1
|
Lord KA, Larson G, Allaby RG, Karlsson EK. A universally applicable definition for domestication. Proc Natl Acad Sci U S A 2025; 122:e2413207122. [PMID: 40372471 DOI: 10.1073/pnas.2413207122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
The process of domestication is commonly perceived as a human achievement, and domestic species are typically assumed to be those under human control. Domestic species have emerged from a greater diversity of interactions than this perspective allows, and none of the many definitions proposed for domestication can readily, reliably, and consistently distinguish domestic and nondomestic populations. Here, we propose that the process of domestication should instead be defined solely as evolution of a nonhuman population in response to an anthropogenic niche and that a domestic population is one that cannot sustain itself outside of an anthropogenic niche. As a result, this definition does not require comparisons with a presumed and largely unobservable ancestor. Instead, it focuses on the observable relationship between a nonhuman population and humans. It also avoids making assumptions about how domestication happens, thus enabling an exploration of the mechanisms underlying the process of adaptation to an anthropogenic niche. By applying this definition to plants, animals, and microbes, we illustrate its utility for investigating the evolution of the relationship between humans and other species and for anticipating which species are likely to survive in an increasingly human-influenced world. Domestication is simply an evolutionary process resulting from the interaction between two species, one of which is human. As we work to protect Earth's biodiversity, this definition allows us to understand why, in response to the conditions human societies create, some species survive and thrive, while others struggle and go extinct.
Collapse
Affiliation(s)
- Kathryn A Lord
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, United Kingdom
| | - Robin G Allaby
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Elinor K Karlsson
- Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
2
|
Patin E, Quintana-Murci L. Tracing the Evolution of Human Immunity Through Ancient DNA. Annu Rev Immunol 2025; 43:57-82. [PMID: 39705165 DOI: 10.1146/annurev-immunol-082323-024638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Infections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses. Additionally, ancient genomics enables the tracking of how human immunity has evolved across cultural transitions, highlighting strong selection since the Bronze Age in Europe (<4,500 years) and potential genetic adaptations to epidemics raging during the Middle Ages and the European colonization of the Americas. Furthermore, ancient genomic studies suggest that the genetic risk for noninfectious immune disorders has gradually increased over millennia because alleles associated with increased risk for autoimmunity and inflammation once conferred resistance to infections. The challenge now is to extend these findings to diverse, non-European populations and to provide a more global understanding of the evolution of human immunity.
Collapse
Affiliation(s)
- Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| | - Lluis Quintana-Murci
- Human Genomics and Evolution, Collège de France, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Human Evolutionary Genetics Unit, Paris, France;
| |
Collapse
|
3
|
Havens JL, Kosakovsky Pond SL, Zehr JD, Pekar JE, Parker E, Worobey M, Andersen KG, Wertheim JO. Dynamics of natural selection preceding human viral epidemics and pandemics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640439. [PMID: 40060453 PMCID: PMC11888428 DOI: 10.1101/2025.02.26.640439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Using a phylogenetic framework to characterize natural selection, we investigate the hypothesis that zoonotic viruses require adaptation prior to zoonosis to sustain human-to-human transmission. Examining the zoonotic emergence of Ebola virus, Marburg virus, influenza A virus, SARS-CoV, and SARS-CoV-2, we find no evidence of a change in the intensity of natural selection immediately prior to a host switch, compared with typical selection within reservoir hosts. We conclude that extensive pre-zoonotic adaptation is not necessary for human-to-human transmission of zoonotic viruses. In contrast, the reemergence of H1N1 influenza A virus in 1977 showed a change in selection, consistent with the hypothesis of passage in a laboratory setting prior to its reintroduction into the human population, purportedly during a vaccine trial. Holistic phylogenetic analysis of selection regimes can be used to detect evolutionary signals of host switching or laboratory passage, providing insight into the circumstances of past and future viral emergence.
Collapse
Affiliation(s)
- Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, 19122, Philadelphia, USA
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14850, USA
| | - Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Wilson T, Kuch M, Poinar D, Rockarts J, Wainman B, Morgello S, Poinar H. Impact of commercial RNA extraction methods on the recovery of human RNA sequence data from archival fixed tissues. Biotechniques 2025; 77:76-93. [PMID: 40071636 PMCID: PMC12063700 DOI: 10.1080/07366205.2025.2473842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 04/10/2025] Open
Abstract
Archival fixed tissues hold key insights into the evolutionary history of RNA viruses and the associated host immune response, yet access to the RNA sequence data is limited by a lack of robust methods for RNA extraction and sequence retrieval from these tissue types. Here we compared three commercial RNA extraction techniques (bead, column, and phase-based) on five fixed human brain tissues done in triplicate, that have been stored for up to 43 years. We found that for this sample set, bead-based extractions captured longer molecules and yielded a greater proportion of unique reads when aligned to the human genome, than did column and phase-based extraction methods. Via the incorporation of multiple extraction replicates, we quantified the variability in sequencing metrics resulting from tissue sample and extraction technique heterogeneity. Additionally, we compared pre- and post-sequencing metrics and found that the former poorly predicted post-sequencing on-target success. Our findings help inform future research on the recovery of RNA from archival fixed tissues.
Collapse
Affiliation(s)
- Tess Wilson
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
| | - Melanie Kuch
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Debi Poinar
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
| | - Jasmine Rockarts
- Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Bruce Wainman
- Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Susan Morgello
- Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, McMaster University, Hamilton, Canada
- Department of Biochemistry, McMaster University, Hamilton, Canada
- Department of Anthropology, McMaster University, Hamilton, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Tang Y, Li Y, Cai X, Yin X. Viral Live-Attenuated Vaccines (LAVs): Past and Future Directions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407241. [PMID: 39639853 PMCID: PMC11744563 DOI: 10.1002/advs.202407241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Viral infections continue to pose a significant threat to the health of both humans and animals. Currently, live attenuated vaccines (LAVs) remain the most efficacious and widely utilized tool for combating viral infections. Conventional LAVs involve the adaptation of virulent viruses to novel hosts, cell cultures, or suboptimal environments, resulting in a reduction in pathogenicity while retaining immunogenicity. This process entails directed evolution of the virus to enhance its replication efficiency under these modified conditions. In this review, the development of traditional animal-adapted and cold-adapted LAVs is specially discussed. Additionally, the factors that contribute to virus attenuation from a viral lifecycle perspective are summarized. Finally, we propose future directions for next-generation LAVs.
Collapse
Affiliation(s)
- Yan‐Dong Tang
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
- Heilongjiang Provincial Research Center for Veterinary BiomedicineHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
- Heilongjiang Provincial Key Laboratory of Veterinary ImmunologyHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
| | - Yuming Li
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJi'nan250117China
- Key Laboratory of Emerging Infectious Diseases in Universities of ShandongShandong First Medical University & Shandong Academy of Medical SciencesTai'an271000China
| | - Xue‐Hui Cai
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research Institute of Chinese Academy of Agricultural SciencesHarbin150069China
| |
Collapse
|
6
|
Uzoigwe CE. Christopher Columbus' flu was different to ours. Proc Natl Acad Sci U S A 2024; 121:e2414921121. [PMID: 39480844 PMCID: PMC11573569 DOI: 10.1073/pnas.2414921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
|
7
|
Pauciullo S, Zulian V, La Frazia S, Paci P, Garbuglia AR. Spillover: Mechanisms, Genetic Barriers, and the Role of Reservoirs in Emerging Pathogens. Microorganisms 2024; 12:2191. [PMID: 39597581 PMCID: PMC11596118 DOI: 10.3390/microorganisms12112191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Viral spillover represents the transmission of pathogen viruses from one species to another that can give rise to an outbreak. It is a critical concept that has gained increasing attention, particularly after the SARS-CoV-2 pandemic. However, the term is often used inaccurately to describe events that do not meet the true definition of spillover. This review aims to clarify the proper use of the term and provides a detailed analysis of the mechanisms driving zoonotic spillover, with a focus on the genetic and environmental factors that enable viruses to adapt to new hosts. Key topics include viral genetic variability in reservoir species, biological barriers to cross-species transmission, and the factors that influence viral adaptation and spread in novel hosts. The review also examines the role of evolutionary processes such as mutation and epistasis, alongside ecological conditions that facilitate the emergence of new pathogens. Ultimately, it underscores the need for more accurate predictive models and improved surveillance to better anticipate and mitigate future spillover events.
Collapse
Affiliation(s)
- Silvia Pauciullo
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Verdiana Zulian
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| | - Simone La Frazia
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Paola Paci
- Department of Computer, Control, and Management Engineering “A. Ruberti” (DIAG), Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (S.P.); (V.Z.)
| |
Collapse
|
8
|
Branda F, Pavia G, Ciccozzi A, Quirino A, Marascio N, Matera G, Romano C, Locci C, Azzena I, Pascale N, Sanna D, Casu M, Ceccarelli G, Ciccozzi M, Scarpa F. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024; 16:1688. [PMID: 39599803 PMCID: PMC11599060 DOI: 10.3390/v16111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The family Paramyxoviridae includes a number of negative RNA viruses known for their wide host range and significant zoonotic potential. In recent years, there has been a surge in the identification of emerging zoonotic paramyxoviruses, particularly those hosted by bat species, which serve as key reservoirs. Among these, the genera Henipavirus and Pararubulavirus are of particular concern. Henipaviruses, including the highly pathogenic Hendra and Nipah viruses, have caused severe outbreaks with high mortality rates in both humans and animals. In contrast, zoonotic pararubulaviruses such as the Menangle virus typically induce mild symptoms or remain asymptomatic in human hosts. This review summarizes current knowledge on the evolution, ecology, and epidemiology of emerging zoonotic paramyxoviruses, focusing on recently discovered viruses and their potential to cause future epidemics. We explore the molecular mechanisms underlying host-switching events, viral replication strategies, and immune evasion tactics that facilitate interspecies transmission. In addition, we discuss ecological factors influencing virus emergence, including changes in bat populations and habitats and the role of wildlife-human interfaces. We also examine the public health impact of these emerging viruses, underlining the importance of enhanced surveillance, developing improved diagnostic tools, and implementing proactive strategies to prevent potential outbreaks. By providing a comprehensive overview of recent advances and gaps in knowledge, this review aims to inform future research directions and public health policies related to zoonotic paramyxoviruses.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| |
Collapse
|
9
|
Holmes EC, Krammer F, Goodrum FD. Virology-The next fifty years. Cell 2024; 187:5128-5145. [PMID: 39303682 PMCID: PMC11467463 DOI: 10.1016/j.cell.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.
Collapse
Affiliation(s)
- Edward C. Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Sharma D, Chakraborty S. RNA editing sites and triplet usage in exomes of bat RNA virus genomes of the family Paramyxoviridae. Microb Pathog 2024; 194:106796. [PMID: 39025379 DOI: 10.1016/j.micpath.2024.106796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Bats contain a diverse spectrum of viral species in their bodies. The RNA virus family Paramyxoviridae tends to infect several vertebrate species, which are accountable for a variety of devastating infections in both humans and animals. Viruses of this kind include measles, mumps, and Hendra. Some synonymous codons are favoured over others in mRNAs during gene-to-protein synthesis process. Such phenomenon is termed as codon usage bias (CUB). Our research emphasized many aspects that shape the CUB of genes in the Paramyxoviridae family found in bats. Here, the nitrogenous base A occurred the most. AT was found to be abundant in the coding sequences of the Paramyxoviridae family. RSCU data revealed that A or T ending codons occurred more frequently than predicted. Furthermore, 3 overrepresented codons (CAT, AGA, and GCA) and 7 underrepresented codons (CCG, TCG, CGC, CGG, CGT, GCG and ACG) were detected in the viral genomes. Correspondence analysis, neutrality plot, and parity plots highlight the combined impact of mutational pressure and natural selection on CUB. The neutrality plot of GC12 against GC3 yielded a regression coefficient value of 0.366, indicating that natural selection had a significant (63.4 %) impact. Moreover, RNA editing analysis was done, which revealed the highest frequency of C to T mutations. The results of our research revealed the pattern of codon usage and RNA editing sites in Paramyxoviridae genomes.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
11
|
Vargas-Lizarazo AY, Ali MA, Mazumder NA, Kohli GM, Zaborska M, Sons T, Garnett M, Senanayake IM, Goodson BM, Vargas-Muñiz JM, Pond A, Jensik PJ, Olson ME, Hamilton-Brehm SD, Kohli P. Electrically polarized nanoscale surfaces generate reactive oxygenated and chlorinated species for deactivation of microorganisms. SCIENCE ADVANCES 2024; 10:eado5555. [PMID: 39093965 PMCID: PMC11636998 DOI: 10.1126/sciadv.ado5555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Because of the decreasing supply of new antibiotics, recent outbreaks of infectious diseases, and the emergence of antibiotic-resistant microorganisms, it is imperative to develop new effective strategies for deactivating a broad spectrum of microorganisms and viruses. We have implemented electrically polarized nanoscale metallic (ENM) coatings that deactivate a wide range of microorganisms including Gram-negative and Gram-positive bacteria with greater than 6-log reduction in less than 10 minutes of treatment. The electrically polarized devices were also effective in deactivating lentivirus and Candida albicans. The key to the high deactivation effectiveness of ENM devices is electrochemical production of micromolar cuprous ions, which mediated reduction of oxygen to hydrogen peroxide. Formation of highly damaging species, hydroxyl radicals and hypochlorous acid, from hydrogen peroxide contributed to antimicrobial properties of the ENM devices. The electric polarization of nanoscale coatings represents an unconventional tool for deactivating a broad spectrum of microorganisms through in situ production of reactive oxygenated and chlorinated species.
Collapse
Affiliation(s)
- Annie Y. Vargas-Lizarazo
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - M. Aswad Ali
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Nehal A. Mazumder
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | | | - Miroslava Zaborska
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Tyler Sons
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michelle Garnett
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Ishani M. Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Boyd M. Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - José M. Vargas-Muñiz
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Amber Pond
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Philip J. Jensik
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Michael E. Olson
- Department of Medical Microbiology, Immunology and Cell Biology, School of Medicine, Southern Illinois University, Springfield, IL 62702, USA
| | | | - Punit Kohli
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Integrated Microscopy and Graphics Expertise (IMAGE) Center, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
12
|
Friedländer MR, Gilbert MTP. How ancient RNA survives and what we can learn from it. Nat Rev Mol Cell Biol 2024; 25:417-418. [PMID: 38548931 DOI: 10.1038/s41580-024-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Affiliation(s)
- Marc R Friedländer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- University Museum, NTNU, Trondheim, Norway.
| |
Collapse
|
13
|
Courcelle M, Salami H, Tounkara K, Lo MM, Ba A, Diop M, Niang M, Sidibe CAK, Sery A, Dakouo M, Kaba L, Sidime Y, Keyra M, Diallo AOS, El Mamy AB, El Arbi AS, Barry Y, Isselmou E, Habiboullah H, Doumbia B, Gueya MB, Awuni J, Odoom T, Ababio PT, TawiahYingar DNY, Coste C, Guendouz S, Kwiatek O, Libeau G, Bataille A. Comparative evolutionary analyses of peste des petits ruminants virus genetic lineages. Virus Evol 2024; 10:veae012. [PMID: 38476867 PMCID: PMC10930206 DOI: 10.1093/ve/veae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Peste des petits ruminants virus (PPRV) causes a highly infectious disease affecting mainly goats and sheep in large parts of Africa, Asia, and the Middle East and has an important impact on the global economy and food security. Full genome sequencing of PPRV strains has proved to be critical to increasing our understanding of PPR epidemiology and to inform the ongoing global efforts for its eradication. However, the number of full PPRV genomes published is still limited and with a heavy bias towards recent samples and genetic Lineage IV (LIV), which is only one of the four existing PPRV lineages. Here, we generated genome sequences for twenty-five recent (2010-6) and seven historical (1972-99) PPRV samples, focusing mainly on Lineage II (LII) in West Africa. This provided the first opportunity to compare the evolutionary pressures and history between the globally dominant PPRV genetic LIV and LII, which is endemic in West Africa. Phylogenomic analysis showed that the relationship between PPRV LII strains was complex and supported the extensive transboundary circulation of the virus within West Africa. In contrast, LIV sequences were clearly separated per region, with strains from West and Central Africa branched as a sister clade to all other LIV sequences, suggesting that this lineage also has an African origin. Estimates of the time to the most recent common ancestor place the divergence of modern LII and LIV strains in the 1960s-80s, suggesting that this period was particularly important for the diversification and spread of PPRV globally. Phylogenetic relationships among historical samples from LI, LII, and LIII and with more recent samples point towards a high genetic diversity for all these lineages in Africa until the 1970s-80s and possible bottleneck events shaping PPRV's evolution during this period. Molecular evolution analyses show that strains belonging to LII and LIV have evolved under different selection pressures. Differences in codon usage and adaptative selection pressures were observed in all viral genes between the two lineages. Our results confirm that comparative genomic analyses can provide new insights into PPRV's evolutionary history and molecular epidemiology. However, PPRV genome sequencing efforts must be ramped up to increase the resolution of such studies for their use in the development of efficient PPR control and surveillance strategies.
Collapse
Affiliation(s)
- Maxime Courcelle
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Habib Salami
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Kadidia Tounkara
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | - Modou Moustapha Lo
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Aminata Ba
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Mariame Diop
- Institut Sénégalais de Recherches Agricoles, Laboratoire National d’Elevage et de Recherches Vétérinaires (LNERV), Dakar-Hann BP 2057, Sénégal
| | - Mamadou Niang
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | | | - Amadou Sery
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | - Marthin Dakouo
- Laboratoire Central Vétérinaire (LCV), Bamako BP 2295, Mali
| | - Lanceï Kaba
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba BP 2201, Guinea
| | - Youssouf Sidime
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba BP 2201, Guinea
| | - Mohamed Keyra
- Institut Supérieur des Sciences et de Médecine Vétérinaire, Dalaba BP 2201, Guinea
| | | | - Ahmed Bezeid El Mamy
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Ahmed Salem El Arbi
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Yahya Barry
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Ekaterina Isselmou
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Habiboullah Habiboullah
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Baba Doumbia
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Mohamed Baba Gueya
- Office National de Recherches et de Développement de l’Elevage (ONARDEL), Nouakchott BP 167, Mauritania
| | - Joseph Awuni
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra M161, Ghana
| | - Theophilus Odoom
- Accra Veterinary Laboratory, Veterinary Services Directorate, Accra M161, Ghana
| | | | | | - Caroline Coste
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Samia Guendouz
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Olivier Kwiatek
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Geneviève Libeau
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| | - Arnaud Bataille
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier F-34398, France
- CIRAD, UMR ASTRE, Montpellier F-34398, France
| |
Collapse
|
14
|
Kumar AAW, Huangfu G, Figtree GA, Dwivedi G. Atherosclerosis as the Damocles' sword of human evolution: insights from nonhuman ape-like primates, ancient human remains, and isolated modern human populations. Am J Physiol Heart Circ Physiol 2024; 326:H821-H831. [PMID: 38305751 DOI: 10.1152/ajpheart.00744.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Atherosclerosis is the leading cause of death worldwide, and the predominant risk factors are advanced age and high-circulating low-density lipoprotein cholesterol (LDL-C). However, the findings of atherosclerosis in relatively young mummified remains and a lack of atherosclerosis in chimpanzees despite high LDL-C call into question the role of traditional cardiovascular risk factors. The inflammatory theory of atherosclerosis may explain the discrepancies between traditional risk factors and observed phenomena in current literature. Following the divergence from chimpanzees several millennia ago, loss of function mutations in immune regulatory genes and changes in gene expression have resulted in an overactive human immune system. The ubiquity of atherosclerosis in the modern era may reflect a selective pressure that enhanced the innate immune response at the cost of atherogenesis and other chronic disease states. Evidence provided from the fields of genetics, evolutionary biology, and paleoanthropology demonstrates a sort of circular dependency between inflammation, immune system functioning, and evolution at both a species and cellular level. More recently, the role of proinflammatory stimuli, somatic mutations, and the gene-environment effect appear to be underappreciated elements in the development and progression of atherosclerosis. Neurobiological stress, metabolic syndrome, and traditional cardiovascular risk factors may instead function as intermediary links between inflammation and atherosclerosis. Therefore, considering evolution as a mechanistic process and atherosclerosis as part of the inertia of evolution, greater insight into future preventative and therapeutic interventions for atherosclerosis can be gained by examining the past.
Collapse
Affiliation(s)
- Annora Ai-Wei Kumar
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gavin Huangfu
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Gemma A Figtree
- Cardiovascular Discovery Group, Kolling Institute of Medical Research, St. Leonards, New South Wales, Australia
- Department of Cardiology, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | - Girish Dwivedi
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| |
Collapse
|
15
|
Zemella A, Beer K, Ramm F, Wenzel D, Düx A, Merkel K, Calvignac-Spencer S, Stern D, Dorner MB, Dorner BG, Widulin N, Schnalke T, Walter C, Wolbert A, Schmid BG, Mankertz A, Santibanez S. Vaccine-induced neutralizing antibodies bind to the H protein of a historical measles virus. Int J Med Microbiol 2024; 314:151607. [PMID: 38367508 DOI: 10.1016/j.ijmm.2024.151607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Kerstin Beer
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Ariane Düx
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany
| | - Kevin Merkel
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sebastien Calvignac-Spencer
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany; Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Daniel Stern
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | | | | | - Cornelia Walter
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Anne Wolbert
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Bernhard G Schmid
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany.
| |
Collapse
|
16
|
Lebrasseur O, More KD, Orlando L. Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago. Virus Evol 2024; 10:vead087. [PMID: 38465241 PMCID: PMC10924538 DOI: 10.1093/ve/vead087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
Equine viral outbreaks have disrupted the socio-economic life of past human societies up until the late 19th century and continue to be of major concern to the horse industry today. With a seroprevalence of 60-80 per cent, equine herpesvirus 4 (EHV-4) is the most common horse pathogen on the planet. Yet, its evolutionary history remains understudied. Here, we screen the sequenced data of 264 archaeological horse remains to detect the presence of EHV-4. We recover the first ancient EHV-4 genome with 4.2× average depth-of-coverage from a specimen excavated in the Southeastern Urals and dated to the Early Bronze Age period, approximately 3,900 years ago. The recovery of an EHV-4 virus outside the upper respiratory tract not only points to an animal particularly infected but also highlights the importance of post-cranial bones in pathogen characterisation. Bayesian phylogenetic reconstruction provides a minimal time estimate for EHV-4 diversification to around 4,000 years ago, a time when modern domestic horses spread across the Central Asian steppes together with spoke-wheeled Sintashta chariots, or earlier. The analyses also considerably revise the diversification time of the two EHV-4 subclades from the 16th century based solely on modern data to nearly a thousand years ago. Our study paves the way for a robust reconstruction of the history of non-human pathogens and their impact on animal health.
Collapse
Affiliation(s)
- Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, 3 de Febrero 1370 (1426), Ciudad Autónoma de Buenos Aires, Argentina
| | - Kuldeep Dilip More
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
| | - Ludovic Orlando
- Centre for Anthropobiology and Genomics of Toulouse (CAGT), CNRS/Université Paul Sabatier, 37 Allées Jules Guesde, 31000, Toulouse, France
| |
Collapse
|
17
|
Barrie W, Yang Y, Irving-Pease EK, Attfield KE, Scorrano G, Jensen LT, Armen AP, Dimopoulos EA, Stern A, Refoyo-Martinez A, Pearson A, Ramsøe A, Gaunitz C, Demeter F, Jørkov MLS, Møller SB, Springborg B, Klassen L, Hyldgård IM, Wickmann N, Vinner L, Korneliussen TS, Allentoft ME, Sikora M, Kristiansen K, Rodriguez S, Nielsen R, Iversen AKN, Lawson DJ, Fugger L, Willerslev E. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations. Nature 2024; 625:321-328. [PMID: 38200296 PMCID: PMC10781639 DOI: 10.1038/s41586-023-06618-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/06/2023] [Indexed: 01/12/2024]
Abstract
Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated1. Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2, along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment.
Collapse
Affiliation(s)
- William Barrie
- Department of Zoology, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yaoling Yang
- Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - Evan K Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Gabriele Scorrano
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lise Torp Jensen
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Angelos P Armen
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Aaron Stern
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Alba Refoyo-Martinez
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Abigail Ramsøe
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Charleen Gaunitz
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Fabrice Demeter
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université de Paris, Musée de l'Homme, Paris, France
| | - Marie Louise S Jørkov
- Laboratory of Biological Anthropology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lutz Klassen
- Museum Østdanmark-Djursland og Randers, Randers, Denmark
| | | | | | - Lasse Vinner
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Morten E Allentoft
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Martin Sikora
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Kristiansen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK
| | - Rasmus Nielsen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Astrid K N Iversen
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Daniel J Lawson
- Department of Statistical Sciences, School of Mathematics, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, UK.
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
- MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Eske Willerslev
- Department of Zoology, University of Cambridge, Cambridge, UK.
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
- MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
18
|
Rayfield KM, Mychajliw AM, Singleton RR, Sholts SB, Hofman CA. Uncovering the Holocene roots of contemporary disease-scapes: bringing archaeology into One Health. Proc Biol Sci 2023; 290:20230525. [PMID: 38052246 DOI: 10.1098/rspb.2023.0525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The accelerating pace of emerging zoonotic diseases in the twenty-first century has motivated cross-disciplinary collaboration on One Health approaches, combining microbiology, veterinary and environmental sciences, and epidemiology for outbreak prevention and mitigation. Such outbreaks are often caused by spillovers attributed to human activities that encroach on wildlife habitats and ecosystems, such as land use change, industrialized food production, urbanization and animal trade. While the origin of anthropogenic effects on animal ecology and biogeography can be traced to the Late Pleistocene, the archaeological record-a long-term archive of human-animal-environmental interactions-has largely been untapped in these One Health approaches, thus limiting our understanding of these dynamics over time. In this review, we examine how humans, as niche constructors, have facilitated new host species and 'disease-scapes' from the Late Pleistocene to the Anthropocene, by viewing zooarchaeological, bioarchaeological and palaeoecological data with a One Health perspective. We also highlight how new biomolecular tools and advances in the '-omics' can be holistically coupled with archaeological and palaeoecological reconstructions in the service of studying zoonotic disease emergence and re-emergence.
Collapse
Affiliation(s)
- Kristen M Rayfield
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alexis M Mychajliw
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Biology & Program in Environmental Studies, Middlebury College, Middlebury, VT 05753-6203, USA
| | - Robin R Singleton
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
| | - Sabrina B Sholts
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Courtney A Hofman
- Laboratories of Molecular Anthropology & Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK 73019-0390, USA
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
19
|
Ji X, Fisher AA, Su S, Thorne JL, Potter B, Lemey P, Baele G, Suchard MA. Scalable Bayesian Divergence Time Estimation With Ratio Transformations. Syst Biol 2023; 72:1136-1153. [PMID: 37458991 PMCID: PMC10636426 DOI: 10.1093/sysbio/syad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 11/08/2023] Open
Abstract
Divergence time estimation is crucial to provide temporal signals for dating biologically important events from species divergence to viral transmissions in space and time. With the advent of high-throughput sequencing, recent Bayesian phylogenetic studies have analyzed hundreds to thousands of sequences. Such large-scale analyses challenge divergence time reconstruction by requiring inference on highly correlated internal node heights that often become computationally infeasible. To overcome this limitation, we explore a ratio transformation that maps the original $N-1$ internal node heights into a space of one height parameter and $N-2$ ratio parameters. To make the analyses scalable, we develop a collection of linear-time algorithms to compute the gradient and Jacobian-associated terms of the log-likelihood with respect to these ratios. We then apply Hamiltonian Monte Carlo sampling with the ratio transform in a Bayesian framework to learn the divergence times in 4 pathogenic viruses (West Nile virus, rabies virus, Lassa virus, and Ebola virus) and the coralline red algae. Our method both resolves a mixing issue in the West Nile virus example and improves inference efficiency by at least 5-fold for the Lassa and rabies virus examples as well as for the algae example. Our method now also makes it computationally feasible to incorporate mixed-effects molecular clock models for the Ebola virus example, confirms the findings from the original study, and reveals clearer multimodal distributions of the divergence times of some clades of interest.
Collapse
Affiliation(s)
- Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, USA
| | - Alexander A Fisher
- Department of Statistical Science, Duke University, 214 Old Chemistry, Durham, NC 27708, USA
| | - Shuo Su
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Xiaolingwei District, Nanjing, Jiangsu 210095, China
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Ricks Hall, 1 Lampe Dr, Raleigh, NC 27607, USA
| | - Barney Potter
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Marc A Suchard
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Muylaert RL, Wilkinson DA, Kingston T, D'Odorico P, Rulli MC, Galli N, John RS, Alviola P, Hayman DTS. Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots. Nat Commun 2023; 14:6854. [PMID: 37891177 PMCID: PMC10611769 DOI: 10.1038/s41467-023-42627-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.
Collapse
Affiliation(s)
- Renata L Muylaert
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - David A Wilkinson
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Cristina Rulli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Nikolas Galli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Reju Sam John
- Department of Physics, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Phillip Alviola
- Institute of Biological Sciences, University of the Philippines- Los Banos, Laguna, Philippines
| | - David T S Hayman
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
Guzmán-Solís AA, Navarro MA, Ávila-Arcos MC, Blanco-Melo D. A Glimpse into the Past: What Ancient Viral Genomes Reveal About Human History. Annu Rev Virol 2023; 10:49-75. [PMID: 37268008 DOI: 10.1146/annurev-virology-111821-123859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Humans have battled viruses for millennia. However, directly linking the symptomatology of disease outbreaks to specific viral pathogens was not possible until the twentieth century. With the advent of the genomic era and the development of advanced protocols for isolation, sequencing, and analysis of ancient nucleic acids from diverse human remains, the identification and characterization of ancient viruses became feasible. Recent studies have provided invaluable information about past epidemics and made it possible to examine assumptions and inferences on the origin and evolution of certain viral families. In parallel, the study of ancient viruses also uncovered their importance in the evolution of the human lineage and their key roles in shaping major events in human history. In this review, we describe the strategies used for the study of ancient viruses, along with their limitations, and provide a detailed account of what past viral infections have revealed about human history.
Collapse
Affiliation(s)
- Axel A Guzmán-Solís
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Alejandro Navarro
- Licenciatura en Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - María C Ávila-Arcos
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México, Querétaro, México;
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| |
Collapse
|
22
|
Marie V, Gordon ML. The (Re-)Emergence and Spread of Viral Zoonotic Disease: A Perfect Storm of Human Ingenuity and Stupidity. Viruses 2023; 15:1638. [PMID: 37631981 PMCID: PMC10458268 DOI: 10.3390/v15081638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases that are transmitted from vertebrate animals to humans are referred to as zoonotic diseases. Although microbial agents such as bacteria and parasites are linked to zoonotic events, viruses account for a high percentage of zoonotic diseases that have emerged. Worryingly, the 21st century has seen a drastic increase in the emergence and re-emergence of viral zoonotic disease. Even though humans and animals have coexisted for millennia, anthropogenic factors have severely increased interactions between the two populations, thereby increasing the risk of disease spill-over. While drivers such as climate shifts, land exploitation and wildlife trade can directly affect the (re-)emergence of viral zoonotic disease, globalisation, geopolitics and social perceptions can directly facilitate the spread of these (re-)emerging diseases. This opinion paper discusses the "intelligent" nature of viruses and their exploitation of the anthropogenic factors driving the (re-)emergence and spread of viral zoonotic disease in a modernised and connected world.
Collapse
Affiliation(s)
- Veronna Marie
- Microbiology Laboratory, Department of Analytical Services, Rand Water, Vereeniging 1939, South Africa
| | - Michelle L. Gordon
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa;
| |
Collapse
|
23
|
|
24
|
Libbey JE, Fujinami RS. Morbillivirus: A highly adaptable viral genus. Heliyon 2023; 9:e18095. [PMID: 37483821 PMCID: PMC10362132 DOI: 10.1016/j.heliyon.2023.e18095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Over the course of human history, numerous diseases have been caused by the transmission of viruses from an animal reservoir into the human population. The viruses of the genus Morbillivirus are human and animal pathogens that emerged from a primordial ancestor a millennia ago and have been transmitting to new hosts, adapting, and evolving ever since. Through interaction with susceptible individuals, as yet undiscovered morbilliviruses or existing morbilliviruses in animal hosts could cause future zoonotic diseases in humans.
Collapse
|
25
|
Zhu T, Niu G, Zhang Y, Chen M, Li CY, Hao L, Zhang Z. Host-mediated RNA editing in viruses. Biol Direct 2023; 18:12. [PMID: 36978112 PMCID: PMC10043548 DOI: 10.1186/s13062-023-00366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Viruses rely on hosts for life and reproduction, cause a variety of symptoms from common cold to AIDS to COVID-19 and provoke public health threats claiming millions of lives around the globe. RNA editing, as a crucial co-/post-transcriptional modification inducing nucleotide alterations on both endogenous and exogenous RNA sequences, exerts significant influences on virus replication, protein synthesis, infectivity and toxicity. Hitherto, a number of host-mediated RNA editing sites have been identified in diverse viruses, yet lacking a full picture of RNA editing-associated mechanisms and effects in different classes of viruses. Here we synthesize the current knowledge of host-mediated RNA editing in a variety of viruses by considering two enzyme families, viz., ADARs and APOBECs, thereby presenting a landscape of diverse editing mechanisms and effects between viruses and hosts. In the ongoing pandemic, our study promises to provide potentially valuable insights for better understanding host-mediated RNA editing on ever-reported and newly-emerging viruses.
Collapse
Affiliation(s)
- Tongtong Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyi Niu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuansheng Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Lili Hao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
de-Dios T, Scheib CL, Houldcroft CJ. An Adagio for Viruses, Played Out on Ancient DNA. Genome Biol Evol 2023; 15:evad047. [PMID: 36930529 PMCID: PMC10063219 DOI: 10.1093/gbe/evad047] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Studies of ancient DNA have transformed our understanding of human evolution. Paleogenomics can also reveal historic and prehistoric agents of disease, including endemic, epidemic, and pandemic pathogens. Viruses-and in particular those with single- or double-stranded DNA genomes-are an important part of the paleogenomic revolution, preserving within some remains or environmental samples for tens of thousands of years. The results of these studies capture the public imagination, as well as giving scientists a unique perspective on some of the more slowly evolving viruses which cause disease. In this review, we revisit the first studies of historical virus genetic material in the 1990s, through to the genomic revolution of recent years. We look at how paleogenomics works for viral pathogens, such as the need for careful precautions against modern contamination and robust computational pipelines to identify and analyze authenticated viral sequences. We discuss the insights into virus evolution which have been gained through paleogenomics, concentrating on three DNA viruses in particular: parvovirus B19, herpes simplex virus 1, and smallpox. As we consider recent worldwide transmission of monkeypox and synthetic biology tools that allow the potential reconstruction of extinct viruses, we show that studying historical and ancient virus evolution has never been more topical.
Collapse
Affiliation(s)
- Toni de-Dios
- Institute of Genomics, University of Tartu, Estonia
| | - Christiana L Scheib
- Institute of Genomics, University of Tartu, Estonia
- St. John's College, University of Cambridge, United Kingdom
| | | |
Collapse
|
27
|
Phillips CJC. Zoonotic Disease Risks of Live Export of Cattle and Sheep, with a Focus on Australian Shipments to Asia and the Middle East. Animals (Basel) 2022; 12:3425. [PMID: 36496946 PMCID: PMC9738783 DOI: 10.3390/ani12233425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The growing human and livestock populations in the world today and increased international transport of livestock is increasing the risk of both emerging and endemic zoonotic diseases. This review focuses on the potential for the live export trade to transmit zoonotic diseases. Both cattle and sheep are exposed to major stresses during the transport process, which are described, together with the impact of these stresses on the immune function of transported animals. Heat stress, overcrowding, inanition, ship and vehicle motion and accumulation of noxious gases are analysed for their ability to potentiate infectious diseases. The major zoonoses are described: pustular dermatitis, pneumonia, salmonellosis, as well as some common conditions, such as conjunctivitis, with specific reference to stressors associated with each disorder. Historical precedents exist for restriction of the trade based on disease risks. Finally, the economic and regulatory frameworks are considered to evaluate ways in which the spread of zoonotic diseases can be controlled.
Collapse
Affiliation(s)
- Clive J. C. Phillips
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia;
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Kent St., Bentley, WA 6102, Australia
| |
Collapse
|
28
|
Dittmer DP, Eason AB, Juarez A. Scaling Biosafety Up During and Down After the COVID-19 Pandemic. APPLIED BIOSAFETY 2022; 27:247-254. [PMID: 36761994 PMCID: PMC9902049 DOI: 10.1089/apb.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Purpose The aim of this work was to review and analyze changes to the practice of biosafety imposed by pandemics. Methods A narrative review of the COVID-19 pandemic that began in 2020 and prior pandemics from the perspective of a working virologist. Results By definition, pandemics, outbreaks, and other emergencies are transient phenomena. They manifest as waves of events that induce unforeseen needs and present unknown challenges. After a pandemic, the return to normality is as crucial as the scale-up during the exponential growth phase. The COVID-19 pandemic presents an example to study operational biosafety and biocontainment issues during community transmission of infectious agents with established pandemic potential, the propensity to induce severe disease, and the ability to disrupt aspects of human society. Conclusions Scaling down heightened biocontainment measures after a pandemic is as important as scaling up during a pandemic. The availability of preventive vaccines, and therapeutic drug regimens, should be considered in risk assessments for laboratory studies. There exists the need to preserve situational memory at the personal and institutional levels that can be served by professional societies.
Collapse
Affiliation(s)
- Dirk P. Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B. Eason
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Angelica Juarez
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Forni D, Cagliani R, Clerici M, Sironi M. Disease-causing human viruses: novelty and legacy. Trends Microbiol 2022; 30:1232-1242. [PMID: 35902319 DOI: 10.1016/j.tim.2022.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/13/2023]
Abstract
About 270 viruses are known to infect humans. Some of these viruses have been known for centuries, whereas others have recently emerged. During their evolutionary history, humans have moved out of Africa to populate the world. In historical times, human migrations resulted in the displacement of large numbers of people. All these events determined the movement and dispersal of human-infecting viruses. Technological advances have resulted in the characterization of the genetic variability of human viruses, both in extant and in archaeological samples. Field studies investigated the diversity of viruses hosted by other animals. In turn, these advances provided insight into the evolutionary history of human viruses back in time and defined the key events through which they originated and spread.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| |
Collapse
|
30
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
31
|
Berche P. History of Measles. Presse Med 2022; 51:104149. [DOI: 10.1016/j.lpm.2022.104149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Rajamohan R, Mohandoss S, Ashokkumar S, Choi EH, Madi F, Leila N, Lee YR. Water-soluble inclusion complexes for a novel anti-viral agent with low toxicity; Oseltamivir with the β-cyclodextrins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Ebenig A, Lange MV, Mühlebach MD. Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. NPJ Vaccines 2022; 7:119. [PMID: 36243743 PMCID: PMC9568972 DOI: 10.1038/s41541-022-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Live-attenuated measles virus (MeV) has been extraordinarily effective in preventing measles infections and their often deadly sequelae, accompanied by remarkable safety and stability since their first licensing in 1963. The advent of recombinant DNA technologies, combined with systems to generate infectious negative-strand RNA viruses on the basis of viral genomes encoded on plasmid DNA in the 1990s, paved the way to generate recombinant, vaccine strain-derived MeVs. These live-attenuated vaccine constructs can encode and express additional foreign antigens during transient virus replication following immunization. Effective humoral and cellular immune responses are induced not only against the MeV vector, but also against the foreign antigen cargo in immunized individuals, which can protect against the associated pathogen. This review aims to present an overview of the versatility of this vaccine vector as platform technology to target various diseases, as well as current research and developmental stages, with one vaccine candidate ready to enter phase III clinical trials to gain marketing authorization, MV-CHIK.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Mona V Lange
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany.
| |
Collapse
|
34
|
van der Kuyl AC. Historic and Prehistoric Epidemics: An Overview of Sources Available for the Study of Ancient Pathogens. EPIDEMIOLOGIA 2022; 3:443-464. [PMID: 36547255 PMCID: PMC9778136 DOI: 10.3390/epidemiologia3040034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Since life on earth developed, parasitic microbes have thrived. Increases in host numbers, or the conquest of a new species, provide an opportunity for such a pathogen to enjoy, before host defense systems kick in, a similar upsurge in reproduction. Outbreaks, caused by "endemic" pathogens, and epidemics, caused by "novel" pathogens, have thus been creating chaos and destruction since prehistorical times. To study such (pre)historic epidemics, recent advances in the ancient DNA field, applied to both archeological and historical remains, have helped tremendously to elucidate the evolutionary trajectory of pathogens. These studies have offered new and unexpected insights into the evolution of, for instance, smallpox virus, hepatitis B virus, and the plague-causing bacterium Yersinia pestis. Furthermore, burial patterns and historical publications can help in tracking down ancient pathogens. Another source of information is our genome, where selective sweeps in immune-related genes relate to past pathogen attacks, while multiple viruses have left their genomes behind for us to study. This review will discuss the sources available to investigate (pre)historic diseases, as molecular knowledge of historic and prehistoric pathogens may help us understand the past and the present, and prepare us for future epidemics.
Collapse
Affiliation(s)
- Antoinette C. van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; ; Tel.: +31-205-666-778
- Amsterdam Institute for Infection and Immunity, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
35
|
Liang J, Zhu Z, Lan R, Meng J, Vrancken B, Lu S, Jin D, Yang J, Wang J, Qin T, Pu J, Zhang L, Dong K, Xu M, Tian H, Jiang T, Xu J. Evolutionary and genomic insights into the long-term colonization of Shigella flexneri in animals. Emerg Microbes Infect 2022; 11:2069-2079. [PMID: 35930371 PMCID: PMC9448383 DOI: 10.1080/22221751.2022.2109514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enteroinvasive bacterium Shigella flexneri is known as a highly host-adapted human pathogen. There had been no known other reservoirs reported until recently. Here 34 isolates obtained from animals (yaks, dairy cows and beef cattle) from 2016-2017 and 268 human S. flexneri isolates from China were sequenced to determine the relationships between animal and human isolates and infer the evolutionary history of animal-associated S. flexneri. The 18 animal isolates (15 yak and 3 beef cattle isolates) in PG1 were separated into 4 lineages, and the 16 animal isolates (1 yak, 5 beef cattle and 10 dairy cow isolates) in PG3 were clustered in 8 lineages. The most recent human isolates from China belonged to PG3 whereas Chinese isolates from the 1950s-1960s belonged to PG1. PG1 S. flexneri may has been transmitted to the yaks during PG1 circulation in the human population in China and has remained in the yak population since, while PG3 S. flexneri in animals were likely recent transmissions from the human population. Increased stability of the large virulence plasmid and acquisition of abundant antimicrobial resistance determinants may have enabled PG3 to expand globally and replaced PG1 in China. Our study confirms that animals may act as a reservoir for S. flexneri. Genomic analysis revealed the evolutionary history of multiple S. flexneri lineages in animals and humans in China. However, further studies are required to determine the public health threat of S. flexneri from animals.
Collapse
Affiliation(s)
- Junrong Liang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jing Meng
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Bram Vrancken
- Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, KU Leuven, Leuven, Belgium
| | - Shan Lu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Yang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianping Wang
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tian Qin
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ji Pu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Kui Dong
- Shanxi Eye Hospital, Taiyuan, China
| | - Mingchao Xu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, Center for Global Change and Public Health, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Taijiao Jiang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Guangzhou Laboratory, Guangzhou, China
| | - Jianguo Xu
- State Key laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Research Institute of Public Heath, Nankai University, Tianjin, China
| |
Collapse
|
36
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
37
|
Speer KA, Hawkins MTR, Flores MFC, McGowen MR, Fleischer RC, Maldonado JE, Campana MG, Muletz-Wolz CR. A comparative study of RNA yields from museum specimens, including an optimized protocol for extracting RNA from formalin-fixed specimens. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.953131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal specimens in natural history collections are invaluable resources in examining the historical context of pathogen dynamics in wildlife and spillovers to humans. For example, natural history specimens may reveal new associations between bat species and coronaviruses. However, RNA viruses are difficult to study in historical specimens because protocols for extracting RNA from these specimens have not been optimized. Advances have been made in our ability to recover nucleic acids from formalin-fixed paraffin-embedded samples (FFPE) commonly used in human clinical studies, yet other types of formalin preserved samples have received less attention. Here, we optimize the recovery of RNA from formalin-fixed ethanol-preserved museum specimens in order to improve the usability of these specimens in surveys for zoonotic diseases. We provide RNA quality and quantity measures for replicate tissues subsamples of 22 bat specimens from five bat genera (Rhinolophus, Hipposideros, Megareops, Cynopterus, and Nyctalus) collected in China and Myanmar from 1886 to 2003. As tissues from a single bat specimen were preserved in a variety of ways, including formalin-fixed (8 bats), ethanol-preserved and frozen (13 bats), and flash frozen (2 bats), we were able to compare RNA quality and yield across different preservation methods. RNA extracted from historical museum specimens is highly fragmented, but usable for short-read sequencing and targeted amplification. Incubation of formalin-fixed samples with Proteinase-K following thorough homogenization improves RNA yield. This optimized protocol extends the types of data that can be derived from existing museum specimens and facilitates future examinations of host and pathogen RNA from specimens.
Collapse
|
38
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
39
|
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a profound impact on human health, economic well-being, and societal function. It is essential that we use this generational experience to better understand the processes that underpin the emergence of COVID-19 and other zoonotic diseases. Herein, I review the mechanisms that determine why and how viruses emerge in new hosts, as well as the barriers to this process. I show that traditional studies of virus emergence have an inherent anthropocentric bias, with disease in humans considered the inevitable outcome of virus emergence, when in reality viruses are integral components of a global ecosystem characterized by continual host jumping with humans also transmitting their viruses to other animals. I illustrate these points using coronaviruses, including severe acute respiratory syndrome coronavirus 2, as a case study. I also outline the potential steps that can be followed to help mitigate and prevent future pandemics, with combating climate change a central component. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia;
| |
Collapse
|
40
|
Archival influenza virus genomes from Europe reveal genomic variability during the 1918 pandemic. Nat Commun 2022; 13:2314. [PMID: 35538057 PMCID: PMC9090925 DOI: 10.1038/s41467-022-29614-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
The 1918 influenza pandemic was the deadliest respiratory pandemic of the 20th century and determined the genomic make-up of subsequent human influenza A viruses (IAV). Here, we analyze both the first 1918 IAV genomes from Europe and the first from samples prior to the autumn peak. 1918 IAV genomic diversity is consistent with a combination of local transmission and long-distance dispersal events. Comparison of genomes before and during the pandemic peak shows variation at two sites in the nucleoprotein gene associated with resistance to host antiviral response, pointing at a possible adaptation of 1918 IAV to humans. Finally, local molecular clock modeling suggests a pure pandemic descent of seasonal H1N1 IAV as an alternative to the hypothesis of origination through an intrasubtype reassortment. For archival pathogens, like pH1N1 Influenza A virus the causative agent of 1918/19 pandemic, only few whole genome sequences exist. Here, Patrono et al. provide one complete and two partial genomes from Germany and find variation in two sites in the nucleoprotein gene in pandemic samples compared to pre-pandemic samples, that are associated with resistance to host antiviral response, pointing at a possible viral adaptation to humans.
Collapse
|
41
|
Shen ZJ, Jia H, Xie CD, Shagainar J, Feng Z, Zhang X, Li K, Zhou R. Bayesian Phylodynamic Analysis Reveals the Dispersal Patterns of African Swine Fever Virus. Viruses 2022; 14:v14050889. [PMID: 35632631 PMCID: PMC9147906 DOI: 10.3390/v14050889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
The evolutionary and demographic history of African swine fever virus (ASFV) is potentially quite valuable for developing efficient and sustainable management strategies. In this study, we performed phylogenetic, phylodynamic, and phylogeographic analyses of worldwide ASFV based on complete ASFV genomes, B646L gene, and E183L gene sequences obtained from NCBI to understand the epidemiology of ASFV. Bayesian phylodynamic analysis and phylogenetic analysis showed highly similar results of group clustering between E183L and the complete genome. The evidence of migration and the demographic history of ASFV were also revealed by the Bayesian phylodynamic analysis. The evolutionary rate was estimated to be 1.14 × 10−5 substitution/site/year. The large out-migration from the viral population in South Africa played a crucial role in spreading the virus worldwide. Our study not only provides resources for the better utilization of genomic data but also reveals the comprehensive worldwide evolutionary history of ASFV with a broad sampling window across ~70 years. The characteristics of the virus spatiotemporal transmission are also elucidated, which could be of great importance for devising strategies to control the virus.
Collapse
Affiliation(s)
- Zhao-Ji Shen
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, China;
| | - Hong Jia
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
| | - Chun-Di Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
| | - Jurmt Shagainar
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, China;
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Kui Li
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Correspondence: (K.L.); (R.Z.)
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
- Correspondence: (K.L.); (R.Z.)
| |
Collapse
|
42
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
43
|
Baron MD, Bataille A. A curated dataset of peste des petits ruminants virus sequences for molecular epidemiological analyses. PLoS One 2022; 17:e0263616. [PMID: 35143560 PMCID: PMC8830648 DOI: 10.1371/journal.pone.0263616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/23/2022] [Indexed: 12/23/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious and devastating viral disease infecting predominantly sheep and goats. Tracking outbreaks of disease and analysing the movement of the virus often involves sequencing part or all of the genome and comparing the sequence obtained with sequences from other outbreaks, obtained from the public databases. However, there are a very large number (>1800) of PPRV sequences in the databases, a large majority of them relatively short, and not always well-documented. There is also a strong bias in the composition of the dataset, with countries with good sequencing capabilities (e.g. China, India, Turkey) being overrepresented, and most sequences coming from isolates in the last 20 years. In order to facilitate future analyses, we have prepared sets of PPRV sequences, sets which have been filtered for sequencing errors and unnecessary duplicates, and for which date and location information has been obtained, either from the database entry or from other published sources. These sequence datasets are freely available for download, and include smaller datasets which maximise phylogenetic information from the minimum number of sequences, and which will be useful for simple lineage identification. Their utility is illustrated by uploading the data to the MicroReact platform to allow simultaneous viewing of lineage date and geographic information on all the viruses for which we have information. While preparing these datasets, we identified a significant number of public database entries which contain clear errors, and propose guidelines on checking new sequences and completing metadata before submission.
Collapse
Affiliation(s)
- Michael D. Baron
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- * E-mail:
| | - Arnaud Bataille
- CIRAD, UMR, ASTRE, Montpellier, France
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| |
Collapse
|
44
|
Morbilliform Eruptions in the Hospitalized Child. Dermatol Clin 2022; 40:191-202. [PMID: 35366972 PMCID: PMC8896762 DOI: 10.1016/j.det.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Peart Akindele N. Updates in the Epidemiology, Approaches to Vaccine Coverage and Current Outbreaks of Measles. Infect Dis Clin North Am 2022; 36:39-48. [DOI: 10.1016/j.idc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Malyarchuk AB, Andreeva TV, Kuznetsova IL, Kunizheva SS, Protasova MS, Uralsky LI, Tyazhelova TV, Gusev FE, Manakhov AD, Rogaev EI. Genomics of Ancient Pathogens: First Advances and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:242-258. [PMID: 35526849 PMCID: PMC8916790 DOI: 10.1134/s0006297922030051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
Abstract
Paleogenomics is one of the urgent and promising areas of interdisciplinary research in the today's world science. New genomic methods of ancient DNA (aDNA) analysis, such as next generation sequencing (NGS) technologies, make it possible not only to obtain detailed genetic information about historical and prehistoric human populations, but also to study individual microbial and viral pathogens and microbiomes from different ancient and historical objects. Studies of aDNA of pathogens by reconstructing their genomes have so far yielded complete sequences of the ancient pathogens that played significant role in the history of the world: Yersinia pestis (plague), Variola virus (smallpox), Vibrio cholerae (cholera), HBV (hepatitis B virus), as well as the equally important endemic human infectious agents: Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy), and Treponema pallidum (syphilis). Genomic data from these pathogens complemented the information previously obtained by paleopathologists and allowed not only to identify pathogens from the past pandemics, but also to recognize the pathogen lineages that are now extinct, to refine chronology of the pathogen appearance in human populations, and to reconstruct evolutionary history of the pathogens that are still relevant to public health today. In this review, we describe state-of-the-art genomic research of the origins and evolution of many ancient pathogens and viruses and examine mechanisms of the emergence and spread of the ancient infections in the mankind history.
Collapse
Affiliation(s)
- Alexandra B Malyarchuk
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Tatiana V Andreeva
- Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Irina L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Svetlana S Kunizheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Maria S Protasova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Lev I Uralsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Tatiana V Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Fedor E Gusev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
| | - Andrey D Manakhov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Evgeny I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119333, Russia.
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
47
|
Innovations in vaccine delivery: increasing access, coverage, and equity and lessons learnt from measles and rubella elimination. Drug Deliv Transl Res 2022; 12:959-967. [PMID: 35211868 PMCID: PMC8870075 DOI: 10.1007/s13346-022-01130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
Disease eradication and elimination programs drive innovations based on progress toward measurable objectives, evaluations of new strategies and methods, programmatic experiences, and lessons learned from the field. Following progress toward global measles elimination, reducing measles mortality, and increasing introductions of measles and rubella vaccines to national programs, the measles and rubella immunization program has faced setbacks in recent years. Currently available vaccine delivery methods have complicated logistics and drawbacks that create barriers to vaccination; innovations for easier, more efficient, and safer vaccine delivery are needed. Progress can be accelerated by new technologies like microarray patches (MAPs) that are now widely recognized as a potential new tool for enhancing global immunizations efforts. Clinical trials of measles-rubella vaccine MAPs have begun, and several other vaccine MAPs are in the pre-clinical development pathway. MAPs could significantly contribute to Immunization Agenda 2030 priorities, including reaching zero-dose children; increasing vaccine access, demand, coverage, and equity; and achieving measles and rubella elimination. With strong partnerships between public health agencies and biotechnology companies, translational novel vaccine delivery systems can be developed to help solve public health problems and achieve global health priorities.
Collapse
|
48
|
Abstract
Infectious diseases emerge via many routes and may need to overcome stepwise bottlenecks to burgeon into epidemics and pandemics. About 60% of human infections have animal origins, whereas 40% either co-evolved with humans or emerged from non-zoonotic environmental sources. Although the dynamic interaction between wildlife, domestic animals, and humans is important for the surveillance of zoonotic potential, exotic origins tend to be overemphasized since many zoonoses come from anthropophilic wild species (for example, rats and bats). We examine the equivocal evidence of whether the appearance of novel infections is accelerating and relate technological developments to the risk of novel disease outbreaks. Then we briefly compare selected epidemics, ancient and modern, from the Plague of Athens to COVID-19.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| | - Neeraja Sankaran
- The Descartes Centre for the History and Philosophy of the Sciences and the Humanities, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
49
|
Stokholm I, Fischer N, Baechlein C, Postel A, Galatius A, Kyhn LA, Thøstesen CB, Persson S, Siebert U, Olsen MT, Becher P. In the Search of Marine Pestiviruses: First Case of Phocoena Pestivirus in a Belt Sea Harbour Porpoise. Viruses 2022; 14:161. [PMID: 35062365 PMCID: PMC8780987 DOI: 10.3390/v14010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Pestiviruses are widespread pathogens causing severe acute and chronic diseases among terrestrial mammals. Recently, Phocoena pestivirus (PhoPeV) was described in harbour porpoises (Phocoena phocoena) of the North Sea, expanding the host range to marine mammals. While the role of the virus is unknown, intrauterine infections with the most closely related pestiviruses- Bungowannah pestivirus (BuPV) and Linda virus (LindaV)-can cause increased rates of abortions and deaths in young piglets. Such diseases could severely impact already vulnerable harbour porpoise populations. Here, we investigated the presence of PhoPeV in 77 harbour porpoises, 277 harbour seals (Phoca vitulina), grey seals (Halichoerus grypus) and ringed seals (Pusa hispida) collected in the Baltic Sea region between 2002 and 2019. The full genome sequence of a pestivirus was obtained from a juvenile female porpoise collected along the coast of Zealand in Denmark in 2011. The comparative Bayesian phylogenetic analyses revealed a close relationship between the new PhoPeV sequence and previously published North Sea sequences with a recent divergence from genotype 1 sequences between 2005 and 2009. Our findings provide further insight into the circulation of PhoPeV and expand the distribution from the North Sea to the Baltic Sea region with possible implications for the vulnerable Belt Sea and endangered Baltic Proper harbour porpoise populations.
Collapse
Affiliation(s)
- Iben Stokholm
- Evolutionary Genomics Section, GLOBE, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark; (I.S.); (M.T.O.)
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany;
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Christine Baechlein
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (C.B.); (A.P.)
| | - Alexander Postel
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (C.B.); (A.P.)
| | - Anders Galatius
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; (A.G.); (L.A.K.)
| | - Line Anker Kyhn
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; (A.G.); (L.A.K.)
| | | | - Sara Persson
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, 104 05 Stockholm, Sweden;
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany;
| | - Morten Tange Olsen
- Evolutionary Genomics Section, GLOBE, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen, Denmark; (I.S.); (M.T.O.)
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (C.B.); (A.P.)
| |
Collapse
|
50
|
Mielonen OI, Pratas D, Hedman K, Sajantila A, Perdomo MF. Detection of Low-Copy Human Virus DNA upon Prolonged Formalin Fixation. Viruses 2022; 14:v14010133. [PMID: 35062338 PMCID: PMC8779449 DOI: 10.3390/v14010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Formalin fixation, albeit an outstanding method for morphological and molecular preservation, induces DNA damage and cross-linking, which can hinder nucleic acid screening. This is of particular concern in the detection of low-abundance targets, such as persistent DNA viruses. In the present study, we evaluated the analytical sensitivity of viral detection in lung, liver, and kidney specimens from four deceased individuals. The samples were either frozen or incubated in formalin (±paraffin embedding) for up to 10 days. We tested two DNA extraction protocols for the control of efficient yields and viral detections. We used short-amplicon qPCRs (63–159 nucleotides) to detect 11 DNA viruses, as well as hybridization capture of these plus 27 additional ones, followed by deep sequencing. We observed marginally higher ratios of amplifiable DNA and scantly higher viral genoprevalences in the samples extracted with the FFPE dedicated protocol. Based on the findings in the frozen samples, most viruses were detected regardless of the extended fixation times. False-negative calls, particularly by qPCR, correlated with low levels of viral DNA (<250 copies/million cells) and longer PCR amplicons (>150 base pairs). Our data suggest that low-copy viral DNAs can be satisfactorily investigated from FFPE specimens, and encourages further examination of historical materials.
Collapse
Affiliation(s)
- Outi I. Mielonen
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
- Department of Forensic Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Diogo Pratas
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Klaus Hedman
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, 00290 Helsinki, Finland;
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, 00271 Helsinki, Finland
| | - Maria F. Perdomo
- Department of Virology, Helsinki University Hospital, University of Helsinki, 00290 Helsinki, Finland; (O.I.M.); (K.H.)
- Correspondence:
| |
Collapse
|