1
|
Gori K, Baez-Ortega A, Strakova A, Stammnitz MR, Wang J, Chan J, Hughes K, Belkhir S, Hammel M, Moralli D, Bancroft J, Drydale E, Allum KM, Brignone MV, Corrigan AM, de Castro KF, Donelan EM, Faramade IA, Hayes A, Ignatenko N, Karmacharya R, Koenig D, Lanza-Perea M, Lopez Quintana AM, Meyer M, Neunzig W, Pedraza-Ordoñez F, Phuentshok Y, Phuntsho K, Ramirez-Ante JC, Reece JF, Schmeling SK, Singh S, Tapia Martinez LJ, Taulescu M, Thapa S, Thapa S, van der Wel MG, Wehrle-Martinez AS, Stratton MR, Murchison EP. Horizontal transfer of nuclear DNA in transmissible cancer. Proc Natl Acad Sci U S A 2025; 122:e2424634122. [PMID: 40261943 PMCID: PMC12067285 DOI: 10.1073/pnas.2424634122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Horizontal transfer of nuclear DNA between cells of host and cancer is a potential source of adaptive variation in cancer cells. An understanding of the frequency and significance of this process in naturally occurring tumors is, however, lacking. We screened for this phenomenon in the transmissible cancers of dogs and Tasmanian devils and found an instance in the canine transmissible venereal tumor (CTVT). This involved introduction of a 15-megabase dicentric genetic element, composed of 11 fragments of six chromosomes, to a CTVT sublineage occurring in Asia around 2,000 y ago. The element forms the short arm of a small submetacentric chromosome and derives from a dog with ancestry associated with the ancient Middle East. The introduced DNA fragment is transcriptionally active and has adopted the expression profile of CTVT. Its features suggest that it may derive from an engulfed apoptotic body. Our findings indicate that nuclear horizontal gene transfer, although likely a rare event in tumor evolution, provides a viable mechanism for the acquisition of genetic material in naturally occurring cancer genomes.
Collapse
Affiliation(s)
- Kevin Gori
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Adrian Baez-Ortega
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Andrea Strakova
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Maximilian R. Stammnitz
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Jinhong Wang
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Jonathan Chan
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Sophia Belkhir
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Maurine Hammel
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | - Daniela Moralli
- Pandemic Sciences Institute, University of Oxford, OxfordOX3 7DQ, United Kingdom
| | - James Bancroft
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, OxfordOX3 7BM, United Kingdom
| | - Edward Drydale
- Cellular Imaging Core Facility, Centre for Human Genetics, University of Oxford, OxfordOX3 7BM, United Kingdom
| | | | - María Verónica Brignone
- Faculty of Veterinary Sciences, Universidad de Buenos Aires, Buenos AiresC1053ABJ, Argentina
| | - Anne M. Corrigan
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | - Karina F. de Castro
- Faculty of Agrarian and Veterinary Sciences, São Paulo State University, Jaboticabal14884-900, Brazil
| | - Edward M. Donelan
- Animal Management in Rural and Remote Indigenous Communities, Darwin, NT0820, Australia
| | | | - Alison Hayes
- Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| | | | - Rockson Karmacharya
- Veterinary Diagnostic and Research Laboratory Pvt. Ltd., Kathmandu44600, Nepal
| | | | - Marta Lanza-Perea
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada
| | | | | | | | | | | | | | - Juan C. Ramirez-Ante
- Facultad de Ciencias Pecuarias, Corporación Universitaria Santa Rosa de Cabal, Santa Rosa de Cabal661020, Colombia
| | | | | | - Sanjay Singh
- Help in Suffering, Jaipur302018, Rajasthan, India
| | | | - Marian Taulescu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca400372, Romania
| | - Samir Thapa
- Kathmandu Animal Treatment Centre, Kathmandu44622, Nepal
| | - Sunil Thapa
- Animal Nepal, Dobighat, Kathmandu44600, Nepal
| | | | | | - Michael R. Stratton
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, HinxtonCB10 1SA, United Kingdom
| | - Elizabeth P. Murchison
- Transmissible Cancer Group, Department of Veterinary Medicine, University of Cambridge, CambridgeCB3 0ES, United Kingdom
| |
Collapse
|
2
|
Burrows AM, Smith LW, Downing SE, Omstead KM, Smith TD. Evolutionary divergence of facial muscle physiology between domestic dogs and wolves. Anat Rec (Hoboken) 2025; 308:1369-1377. [PMID: 39360643 PMCID: PMC11967504 DOI: 10.1002/ar.25580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
Domestic dogs (Canis familiaris) are descended from gray wolf (Canis lupus) populations that inhabited Western Europe and Siberia. The specific timing of dog domestication is debated, but archeological and genetic evidence suggest that it was a multi-phase process that began at least 15,000 years ago. There are many morphological differences between dogs and wolves, including marked divergence in facial muscle morphology, but we know little about the comparative physiology of these muscles. A better understanding of comparative facial muscle physiology between domestic dogs and gray wolves would improve our conceptual framework for the processual mechanisms in dog domestication. To address these issues, we assessed the myosin profiles (type I and type II) from the zygomaticus and orbicularis oris muscles of 6 domestic dogs and 4 gray wolves. Due to small sample sizes, statistical analyses were not done. Results reveal that sampled domestic dogs have almost 100% fast-twitch (type II) muscle fibers while gray wolves have less than 50%, meaning that dog faces can contract fast while wolf faces are able to sustain facial muscle contraction. Sample sizes are limited but the present study indicates that dog domestication is associated with not only a change in facial muscle morphology but a concomitant change in how these muscles function physiologically. Selective pressures in the development of communication between dogs and humans using facial expression may have influenced this evolutionary divergence, but the paedomorphic retention of barking in adult dogs may have also played a role.
Collapse
Affiliation(s)
- Anne M. Burrows
- Department of Physical TherapyDuquesne UniversityPittsburghPennsylvaniaUSA
| | - Leo W. Smith
- Department of Chemistry & BiochemistryDuquesne UniversityPittsburghPennsylvaniaUSA
| | - Sarah E. Downing
- Department of Physical TherapyDuquesne UniversityPittsburghPennsylvaniaUSA
| | - K. Madisen Omstead
- Department of Physical TherapyDuquesne UniversityPittsburghPennsylvaniaUSA
- Present address:
GenentechSan FranciscoCaliforniaUSA
| | - Timothy D. Smith
- Department of Health and Rehabilitation SciencesSlippery Rock UniversitySlippery RockPennsylvaniaUSA
| |
Collapse
|
3
|
Günther T, Chisausky J, Galindo-Pellicena ÁM, Iriarte E, Cortes Gardyn O, Eusebi PG, García-González R, Ureña I, Moreno-García M, Alday A, Rojo M, Pérez A, Tejedor Rodríguez C, García Martínez de Lagrán I, Arsuaga JL, Carretero JM, Götherström A, Smith C, Valdiosera C. The genomic legacy of aurochs hybridisation in ancient and modern Iberian cattle. eLife 2025; 13:RP93076. [PMID: 40106345 PMCID: PMC11922504 DOI: 10.7554/elife.93076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.
Collapse
Affiliation(s)
- Torsten Günther
- Human Evolution, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Jacob Chisausky
- Human Evolution, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | | | - Eneko Iriarte
- Laboratorio de Evolución Humana, Universidad de BurgosBurgosSpain
| | | | | | | | | | | | - Alfonso Alday
- Área de Prehistoria, University of the Basque CountryBilbaoSpain
| | - Manuel Rojo
- Department of Prehistory and Archaeology, Valladolid UniversityValladolidSpain
| | - Amalia Pérez
- Laboratorio de Evolución Humana, Universidad de BurgosBurgosSpain
| | | | | | | | - José-Miguel Carretero
- Laboratorio de Evolución Humana, Universidad de BurgosBurgosSpain
- Unidad Asociada de I+D+i al CSIC Vidrio y Materiales del Patrimonio Cultural (VIMPAC)BurgosAustralia
| | | | - Colin Smith
- Laboratorio de Evolución Humana, Universidad de BurgosBurgosSpain
- Department of Archaeology and History, La Trobe UniversityMelbourneAustralia
| | - Cristina Valdiosera
- Laboratorio de Evolución Humana, Universidad de BurgosBurgosSpain
- Department of Archaeology and History, La Trobe UniversityMelbourneAustralia
- CENIEH (Centro Nacional de Investigación sobre la Evolución Humana)BurgosSpain
| |
Collapse
|
4
|
Mouton A, Bird DJ, Li G, Craven BA, Levine JM, Morselli M, Pellegrini M, Van Valkenburgh B, Wayne RK, Murphy WJ. Genetic and Anatomical Determinants of Olfaction in Dogs and Wild Canids. Mol Biol Evol 2025; 42:msaf035. [PMID: 39950968 PMCID: PMC11950533 DOI: 10.1093/molbev/msaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 03/29/2025] Open
Abstract
Understanding the anatomical and genetic basis of complex phenotypic traits has long been a challenge for biological research. Domestic dogs offer a compelling model as they demonstrate more phenotypic variation than any other vertebrate species. Dogs have been intensely selected for specific traits and abilities, directly or indirectly, over the past 15,000 years since their initial domestication from the gray wolf. Because olfaction plays a central role in critical tasks, such as the detection of drugs, diseases, and explosives, as well as human rescue, we compared relative olfactory capacity across dog breeds and assessed changes to the canine olfactory system to their direct ancestors, wolves, and coyotes. We conducted a cross-disciplinary survey of olfactory anatomy, olfactory receptor (OR) gene variation, and OR gene expression in domestic dogs. Through comparisons to their closest wild canid relatives, the gray wolf and coyote, we show that domestic dogs might have lost functional OR genes commensurate with a documented reduction in nasal morphology as an outcome of the domestication process prior to breed formation. Critically, within domestic dogs alone, we found no genetic or morphological profile shared among functional or genealogical breed groupings, such as scent hounds, that might indicate evidence of any human-directed selection for enhanced olfaction. Instead, our results suggest that superior scent detection dogs likely owe their success to advantageous behavioral traits and training rather than an "olfactory edge" provided by morphology or genes.
Collapse
Affiliation(s)
- Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- InBios-Conservation Genetics Lab, University of Liege, Liège, Belgium
| | - Deborah J Bird
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Gang Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Brent A Craven
- Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Marco Morselli
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, CA, USA
| | - Blaire Van Valkenburgh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Teo B, Bastide P, Ané C. Leveraging graphical model techniques to study evolution on phylogenetic networks. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230310. [PMID: 39976402 PMCID: PMC11867149 DOI: 10.1098/rstb.2023.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 02/21/2025] Open
Abstract
The evolution of molecular and phenotypic traits is commonly modelled using Markov processes along a phylogeny. This phylogeny can be a tree, or a network if it includes reticulations, representing events such as hybridization or admixture. Computing the likelihood of data observed at the leaves is costly as the size and complexity of the phylogeny grows. Efficient algorithms exist for trees, but cannot be applied to networks. We show that a vast array of models for trait evolution along phylogenetic networks can be reformulated as graphical models, for which efficient belief propagation algorithms exist. We provide a brief review of belief propagation on general graphical models, then focus on linear Gaussian models for continuous traits. We show how belief propagation techniques can be applied for exact or approximate (but more scalable) likelihood and gradient calculations, and prove novel results for efficient parameter inference of some models. We highlight the possible fruitful interactions between graphical models and phylogenetic methods. For example, approximate likelihood approaches have the potential to greatly reduce computational costs for phylogenies with reticulations.This article is part of the theme issue '"A mathematical theory of evolution": phylogenetic models dating back 100 years'.
Collapse
Affiliation(s)
- Benjamin Teo
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul Bastide
- IMAG, Université de Montpellier, CNRS, Montpellier, France
| | - Cécile Ané
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Ollivier M. [Thousands of years of human-dog relationship]. Biol Aujourdhui 2025; 218:115-127. [PMID: 39868711 DOI: 10.1051/jbio/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 01/28/2025]
Abstract
During recent years, much progress has been made in understanding the origin and evolution of the dog. Thanks to the collaboration between zooarchaeology, genomics and paleogenetics, researchers were able to hypothesize scenarios regarding the origins of the canine lineages present in Europe at the end of the Pleistocene and the beginning of the Holocene. Research has also shown a correlation between human and canine migration across time and space, highlighting a strong relationship between man and his best friend. This proximity between the two species is also illustrated by the adaptation of this species to anthropogenic selective pressures, particularly in parallel with cultural transitions. Although the history of this species still requires much exploration to be fully understood, these results provide new theoretical bases for understanding the interplay between humans and dogs.
Collapse
Affiliation(s)
- Morgane Ollivier
- Univ. Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Campus de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France
| |
Collapse
|
7
|
Gelabert P, Oberreiter V, Straus LG, Morales MRG, Sawyer S, Marín-Arroyo AB, Geiling JM, Exler F, Brueck F, Franz S, Cano FT, Szedlacsek S, Zelger E, Hämmerle M, Zagorc B, Llanos-Lizcano A, Cheronet O, Tejero JM, Rattei T, Kraemer SM, Pinhasi R. A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain. Nat Commun 2025; 16:107. [PMID: 39747910 PMCID: PMC11696082 DOI: 10.1038/s41467-024-55740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Caves are primary sites for studying human and animal subsistence patterns and genetic ancestry throughout the Palaeolithic. Iberia served as a critical human and animal refugium in Europe during the Last Glacial Maximum (LGM), 26.5 to 19 thousand years before the present (cal kya). Therefore, it is a key location for understanding human and animal population dynamics during this event. We recover and analyse sedimentary ancient DNA (sedaDNA) data from the lower archaeological stratigraphic sequence of El Mirón Cave (Cantabria, Spain), encompassing the (1) Late Mousterian period, associated with Neanderthals, and (2) the Gravettian (c. 31.5 cal kya), Solutrean (c. 24.5-22 cal kya), and Initial Magdalenian (d. 21-20.5 cal kya) periods, associated with anatomically modern humans. We identify 28 animal taxa including humans. Fifteen of these taxa had not been identified from the archaeozoological (i.e., faunal) record, including the presence of hyenas in the Magdalenian. Additionally, we provide phylogenetic analyses on 70 sedaDNA mtDNA genomes of fauna including the densest Iberian Pleistocene sampling of C. lupus. Finally, we recover three human mtDNA sequences from the Solutrean levels. These sequences, along with published data, suggest mtDNA haplogroup continuity in Iberia throughout the Solutrean/Last Glacial Maximum period.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel Ramón González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (Universidad de Cantabria, Gobierno de Cantabria, Santander), Santander, Spain
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ana B Marín-Arroyo
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Jeanne Marie Geiling
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Florian Brueck
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michelle Hämmerle
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - José-Miguel Tejero
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Seminari d'Estudis i Recerques Prehistòriques (SERP), University of Barcelona, Barcelona, Spain.
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Boada M, Wirobski G. Human-directed sociability in the domestic dog: A Tinbergian approach. Neurosci Biobehav Rev 2025; 168:105947. [PMID: 39571667 DOI: 10.1016/j.neubiorev.2024.105947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
The motivation to interact with humans is central to dogs' domestication process. This review aims to provide a curated overview of the current knowledge about dogs' human-directed sociability using Tinbergen's four questions as a guiding framework. Firstly, we explore its evolutionary history, discussing wolf-dog differences in the socialization period, fear response, sociability, and attachment to elucidate the effect of domestication. Secondly, we address its ontogeny, highlighting the importance of early life experiences, examining findings on different dog populations to discern the effect of adult life experiences, and reporting changes across the lifespan. Thirdly, we analyse the adaptive value of the dog-human relationship, considering the effects of human association on different dog populations. Fourthly, we elaborate on the mechanisms involved in the dog-human relationship, discussing underlying cognitive and genetic processes and findings on the neurophysiological effects of interacting with humans. Finally, we identify issues and remaining questions that deserve more scrutiny and suggest innovative approaches that could be explored to improve our understanding of dogs' human-directed sociability.
Collapse
Affiliation(s)
- Mónica Boada
- Grupo UCM de Psicobiología Social, Evolutiva y Comparada, Departamento de Psicobiología, Facultad de Psicología, Campus de Somosaguas, Universidad Complutense de Madrid, Madrid 28223, Spain.
| | - Gwendolyn Wirobski
- Comparative Cognition Group, Université de Neuchâtel, Faculty of Sciences, Avenue de Bellevaux 51, Neuchâtel 2000, Switzerland.
| |
Collapse
|
9
|
Lanoë F, Reuther J, Fields S, Potter B, Smith G, McKinney H, Halffman C, Holmes C, Mills R, Crass B, Frome R, Hildebrandt K, Sattler R, Shirar S, de Flamingh A, Kemp BM, Malhi R, Witt KE. Late Pleistocene onset of mutualistic human/canid ( Canis spp.) relationships in subarctic Alaska. SCIENCE ADVANCES 2024; 10:eads1335. [PMID: 39630895 PMCID: PMC11619702 DOI: 10.1126/sciadv.ads1335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Large canids (wolves, dogs, and coyote) and people form a close relationship in northern (subarctic and arctic) socioecological systems. Here, we document the antiquity of this bond and the multiple ways it manifested in interior Alaska, a region key to understanding the peopling of the Americas and early northern lifeways. We compile original and existing genomic, isotopic, and osteological canid data from archaeological, paleontological, and modern sites. Results show that in contrast to canids recovered in non-anthropic contexts, canids recovered in association with human occupations are markedly diverse. They include multiple species and intraspecific lineages, morphological variation, and diets ranging from terrestrial to marine. This variation is expressed along both geographic and temporal gradients, starting in the terminal Pleistocene with canids showing high marine dietary estimates. This paper provides evidence of the multiple ecological relationships between canids and people in the north-from predation, probable commensalism, and taming, to domestication-and of their early onset.
Collapse
Affiliation(s)
- François Lanoë
- School of Anthropology, University of Arizona, Tucson, AZ, USA
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Joshua Reuther
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Stormy Fields
- Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Ben Potter
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Gerad Smith
- Department of Anthropology and Geography, University of Alaska Anchorage, Anchorage, AK, USA
| | - Holly McKinney
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Carrin Halffman
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Charles Holmes
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Robin Mills
- Bureau of Land Management, Fairbanks District, AK, USA
| | - Barbara Crass
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Ryan Frome
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
| | - Kyndall Hildebrandt
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | | | - Scott Shirar
- Archaeology Department, University of Alaska Museum of the North, Fairbanks, AK, USA
| | - Alida de Flamingh
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Brian M. Kemp
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Ripan Malhi
- Center for Indigenous Science, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Department of Anthropology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Clemson, SC, USA
| |
Collapse
|
10
|
Kleinau G, Chini B, Andersson L, Scheerer P. The role of G protein-coupled receptors and their ligands in animal domestication. Anim Genet 2024; 55:893-906. [PMID: 39324206 DOI: 10.1111/age.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The domestication of plants and animals has resulted in one of the most significant cultural and socio-economical transitions in human history. Domestication of animals, including human-supervised reproduction, largely uncoupled particular animal species from their natural, evolutionary history driven by environmental and ecological factors. The primary motivations for domesticating animals were, and still are, producing food and materials (e.g. meat, eggs, honey or milk products, wool, leather products, jewelry and medication products) to support plowing in agriculture or in transportation (e.g. horse, cattle, camel and llama) and to facilitate human activities (for hunting, rescuing, therapeutic aid, guarding behavior and protecting or just as a companion). In recent years, decoded genetic information from more than 40 domesticated animal species have become available; these studies have identified genes and mutations associated with specific physiological and behavioral traits contributing to the complex genetic background of animal domestication. These breeding-altered genomes provide insights into the regulation of different physiological areas, including information on links between e.g. endocrinology and behavior, with important pathophysiological implications (e.g. for obesity and cancer), extending the interest in domestication well beyond the field. Several genes that have undergone selection during domestication and breeding encode specific G protein-coupled receptors, a class of membrane-spanning receptors involved in the regulation of a number of overarching functions such as reproduction, development, body homeostasis, metabolism, stress responses, cognition, learning and memory. Here we summarize the available literature on variations in G protein-coupled receptors and their ligands and how these have contributed to animal domestication.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Bice Chini
- CNR, Institute of Neuroscience, Vedano al Lambro, Italy, and NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| |
Collapse
|
11
|
Nguyen AK, Schall PZ, Kidd JM. A map of canine sequence variation relative to a Greenland wolf outgroup. Mamm Genome 2024; 35:565-576. [PMID: 39088040 DOI: 10.1007/s00335-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
For over 15 years, canine genetics research relied on a reference assembly from a Boxer breed dog named Tasha (i.e., canFam3.1). Recent advances in long-read sequencing and genome assembly have led to the development of numerous high-quality assemblies from diverse canines. These assemblies represent notable improvements in completeness, contiguity, and the representation of gene promoters and gene models. Although genome graph and pan-genome approaches have promise, most genetic analyses in canines rely upon the mapping of Illumina sequencing reads to a single reference. The Dog10K consortium, and others, have generated deep catalogs of genetic variation through an alignment of Illumina sequencing reads to a reference genome obtained from a German Shepherd Dog named Mischka (i.e., canFam4, UU_Cfam_GSD_1.0). However, alignment to a breed-derived genome may introduce bias in genotype calling across samples. Since the use of an outgroup reference genome may remove this effect, we have reprocessed 1929 samples analyzed by the Dog10K consortium using a Greenland wolf (mCanLor1.2) as the reference. We efficiently performed remapping and variant calling using a GPU-implementation of common analysis tools. The resulting call set removes the variability in genetic differences seen across samples and breed relationships revealed by principal component analysis are not affected by the choice of reference genome. Using this sequence data, we inferred the history of population sizes and found that village dog populations experienced a 9-13 fold reduction in historic effective population size relative to wolves.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Zhang X, He Y, Yang S, Wang D. Human Preferences for Dogs and Cats in China: The Current Situation and Influencing Factors of Watching Online Videos and Pet Ownership. Animals (Basel) 2024; 14:3458. [PMID: 39682424 DOI: 10.3390/ani14233458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Dogs and cats have become the most important and successful pets through long-term domestication. People keep them for various reasons, such as their functional roles or for physical or psychological support. However, why humans are so attached to dogs and cats remains unclear. A comprehensive understanding of the current state of human preferences for dogs and cats and the potential influential factors behind it is required. Here, we investigate this question using two independent online datasets and anonymous questionnaires in China. We find that current human preferences for dog and cat videos are relatively higher than for most other interests, video plays ranking among the top three out of fifteen interests. We also find genetic variations, gender, age, and economic development levels notably influence human preferences for dogs and cats. Specifically, dog and cat ownership are significantly associated with parents' pet ownership of dogs and cats (Spearman's rank correlation coefficient is 0.43, 95% CI: 0.38-0.47), and the primary reason is to gain emotional support. Further analysis finds that women, young people, and those with higher incomes are more likely to prefer dog and cat videos. Our study provides insights into why humans become so attached to dogs and cats and establishes a foundation for developing co-evolutionary models.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansi He
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daiping Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Stevens CJ, Zhuang Y, Fuller DQ. Millets, dogs, pigs and permanent settlement: productivity transitions in Neolithic northern China. EVOLUTIONARY HUMAN SCIENCES 2024; 6:e44. [PMID: 39703940 PMCID: PMC11658956 DOI: 10.1017/ehs.2024.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 12/21/2024] Open
Abstract
The transition to sedentary agricultural societies in northern China fuelled considerable demographic growth from 5000 to 2000 BC. In this article, we draw together archaeobotanical, zooarchaeological and bioarchaeological data and explore the relationship between several aspects of this transition, with an emphasis on the millet-farming productivity during the Yangshao period and how it facilitated changes in animal husbandry and consolidation of sedentism. We place the period of domestication (the evolution of non-shattering, initial grain size increase and panicle development) between 8300 and 4300 BC. The domestication and post-domestication of foxtail (Setaria italica) and broomcorn (Panicum miliaceum) millet increased their productivity substantially, with much greater rate of change than for rice (Oryza sativa). However, millets are significantly less productive per hectare than wet rice farming, a point reflected in the greater geographical expanse of northern Neolithic millet cultures (5000-3000 BC) in comparison with their Yangtze rice-growing counterparts. The domestication of pigs in the Yellow River region is evidenced by changes in their morphology after 6000 BC, and a transition to a millet-based diet c. 4500-3500 BC. Genetic data and isotopic data from dogs indicate a similar dietary transition from 6000 to 4000 BC, leading to new starch-consuming dog breeds. Significant population increase associated with agricultural transitions arose predominately from the improvement of these crops and animals following domestication, leading to the formation of the first proto-urban centres and the demic-diffusion of millet agriculture beyond central northern China between 4300-2000 BC.
Collapse
Affiliation(s)
- Chris J. Stevens
- UCL Institute of Archaeology, University College London, LondonWC1H 0PY, UK
- School of Archaeology and Museology, Peking University, Peking, China
| | - Yijie Zhuang
- UCL Institute of Archaeology, University College London, LondonWC1H 0PY, UK
| | - Dorian Q. Fuller
- UCL Institute of Archaeology, University College London, LondonWC1H 0PY, UK
| |
Collapse
|
14
|
Kaptan D, Atağ G, Vural KB, Morell Miranda P, Akbaba A, Yüncü E, Buluktaev A, Abazari MF, Yorulmaz S, Kazancı DD, Küçükakdağ Doğu A, Çakan YG, Özbal R, Gerritsen F, De Cupere B, Duru R, Umurtak G, Arbuckle BS, Baird D, Çevik Ö, Bıçakçı E, Gündem CY, Pişkin E, Hachem L, Canpolat K, Fakhari Z, Ochir-Goryaeva M, Kukanova V, Valipour HR, Hoseinzadeh J, Küçük Baloğlu F, Götherström A, Hadjisterkotis E, Grange T, Geigl EM, Togan İZ, Günther T, Somel M, Özer F. The Population History of Domestic Sheep Revealed by Paleogenomes. Mol Biol Evol 2024; 41:msae158. [PMID: 39437846 PMCID: PMC11495565 DOI: 10.1093/molbev/msae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/17/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Collapse
Affiliation(s)
- Damla Kaptan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Gözde Atağ
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Pedro Morell Miranda
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Ali Akbaba
- Selçuklu ve Malazgirt Araştırma ve Uygulama Merkezi, Muş Alparslan Üniversitesi, Muş, Turkey
| | - Eren Yüncü
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Aleksey Buluktaev
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Mohammad Foad Abazari
- Division of Medical Sciences, Island Medical Program, University of British Columbia, Vancouver, BC, Canada
- Department of Biology, Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sevgi Yorulmaz
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Duygu Deniz Kazancı
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Ayça Küçükakdağ Doğu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | | | - Rana Özbal
- Department of Archaeology and History of Art, Koç University, Istanbul, Turkey
| | - Fokke Gerritsen
- Netherlands Institute in Turkey, Istanbul, Turkey
- Leiden Institute for Area Studies, Leiden University, Leiden, Netherlands
| | - Bea De Cupere
- Operational Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Refik Duru
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Gülsün Umurtak
- Faculty of Letters, Department of Archaeology, İstanbul University, Laleli, Istanbul, Turkey
| | - Benjamin S Arbuckle
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas Baird
- Department of Archaeology, Classics, and Egyptology, University of Liverpool, Liverpool, UK
| | - Özlem Çevik
- Department of Archaeology, Trakya University, Edirne, Turkey
| | - Erhan Bıçakçı
- Department of Prehistory, Istanbul University, Laleli, Istanbul, Turkey
| | | | - Evangelia Pişkin
- Department of Settlement Archaeology, Middle East Technical University, Ankara, Turkey
| | - Lamys Hachem
- Institut National de Recherches Archéologiques Préventives (Inrap), UMR 8215 Trajectoires, Paris, France
| | - Kayra Canpolat
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Zohre Fakhari
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Maria Ochir-Goryaeva
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
- Khalikov Institute of Archaeology, Academy of Sciences of Tatarstan, Kazan, The Republic of Tatarstan, Russia
| | - Viktoria Kukanova
- Department of Archaeology, Ethnology and History, Kalmyk Scientific Center of the Russian Academy of Sciences, Elista, Russia
| | - Hamid Reza Valipour
- Department of Archaeology, Faculty of Letters and Human Sciences, Shahid Beheshti University, Tehran, Iran
| | | | - Fatma Küçük Baloğlu
- Department of Biology, Giresun University, Giresun, Turkey
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Anders Götherström
- Center for Paleogenetics, Stockholm, Sweden
- Archaeological Research Laboratory, Department of Archaeology and Classical Studies, University of Stockholm, Stockholm, Sweden
| | | | - Thierry Grange
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - Eva-Maria Geigl
- Université de Paris, Institut Jacques Monod, CNRS, Paris, France
| | - İnci Z Togan
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Torsten Günther
- Human Evolution Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Füsun Özer
- Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
15
|
Bolognini D, Halgren A, Lou RN, Raveane A, Rocha JL, Guarracino A, Soranzo N, Chin CS, Garrison E, Sudmant PH. Recurrent evolution and selection shape structural diversity at the amylase locus. Nature 2024; 634:617-625. [PMID: 39232174 PMCID: PMC11485256 DOI: 10.1038/s41586-024-07911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The adoption of agriculture triggered a rapid shift towards starch-rich diets in human populations1. Amylase genes facilitate starch digestion, and increased amylase copy number has been observed in some modern human populations with high-starch intake2, although evidence of recent selection is lacking3,4. Here, using 94 long-read haplotype-resolved assemblies and short-read data from approximately 5,600 contemporary and ancient humans, we resolve the diversity and evolutionary history of structural variation at the amylase locus. We find that amylase genes have higher copy numbers in agricultural populations than in fishing, hunting and pastoral populations. We identify 28 distinct amylase structural architectures and demonstrate that nearly identical structures have arisen recurrently on different haplotype backgrounds throughout recent human history. AMY1 and AMY2A genes each underwent multiple duplication/deletion events with mutation rates up to more than 10,000-fold the single-nucleotide polymorphism mutation rate, whereas AMY2B gene duplications share a single origin. Using a pangenome-based approach, we infer structural haplotypes across thousands of humans identifying extensively duplicated haplotypes at higher frequency in modern agricultural populations. Leveraging 533 ancient human genomes, we find that duplication-containing haplotypes (with more gene copies than the ancestral haplotype) have rapidly increased in frequency over the past 12,000 years in West Eurasians, suggestive of positive selection. Together, our study highlights the potential effects of the agricultural revolution on human genomes and the importance of structural variation in human adaptation.
Collapse
Affiliation(s)
| | - Alma Halgren
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Runyang Nicolas Lou
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | | | - Joana L Rocha
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nicole Soranzo
- Human Technopole, Milan, Italy
- Wellcome Sanger Institute, Hinxton, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Biomedical Campus, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Chen-Shan Chin
- Foundation for Biological Data Science, Belmont, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Peter H Sudmant
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
16
|
Koungoulos LG, Hulme-Beaman A, Fillios M. Phenotypic diversity in early Australian dingoes revealed by traditional and 3D geometric morphometric analysis. Sci Rep 2024; 14:21228. [PMID: 39294146 PMCID: PMC11411105 DOI: 10.1038/s41598-024-65729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/24/2024] [Indexed: 09/20/2024] Open
Abstract
The dingo is a wild dog endemic to Australia with enigmatic origins. Dingoes are one of two remaining unadmixed populations of an early East Asian dog lineage, the other being wild dogs from the New Guinea highlands, but morphological connections between these canid groups have long proved elusive. Here, we investigate this issue through a morphometric study of ancient dingo remains found at Lake Mungo and Lake Milkengay, in western New South Wales. Direct accelerated mass spectrometry (AMS) radiocarbon dates from an ancient Lake Mungo dingo demonstrate that dingoes with a considerably smaller build than the predominant modern morphotype were present in semi-arid southeastern Australia c.3000-3300 calBP. 3D geometric morphometric analysis of a near-complete Mungo cranium finds closest links to East Asian and New Guinean dogs, providing the first morphological evidence of links between early dingoes and their northern relatives. This ancient type is no longer extant within the range of modern dingo variability, but populations from nearby southeastern Australia show a closer resemblance than those to the north and west. Our results reaffirm prior characterisations of regional variability in dingo phenotype as not exclusively derived from recent domestic dog hybridisation but as having an earlier precedent, and suggest further that the dingo's phenotype has changed over time.
Collapse
Affiliation(s)
- Loukas G Koungoulos
- Department of Archaeology, School of Humanities, The University of Sydney, Sydney, Australia.
- Archaeology and Natural History, College of Asia and the Pacific, School of Culture, History and Language, The Australian National University, Canberra, Australia.
- Australian Museum Research Institute, Australian Museum, Sydney, Australia.
| | - Ardern Hulme-Beaman
- Department of Veterinary Anatomy, Physiology and Pathology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Archaeology, Classics and Egyptology, School of Histories, Languages and Cultures, University of Liverpool, Liverpool, UK
| | - Melanie Fillios
- Department of Archaeology, School of Humanities, Arts and Social Sciences, The University of New England, Armidale, Australia
| |
Collapse
|
17
|
Funk MW, Kidd JM. A Variant-Centric Analysis of Allele Sharing in Dogs and Wolves. Genes (Basel) 2024; 15:1168. [PMID: 39336759 PMCID: PMC11431226 DOI: 10.3390/genes15091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Canines are an important model system for genetics and evolution. Recent advances in sequencing technologies have enabled the creation of large databases of genetic variation in canines, but analyses of allele sharing among canine groups have been limited. We applied GeoVar, an approach originally developed to study the sharing of single nucleotide polymorphisms across human populations, to assess the sharing of genetic variation among groups of wolves, village dogs, and breed dogs. Our analysis shows that wolves differ from each other at an average of approximately 2.3 million sites while dogs from the same breed differ at nearly 1 million sites. We found that 22% of the variants are common across wolves, village dogs, and breed dogs, that ~16% of variable sites are common across breed dogs, and that nearly half of the differences between two dogs of different breeds are due to sites that are common in all clades. These analyses represent a succinct summary of allele sharing across canines and illustrate the effects of canine history on the apportionment of genetic variation.
Collapse
Affiliation(s)
- Matthew W. Funk
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Jeffrey M. Kidd
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Smith TA, Srikanth K, Huson HJ. Comparative Population Genomics of Arctic Sled Dogs Reveals a Deep and Complex History. Genome Biol Evol 2024; 16:evae190. [PMID: 39193769 PMCID: PMC11403282 DOI: 10.1093/gbe/evae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent evidence demonstrates genomic and morphological continuity in the Arctic ancestral lineage of dogs. Here, we use the Siberian Husky to investigate the genomic legacy of the northeast Eurasian Arctic lineage and model the deep population history using genome-wide single nucleotide polymorphisms. Utilizing ancient dog-calibrated molecular clocks, we found that at least two distinct lineages of Arctic dogs existed in ancient Eurasia at the end of the Pleistocene. This pushes back the origin of sled dogs in the northeast Siberian Arctic with humans likely intentionally selecting dogs to perform different functions and keeping breeding populations that overlap in time and space relatively reproductively isolated. In modern Siberian Huskies, we found significant population structure based on how they are used by humans, recent European breed introgression in about half of the dogs that participate in races, moderate levels of inbreeding, and fewer potentially harmful variants in populations under strong selection for form and function (show, sled show, and racing populations of Siberian Huskies). As the struggle to preserve unique evolutionary lineages while maintaining genetic health intensifies across pedigreed dogs, understanding the genomic history to guide policies and best practices for breed management is crucial to sustain these ancient lineages and their unique evolutionary identity.
Collapse
Affiliation(s)
- Tracy A Smith
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Heather Jay Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Adams IT, Mourtgos SM, McLean K, Alpert GP. De-fanged. JOURNAL OF EXPERIMENTAL CRIMINOLOGY 2024; 20:695-716. [DOI: 10.1007/s11292-023-09553-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/06/2025]
|
20
|
Susat J, Haller-Caskie M, Bonczarowska JH, da Silva NA, Schierhold K, Rind MM, Schmölcke U, Kirleis W, Sondermann H, Rinne C, Müller J, Nebel A, Krause-Kyora B. Neolithic Yersinia pestis infections in humans and a dog. Commun Biol 2024; 7:1013. [PMID: 39155318 PMCID: PMC11330967 DOI: 10.1038/s42003-024-06676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Yersinia pestis has been infecting humans since the Late Neolithic (LN). Whether those early infections were isolated zoonoses or initiators of a pandemic remains unclear. We report Y. pestis infections in two individuals (of 133) from the LN necropolis at Warburg (Germany, 5300-4900 cal BP). Our analyses show that the two genomes belong to distinct strains and reflect independent infection events. All LN genomes known today (n = 4) are basal in the phylogeny and represent separate lineages that probably originated in different animal hosts. In the LN, an opening of the landscape resulted in the introduction of new rodent species, which may have acted as Y. pestis reservoirs. Coincidentally, the number of dogs increased, possibly leading to Y. pestis infections in canines. Indeed, we detect Y. pestis in an LN dog. Collectively, our data suggest that Y. pestis frequently entered human settlements at the time without causing significant outbreaks.
Collapse
Affiliation(s)
- Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Joanna H Bonczarowska
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | - Ulrich Schmölcke
- Centre for Baltic and Scandinavian Archaeology (ZBSA), Schloss Gottorf, Schleswig, Germany
| | - Wiebke Kirleis
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Holger Sondermann
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Kiel University, Kiel, Germany
| | - Christoph Rinne
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Johannes Müller
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
21
|
Coutinho-Lima D, Dreger DL, Doadrio I, Parker HG, Ghanavi HR, Frantz L, Larson G, Ostrander EA, Godinho R. Multiple ancestries and shared gene flow among modern livestock guarding dogs. iScience 2024; 27:110396. [PMID: 39156647 PMCID: PMC11326944 DOI: 10.1016/j.isci.2024.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Livestock guarding dogs (LGDs) have been used to protect livestock for millennia. While previous works suggested a single origin of modern LGDs, the degree and source of shared ancestry have not been tested. To address this, we generated genome-wide SNP data from 304 LGDs and combined it with public genomic data from 2,183 modern and 22 ancient dogs. Our findings reveal shared ancestry and extensive gene flow among modern LGD breeds which we attribute to historical livestock migrations. Additionally, admixture between LGDs and free-ranging dogs argues against reproductive isolation as a core mechanism for maintaining the specialized skills of LGDs. Finally, we identify two lineages within modern LGDs and uncover multiple ancestries tracing back to distinct Eurasian ancient dogs, concordant with the absence of a single ancestor. Overall, our work explores the complex evolutionary history of LGDs, offering valuable insights into how human and livestock co-migrations shaped this functional group.
Collapse
Affiliation(s)
- Diogo Coutinho-Lima
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS - Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Dayna L. Dreger
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ignacio Doadrio
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Heidi G. Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Laurent Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Faculty of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Greger Larson
- Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- BIOPOLIS - Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
22
|
Souilmi Y, Wasef S, Williams MP, Conroy G, Bar I, Bover P, Dann J, Heiniger H, Llamas B, Ogbourne S, Archer M, Ballard JWO, Reed E, Tobler R, Koungoulos L, Walshe K, Wright JL, Balme J, O’Connor S, Cooper A, Mitchell KJ. Ancient genomes reveal over two thousand years of dingo population structure. Proc Natl Acad Sci U S A 2024; 121:e2407584121. [PMID: 38976766 PMCID: PMC11287250 DOI: 10.1073/pnas.2407584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sally Wasef
- Ancient DNA Facility, Defence Genomics, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Innovation Division, Forensic Science Queensland, Queensland Health, Coopers Plains, QLD4108, Australia
| | - Matthew P. Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD4111, Australia
| | - Pere Bover
- Fundación Agencia Aragonesa para la Investigacióny el Desarrollo (ARAID), Zaragoza50018, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza50009, Spain
| | - Jackson Dann
- Grützner Laboratory of Comparative Genomics, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Holly Heiniger
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, ActonACT2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA5000, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, SydneyNSW2052, Australia
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC3052, Australia
| | - Elizabeth Reed
- Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, AdelaideSA5005, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Acton, ACT2601, Australia
| | - Loukas Koungoulos
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW2010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Keryn Walshe
- School of Anthropology and Archaeology, University of Auckland, Auckland1010, New Zealand
| | - Joanne L. Wright
- Queensland Department of Education, Kelvin Grove State College, Kelvin Grove, QLD4059, Australia
| | - Jane Balme
- School of Social Sciences, University of Western Australia, Crawley, WA6009, Australia
| | - Sue O’Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Alan Cooper
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- Manaaki Whenua—Landcare Research, Lincoln, Canterbury7608, New Zealand
| |
Collapse
|
23
|
Ostrander EA. Dogs and their genes: what ever will they think of next? Genetics 2024; 227:iyae079. [PMID: 39255411 PMCID: PMC12098938 DOI: 10.1093/genetics/iyae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
The Edward Novitski Prize recognizes creativity and intellectual ingenuity in the solution of problems in genetics research. The prize honors scientific experimental work-either a single experimental accomplishment or a body of work. Ostrander is recognized for work developing the domestic dog as an experimental system for solving fundamental biological problems and identifying genetic sequences of relevance to human health and disease. Including work on disease and behavioral health, Ostrander has shown a dedication to creative methods for understanding canine genetics and the value of translating research organisms to human genetics.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Leon-Apodaca AV, Kumar M, del Castillo A, Conroy GC, Lamont RW, Ogbourne S, Cairns KM, Borburgh L, Behrendorff L, Subramanian S, Szpiech ZA. Genomic Consequences of Isolation and Inbreeding in an Island Dingo Population. Genome Biol Evol 2024; 16:evae130. [PMID: 38913571 PMCID: PMC11221432 DOI: 10.1093/gbe/evae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Dingoes come from an ancient canid lineage that originated in East Asia around 8,000 to 11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequence data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole-genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROHs)-indicators of inbreeding-are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.
Collapse
Affiliation(s)
- Ana V Leon-Apodaca
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Manoharan Kumar
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
| | - Andres del Castillo
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabriel C Conroy
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Robert W Lamont
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Kylie M Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Liz Borburgh
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Linda Behrendorff
- Queensland Parks and Wildlife Service, Department of Environment & Science, K’gari, Australia
| | - Sankar Subramanian
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Bougiouri K, Aninta SG, Charlton S, Harris A, Carmagnini A, Piličiauskienė G, Feuerborn TR, Scarsbrook L, Tabadda K, Blaževičius P, Parker HG, Gopalakrishnan S, Larson G, Ostrander EA, Irving-Pease EK, Frantz LA, Racimo F. Imputation of ancient canid genomes reveals inbreeding history over the past 10,000 years. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585179. [PMID: 38903121 PMCID: PMC11188068 DOI: 10.1101/2024.03.15.585179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The multi-millenia long history between dogs and humans has placed them at the forefront of archeological and genomic research. Despite ongoing efforts including the analysis of ancient dog and wolf genomes, many questions remain regarding their geographic and temporal origins, and the microevolutionary processes that led to the diversity of breeds today. Although ancient genomes provide valuable information, their use is hindered by low depth of coverage and post-mortem damage, which inhibits confident genotype calling. In the present study, we assess how genotype imputation of ancient dog and wolf genomes, utilising a large reference panel, can improve the resolution provided by ancient datasets. Imputation accuracy was evaluated by down-sampling high coverage dog and wolf genomes to 0.05-2x coverage and comparing concordance between imputed and high coverage genotypes. We measured the impact of imputation on principal component analyses and runs of homozygosity. Our findings show high (R2>0.9) imputation accuracy for dogs with coverage as low as 0.5x and for wolves as low as 1.0x. We then imputed a dataset of 90 ancient dog and wolf genomes, to assess changes in inbreeding during the last 10,000 years of dog evolution. Ancient dog and wolf populations generally exhibited lower inbreeding levels than present-day individuals. Interestingly, regions with low ROH density maintained across ancient and present-day samples were significantly associated with genes related to olfaction and immune response. Our study indicates that imputing ancient canine genomes is a viable strategy that allows for the use of analytical methods previously limited to high-quality genetic data.
Collapse
Affiliation(s)
- Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alberto Carmagnini
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Giedrė Piličiauskienė
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
| | - Tatiana R. Feuerborn
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lachie Scarsbrook
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabadda
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Povilas Blaževičius
- Department of Archeology, Faculty of History, Vilnius University, Vilnius, Lithuania
- National Museum of Lithuania, Vilnius, Lithuania
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Greger Larson
- The Palaeogenomics and Bio-archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Evan K. Irving-Pease
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent A.F. Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Wang SZ, Yan Y, Widlund M, Qian CC, Zhang LL, Zhang SJ, Li ZM, Cao P, Dai QY, Feng XT, Liu F, Wang L, Gao C, Fu QM, Hytönen MK, Lohi H, Savolainen P, Wang GD. Historic dog Furs Unravel the Origin and Artificial Selection of Modern Nordic Lapphund and Elkhound dog Breeds. Mol Biol Evol 2024; 41:msae108. [PMID: 38842255 PMCID: PMC11226788 DOI: 10.1093/molbev/msae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
The origins and extreme morphological evolution of the modern dog breeds are poorly studied because the founder populations are extinct. Here, we analyse eight 100 to 200 years old dog fur samples obtained from traditional North Swedish clothing, to explore the origin and artificial selection of the modern Nordic Lapphund and Elkhound dog breeds. Population genomic analysis confirmed the Lapphund and Elkhound breeds to originate from the local dog population, and showed a distinct decrease in genetic diversity in agreement with intense breeding. We identified eleven genes under positive selection during the breed development. In particular, the MSRB3 gene, associated with breed-related ear morphology, was selected in all Lapphund and Elkhound breeds, and functional assays showed that a SNP mutation in the 3'UTR region suppresses its expression through miRNA regulation. Our findings demonstrate analysis of near-modern dog artifacts as an effective tool for interpreting the origin and artificial selection of the modern dog breeds.
Collapse
Affiliation(s)
- Shi-Zhi Wang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Malin Widlund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Chen-Chang Qian
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | - Shao-Jie Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zi-Mai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Tian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qiao-Mei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Peter Savolainen
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Guo-Dong Wang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
27
|
Nguyen AK, Blacksmith MS, Kidd JM. Duplications and Retrogenes Are Numerous and Widespread in Modern Canine Genomic Assemblies. Genome Biol Evol 2024; 16:evae142. [PMID: 38946312 PMCID: PMC11259980 DOI: 10.1093/gbe/evae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024] Open
Abstract
Recent years have seen a dramatic increase in the number of canine genome assemblies available. Duplications are an important source of evolutionary novelty and are also prone to misassembly. We explored the duplication content of nine canine genome assemblies using both genome self-alignment and read-depth approaches. We find that 8.58% of the genome is duplicated in the canFam4 assembly, derived from the German Shepherd Dog Mischka, including 90.15% of unplaced contigs. Highlighting the continued difficulty in properly assembling duplications, less than half of read-depth and assembly alignment duplications overlap, but the mCanLor1.2 Greenland wolf assembly shows greater concordance. Further study shows the presence of multiple segments that have alignments to four or more duplicate copies. These high-recurrence duplications correspond to gene retrocopies. We identified 3,892 candidate retrocopies from 1,316 parental genes in the canFam4 assembly and find that ∼8.82% of duplicated base pairs involve a retrocopy, confirming this mechanism as a major driver of gene duplication in canines. Similar patterns are found across eight other recent canine genome assemblies, with metrics supporting a greater quality of the PacBio HiFi mCanLor1.2 assembly. Comparison between the wolf and other canine assemblies found that 92% of retrocopy insertions are shared between assemblies. By calculating the number of generations since genome divergence, we estimate that new retrocopy insertions appear, on average, in 1 out of 3,514 births. Our analyses illustrate the impact of retrogene formation on canine genomes and highlight the variable representation of duplicated sequences among recently completed canine assemblies.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew S Blacksmith
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Boch M, Huber L, Lamm C. Domestic dogs as a comparative model for social neuroscience: Advances and challenges. Neurosci Biobehav Rev 2024; 162:105700. [PMID: 38710423 PMCID: PMC7616343 DOI: 10.1016/j.neubiorev.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Dogs and humans have lived together for thousands of years and share many analogous socio-cognitive skills. Dog neuroimaging now provides insight into the neural bases of these shared social abilities. Here, we summarize key findings from dog fMRI identifying neocortical brain areas implicated in visual social cognition, such as face, body, and emotion perception, as well as action observation in dogs. These findings provide converging evidence that the temporal cortex plays a significant role in visual social cognition in dogs. We further briefly review investigations into the neural base of the dog-human relationship, mainly involving limbic brain regions. We then discuss current challenges in the field, such as statistical power and lack of common template spaces, and how to overcome them. Finally, we argue that the foundation has now been built to investigate and compare the neural bases of more complex socio-cognitive phenomena shared by dogs and humans. This will strengthen and expand the role of the domestic dog as a powerful comparative model species and provide novel insights into the evolutionary roots of social cognition.
Collapse
Affiliation(s)
- Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria.
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna 1210, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna 1010, Austria
| |
Collapse
|
29
|
Zhang M, Song Y, Wang C, Sun G, Zhuang L, Guo M, Ren L, Wangdue S, Dong G, Dai Q, Cao P, Yang R, Liu F, Feng X, Bennett EA, Zhang X, Chen X, Wang F, Luan F, Dong W, Lu G, Hao D, Hou H, Wang H, Qiao H, Wang Z, Hu X, He W, Xi L, Wang W, Shao J, Sun Z, Yue L, Ding Y, Tashi N, Tsho Y, Tong Y, Yang Y, Zhu S, Miao B, Wang W, Zhang L, Hu S, Ni X, Fu Q. Ancient Mitogenomes Reveal the Maternal Genetic History of East Asian Dogs. Mol Biol Evol 2024; 41:msae062. [PMID: 38507661 PMCID: PMC11003542 DOI: 10.1093/molbev/msae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Recent studies have suggested that dogs were domesticated during the Last Glacial Maximum (LGM) in Siberia, which contrasts with previous proposed domestication centers (e.g. Europe, the Middle East, and East Asia). Ancient DNA provides a powerful resource for the study of mammalian evolution and has been widely used to understand the genetic history of domestic animals. To understand the maternal genetic history of East Asian dogs, we have made a complete mitogenome dataset of 120 East Asian canids from 38 archaeological sites, including 102 newly sequenced from 12.9 to 1 ka BP (1,000 years before present). The majority (112/119, 94.12%) belonged to haplogroup A, and half of these (55/112, 49.11%) belonged to sub-haplogroup A1b. Most existing mitochondrial haplogroups were present in ancient East Asian dogs. However, mitochondrial lineages in ancient northern dogs (northeastern Eurasia and northern East Asia) were deeper and older than those in southern East Asian dogs. Results suggests that East Asian dogs originated from northeastern Eurasian populations after the LGM, dispersing in two possible directions after domestication. Western Eurasian (Europe and the Middle East) dog maternal ancestries genetically influenced East Asian dogs from approximately 4 ka BP, dramatically increasing after 3 ka BP, and afterwards largely replaced most primary maternal lineages in northern East Asia. Additionally, at least three major mitogenome sub-haplogroups of haplogroup A (A1a, A1b, and A3) reveal at least two major dispersal waves onto the Qinghai-Tibet Plateau in ancient times, indicating eastern (A1b and A3) and western (A1a) Eurasian origins.
Collapse
Affiliation(s)
- Ming Zhang
- China-Central Asia “the Belt and Road” Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi’an, China
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Yanbo Song
- School of Archaeology, Shandong University, Jinan, China
| | - Caihui Wang
- China-Central Asia “the Belt and Road” Joint Laboratory on Human and Environment Research, Key Laboratory of Cultural Heritage Research and Conservation, School of Culture Heritage, Northwest University, Xi’an, China
| | - Guoping Sun
- Zhejiang Provincial Institute of Cultural Relics and Archaeology, Hangzhou, China
| | | | | | - Lele Ren
- School of History and Culture, Lanzhou University, Lanzhou, China
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- Department of Cultural Heritage and Museology, Nanjing Normal University, Nanjing, China
| | - Fen Wang
- School of Archaeology, Shandong University, Jinan, China
| | - Fengshi Luan
- School of Archaeology, Shandong University, Jinan, China
| | - Wenbin Dong
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Guoquan Lu
- School of Archaeology, Shandong University, Jinan, China
| | - Daohua Hao
- Shandong Provincial Institute of Cultural Relics and Archaeology, Jinan, China
| | - Hongwei Hou
- Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou, China
| | - Hui Wang
- Gansu Provincial Institute of Cultural Relics and Archaeology, Lanzhou, China
- Fudan Archaeological Science Institute, Fudan University, Shanghai, China
| | - Hong Qiao
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining, China
| | - Zhongxin Wang
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining, China
| | - Xiaojun Hu
- Qinghai Provincial Cultural Relics and Archaeology Institute, Xining, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Lin Xi
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Weilin Wang
- School of Archaeology and Museology, Shanxi University, Taiyuan, China
| | - Jing Shao
- Shaanxi Academy of Archaeology, Xi’an, China
| | | | | | - Yan Ding
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Yang Tsho
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa, China
| | - Yangheshan Yang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bo Miao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- Science and Technology Archaeology, National Centre for Archaeology, Beijing, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Songmei Hu
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, China
- Shaanxi Academy of Archaeology, Xi’an, China
| | - Xijun Ni
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Abbona CC, Lebrasseur O, Prevosti FJ, Peralta E, González Venanzi L, Frantz L, Larson G, Gil AF, Neme GA. Patagonian partnerships: the extinct Dusicyon avus and its interaction with prehistoric human communities. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231835. [PMID: 38601034 PMCID: PMC11004678 DOI: 10.1098/rsos.231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
The southern Mendoza province, located in the northern region of Patagonia, was inhabited by hunter-gatherer groups until historic times. Previous archaeological studies have reported canid remains among faunal assemblages, which were assumed to be part of the human diet. However, the taxonomic identification and significance of these canids within human groups have raised questions. In this study, we used ancient DNA analysis, morphological examination and stable isotope analysis (δ13Ccol and δ15N) to re-evaluate the taxonomic assignment of a canid discovered at the Late Holocene burial site of Cañada Seca. Previous morphological identifications suggested that it belonged to the genus Lycalopex, but our results conclusively demonstrate that the individual belongs to the extinct fox species Dusicyon avus. This finding expands Dusicyon avus' known geographical distribution to Patagonia's northern extremity. Furthermore, statistical predictions based on genetic divergence undermine the hypothesis that hybridization between Canis and Dusicyon, facilitated by the introduction of domestic dogs, played a role in the extinction of Dusicyon species. On the other hand, our findings indicate that a Dusicyon avus individual shared a similar diet and was probably buried alongside humans, suggesting a close relationship between the two species during their lives and deaths.
Collapse
Affiliation(s)
- Cinthia C. Abbona
- Instituto de Evolución, Ecología Histórica y Ambiente (IDEVEA), UTN-CONICET, Avenue Gral. Urquiza 314, CP5600, San Rafael, Mendoza, Argentina
| | - Ophélie Lebrasseur
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, OxfordOX1 3TG, UK
| | - Francisco J. Prevosti
- Museo de Ciencias Antropológicas y Naturales, Universidad Nacional de La Rioja (UNLaR), Avenue Luis M. de la Fuente S/N, La Rioja5300, Argentina
| | - Eva Peralta
- Instituto de Evolución, Ecología Histórica y Ambiente (IDEVEA), UTN-CONICET, Avenue Gral. Urquiza 314, CP5600, San Rafael, Mendoza, Argentina
| | - Lucio González Venanzi
- Div. Arqueología, Anexo Museo, Laboratory 128 (FCNyM-UNLP), La Plata, Argentina, FHumyAr (UNR), Rosario, Argentina
| | - Laurent Frantz
- Graduate School Life Science Munich, Faculty of Biology/Biocenter, Grosshadernerstr, 2-4, 82152 Planegg-Martinsried, Munich, Germany
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, OxfordOX1 3TG, UK
| | - Adolfo F. Gil
- Instituto de Evolución, Ecología Histórica y Ambiente (IDEVEA), UTN-CONICET, Avenue Gral. Urquiza 314, CP5600, San Rafael, Mendoza, Argentina
| | - Gustavo A. Neme
- Instituto de Evolución, Ecología Histórica y Ambiente (IDEVEA), UTN-CONICET, Avenue Gral. Urquiza 314, CP5600, San Rafael, Mendoza, Argentina
| |
Collapse
|
31
|
Leon-Apodaca AV, Kumar M, del Castillo A, Conroy GC, Lamont RW, Ogbourne S, Cairns KM, Borburgh L, Behrendorff L, Subramanian S, Szpiech ZA. Genomic consequences of isolation and inbreeding in an island dingo population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557950. [PMID: 37745583 PMCID: PMC10516007 DOI: 10.1101/2023.09.15.557950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Dingoes come from an ancient canid lineage that originated in East Asia around 8000-11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequencing data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROH) - indicators of inbreeding - are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.
Collapse
Affiliation(s)
| | - Manoharan Kumar
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
| | | | - Gabriel C. Conroy
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Robert W Lamont
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Kylie M. Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney NSW 2052, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Liz Borburgh
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Linda Behrendorff
- Queensland Parks and Wildlife Service, Department of Environment & Science, K’gari, Australia
| | - Sankar Subramanian
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Zachary A. Szpiech
- Department of Biology, Pennsylvania State University, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, PA, USA
| |
Collapse
|
32
|
Amici F, Meacci S, Caray E, Oña L, Liebal K, Ciucci P. A first exploratory comparison of the behaviour of wolves (Canis lupus) and wolf-dog hybrids in captivity. Anim Cogn 2024; 27:9. [PMID: 38429445 PMCID: PMC10907477 DOI: 10.1007/s10071-024-01849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 03/03/2024]
Abstract
Extensive introgression of genes from domesticated taxa may be a serious threat for the genomic integrity and adaptability of wild populations. Grey wolves (Canis lupus) are especially vulnerable to this phenomenon, but there are no studies yet assessing the potential behavioural effects of dog-introgression in wolves. In this study, we conducted a first systematic comparison of admixed (N = 11) and non-admixed (N = 14) wolves in captivity, focusing on their reaction to unfamiliar humans and novel objects, and the cohesiveness of their social groups. When exposed to unfamiliar humans in the experimental task, wolves were more vigilant, fearful and aggressive than admixed wolves, and less likely to approach humans, but also more likely to spend time in human proximity. When exposed to novel objects, wolves were more aggressive than admixed wolves, less likely to spend time in object proximity, and more likely to interact with objects, but also less vigilant and as fearful as admixed wolves. Finally, social networks were more cohesive in wolves than in admixed wolves. Although caution is needed when comparing groups of captive individuals with different life experiences, our study suggests that dog admixture may lead to important behavioural changes in wolves, with possible implications for conservation strategies.
Collapse
Affiliation(s)
- Federica Amici
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany.
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Simone Meacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Emmeline Caray
- Department of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Linda Oña
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany
| | - Katja Liebal
- Life Sciences, Institute for Biology, Human Biology and Primate Cognition, Leipzig University, Leipzig, Germany
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paolo Ciucci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Simon A, Coop G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. Proc Natl Acad Sci U S A 2024; 121:e2312377121. [PMID: 38363870 PMCID: PMC10907250 DOI: 10.1073/pnas.2312377121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Genomic time series from experimental evolution studies and ancient DNA datasets offer us a chance to directly observe the interplay of various evolutionary forces. We show how the genome-wide variance in allele frequency change between two time points can be decomposed into the contributions of gene flow, genetic drift, and linked selection. In closed populations, the contribution of linked selection is identifiable because it creates covariances between time intervals, and genetic drift does not. However, repeated gene flow between populations can also produce directionality in allele frequency change, creating covariances. We show how to accurately separate the fraction of variance in allele frequency change due to admixture and linked selection in a population receiving gene flow. We use two human ancient DNA datasets, spanning around 5,000 y, as time transects to quantify the contributions to the genome-wide variance in allele frequency change. We find that a large fraction of genome-wide change is due to gene flow. In both cases, after correcting for known major gene flow events, we do not observe a signal of genome-wide linked selection. Thus despite the known role of selection in shaping long-term polymorphism levels, and an increasing number of examples of strong selection on single loci and polygenic scores from ancient DNA, it appears to be gene flow and drift, and not selection, that are the main determinants of recent genome-wide allele frequency change. Our approach should be applicable to the growing number of contemporary and ancient temporal population genomics datasets.
Collapse
Affiliation(s)
- Alexis Simon
- Center for Population Biology, University of California, Davis, CA95616
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA95616
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
34
|
Gojobori J, Arakawa N, Xiaokaiti X, Matsumoto Y, Matsumura S, Hongo H, Ishiguro N, Terai Y. Japanese wolves are most closely related to dogs and share DNA with East Eurasian dogs. Nat Commun 2024; 15:1680. [PMID: 38396028 PMCID: PMC10891106 DOI: 10.1038/s41467-024-46124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Although the domestic dog's origin is still unclear, this lineage is believed to have been domesticated from an extinct population of gray wolves, which is expected to be more closely related to dogs than to other populations of gray wolves. Here, we sequence the whole genomes of nine Japanese wolves (7.5-100x: Edo to Meiji periods) and 11 modern Japanese dogs and analyze them together with those from other populations of dogs and wolves. A phylogenomic tree shows that, among the gray wolves, Japanese wolves are closest to the dog, suggesting that the ancestor of dogs is closely related to the ancestor of the Japanese wolf. Based on phylogenetic and geographic relationships, the dog lineage has most likely originated in East Asia, where it diverged from a common ancestor with the Japanese wolf. Since East Eurasian dogs possess Japanese wolf ancestry, we estimate an introgression event from the ancestor of the Japanese wolf to the ancestor of the East Eurasian dog that occurred before the dog's arrival in the Japanese archipelago.
Collapse
Affiliation(s)
- Jun Gojobori
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Nami Arakawa
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Xiayire Xiaokaiti
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute, Naka-ku, Chojamachi, Yokohama, 231-0033, Japan
| | - Shuichi Matsumura
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Hitomi Hongo
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Naotaka Ishiguro
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan.
| | - Yohey Terai
- SOKENDAI (The Graduate University for Advanced Studies), Research Center for Integrative Evolutionary Science, Shonan Village, Hayama, Kanagawa, 240-0193, Japan.
| |
Collapse
|
35
|
Janák V, Novák K, Kyselý R. Late History of Cattle Breeds in Central Europe in Light of Genetic and Archaeogenetic Sources-Overview, Thoughts, and Perspectives. Animals (Basel) 2024; 14:645. [PMID: 38396613 PMCID: PMC10886113 DOI: 10.3390/ani14040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Although Europe was not a primary centre of cattle domestication, its expansion from the Middle East and subsequent development created a complex pattern of cattle breed diversity. Many isolated populations of local historical breeds still carry the message about the physical and genetic traits of ancient populations. Since the way of life of human communities starting from the eleventh millennium BP was strongly determined by livestock husbandry, the knowledge of cattle diversity through the ages is helpful in the interpretation of many archaeological findings. Historical cattle diversity is currently at the intersection of two leading directions of genetic research. Firstly, it is archaeogenetics attempting to recover and interpret the preserved genetic information directly from archaeological finds. The advanced archaeogenetic approaches meet with the population genomics of extant cattle populations. The immense amount of genetic information collected from living cattle, due to its key economic role, allows for reconstructing the genetic profiles of the ancient populations backwards. The present paper aims to place selected archaeogenetic, genetic, and genomic findings in the picture of cattle history in Central Europe, as suggested by archaeozoological and historical records. Perspectives of the methodical connection between the genetic approaches and the approaches of traditional archaeozoology, such as osteomorphology and osteometry, are discussed. The importance, actuality, and effectiveness of combining different approaches to each archaeological find, such as morphological characterization, interpretation of the historical context, and molecular data, are stressed.
Collapse
Affiliation(s)
- Vojtěch Janák
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, 118 00 Praha, Czech Republic
- Department of Genetics and Breeding, Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic;
- Department of Archaeology, Faculty of Arts, Charles University, Nám. Jana Palacha 2, 116 38 Praha, Czech Republic
| | - Karel Novák
- Department of Genetics and Breeding, Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic;
| | - René Kyselý
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Letenská 4, 118 00 Praha, Czech Republic
| |
Collapse
|
36
|
McCartney JM, Leavens DA. The Role of Life History and Familiarity in Performance of Working and Non-Working Dogs ( Canis lupus familiaris) in a Point-Following Task. Animals (Basel) 2024; 14:573. [PMID: 38396541 PMCID: PMC10885941 DOI: 10.3390/ani14040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Domestic dogs are very successful at following human communicative gestures in paradigms such as the object-choice task. Pet dogs also prefer responding to cues given by a familiar cue-giver and this had not been found in working dogs. Therefore, we tested three groups of dogs in the object-choice task (n = 54): the groups were "Actively working" dogs from working dog breeds, pet dogs from "Non-working breeds" and pet dogs from "Working breeds". We found that "Actively working" and "Working breeds" dog groups outperformed "Non-working breeds" in following a point in the object-choice task. We also found that both "Actively working" and "Working breeds" preferred a familiar cue-giver over an unfamiliar one, in contrast to previous findings. Therefore, we conclude that dogs' abilities to perform well in the object-choice task is influenced by the selective history of the breed, and this is then increased by life experience and training.
Collapse
|
37
|
Lamontagne A, Gaunet F. Behavioural Synchronisation between Dogs and Humans: Unveiling Interspecific Motor Resonance? Animals (Basel) 2024; 14:548. [PMID: 38396516 PMCID: PMC10886274 DOI: 10.3390/ani14040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Dogs' behavioural synchronisation with humans is of growing scientific interest. However, studies lack a comprehensive exploration of the neurocognitive foundations of this social cognitive ability. Drawing parallels from the mechanisms underlying behavioural synchronisation in humans, specifically motor resonance and the recruitment of mirror neurons, we hypothesise that dogs' behavioural synchronisation with humans is underpinned by a similar mechanism, namely interspecific motor resonance. Based on a literature review, we argue that dogs possess the prerequisites for motor resonance, and we suggest that interspecific behavioural synchronisation relies on the activation of both human and canine mirror neurons. Furthermore, interspecific behavioural studies highlight certain characteristics of motor resonance, including motor contagion and its social modulators. While these findings strongly suggest the potential existence of interspecific motor resonance, direct proof remains to be established. Our analysis thus paves the way for future research to confirm the existence of interspecific motor resonance as the neurocognitive foundation for interspecific behavioural synchronisation. Unravelling the neurocognitive mechanisms underlying this behavioural adjustment holds profound implications for understanding the evolutionary dynamics of dogs alongside humans and improving the day-to-day management of dog-human interactions.
Collapse
Affiliation(s)
- Angélique Lamontagne
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
- Association Agir pour la Vie Animale (AVA), 76220 Cuy-Saint-Fiacre, France
| | - Florence Gaunet
- Centre de Recherche en Psychologie et Neuroscience (UMR 7077), Aix-Marseille University, Centre National de la Recherche Scientifique, 3 Place Victor Hugo, 13331 Marseille, Cedex 03, France
| |
Collapse
|
38
|
McKeague B, Finlay C, Rooney N. Conservation detection dogs: A critical review of efficacy and methodology. Ecol Evol 2024; 14:e10866. [PMID: 38371867 PMCID: PMC10869951 DOI: 10.1002/ece3.10866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024] Open
Abstract
Conservation detection dogs (CDD) use their exceptional olfactory abilities to assist a wide range of conservation projects through the detection of target specimens or species. CDD are generally quicker, can cover wider areas and find more samples than humans and other analytical tools. However, their efficacy varies between studies; methodological and procedural standardisation in the field is lacking. Considering the cost of deploying a CDD team and the limited financial resources within conservation, it is vital that their performance is quantified and reliable. This review aims to summarise what is currently known about the use of scent detection dogs in conservation and elucidate which factors affect efficacy. We describe the efficacy of CDD across species and situational contexts like training and fieldwork. Reported sensitivities (i.e. the proportion of target samples found out of total available) ranged from 23.8% to 100% and precision rates (i.e. proportion of alerts that are true positives) from 27% to 100%. CDD are consistently shown to be better than other techniques, but performance varies substantially across the literature. There is no consistent difference in efficacy between training, testing and fieldwork, hence we need to understand the factors affecting this. We highlight the key variables that can alter CDD performance. External effects include target odour, training methods, sample management, search methodology, environment and the CDD handler. Internal effects include dog breed, personality, diet, age and health. Unfortunately, much of the research fails to provide adequate information on the dogs, handlers, training, experience and samples. This results in an inability to determine precisely why an individual study has high or low efficacy. It is clear that CDDs can be effective and applied to possibly limitless conservation scenarios, but moving forward researchers must provide more consistent and detailed methodologies so that comparisons can be conducted, results are more easily replicated and progress can be made in standardising CDD work.
Collapse
Affiliation(s)
- Beth McKeague
- School of Biological SciencesQueen's University BelfastBelfastUK
| | | | - Nicola Rooney
- Bristol Veterinary SchoolUniversity of BristolBristolUK
| |
Collapse
|
39
|
Simon A, Coop G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.548607. [PMID: 37503227 PMCID: PMC10370008 DOI: 10.1101/2023.07.11.548607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genomic time series from experimental evolution studies and ancient DNA datasets offer us a chance to directly observe the interplay of various evolutionary forces. We show how the genome-wide variance in allele frequency change between two time points can be decomposed into the contributions of gene flow, genetic drift, and linked selection. In closed populations, the contribution of linked selection is identifiable because it creates covariances between time intervals, and genetic drift does not. However, repeated gene flow between populations can also produce directionality in allele frequency change, creating covariances. We show how to accurately separate the fraction of variance in allele frequency change due to admixture and linked selection in a population receiving gene flow. We use two human ancient DNA datasets, spanning around 5,000 years, as time transects to quantify the contributions to the genome-wide variance in allele frequency change. We find that a large fraction of genome-wide change is due to gene flow. In both cases, after correcting for known major gene flow events, we do not observe a signal of genome-wide linked selection. Thus despite the known role of selection in shaping long-term polymorphism levels, and an increasing number of examples of strong selection on single loci and polygenic scores from ancient DNA, it appears to be gene flow and drift, and not selection, that are the main determinants of recent genome-wide allele frequency change. Our approach should be applicable to the growing number of contemporary and ancient temporal population genomics datasets.
Collapse
Affiliation(s)
- Alexis Simon
- Center for Population Biology, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| |
Collapse
|
40
|
Wu G. Recent Advances in the Nutrition and Metabolism of Dogs and Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1446:1-14. [PMID: 38625522 DOI: 10.1007/978-3-031-54192-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Domestic dogs (facultative carnivores) and cats (obligate carnivores) have been human companions for at least 12,000 and 9000 years, respectively. These animal species have a relatively short digestive tract but a large stomach volume and share many common features of physiological processes, intestinal microbes, and nutrient metabolism. The taste buds of the canine and feline tongues can distinguish sour, umami, bitter, and salty substances. Dogs, but not cats, possess sweet receptors. α-Amylase activity is either absent or very low in canine and feline saliva, and is present at low or substantial levels in the pancreatic secretions of cats or dogs, respectively. Thus, unlike cats, dogs have adapted to high-starch rations while also consuming animal-sourced foods. At metabolic levels, both dogs and cats synthesize de novo vitamin C and many amino acids (AAs, such as Ala, Asn, Asp, Glu, Gln, Gly, Pro, and Ser) but have a very limited ability to form vitamin D3. Compared with dogs, cats have higher requirements for AAs, some B-complex vitamins, and choline; greater rates of gluconeogenesis; a higher capacity to tolerate AA imbalances and antagonism; a more limited ability to synthesize arginine and taurine from glutamine/proline and cysteine, respectively; and a very limited ability to generate polyunsaturated fatty acids (PUFAs) from respective substrates. Unlike dogs, cats cannot convert either β-carotene into vitamin A or tryptophan into niacin. Dogs can thrive on one large meal daily and select high-fat over low-fat diets, whereas cats eat more frequently during light and dark periods and select high-protein over low-protein diets. There are increasing concerns over the health of skin, hair, bone, and joints (specialized connective tissues containing large amounts of collagen and/or keratin); sarcopenia (age-related losses of skeletal-muscle mass and function); and cognitive function in dogs and cats. Sufficient intakes of proteinogenic AAs and taurine along with vitamins, minerals, and PUFAs are crucial for the normal structures of the skin, hair, bone, and joints, while mitigating sarcopenia and cognitive dysfunction. Although pet owners may have different perceptions about the feeding and management practice of their dogs and cats, the health and well-being of the companion animals critically depend on safe, balanced, and nutritive foods. The new knowledge covered in this volume of Adv Exp Med Biol is essential to guide the formulation of pet foods to improve the growth, development, brain function, reproduction, lactation, and health of the companion animals.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
41
|
Petr M, Haller BC, Ralph PL, Racimo F. slendr: a framework for spatio-temporal population genomic simulations on geographic landscapes. PEER COMMUNITY JOURNAL 2023; 3:e121. [PMID: 38984034 PMCID: PMC11233137 DOI: 10.24072/pcjournal.354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
One of the goals of population genetics is to understand how evolutionary forces shape patterns of genetic variation over time. However, because populations evolve across both time and space, most evolutionary processes also have an important spatial component, acting through phenomena such as isolation by distance, local mate choice, or uneven distribution of resources. This spatial dimension is often neglected, partly due to the lack of tools specifically designed for building and evaluating complex spatio-temporal population genetic models. To address this methodological gap, we present a new framework for simulating spatially-explicit genomic data, implemented in a new R package called slendr (www.slendr.net), which leverages a SLiM simulation back-end script bundled with the package. With this framework, the users can programmatically and visually encode spatial population ranges and their temporal dynamics (i.e., population displacements, expansions, and contractions) either on real Earth landscapes or on abstract custom maps, and schedule splits and gene-flow events between populations using a straightforward declarative language. Additionally, slendr can simulate data from traditional, non-spatial models, either with SLiM or using an alternative built-in coalescent msprime back end. Together with its R-idiomatic interface to the tskit library for tree-sequence processing and analysis, slendr opens up the possibility of performing efficient, reproducible simulations of spatio-temporal genomic data entirely within the R environment, leveraging its wealth of libraries for geospatial data analysis, statistics, and visualization. Here, we present the design of the slendr R package and demonstrate its features on several practical example workflows.
Collapse
Affiliation(s)
- Martin Petr
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Denmark
| |
Collapse
|
42
|
Lin AT, Hammond-Kaarremaa L, Liu HL, Stantis C, McKechnie I, Pavel M, Pavel SSM, Wyss SSÁ, Sparrow DQ, Carr K, Aninta SG, Perri A, Hartt J, Bergström A, Carmagnini A, Charlton S, Dalén L, Feuerborn TR, France CAM, Gopalakrishnan S, Grimes V, Harris A, Kavich G, Sacks BN, Sinding MHS, Skoglund P, Stanton DWG, Ostrander EA, Larson G, Armstrong CG, Frantz LAF, Hawkins MTR, Kistler L. The history of Coast Salish "woolly dogs" revealed by ancient genomics and Indigenous Knowledge. Science 2023; 382:1303-1308. [PMID: 38096292 PMCID: PMC7615573 DOI: 10.1126/science.adi6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance.
Collapse
Affiliation(s)
- Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Liz Hammond-Kaarremaa
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Vancouver Island University, Nanaimo, BC, Canada
| | - Hsiao-Lei Liu
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Chris Stantis
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
| | - Michael Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
| | - Susan sa'hLa mitSa Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
- Coast Salish Wool Weaving Center, Skokomish Nation, WA, USA
- The Evergreen State College, Olympia, WA, USA
| | | | | | | | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angela Perri
- Department of Anthropology, Texas A&M University, College Station, TX, USA
- Chronicle Heritage, Phoenix, AZ, USA
| | - Jonathan Hartt
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sophy Charlton
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gwénaëlle Kavich
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Greger Larson
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
| | - Chelsey G Armstrong
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
43
|
Jamieson A, Carmagnini A, Howard-McCombe J, Doherty S, Hirons A, Dimopoulos E, Lin AT, Allen R, Anderson-Whymark H, Barnett R, Batey C, Beglane F, Bowden W, Bratten J, De Cupere B, Drew E, Foley NM, Fowler T, Fox A, Geigl EM, Gotfredsen AB, Grange T, Griffiths D, Groß D, Haruda A, Hjermind J, Knapp Z, Lebrasseur O, Librado P, Lyons LA, Mainland I, McDonnell C, Muñoz-Fuentes V, Nowak C, O'Connor T, Peters J, Russo IRM, Ryan H, Sheridan A, Sinding MHS, Skoglund P, Swali P, Symmons R, Thomas G, Trolle Jensen TZ, Kitchener AC, Senn H, Lawson D, Driscoll C, Murphy WJ, Beaumont M, Ottoni C, Sykes N, Larson G, Frantz L. Limited historical admixture between European wildcats and domestic cats. Curr Biol 2023; 33:4751-4760.e14. [PMID: 37935117 DOI: 10.1016/j.cub.2023.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 11/09/2023]
Abstract
Domestic cats were derived from the Near Eastern wildcat (Felis lybica), after which they dispersed with people into Europe. As they did so, it is possible that they interbred with the indigenous population of European wildcats (Felis silvestris). Gene flow between incoming domestic animals and closely related indigenous wild species has been previously demonstrated in other taxa, including pigs, sheep, goats, bees, chickens, and cattle. In the case of cats, a lack of nuclear, genome-wide data, particularly from Near Eastern wildcats, has made it difficult to either detect or quantify this possibility. To address these issues, we generated 75 ancient mitochondrial genomes, 14 ancient nuclear genomes, and 31 modern nuclear genomes from European and Near Eastern wildcats. Our results demonstrate that despite cohabitating for at least 2,000 years on the European mainland and in Britain, most modern domestic cats possessed less than 10% of their ancestry from European wildcats, and ancient European wildcats possessed little to no ancestry from domestic cats. The antiquity and strength of this reproductive isolation between introduced domestic cats and local wildcats was likely the result of behavioral and ecological differences. Intriguingly, this long-lasting reproductive isolation is currently being eroded in parts of the species' distribution as a result of anthropogenic activities.
Collapse
Affiliation(s)
- Alexandra Jamieson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK; Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK
| | - Jo Howard-McCombe
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, UK; RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, EH12 6TS Edinburgh, UK
| | - Sean Doherty
- Department of Archaeology, University of Exeter, EX4 4QE Exeter, UK
| | - Alexandra Hirons
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Evangelos Dimopoulos
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK; Department of Veterinary Medicine, University of Cambridge, CB3 0ES Cambridge, UK
| | - Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Richard Allen
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Hugo Anderson-Whymark
- Department of Scottish History and Archaeology, National Museums Scotland, EH1 1JF Edinburgh, UK
| | - Ross Barnett
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Colleen Batey
- Institute for Northern Studies, University of the Highlands and Islands, KW15 1FL Kirkwall, UK; Department of Archaeology, University of Durham, DH1 3LE Durham, UK
| | - Fiona Beglane
- CERIS, School of Science, Atlantic Technological University, F91 YW50 Sligo, Ireland
| | - Will Bowden
- Department of Classics and Archaeology, University of Nottingham, NG7 2RD Nottingham, UK
| | - John Bratten
- Department of Anthropology, University of West Florida, Pensacola, FL 32514, USA
| | - Bea De Cupere
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Ellie Drew
- York Archaeological Trust, YO1 7BX York, UK
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Tom Fowler
- Department of Classics and Archaeology, University of Nottingham, NG7 2RD Nottingham, UK
| | - Allison Fox
- Manx National Heritage, Manx Museum, IM1 3LY Douglas, Isle of Man
| | - Eva-Maria Geigl
- Université Paris-Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Thierry Grange
- Université Paris-Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - David Griffiths
- Department for Continuing Education, University of Oxford, OX1 2JA Oxford, UK
| | - Daniel Groß
- Museum Lolland-Falster, 4800 Nykøbing Falster, Denmark
| | - Ashleigh Haruda
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | | | - Zoe Knapp
- Department of Archaeology, University of Reading, RG6 6AB Reading, UK
| | - Ophélie Lebrasseur
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Universite de Toulouse, Universite Paul Sabatier, 31000 Toulouse, France; The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Pablo Librado
- Centre for Anthropobiology and Genomics of Toulouse, CNRS UMR 5288, Universite de Toulouse, Universite Paul Sabatier, 31000 Toulouse, France
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Ingrid Mainland
- UHI Archaeology Institute, University of the Highlands and Islands, Orkney, Scotland
| | | | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD Cambridge, UK
| | - Carsten Nowak
- Centre for Wildlife Genetics & LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Terry O'Connor
- BioArCh, Department of Archaeology, University of York, YO10 5DD York, UK
| | - Joris Peters
- SNSB, State Collection of Palaeoanatomy Munich, 85586 Poing, Germany; Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | | | - Hannah Ryan
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK
| | - Alison Sheridan
- Department of Scottish History and Archaeology, National Museums Scotland, EH1 1JF Edinburgh, UK
| | | | | | - Pooja Swali
- The Francis Crick Institute, NW1 1AT London, UK
| | | | - Gabor Thomas
- Department of Archaeology, University of Reading, RG6 6AB Reading, UK
| | - Theis Zetner Trolle Jensen
- Section for Molecular Ecology and Evolution, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, EH1 1JF Edinburgh, UK; School of Geosciences, University of Edinburgh, EH8 9XP Edinburgh, UK
| | - Helen Senn
- RZSS WildGenes Laboratory, Royal Zoological Society of Scotland, EH12 6TS Edinburgh, UK
| | - Daniel Lawson
- School of Mathematics, University of Bristol, BS8 1UG Bristol, UK
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Mark Beaumont
- School of Biological Sciences, University of Bristol, BS8 1TQ Bristol, UK
| | - Claudio Ottoni
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Naomi Sykes
- Department of Archaeology, University of Exeter, EX4 4QE Exeter, UK
| | - Greger Larson
- The Palaeogenomics & Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, OX1 3TG Oxford, UK.
| | - Laurent Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, 80539 Munich, Germany; School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK.
| |
Collapse
|
44
|
Granado J, Susat J, Gerling C, Schernig-Mráz M, Schlumbaum A, Deschler-Erb S, Krause-Kyora B. A melting pot of Roman dogs north of the Alps with high phenotypic and genetic diversity and similar diets. Sci Rep 2023; 13:17389. [PMID: 37833364 PMCID: PMC10575936 DOI: 10.1038/s41598-023-44060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Several dog skeletons were excavated at the Roman town of Augusta Raurica and at the military camp of Vindonissa, located in the northern Alpine region of Switzerland (Germania Superior). The relationships between them and the people, the nature of their lives, and the circumstances of their deaths are unclear. In order to gain insight into this dog population, we collected 31 dogs deposited almost simultaneously in two wells (second half of the third century CE), three dogs from burial contexts (70-200 CE and third to fifth century CE) at Augusta Raurica, and two dogs from burial contexts at Vindonissa (ca. first century CE). We detected a mixed population of young and adult dogs including small, medium and large sized individuals. Three small dogs had conspicuous phenotypes: abnormally short legs, and one with a brachycephalic skull. Stable isotope analysis of a subset of the dogs showed that their diets were omnivorous with a substantial input of animal proteins and little variation, except one with a particularly low δ15N value, indicating a diet low in animal proteins. Partial mitochondrial DNA sequences from 25 dogs revealed eight haplotypes within canine haplogroup A (11 dogs; 44%; 5 haplotypes), C (8 dogs; 32%; 1 haplotype), D (4 dogs, 16%; 1 haplotype) and B (2 dogs, 8%; 1 haplotype). Based on shotgun sequencing, four Roman mitogenomes were assembled, representing sub-haplogroups A1b3, A1b2 and C2. No canine pathogens were identified, weakening the assumption of infectious disease as a cause for dog disposal. The genetic and morphological diversity observed in dogs of Augusta Raurica and Vindonissa is similar to modern dog diversity.
Collapse
Affiliation(s)
- José Granado
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Julian Susat
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| | - Claudia Gerling
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Monika Schernig-Mráz
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Angela Schlumbaum
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland
| | - Sabine Deschler-Erb
- Department Environmental Science, Integrative Prehistory and Archaeological Science (IPAS), University of Basel, Spalenring 145, 4055, Basel, Switzerland.
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Rosalind-Franklin-Strasse 12, 24105, Kiel, Germany
| |
Collapse
|
45
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
46
|
Flegontov P, Işıldak U, Maier R, Yüncü E, Changmai P, Reich D. Modeling of African population history using f-statistics is biased when applying all previously proposed SNP ascertainment schemes. PLoS Genet 2023; 19:e1010931. [PMID: 37676865 PMCID: PMC10508636 DOI: 10.1371/journal.pgen.1010931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 09/19/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.
Collapse
Affiliation(s)
- Pavel Flegontov
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Russia
| | - Ulaş Işıldak
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Robert Maier
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
47
|
Ciucani MM, Ramos-Madrigal J, Hernández-Alonso G, Carmagnini A, Aninta SG, Sun X, Scharff-Olsen CH, Lanigan LT, Fracasso I, Clausen CG, Aspi J, Kojola I, Baltrūnaitė L, Balčiauskas L, Moore J, Åkesson M, Saarma U, Hindrikson M, Hulva P, Bolfíková BČ, Nowak C, Godinho R, Smith S, Paule L, Nowak S, Mysłajek RW, Lo Brutto S, Ciucci P, Boitani L, Vernesi C, Stenøien HK, Smith O, Frantz L, Rossi L, Angelici FM, Cilli E, Sinding MHS, Gilbert MTP, Gopalakrishnan S. The extinct Sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience 2023; 26:107307. [PMID: 37559898 PMCID: PMC10407145 DOI: 10.1016/j.isci.2023.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/04/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.
Collapse
Affiliation(s)
- Marta Maria Ciucani
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jazmín Ramos-Madrigal
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Germán Hernández-Alonso
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Carmagnini
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sabhrina Gita Aninta
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Xin Sun
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ilaria Fracasso
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Cecilie G. Clausen
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jouni Aspi
- Ecology and Genetics Research Unit, University of Oulu, Finland
| | - Ilpo Kojola
- Natural Resources Institute Finland, Rovaniemi, Finland
| | | | | | - Jane Moore
- Società Amatori Cirneco dell’Etna, Modica (RG), Italy
| | - Mikael Åkesson
- Swedish University of Agricultural Sciences, Grimsö Wildlife Research Station, Department of Ecology, Riddarhyttan, Sweden
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Maris Hindrikson
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pavel Hulva
- Charles University, Department of Zoology, Faculty of Science, Prague 2, Czech Republic
| | | | - Carsten Nowak
- Center for Wildlife Genetics, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Raquel Godinho
- CIBIO/InBIO, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Ladislav Paule
- Faculty of Forestry, Technical University, Zvolen, Slovakia
| | - Sabina Nowak
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Robert W. Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Biological and Chemical Research Centre, Warszawa, Poland
| | - Sabrina Lo Brutto
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
- Museum of Zoology "P. Doderlein", SIMUA, University of Palermo, Palermo, Italy
| | - Paolo Ciucci
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Luigi Boitani
- Università di Roma La Sapienza, Department Biology and Biotechnologies "Charles Darwin", Roma, Italy
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | - Hans K. Stenøien
- NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oliver Smith
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Laurent Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, Munich, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | | | - Francesco Maria Angelici
- FIZV, Via Marco Aurelio 2, Roma, Italy
- National Center for Wildlife, Al Imam Faisal Ibn Turki Ibn Abdullah, Ulaishah, Saudi Arabia
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural Heritage (DBC), University of Bologna, Bologna, Italy
| | - Mikkel-Holger S. Sinding
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M. Thomas P. Gilbert
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shyam Gopalakrishnan
- Section for Evolutionary Genomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Evolutionary Hologenomics, the Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Meadows JRS, Kidd JM, Wang GD, Parker HG, Schall PZ, Bianchi M, Christmas MJ, Bougiouri K, Buckley RM, Hitte C, Nguyen AK, Wang C, Jagannathan V, Niskanen JE, Frantz LAF, Arumilli M, Hundi S, Lindblad-Toh K, Ginja C, Agustina KK, André C, Boyko AR, Davis BW, Drögemüller M, Feng XY, Gkagkavouzis K, Iliopoulos G, Harris AC, Hytönen MK, Kalthoff DC, Liu YH, Lymberakis P, Poulakakis N, Pires AE, Racimo F, Ramos-Almodovar F, Savolainen P, Venetsani S, Tammen I, Triantafyllidis A, vonHoldt B, Wayne RK, Larson G, Nicholas FW, Lohi H, Leeb T, Zhang YP, Ostrander EA. Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture. Genome Biol 2023; 24:187. [PMID: 37582787 PMCID: PMC10426128 DOI: 10.1186/s13059-023-03023-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
Collapse
Affiliation(s)
- Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden.
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA.
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Matteo Bianchi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Matthew J Christmas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Katia Bougiouri
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | - Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Christophe Hitte
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48107, USA
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Julia E Niskanen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E14NS, UK and Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, D-80539, Munich, Germany
| | - Meharji Arumilli
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Sruthi Hundi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catarina Ginja
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | | | - Catherine André
- University of Rennes, CNRS, Institute Genetics and Development Rennes - UMR6290, 35000, Rennes, France
| | - Adam R Boyko
- Department of Biomedical Sciences, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Michaela Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Xin-Yao Feng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Konstantinos Gkagkavouzis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Giorgos Iliopoulos
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Daniela C Kalthoff
- NGO "Callisto", Wildlife and Nature Conservation Society, 54621, Thessaloniki, Greece
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Petros Lymberakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Nikolaos Poulakakis
- Natural History Museum of Crete & Department of Biology, University of Crete, 71202, Irakleio, Greece
- Biology Department, School of Sciences and Engineering, University of Crete, Heraklion, Greece
- Palaeogenomics and Evolutionary Genetics Lab, Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Ana Elisabete Pires
- BIOPOLIS-CIBIO-InBIO-Centro de Investigação Em Biodiversidade E Recursos Genéticos - ArchGen Group, Universidade Do Porto, 4485-661, Vairão, Portugal
| | - Fernando Racimo
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark
| | | | - Peter Savolainen
- Department of Gene Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, 17121, Solna, Sweden
| | - Semina Venetsani
- Department of Genetics, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Imke Tammen
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Alexandros Triantafyllidis
- Department of Genetics, School of Biology, ), Aristotle University of Thessaloniki, Thessaloniki, Macedonia 54124, Greece and Genomics and Epigenomics Translational Research (GENeTres), Center for Interdisciplinary Research and Innovation (CIRI-AUTH, Balkan Center, Thessaloniki, Greece
| | - Bridgett vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095-7246, USA
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford, OX1 3TG, UK
| | - Frank W Nicholas
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW, 2570, Australia
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, Department of Veterinary Biosciences, University of Helsinki and Folkhälsan Research Center, 02900, Helsinki, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda, MD, 20892, USA.
| |
Collapse
|
49
|
Li WL, Liu YH, Li JX, Ding MT, Adeola AC, Isakova J, Aldashev AA, Peng MS, Huang X, Xie G, Chen X, Yang WK, Zhou WW, Ghanatsaman ZA, Olaogun SC, Sanke OJ, Dawuda PM, Hytönen MK, Lohi H, Esmailizadeh A, Poyarkov AD, Savolainen P, Wang GD, Zhang YP. Multiple Origins and Genomic Basis of Complex Traits in Sighthounds. Mol Biol Evol 2023; 40:msad158. [PMID: 37433053 PMCID: PMC10401622 DOI: 10.1093/molbev/msad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Collapse
Affiliation(s)
- Wu-Lue Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Ting Ding
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Jainagul Isakova
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Almaz A Aldashev
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xuezhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Ministry of Agriculture and Natural Resources, Taraba State Government, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Roma, Southern Africa
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andrey D Poyarkov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, Sweden
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
50
|
Doan K, Schnitzler A, Preston F, Griggo C, Lang G, Belhaoues F, Blaise E, Crégut-Bonnoure E, Frère S, Foucras S, Gardeisen A, Laurent A, Müller W, Picavet R, Puissant S, Yvinec JH, Pilot M. Evolutionary history of the extinct wolf population from France in the context of global phylogeographic changes throughout the Holocene. Mol Ecol 2023; 32:4627-4647. [PMID: 37337956 DOI: 10.1111/mec.17054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Phylogeographic patterns in large mammals result from natural environmental factors and anthropogenic effects, which in some cases include domestication. The grey wolf was once widely distributed across the Holarctic, but experienced phylogeographic shifts and demographic declines during the Holocene. In the 19th-20th centuries, the species became extirpated from large parts of Europe due to direct extermination and habitat loss. We reconstructed the evolutionary history of the extinct Western European wolves based on the mitogenomic composition of 78 samples from France (Neolithic-20th century) in the context of other populations of wolves and dogs worldwide. We found a close genetic similarity of French wolves from ancient, medieval and recent populations, which suggests the long-term continuity of maternal lineages. MtDNA haplotypes of the French wolves showed large diversity and fell into two main haplogroups of modern Holarctic wolves. Our worldwide phylogeographic analysis indicated that haplogroup W1, which includes wolves from Eurasia and North America, originated in Northern Siberia. Haplogroup W2, which includes only European wolves, originated in Europe ~35 kya and its frequency was reduced during the Holocene due to an expansion of haplogroup W1 from the east. Moreover, we found that dog haplogroup D, currently restricted to Europe and the Middle East, was nested within the wolf haplogroup W2. This suggests European origin of haplogroup D, probably as a result of an ancient introgression from European wolves. Our results highlight the dynamic evolutionary history of European wolves during the Holocene, with a partial lineage replacement and introgressive hybridization with local dog populations.
Collapse
Affiliation(s)
- Karolina Doan
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Annik Schnitzler
- UMR 7194 HNHP CNRS/MNHN/UPVD, Equipe NOMADE, Muséum national d'histoire naturelle, Paris, France
| | | | - Christophe Griggo
- Université Grenoble Alpes, Laboratoire EDYTEM, URM 5204 Bâtiment "Pôle Montagne", 5 bd de la mer Caspienne, France
| | - Gérard Lang
- Espace Chasse et Nature Chemin de Strasbourg, France
| | - Fabien Belhaoues
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | - Emilie Blaise
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | - Evelyne Crégut-Bonnoure
- Muséum Requien, Avignon; Laboratoire TRACES-UMR 5608, Université Toulouse-Jean Jaurès, Toulouse, France
| | - Stéphane Frère
- Inrap, UMR 7209 AASPE, Muséum National d'Histoire Naturelle, La Courneuve, France
| | | | - Armelle Gardeisen
- ASM - Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul-Valéry, CNRS, MCC, Montpellier, France
- Labex ARCHIMEDE programme IA-ANR-11-LABX-0032-01, Montpellier, France
| | | | - Werner Müller
- Laboratoire d'archéozoologie, Université de Neuchâtel, Avenue de Bellevaux 51, Neuchâtel, Switzerland
| | | | - Stéphane Puissant
- Muséum d'Histoire naturelle - Jardin de l'Arquebuse CS 73310 F-21033 Dijon Cedex, France
| | - Jean-Hervé Yvinec
- INRAP, UMR 7209 AASPE, Laboratoire d'archéozoologie de Compiègne, CRAVO, Compiègne, France
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
- School of Life Sciences, University of Lincoln, Lincoln, UK
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|