies of human personality have been carried out, but transcription of the whole genome has not been studied in relation to personality in humans. We collected genome-wide expression profiles of adults to characterize the regulation of expression and function in genes related to human personality. We devised an innovative multi-omic approach to network analysis to identify the key control elements and interactions in multi-modular networks. We identified sets of transcribed genes that were co-expressed in specific brain regions with genes known to be associated with personality. Then we identified the minimum networks for the co-localized genes using bioinformatic resources. Subjects were 459 adults from the Young Finns Study who completed the Temperament and Character Inventory and provided peripheral blood for genomic and transcriptomic analysis. We identified an extrinsic network of 45 regulatory genes from seed genes in brain regions involved in self-regulation of emotional reactivity to extracellular stimuli (e.g., self-regulation of anxiety) and an intrinsic network of 43 regulatory genes from seed genes in brain regions involved in self-regulation of interpretations of meaning (e.g., production of concepts and language). We discovered that interactions between the two networks were coordinated by a control hub of 3 miRNAs and 3 protein-coding genes shared by both. Interactions of the control hub with proteins and ncRNAs identified more than 100 genes that overlap directly with known personality-related genes and more than another 4000 genes that interact indirectly. We conclude that the six-gene hub is the crux of an integrative network that orchestrates information-transfer throughout a multi-modular system of over 4000 genes enriched in liquid-liquid-phase-separation (LLPS)-related RNAs, diverse transcription factors, and hominid-specific miRNAs and lncRNAs. Gene expression networks associated with human personality regulate neuronal plasticity, epigenesis, and adaptive functioning by the interactions of salience and meaning in self-awareness.
Collapse
Affiliation(s)
- Coral Del Val
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Elisa Díaz de la Guardia-Bolívar
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
| | - Igor Zwir
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
- Washington University School of Medicine, Department of Psychiatry, St. Louis, MO, USA
| | - Pashupati P Mishra
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Alberto Mesa
- University of Granada, Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, Granada, Spain
| | - Ramiro Salas
- The Menninger Clinic, Baylor College of Medicine, and DeBakey VA Medical Center, Houston, TX, USA
| | | | - Gabriel de Erausquin
- University of Texas Health San Antonio, Long School of Medicine, Department of Neurology, Biggs Institute of Alzheimer's & Neurodegenerative Disorders, San Antonio, TX, USA
| | - Emma Raitoharju
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- University of Turku and Turku University Hospital, Center for Population Health Research; University of Turku, Research Center of Applied and Preventive Cardiovascular Medicine; Turku University Hospital, Department of Clinical Physiology and Nuclear Medicine, Turku, Finland
| | | | - Terho Lehtimäki
- Tampere University, Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere, Finland
| | | |
Collapse
|
20
|
Stolar T, Pearce BK, Etter M, Truong KN, Ostojić T, Krajnc A, Mali G, Rossi B, Molčanov K, Lončarić I, Meštrović E, Užarević K, Grisanti L. Base-pairing of uracil and 2,6-diaminopurine: from cocrystals to photoreactivity. iScience 2024; 27:109894. [PMID: 38783999 PMCID: PMC11112615 DOI: 10.1016/j.isci.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
We show that the non-canonical nucleobase 2,6-diaminopurine (D) spontaneously base pairs with uracil (U) in water and the solid state without the need to be attached to the ribose-phosphate backbone. Depending on the reaction conditions, D and U assemble in thermodynamically stable hydrated and anhydrated D-U base-paired cocrystals. Under UV irradiation, an aqueous solution of D-U base-pair undergoes photochemical degradation, while a pure aqueous solution of U does not. Our simulations suggest that D may trigger the U photodimerization and show that complementary base-pairing modifies the photochemical properties of nucleobases, which might have implications for prebiotic chemistry.
Collapse
Affiliation(s)
- Tomislav Stolar
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ben K.D. Pearce
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Tea Ostojić
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Andraž Krajnc
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Barbara Rossi
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | | | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Ernest Meštrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | | | - Luca Grisanti
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
21
|
Banfalvi G. The Origin of RNA and the Formose-Ribose-RNA Pathway. Int J Mol Sci 2024; 25:6727. [PMID: 38928433 PMCID: PMC11203418 DOI: 10.3390/ijms25126727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Prebiotic pre-Darwinian reactions continued throughout biochemical or Darwinian evolution. Early chemical processes could have occurred on Earth between 4.5 and 3.6 billion years ago when cellular life was about to come into being. Pre-Darwinian evolution assumes the development of hereditary elements but does not regard them as self-organizing processes. The presence of biochemical self-organization after the pre-Darwinian evolution did not justify distinguishing between different types of evolution. From the many possible solutions, evolution selected from among those stable reactions that led to catalytic networks, and under gradually changing external conditions produced a reproducible, yet constantly evolving and adaptable, living system. Major abiotic factors included sunlight, precipitation, air, minerals, soil and the Earth's atmosphere, hydrosphere and lithosphere. Abiotic sources of chemicals contributed to the formation of prebiotic RNA, the development of genetic RNA, the RNA World and the initial life forms on Earth and the transition of genRNA to the DNA Empire, and eventually to the multitude of life forms today. The transition from the RNA World to the DNA Empire generated new processes such as oxygenic photosynthesis and the hierarchical arrangement of processes involved in the transfer of genetic information. The objective of this work is to unite earlier work dealing with the formose, the origin and synthesis of ribose and RNA reactions that were published as a series of independent reactions. These reactions are now regarded as the first metabolic pathway.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
22
|
Hoog TG, Pawlak MR, Gaut NJ, Baxter GC, Bethel TA, Adamala KP, Engelhart AE. Emergent ribozyme behaviors in oxychlorine brines indicate a unique niche for molecular evolution on Mars. Nat Commun 2024; 15:3863. [PMID: 38769315 PMCID: PMC11106070 DOI: 10.1038/s41467-024-48037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Mars is a particularly attractive candidate among known astronomical objects to potentially host life. Results from space exploration missions have provided insights into Martian geochemistry that indicate oxychlorine species, particularly perchlorate, are ubiquitous features of the Martian geochemical landscape. Perchlorate presents potential obstacles for known forms of life due to its toxicity. However, it can also provide potential benefits, such as producing brines by deliquescence, like those thought to exist on present-day Mars. Here we show perchlorate brines support folding and catalysis of functional RNAs, while inactivating representative protein enzymes. Additionally, we show perchlorate and other oxychlorine species enable ribozyme functions, including homeostasis-like regulatory behavior and ribozyme-catalyzed chlorination of organic molecules. We suggest nucleic acids are uniquely well-suited to hypersaline Martian environments. Furthermore, Martian near- or subsurface oxychlorine brines, and brines found in potential lifeforms, could provide a unique niche for biomolecular evolution.
Collapse
Affiliation(s)
- Tanner G Hoog
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Matthew R Pawlak
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Nathaniel J Gaut
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Gloria C Baxter
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Thomas A Bethel
- Department of Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Todd ZR, Lozano GG, Kufner CL, Ranjan S, Catling DC, Sasselov DD. UV Transmission in Prebiotic Environments on Early Earth. ASTROBIOLOGY 2024; 24:559-569. [PMID: 38768432 DOI: 10.1089/ast.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Department of Chemistry, Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabriella G Lozano
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Corinna L Kufner
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Lunar & Planetary Laboratory/Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - David C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Dimitar D Sasselov
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Ono C, Sunami S, Ishii Y, Kim HJ, Kakegawa T, Benner SA, Furukawa Y. Abiotic Ribose Synthesis Under Aqueous Environments with Various Chemical Conditions. ASTROBIOLOGY 2024; 24:489-497. [PMID: 38696654 DOI: 10.1089/ast.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ribose is the defining sugar in ribonucleic acid (RNA), which is often proposed to have carried the genetic information and catalyzed the biological reactions of the first life on Earth. Thus, abiological processes that yield ribose under prebiotic conditions have been studied for decades. However, aqueous environments required for the formation of ribose from materials available in quantity under geologically reasonable models, where the ribose formed is not immediately destroyed, remain unclear. This is due in large part to the challenge of analysis of carbohydrates formed under a wide range of aqueous conditions. Thus, the formation of ribose on prebiotic Earth has sometimes been questioned. We investigated the quantitative effects of pH, temperature, cation, and the concentrations of formaldehyde and glycolaldehyde on the synthesis of diverse sugars, including ribose. The results suggest a range of conditions that produce ribose and that ribose could have formed in constrained aquifers on prebiotic Earth.
Collapse
Affiliation(s)
- Chinatsu Ono
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Sako Sunami
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yuka Ishii
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, Aoba-ku, Sendai, Japan
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida, USA
- Firebird Biomolecular Sciences LLC, Alachua, Florida, USA
| | | |
Collapse
|
25
|
Sawant AA, Tripathi S, Galande S, Rajamani S. A Prebiotic Genetic Nucleotide as an Early Darwinian Ancestor for Pre-RNA Evolution. ACS OMEGA 2024; 9:18072-18082. [PMID: 38680342 PMCID: PMC11044211 DOI: 10.1021/acsomega.3c09949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Prebiotic genetic nucleotides (PGNs) often outcompete canonical alphabets in the formation of nucleotides and subsequent RNA oligomerization under early Earth conditions. This indicates that the early genetic code might have been dominated by pre-RNA that contained PGNs for information transfer and catalysis. Despite this, deciphering pre-RNAs' capacity to acquire function and delineating their evolutionary transition to a canonical RNA World has remained under-researched in the origins of life (OoL) field. We report the synthesis of a prebiotically relevant nucleotide (BaTP) containing the noncanonical nucleobase barbituric acid. We demonstrate the first instance of its enzymatic incorporation into an RNA, using a T7 RNA polymerase. BaTP's incorporation into baby spinach aptamer allowed it to retain its overall secondary structure and function. Finally, we also demonstrate faithful transfer of information from the pre-RNA-containing BaTP to DNA, using a high-fidelity RNA-dependent DNA polymerase, alluding to how selection pressures and complexities could have ensued during the molecular evolution of the early genetic code.
Collapse
Affiliation(s)
- Anupam A. Sawant
- Department
of Biology, Indian Institute of Science
Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Sneha Tripathi
- Department
of Biology, Indian Institute of Science
Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Sanjeev Galande
- Department
of Biology, Indian Institute of Science
Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
- Center
of Excellence in Epigenetics, Department of Life Sciences, School
of Natural Sciences, Shiv Nadar Institution
of Eminence, Gautam Buddha
Nagar, Uttar Pradesh 201314, India
| | - Sudha Rajamani
- Department
of Biology, Indian Institute of Science
Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
26
|
Matreux T, Aikkila P, Scheu B, Braun D, Mast CB. Heat flows enrich prebiotic building blocks and enhance their reactivity. Nature 2024; 628:110-116. [PMID: 38570715 PMCID: PMC10990939 DOI: 10.1038/s41586-024-07193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
Abstract
The emergence of biopolymer building blocks is a crucial step during the origins of life1-6. However, all known formation pathways rely on rare pure feedstocks and demand successive purification and mixing steps to suppress unwanted side reactions and enable high product yields. Here we show that heat flows through thin, crack-like geo-compartments could have provided a widely available yet selective mechanism that separates more than 50 prebiotically relevant building blocks from complex mixtures of amino acids, nucleobases, nucleotides, polyphosphates and 2-aminoazoles. Using measured thermophoretic properties7,8, we numerically model and experimentally prove the advantageous effect of geological networks of interconnected cracks9,10 that purify the previously mixed compounds, boosting their concentration ratios by up to three orders of magnitude. The importance for prebiotic chemistry is shown by the dimerization of glycine11,12, in which the selective purification of trimetaphosphate (TMP)13,14 increased reaction yields by five orders of magnitude. The observed effect is robust under various crack sizes, pH values, solvents and temperatures. Our results demonstrate how geologically driven non-equilibria could have explored highly parallelized reaction conditions to foster prebiotic chemistry.
Collapse
Affiliation(s)
- Thomas Matreux
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paula Aikkila
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bettina Scheu
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dieter Braun
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christof B Mast
- Systems Biophysics, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
27
|
Paschek K, Lee M, Semenov DA, Henning TK. Prebiotic Vitamin B 3 Synthesis in Carbonaceous Planetesimals. Chempluschem 2024; 89:e202300508. [PMID: 37847591 DOI: 10.1002/cplu.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Mijin Lee
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, House F, D-81377, Munich, Germany
| | - Thomas K Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| |
Collapse
|
28
|
Brabender M, Henriques Pereira DP, Mrnjavac N, Schlikker ML, Kimura ZI, Sucharitakul J, Kleinermanns K, Tüysüz H, Buckel W, Preiner M, Martin WF. Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation. Proc Natl Acad Sci U S A 2024; 121:e2318969121. [PMID: 38513105 PMCID: PMC7615787 DOI: 10.1073/pnas.2318969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.
Collapse
Affiliation(s)
- Max Brabender
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Delfina P. Henriques Pereira
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Manon Laura Schlikker
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Zen-Ichiro Kimura
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, Kure, Hiroshima737-8506, Japan
| | - Jeerus Sucharitakul
- Department of Biochemistry, Chulalongkorn University, Patumwan, Bangkok10330, Thailand
| | - Karl Kleinermanns
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Harun Tüysüz
- Max Planck Institute for Coal Research, Department of Heterogeneous Catalysis, Mülheim an der Ruhr45470, Germany
| | - Wolfgang Buckel
- Max Planck Institute for Terrestrial Microbiology, Marburg35043, Germany
- Laboratory for Microbiology, Department of Biology, Philipps University, Marburg35043, Germany
- Center for Synthetic Microbiology SYNMIKRO, Philipps University, Marburg35043, Germany
| | - Martina Preiner
- Microcosm Earth Center, Research Group for Geochemical Protozymes, Max Planck Institute for Terrestrial Microbiology and Philipps University, Marburg35032, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
29
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
30
|
Koyama S, Kamada A, Furukawa Y, Terada N, Nakamura Y, Yoshida T, Kuroda T, Vandaele AC. Atmospheric formaldehyde production on early Mars leading to a potential formation of bio-important molecules. Sci Rep 2024; 14:2397. [PMID: 38336798 PMCID: PMC10858170 DOI: 10.1038/s41598-024-52718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Formaldehyde (H2CO) is a critical precursor for the abiotic formation of biomolecules, including amino acids and sugars, which are the building blocks of proteins and RNA. Geomorphological and geochemical evidence on Mars indicates a temperate environment compatible with the existence of surface liquid water during its early history at 3.8-3.6 billion years ago (Ga), which was maintained by the warming effect of reducing gases, such as H2. However, it remains uncertain whether such a temperate and weakly reducing surface environment on early Mars was suitable for producing H2CO. In this study, we investigated the atmospheric production of H2CO on early Mars using a 1-D photochemical model assuming a thick CO2-dominated atmosphere with H2 and CO. Our results show that a continuous supply of atmospheric H2CO can be used to form various organic compounds, including amino acids and sugars. This could be a possible origin for the organic matter observed on the Martian surface. Given the previously reported conversion rate from H2CO into ribose, the calculated H2CO deposition flux suggests a continuous supply of bio-important sugars on early Mars, particularly during the Noachian and early Hesperian periods.
Collapse
Affiliation(s)
- Shungo Koyama
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Arihiro Kamada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yoshihiro Furukawa
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Naoki Terada
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Yuki Nakamura
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yoshida
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Takeshi Kuroda
- Graduate School of Science, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | | |
Collapse
|
31
|
Roy S, Sengupta S. The RNA-DNA world and the emergence of DNA-encoded heritable traits. RNA Biol 2024; 21:1-9. [PMID: 38785360 PMCID: PMC11135857 DOI: 10.1080/15476286.2024.2355391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The RNA world hypothesis confers a central role to RNA molecules in information encoding and catalysis. Even though evidence in support of this hypothesis has accumulated from both experiments and computational modelling, the transition from an RNA world to a world where heritable genetic information is encoded in DNA remains an open question. Recent experiments show that both RNA and DNA templates can extend complementary primers using free RNA/DNA nucleotides, either non-enzymatically or in the presence of a replicase ribozyme. Guided by these experiments, we analyse protocellular evolution with an expanded set of reaction pathways made possible through the presence of DNA nucleotides. By encapsulating these reactions inside three different types of protocellular compartments, each subject to distinct modes of selection, we show how protocells containing DNA-encoded replicases in low copy numbers and replicases in high copy numbers can dominate the population. This is facilitated by a reaction that leads to auto-catalytic synthesis of replicase ribozymes from DNA templates encoding the replicase after the chance emergence of a replicase through non-enzymatic reactions. Our work unveils a pathway for the transition from an RNA world to a mixed RNA-DNA world characterized by Darwinian evolution, where DNA sequences encode heritable phenotypes.
Collapse
Affiliation(s)
- Suvam Roy
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| | - Supratim Sengupta
- Department of Physical Sciences, Indian Institute of Science Education and ResearchKolkata, Mohanpur, West Bengal, India
| |
Collapse
|
32
|
Helm M, Bohnsack MT, Carell T, Dalpke A, Entian KD, Ehrenhofer-Murray A, Ficner R, Hammann C, Höbartner C, Jäschke A, Jeltsch A, Kaiser S, Klassen R, Leidel SA, Marx A, Mörl M, Meier JC, Meister G, Rentmeister A, Rodnina M, Roignant JY, Schaffrath R, Stadler P, Stafforst T. Experience with German Research Consortia in the Field of Chemical Biology of Native Nucleic Acid Modifications. ACS Chem Biol 2023; 18:2441-2449. [PMID: 37962075 DOI: 10.1021/acschembio.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Collapse
Affiliation(s)
- Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | | | - Ralf Ficner
- Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Christian Hammann
- Department of Medicine, HMU Health and Medical University, 14471 Potsdam, Germany
| | - Claudia Höbartner
- Institute for Organic Chemistry, Julius-Maximilians-University of Würzburg, 97074 Würzburg, Germany
| | - Andres Jäschke
- Institute for Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University Heidelberg, 69120 Heidelberg, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefanie Kaiser
- Institute for Pharmaceutical Chemistry, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Roland Klassen
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Sebastian A Leidel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andreas Marx
- Department of Chemistry - Organic/Cellular Chemistry, University of Constance, 78457 Constance, Germany
| | - Mario Mörl
- Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany
| | - Jochen C Meier
- Department of Cell Physiology, Technical University of Braunschweig, 38106 Brunswick, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology - Biochemistry I, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Rentmeister
- Institute for Biochemistry, Westphalian Wilhelms University Münster, 48149 Münster, Germany
| | - Marina Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Jean-Yves Roignant
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Raffael Schaffrath
- Institute for Biology - Microbiology, University of Kassel, 34132 Kassel, Germany
| | - Peter Stadler
- Institute for Computer Science - Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Thorsten Stafforst
- Interfaculty Institute for Biochemistry, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
33
|
González-Sánchez L, Yurtsever E, de la Fuente JA, Sanz-Sanz C, Wester R, Gianturco FA. Collision-induced state-changing rate coefficients for cyanogen backbones NCN 3Σ - and CNN 3Σ - in astrophysical environments. Phys Chem Chem Phys 2023; 25:30330-30342. [PMID: 37909202 DOI: 10.1039/d3cp03316c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report quantum calculations involving the dynamics of rotational energy-transfer processes, by collision with He atoms in interstellar environments, of the title molecular species which share the presence of the CN backbone and are considered of importance in those environments. The latter structural feature is taken to be especially relevant for prebiotic chemistry and for its possible role in the processing of the heterocyclic rings of RNA and DNA nucleobases in the interstellar space. We carry out ab initio calculations of their interaction potentials with He atoms and further obtain the state-to-state rotationally inelastic cross sections and rate coefficients over the relevant range of temperatures. The similarities and differences between such species and other similar partners which have been already detected are analyzed and discussed for their significance on internal state populations in interstellar space for the two title molecular radicals.
Collapse
Affiliation(s)
- Lola González-Sánchez
- Departamento de Química Física, University of Salamanca Plaza de los Caídos sn, 37008, Salamanca, Spain
| | - Ersin Yurtsever
- Department of Chemistry, Koc University Rumelifeneriyolu, Sariyer TR 34450, Istanbul, Turkey
| | - Jorge Alonso de la Fuente
- Departamento de Quimica Fisica Aplicada, Modulo 14, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Cristina Sanz-Sanz
- Departamento de Quimica Fisica Aplicada, Modulo 14, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstr., 25 A-6020, Innsbruck, Austria.
| | - Francesco A Gianturco
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstr., 25 A-6020, Innsbruck, Austria.
| |
Collapse
|
34
|
Roche TP, Nedumpurath PJ, Karunakaran SC, Schuster GB, Hud NV. One-Pot Formation of Pairing Proto-RNA Nucleotides and Their Supramolecular Assemblies. Life (Basel) 2023; 13:2200. [PMID: 38004340 PMCID: PMC10672710 DOI: 10.3390/life13112200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Most contemporary theories for the chemical origins of life include the prebiotic synthesis of informational polymers, including strong interpretations of the RNA World hypothesis. Existing challenges to the prebiotic emergence of RNA have encouraged exploration of the possibility that RNA was preceded by an ancestral informational polymer, or proto-RNA, that formed more easily on the early Earth. We have proposed that the proto-nucleobases of proto-RNA would have readily formed glycosides with ribose and that these proto-nucleosides would have formed base pairs as monomers in aqueous solution, two properties not exhibited by the extant nucleosides or nucleotides. Here we demonstrate that putative proto-nucleotides of the model proto-nucleobases barbituric acid and melamine can be formed in the same one-pot reaction with ribose-5-phosphate. Additionally, the proto-nucleotides formed in these reactions spontaneously form assemblies that are consistent with the presence of Watson-Crick-like base pairs. Together, these results provide further support for the possibility that heterocycles closely related to the extant bases of RNA facilitated the prebiotic emergence of RNA-like molecules, which were eventually replaced by RNA over the course of chemical and biological evolution.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas V. Hud
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; (T.P.R.); (P.J.N.); (S.C.K.); (G.B.S.)
| |
Collapse
|
35
|
Tozzi A, Mazzeo M. The First Nucleic Acid Strands May Have Grown on Peptides via Primeval Reverse Translation. Acta Biotheor 2023; 71:23. [PMID: 37947915 DOI: 10.1007/s10441-023-09474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The central dogma of molecular biology dictates that, with only a few exceptions, information proceeds from DNA to protein through an RNA intermediate. Examining the enigmatic steps from prebiotic to biological chemistry, we take another road suggesting that primordial peptides acted as template for the self-assembly of the first nucleic acids polymers. Arguing in favour of a sort of archaic "reverse translation" from proteins to RNA, our basic premise is a Hadean Earth where key biomolecules such as amino acids, polypeptides, purines, pyrimidines, nucleosides and nucleotides were available under different prebiotically plausible conditions, including meteorites delivery, shallow ponds and hydrothermal vents scenarios. Supporting a protein-first scenario alternative to the RNA world hypothesis, we propose the primeval occurrence of short two-dimensional peptides termed "selective amino acid- and nucleotide-matching oligopeptides" (henceforward SANMAOs) that noncovalently bind at the same time the polymerized amino acids and the single nucleotides dispersed in the prebiotic milieu. In this theoretical paper, we describe the chemical features of this hypothetical oligopeptide, its biological plausibility and its virtues from an evolutionary perspective. We provide a theoretical example of SANMAO's selective pairing between amino acids and nucleosides, simulating a poly-Glycine peptide that acts as a template to build a purinic chain corresponding to the glycine's extant triplet codon GGG. Further, we discuss how SANMAO might have endorsed the formation of low-fidelity RNA's polymerized strains, well before the appearance of the accurate genetic material's transmission ensured by the current translation apparatus.
Collapse
Affiliation(s)
- Arturo Tozzi
- Center for Nonlinear Science, Department of Physics, University of North Texas, 1155 Union Circle, #311427, Denton, TX, 76203-5017, USA.
| | - Marco Mazzeo
- Erredibi Srl, Via Pazzigno 117, 80146, Naples, Italy
| |
Collapse
|
36
|
Mrnjavac N, Wimmer JLE, Brabender M, Schwander L, Martin WF. The Moon-Forming Impact and the Autotrophic Origin of Life. Chempluschem 2023; 88:e202300270. [PMID: 37812146 PMCID: PMC7615287 DOI: 10.1002/cplu.202300270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The Moon-forming impact vaporized part of Earth's mantle, and turned the rest into a magma ocean, from which carbon dioxide degassed into the atmosphere, where it stayed until water rained out to form the oceans. The rain dissolved CO2 and made it available to react with transition metal catalysts in the Earth's crust so as to ultimately generate the organic compounds that form the backbone of microbial metabolism. The Moon-forming impact was key in building a planet with the capacity to generate life in that it converted carbon on Earth into a homogeneous and accessible substrate for organic synthesis. Today all ecosystems, without exception, depend upon primary producers, organisms that fix CO2 . According to theories of autotrophic origin, it has always been that way, because autotrophic theories posit that the first forms of life generated all the molecules needed to build a cell from CO2 , forging a direct line of continuity between Earth's initial CO2 -rich atmosphere and the first microorganisms. By modern accounts these were chemolithoautotrophic archaea and bacteria that initially colonized the crust and still inhabit that environment today.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Jessica L. E. Wimmer
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Max Brabender
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - Loraine Schwander
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| | - William F. Martin
- Department of Biology Institute for Molecular Evolution Heinrich Heine University Duesseldorf Universitaetsstr. 1, 40225 Düsseldorf (Germany)
| |
Collapse
|
37
|
Ritson DJ, Sutherland JD. Thiophosphate photochemistry enables prebiotic access to sugars and terpenoid precursors. Nat Chem 2023; 15:1470-1477. [PMID: 37443293 PMCID: PMC10533393 DOI: 10.1038/s41557-023-01251-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/22/2023] [Indexed: 07/15/2023]
Abstract
Over the past few years, evidence has accrued that demonstrates that terrestrial photochemical reactions could have provided numerous (proto)biomolecules with implications for the origin of life. This chemistry simply relies on UV light, inorganic sulfur species and hydrogen cyanide. Recently, we reported that, under the same conditions, reduced phosphorus species, such as those delivered by meteorites, can be oxidized to orthophosphate, generating thiophosphate in the process. Here we describe an investigation of the properties of thiophosphate as well as additional possible means for its formation on primitive Earth. We show that several reported prebiotic reactions, including the photoreduction of thioamides, carbonyl groups and cyanohydrins, can be markedly improved, and that tetroses and pentoses can be accessed from hydrogen cyanide through a Kiliani-Fischer-type process without progressing to higher sugars. We also demonstrate that thiophosphate allows photochemical reductive aminations, and that thiophosphate chemistry allows a plausible prebiotic synthesis of the C5 moieties used in extant terpene and terpenoid biosynthesis, namely dimethylallyl alcohol and isopentenyl alcohol.
Collapse
Affiliation(s)
- Dougal J Ritson
- MRC - Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - John D Sutherland
- MRC - Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
38
|
Okita H, Kondo S, Murayama K, Asanuma H. Rapid Chemical Ligation of DNA and Acyclic Threoninol Nucleic Acid ( aTNA) for Effective Nonenzymatic Primer Extension. J Am Chem Soc 2023; 145:17872-17880. [PMID: 37466125 PMCID: PMC10436273 DOI: 10.1021/jacs.3c04979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Indexed: 07/20/2023]
Abstract
Previously, nonenzymatic primer extension reaction of acyclic l-threoninol nucleic acid (L-aTNA) was achieved in the presence of N-cyanoimidazole (CNIm) and Mn2+; however, the reaction conditions were not optimized and a mechanistic insight was not sufficient. Herein, we report investigation of the kinetics and reaction mechanism of the chemical ligation of L-aTNA to L-aTNA and of DNA to DNA. We found that Cd2+, Ni2+, and Co2+ accelerated ligation of both L-aTNA and DNA and that the rate-determining step was activation of the phosphate group. The activation was enhanced by duplex formation between a phosphorylated L-aTNA fragment and template, resulting in unexpectedly more effective L-aTNA ligation than DNA ligation. Under optimized conditions, an 8-mer L-aTNA primer could be elongated by ligation to L-aTNA trimers to produce a 29-mer full-length oligomer with 60% yield within 2 h at 4 °C. This highly effective chemical ligation system will allow construction of artificial genomes, robust DNA nanostructures, and xeno nucleic acids for use in selection methods. Our findings also shed light on the possible pre-RNA world.
Collapse
Affiliation(s)
- Hikari Okita
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Shuto Kondo
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Murayama
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
39
|
Rapin W, Dromart G, Clark BC, Schieber J, Kite ES, Kah LC, Thompson LM, Gasnault O, Lasue J, Meslin PY, Gasda PJ, Lanza NL. Sustained wet-dry cycling on early Mars. Nature 2023; 620:299-302. [PMID: 37558847 DOI: 10.1038/s41586-023-06220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 08/11/2023]
Abstract
The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.
Collapse
Affiliation(s)
- W Rapin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France.
| | | | - B C Clark
- Space Science Institute, Boulder, CO, USA
| | - J Schieber
- Indiana University, Bloomington, IN, USA
| | - E S Kite
- University of Chicago, Chicago, IL, USA
| | - L C Kah
- University of Tennessee, Knoxville, TN, USA
| | - L M Thompson
- University of New Brunswick, Fredericton, NB, Canada
| | - O Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France
| | - J Lasue
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France
| | - P-Y Meslin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, CNRS, CNES, Toulouse, France
| | - P J Gasda
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N L Lanza
- Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
40
|
Ding D, Zhang SJ, Szostak JW. Enhanced nonenzymatic RNA copying with in-situ activation of short oligonucleotides. Nucleic Acids Res 2023:7184164. [PMID: 37247941 PMCID: PMC10359593 DOI: 10.1093/nar/gkad439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
The nonenzymatic copying of RNA is thought to have been necessary for the transition between prebiotic chemistry and ribozyme-catalyzed RNA replication in the RNA World. We have previously shown that a potentially prebiotic nucleotide activation pathway based on phospho-Passerini chemistry can lead to the efficient synthesis of 2-aminoimidazole activated mononucleotides when carried out under freeze-thaw cycling conditions. Such activated nucleotides react with each other to form 5'-5' 2-aminoimidazolium bridged dinucleotides, enabling template-directed primer extension to occur within the same reaction mixture. However, mononucleotides linked to oligonucleotides by a 5'-5' 2-aminoimidazolium bridge are superior substrates for nonenzymatic primer extension; their higher intrinsic reactivity and their higher template affinity enable faster template copying at lower substrate concentrations. Here we show that eutectic phase phospho-Passerini chemistry efficiently activates short oligonucleotides and promotes the formation of monomer-bridged-oligonucleotide species during freeze-thaw cycles. We then demonstrate that in-situ generated monomer-bridged-oligonucleotides lead to efficient nonenzymatic template copying in the same reaction mixture. Our demonstration that multiple steps in the pathway from activation chemistry to RNA copying can occur together in a single complex environment simplifies this aspect of the origin of life.
Collapse
Affiliation(s)
- Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
| | - Jack W Szostak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA02114, USA
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL60637, USA
| |
Collapse
|
41
|
Peters S, Semenov DA, Hochleitner R, Trapp O. Synthesis of prebiotic organics from CO 2 by catalysis with meteoritic and volcanic particles. Sci Rep 2023; 13:6843. [PMID: 37231067 DOI: 10.1038/s41598-023-33741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The emergence of prebiotic organics was a mandatory step toward the origin of life. The significance of the exogenous delivery versus the in-situ synthesis from atmospheric gases is still under debate. We experimentally demonstrate that iron-rich meteoritic and volcanic particles activate and catalyse the fixation of CO2, yielding the key precursors of life-building blocks. This catalysis is robust and produces selectively aldehydes, alcohols, and hydrocarbons, independent of the redox state of the environment. It is facilitated by common minerals and tolerates a broad range of the early planetary conditions (150-300 °C, ≲ 10-50 bar, wet or dry climate). We find that up to 6 × 108 kg/year of prebiotic organics could have been synthesized by this planetary-scale process from the atmospheric CO2 on Hadean Earth.
Collapse
Affiliation(s)
- Sophia Peters
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany
| | - Rupert Hochleitner
- Mineralogische Staatssammlung München, Theresienstr. 41, 80333, Munich, Germany
| | - Oliver Trapp
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany.
- Max Planck Institute for Astronomy, Königstuhl 17, 69117, Heidelberg, Germany.
| |
Collapse
|
42
|
Sumie Y, Sato K, Kakegawa T, Furukawa Y. Boron-assisted abiotic polypeptide synthesis. Commun Chem 2023; 6:89. [PMID: 37169868 PMCID: PMC10175494 DOI: 10.1038/s42004-023-00885-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023] Open
Abstract
The emergence of proteins and their interactions with RNAs were a key step in the origin and early evolution of life. The abiotic synthesis of peptides has been limited in short amino acid length and is favored in highly alkaline evaporitic conditions in which RNAs are unstable. This environment is also inconsistent with estimated Hadean Earth. Prebiotic environments rich in boron are reportedly ideal for abiotic RNA synthesis. However, the effects of boron on amino acid polymerization are unclear. We report that boric acid enables the polymerization of amino acids at acidic and near-neutral pH levels based on simple heating experiments of amino acid solutions containing borate/boric acid at various pH levels. Our study provides evidence for the boron-assisted synthesis of polypeptides in prebiotically plausible environments, where the same conditions would allow for the formation of RNAs and interactions of primordial proteins and RNAs that could be inherited by RNA-dependent protein synthesis during the evolution of life.
Collapse
Affiliation(s)
- Yuki Sumie
- Department of Earth Science, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Keiichiro Sato
- Department of Earth Science, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeshi Kakegawa
- Department of Earth Science, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshihiro Furukawa
- Department of Earth Science, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| |
Collapse
|
43
|
Franco A, Neves MO, da Silva JAL. Boron as a Hypothetical Participant in the Prebiological Enantiomeric Enrichment. ASTROBIOLOGY 2023; 23:605-615. [PMID: 36862128 DOI: 10.1089/ast.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Boron, as borate (or boric acid), is known as a mediator of the synthesis of ribose, ribonucleosides, and ribonucleotides (precursors of RNA) under plausible prebiotic conditions. With regard to these phenomena, the potential participation of this chemical element (as a constituent of minerals or hydrogels) for the emergence of prebiological homochirality is considered. This hypothesis is based on characteristics of crystalline surfaces as well as solubility of some minerals of boron in water or specific features of hydrogels with ester bonds from reaction of ribonucleosides and borate.
Collapse
Affiliation(s)
- Ana Franco
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Orquídia Neves
- Department of Civil Engineering, Architecture and Georesources, CERENA (Centro de Recursos Naturais e Ambiente), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - José A L da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
44
|
Wozniak K, Brzezinski K. Biological Catalysis and Information Storage Have Relied on N-Glycosyl Derivatives of β-D-Ribofuranose since the Origins of Life. Biomolecules 2023; 13:biom13050782. [PMID: 37238652 DOI: 10.3390/biom13050782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Most naturally occurring nucleotides and nucleosides are N-glycosyl derivatives of β-d-ribose. These N-ribosides are involved in most metabolic processes that occur in cells. They are essential components of nucleic acids, forming the basis for genetic information storage and flow. Moreover, these compounds are involved in numerous catalytic processes, including chemical energy production and storage, in which they serve as cofactors or coribozymes. From a chemical point of view, the overall structure of nucleotides and nucleosides is very similar and simple. However, their unique chemical and structural features render these compounds versatile building blocks that are crucial for life processes in all known organisms. Notably, the universal function of these compounds in encoding genetic information and cellular catalysis strongly suggests their essential role in the origins of life. In this review, we summarize major issues related to the role of N-ribosides in biological systems, especially in the context of the origin of life and its further evolution, through the RNA-based World(s), toward the life we observe today. We also discuss possible reasons why life has arisen from derivatives of β-d-ribofuranose instead of compounds based on other sugar moieties.
Collapse
Affiliation(s)
- Katarzyna Wozniak
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| | - Krzysztof Brzezinski
- Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-074 Poznan, Poland
| |
Collapse
|
45
|
Dilena G, Pistillo S, Bodo E. About the Formation of NH2OH+ from Gas Phase Reactions under Astrochemical Conditions. Molecules 2023; 28:molecules28072932. [PMID: 37049694 PMCID: PMC10096285 DOI: 10.3390/molecules28072932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
We present here an analysis of several possible reactive pathways toward the formation of hydroxylamine under astrochemical conditions. The analysis is based on ab initio quantum chemistry calculations. Twenty-one bimolecular ion–molecule reactions have been studied and their thermodynamics presented. Only one of these reactions is a viable direct route to hydroxylamine. We conclude that the contribution of gas-phase chemistry to hydroxylamine formation is probably negligible when compared to its formation via surface grain chemistry. However, we have found several plausible gas-phase reactions whose outcome is the hydroxylamine cation.
Collapse
|
46
|
van Duppen P, Daines E, Robinson WE, Huck WTS. Dynamic Environmental Conditions Affect the Composition of a Model Prebiotic Reaction Network. J Am Chem Soc 2023; 145:7559-7568. [PMID: 36961990 PMCID: PMC10080678 DOI: 10.1021/jacs.3c00908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Prebiotic environments are dynamic, containing a range of periodic and aperiodic variations in reaction conditions. However, the impact of the temporal dynamics of environmental conditions upon prebiotic chemical reaction networks has not been investigated. Here, we demonstrate how the magnitude and rate of temporal fluctuations of the catalysts Ca2+ and hydroxide control the product distributions of the formose reaction. Surprisingly, the product compositions of the formose reaction under dynamic conditions deviate significantly from those under steady state conditions. We attribute these compositional changes to the non-uniform propagation of fluctuations through the network, thereby shaping reaction outcomes. An examination of temporal concentration patterns showed that collections of compounds responded collectively to perturbations, indicating that key gating reactions branching from the Breslow cycle may be important responsive features of the formose reaction. Our findings show how the compositions of prebiotic reaction networks were shaped by sequential environmental events, illustrating the necessity for considering the temporal traits of prebiotic environments that supported the origin of life.
Collapse
Affiliation(s)
- Peer van Duppen
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elena Daines
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - William E Robinson
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
47
|
Paradis E. Information-energy equivalence and the emergence of self-replicating biological systems. Biosystems 2023; 226:104885. [PMID: 36935033 DOI: 10.1016/j.biosystems.2023.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Biological processes are characterized by a decrease in entropy in apparent violation of the second law of thermodynamics. Information stored in genomes help to solve this paradox when interpreted under the relationship between information and energy stated by Brillouin in the 1950's. However, the origins of living forms from inanimate matter which have no information storage device remains an open question. In this paper, a theoretical approach is developed on this issue. The replication of a simple entity with a binary genome is assumed to require an information-equivalent energy in addition to the standard activation energy. It is found that, in some conditions, a decrease in entropy can be accomplished together with a decrease in Gibbs free energy. An equation of the total energy for the replication of this entity is derived. Three factors are predicted to lower this energy: a small number of states of the coding sequence, a lower temperature, and a high ratio of the reaction on diffusion coefficients. These factors may have favoured the emergence of evolutionary demons-information storage devices that are able to decrease entropy. It is evaluated that some short, single-stranded RNA sequences made only of G and of C may conform to this model. The consequences of this model and its predictions on the origins of life on Earth and on other planets are discussed.
Collapse
|
48
|
Dirscherl CF, Ianeselli A, Tetiker D, Matreux T, Queener RM, Mast CB, Braun D. A heated rock crack captures and polymerizes primordial DNA and RNA. Phys Chem Chem Phys 2023; 25:3375-3386. [PMID: 36633199 DOI: 10.1039/d2cp04538a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Life is based on informational polymers such as DNA or RNA. For their polymerization, high concentrations of complex monomer building blocks are required. Therefore, the dilution by diffusion poses a major problem before early life could establish a non-equilibrium of compartmentalization. Here, we explored a natural non-equilibrium habitat to polymerize RNA and DNA. A heat flux across thin rock cracks is shown to accumulate and maintain nucleotides. This boosts the polymerization to RNA and DNA inside the crack. Moreover, the polymers remain localized, aiding both the creation of longer polymers and fostering downstream evolutionary steps. In a closed system, we found single nucleotides concentrate 104-fold at the bottom of the crack compared to the top after 24 hours. We detected enhanced polymerization for 2 different activation chemistries: aminoimidazole-activated DNA nucleotides and 2',3'-cyclic RNA nucleotides. The copolymerization of 2',3'-cGMP and 2',3'-cCMP in the thermal pore showed an increased heterogeneity in sequence composition compared to isothermal drying. Finite element models unravelled the combined polymerization and accumulation kinetics and indicated that the escape of the nucleotides from such a crack is negligible over a time span of years. The thermal non-equilibrium habitat establishes a cell-like compartment that actively accumulates nucleotides for polymerization and traps the resulting oligomers. We argue that the setting creates a pre-cellular non-equilibrium steady state for the first steps of molecular evolution.
Collapse
Affiliation(s)
- Christina F Dirscherl
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| | - Alan Ianeselli
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| | - Damla Tetiker
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| | - Thomas Matreux
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| | - Robbin M Queener
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| | - Christof B Mast
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| | - Dieter Braun
- Systems Biophysics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
| |
Collapse
|
49
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
50
|
Vibhute MA, Mutschler H. A Primer on Building Life‐Like Systems. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mahesh A. Vibhute
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Hannes Mutschler
- TU Dortmund University Department of Chemistry and Chemical Biology Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|