1
|
Kaminska A, Arzounian D, Delattre V, Laschet J, Magny JF, Hovhannisyan S, Mokhtari M, Manresa A, Boissel A, Ouss L, Hertz-Pannier L, Chiron C, Wendling F, Denoyer Y, Kuchenbuch M, Dubois J, Khazipov R. Auditory evoked delta brushes involve stimulus-specific cortical networks in preterm infants. iScience 2025; 28:112313. [PMID: 40343271 PMCID: PMC12059686 DOI: 10.1016/j.isci.2025.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/16/2023] [Accepted: 03/25/2025] [Indexed: 05/11/2025] Open
Abstract
During the third trimester of gestation in humans, the auditory cortex displays spontaneous and auditory-evoked EEG patterns of intermittent local oscillatory activity nested in delta waves - delta brushes (DBs). To test whether the spatiotemporal dynamics of evoked DBs depends on stimulus type, we studied auditory evoked responses (AERs) to voice and "click" using 32-electrode EEG in 30 healthy neonates aged 30 to 38 post-menstrual weeks. Both stimuli elicited two peaks at approximately 250 ms and 600 ms, the second corresponding to the first principal components of the AER and the evoked DB. The DB showed stimulus-specific topography, temporal posterior and mid-temporal for "click", and mid-temporal and pre-central inferior for voice, and contained theta to gamma oscillations more widespread for the "click"response. Gamma oscillations increased with age. AERs predominated on the right but shifted toward the left with age for voice response. Auditory evoked DBs may therefore underlie specific auditory processing during fetal development.
Collapse
Affiliation(s)
- Anna Kaminska
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Dorothée Arzounian
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Victor Delattre
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Jacques Laschet
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | | | | - Mostafa Mokhtari
- Bicêtre Hospital, Neonatal Intensive Care Unit, Le Kremlin-Bicêtre, France
- AP-HP, Espace Ethique-Ile de France, CHU Saint-Louis, Paris X, France
| | | | - Anne Boissel
- Laboratory CRFDP, University of Rouen, Normandy, France
| | - Lisa Ouss
- AP-HP, Necker-Enfants Malades Hospital, Child and Adolescent Psychiatry Unit, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Catherine Chiron
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Fabrice Wendling
- INSERM, LTSI – U1099, University of Rennes, 35000 Rennes, France
| | - Yves Denoyer
- INSERM, LTSI – U1099, University of Rennes, 35000 Rennes, France
- GHBS, Lorient, France
| | - Mathieu Kuchenbuch
- Department of Pediatrics, Reference Center for Rare Epilepsies, University Hospital of Nancy, Member of ERN EpiCare, 54000 Nancy, France
- UMR 7039, CRAN, CNRS, University of Lorraine, 54000 Nancy, France
| | - Jessica Dubois
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Varley TF, Sporns O, Stevenson NJ, Yrjölä P, Welch MG, Myers MM, Vanhatalo S, Tokariev A. Emergence of a synergistic scaffold in the brains of human infants. Commun Biol 2025; 8:743. [PMID: 40360743 PMCID: PMC12075868 DOI: 10.1038/s42003-025-08082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
The human brain is a complex organ comprising billions of interconnected neurons, which enables interaction with both physical and social environments. Neural dynamics of the whole brain go far beyond just the sum of its individual elements; a property known as "synergy". Previously it has been shown that synergy is crucial for many complex brain functions and cognition, however, it remains unknown how and when the large number of discrete neurons evolve into the unified system able to support synergistic interactions. Here we analyzed high-density electroencephalography data from the late fetal period to one month after term age. We found that the human brain transitions from a redundancy-dominated to a synergy-dominated system around birth. Frontal regions lead the emergence of a synergistic scaffold comprised of overlapping subsystems, while the integration of sensory areas developed gradually, from occipital to central regions. Strikingly, early developmental trajectories of brain synergy were modulated by environmental enrichment associated with enhanced mother-infant interactions, and the level of synergy near term equivalent age was associated with later neurocognitive development.
Collapse
Affiliation(s)
- Thomas F Varley
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, 05405, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Nathan J Stevenson
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Martha G Welch
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael M Myers
- Departments of Psychiatry and Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland
| | - Anton Tokariev
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, 47408, USA.
- Department of Physiology, University of Helsinki, 00014, Helsinki, Finland.
- Early Brain Activity, Systems, and Health Group, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Barzó P, Szöts I, Tóth M, Csajbók ÉA, Molnár G, Tamás G. Electrophysiology and morphology of human cortical supragranular pyramidal cells in a wide age range. eLife 2025; 13:RP100390. [PMID: 40152903 PMCID: PMC11952751 DOI: 10.7554/elife.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 y of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition, and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pál Barzó
- Department of Neurosurgery, University of SzegedSzegedHungary
| | - Ildikó Szöts
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Martin Tóth
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of SzegedSzegedHungary
| |
Collapse
|
4
|
Köhler I, Rennau LM, Rehm A, Große J, Gonda S, Räk A, Riedel C, Wahle P. Chemogenetic activation of Gq signaling modulates dendritic development of cortical neurons in a time- and layer-specific manner. Front Cell Neurosci 2025; 19:1524470. [PMID: 40177584 PMCID: PMC11962018 DOI: 10.3389/fncel.2025.1524470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) are established tools for modulating neuronal activity. Calcium-mobilizing DREADD hM3Dq has been widely used to enhance neuronal activity. hM3Dq activates the Gq protein signaling cascade and mimics the action of native Gq protein-coupled receptors such as muscarinic m1 and m3 receptors leading to calcium release from intracellular storages. Depolarization evoked by increased intracellular calcium levels is an important factor for neuronal maturation. Here, we used repetitive activation of biolistically overexpressed hM3Dq to increase the activity of individual neurons differentiating in organotypic slice cultures of rat visual cortex. HM3Dq was activated by 3 μM clozapine-N-oxide (CNO) dissolved in H2O. Transfectants expressing hM3Dq mock-stimulated with H2O served as batch-internal controls. Pyramidal cells and multipolar interneurons were analyzed after treatment from DIV 5-10, DIV 10-20, and DIV 15-20 to investigate if Gq signaling is involved in dendritic maturation. Results show that hM3Dq activation accelerated the maturation of apical dendrites of L2/3 pyramidal cells in the early, but no longer in the later time windows. In contrast, dendritic dimensions of L5/6 pyramidal cells and interneurons were not altered at DIV 10. These findings suggest a growth-promoting role of activated Gq signaling selectively for early postnatal L2/3 pyramidal cells. Unexpectedly, hM3Dq activation from DIV 10-20 reduced the dendritic complexity of L5/6 pyramidal cells and multipolar interneurons. Together, results suggest a role of Gq signaling for neuronal differentiation and support evidence that it may also limit dendritic growth.
Collapse
|
5
|
Ammothumkandy A, Cayce A, Shariq M, Bonaguidi MA. Astroglia's role in synchronized spontaneous neuronal activity: from physiology to pathology. Front Cell Neurosci 2025; 19:1544460. [PMID: 40177583 PMCID: PMC11961896 DOI: 10.3389/fncel.2025.1544460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
The nervous system relies on a balance of excitatory and inhibitory signals. Aberrant neuronal hyperactivity is a pathological phenotype associated with several neurological disorders, with its most severe effects observed in epilepsy patients. This review explores the literature on spontaneous synchronized neuronal activity, its physiological role, and its aberrant forms in disease. Emphasizing the importance of targeting underlying disease mechanisms beyond traditional neuron-focused therapies, the review delves into the role of astroglia in epilepsy progression. We detail how astroglia transitions from a normal to a pathological state, leading to epileptogenic seizures and cognitive decline. Astroglia activity is correlated with epileptiform activity in both animal models and human tissue, indicating their potential role in seizure induction and modulation. Understanding astroglia's dual beneficial and detrimental roles could lead to novel treatments for epilepsy and other neurological disorders with aberrant neuronal activity as the underlying disease substrate.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Alisha Cayce
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Mohammad Shariq
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
| | - Michael A. Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
- Department of Gerontology, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Chang M, Xu Z, Nehs S, Chen Y, Kao JPY, Kanold PO. Specific functional connectivity of molecular subtypes of subplate and layer 6b neurons. J Neurosci 2025; 45:e2094242025. [PMID: 40086874 PMCID: PMC12044053 DOI: 10.1523/jneurosci.2094-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/26/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025] Open
Abstract
Subplate neurons (SpNs) are among the earliest generated cortical neurons that form functional cortical synapses, and aid in cortical circuit development. A fraction of SpNs survive and form layer 6b in the adult cortex. While SpNs exhibit a large variety of molecular identities, it is unclear if molecular identity correlates with functional or connectomic identities and if different SpNs have similar developmental trajectories. To resolve these questions, we here characterize the functional intracortical circuits to molecularly identified subpopulations of SpNs with SpN-specific Cre-lines (CTGF-dgCre and Drd1-Cre) in in vitro brain slices of the primary auditory cortex using whole-cell patch clamp recordings and laser-scanning photostimulation. We targeted three age groups: before (postnatal day (P)7-P9) and after (P14-P20) the ear canal opens and when circuits are mature (P60-P80). The excitatory intracortical circuits impinging on both subtypes revealed similar patterns, but not the inhibitory circuits, particularly those from subplate/layer 6b. At P7-P9, Drd1 neurons received stronger inhibition from the subplate compared to CTGF neurons. The functional circuits on SpNs prune with age. By P60-P80, the inhibitory connections from layer 6b on CTGF neurons increased and became significantly abundant than those on Drd1 neurons. However, the inhibition strength between the two subtypes remained unchanged, suggesting that inhibition on CTGF was generally weaker at each stimulation site. Thus, SpNs exhibit diverse neuronal morphologies and intracortical input patterns, independent of molecular expression. Thus, although the subplate comprises distinct molecular classes of neurons, their molecular expression is not clearly correlated with morphologies and functional circuits throughout development.Significance statement Subplate neurons pioneer cortical circuit formation and shape its maturation. Subplate neurons can be categorized into different subpopulation based on their molecular identities. However, the relationship between functional circuitry and molecular identities was unclear. Our study demonstrated that excitatory inputs on different molecular classes of subplate neurons develop similarly but not the inhibitory inputs, particularly those from within subplate/layer6b. Moreover, subplate neurons within the same molecular classes exhibit diverse patterns of intracortical circuit connections and neuronal morphologies. This diversity becomes more pronounced in adulthood. Therefore, distinguishing the functional connectivity between the two subtypes based solely on their molecular identities is impossible. Overall, the molecular expression of subplate neurons is not clearly correlated with their morphologies and functional connectivity pattern.
Collapse
Affiliation(s)
- Minzi Chang
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University, Baltimore, Maryland 21205
| | - Zheng Xu
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University, Baltimore, Maryland 21205
| | - Sophia Nehs
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University, Baltimore, Maryland 21205
| | - Yunru Chen
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University, Baltimore, Maryland 21205
| | - Joseph P. Y. Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Patrick O. Kanold
- Department of Biomedical Engineering, School of Medicine Johns Hopkins University, Baltimore, Maryland 21205
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
7
|
Birnie MT, Baram TZ. The evolving neurobiology of early-life stress. Neuron 2025:S0896-6273(25)00134-5. [PMID: 40101719 DOI: 10.1016/j.neuron.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Because early-life stress is common and constitutes a strong risk factor for cognitive and mental health disorders, it has been the focus of a multitude of studies in humans and experimental models. Yet, we have an incomplete understanding of what is perceived as stressful by the developing brain, what aspects of stress influence brain maturation, what developmental ages are particularly vulnerable to stress, which molecules mediate the effects of stress on brain operations, and how transient stressful experiences can lead to enduring emotional and cognitive dysfunctions. Here, we discuss these themes, highlight the challenges and progress in resolving them, and propose new concepts and avenues for future research.
Collapse
Affiliation(s)
- Matthew T Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Department of Pediatrics, University of California, Irvine, Irvine, CA, USA; Department of Anatomy/Neurobiology, University of California, Irvine, Irvine, CA, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2025; 212:1-10. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Nishimura M, Kodera T, Adachi S, Sato AY, Takeuchi RF, Nonaka H, Hamachi I, Osakada F. Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids. Neurosci Res 2025; 212:20-30. [PMID: 39724942 DOI: 10.1016/j.neures.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca2⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50. Additionally, spontaneous neural activity in late-stage hCOs, but not in early-stage hCOs, was blocked by N-methyl-D-aspartate receptor (NMDAR) and AMPAR antagonists. However, transsynaptic circuit tracing with G-deleted rabies viral vectors indicated a similar number of synaptic connections in early- and late-stage hCOs. Notably, chemical labeling demonstrated a significant increase in AMPAR expression on the postsynaptic membrane and colocalization with NMDARs in late-stage hCOs. These results suggest that hCOs progressively organize excitatory synaptic transmission, concurrent with the transition from silent synapses lacking AMPARs to functional synapses containing NMDARs and AMPARs. This in vitro model of human cortical circuits derived from induced pluripotent stem cells reflects the developmental programs underlying physiological transitions, providing valuable insights into human corticogenesis and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Masatoshi Nishimura
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoki Kodera
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Shota Adachi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akinori Y Sato
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ryosuke F Takeuchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hiroshi Nonaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
10
|
Abusaada A, De Rosa F, Luhmann HJ, Kilb W, Sinning A. GABAergic integration of transient and persistent neurons in the developing mouse somatosensory cortex. Front Cell Neurosci 2025; 19:1556174. [PMID: 40078325 PMCID: PMC11897519 DOI: 10.3389/fncel.2025.1556174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
GABA is an essential element in the function of neocortical circuits. The origin, migration and mechanisms of synaptogenesis of GABAergic neurons have been intensively studied. However, little information is available when GABAergic synapses are formed within the different cortical layers, neuronal cell types and subcellular compartments. To quantify the distribution of GABAergic synapses in the immature somatosensory mouse cortex, GABAergic synapses were identified by spatially coincident immunoprofiles for the pre- and postsynaptic markers vGAT and gephyrin at postnatal days (P)0-12. Between P0-5, GABAergic synapses are mainly restricted to the marginal zone, while at later developmental stages a more homogenous distribution is obtained. Cajal-Retzius neurons represent a major target of GABAergic synapses in the marginal zone with a homogeneous synapse distribution along the dendrite. The number of GABAergic synapses per pyramidal neuron increases substantially between P0 and P12, with a stable density and distribution in basal dendrites. In contrast, along apical dendrites synapses accumulate to more proximal positions after P8. Overall, the results of this study demonstrate that early GABAergic synaptogenesis is characterized by a consistent increase in the density of synapses with first a stringent overrepresentation in the marginal zone and a delayed establishment of perisomatic synapses in pyramidal neurons.
Collapse
|
11
|
Kumaraguru S, Morgan J, Wong FK. Activity-dependent regulation of microglia numbers by pyramidal cells during development shape cortical functions. SCIENCE ADVANCES 2025; 11:eadq5842. [PMID: 39970202 PMCID: PMC11838000 DOI: 10.1126/sciadv.adq5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Beyond their role as immune sentinels, microglia are actively involved in establishing and maintaining cortical circuits. Alteration in microglial numbers has been associated with abnormal behaviors akin to those observed in neurodevelopmental disorders. Consequently, establishing the appropriate microglial numbers during development is crucial for ensuring normal cortical function. Here, we uncovered a dynamic relationship between pyramidal cells and microglia that tunes microglial numbers and development through distinct phases of mouse postnatal development. Changes in pyramidal cell activity during development induce differential release of activity-dependent proteins such as Activin A, which, in turn, adjusts microglial numbers accordingly. Decoupling of this relationship not only changes microglial numbers but has a long-term consequence on their role as synaptic organizers, which ultimately affects cortical function. Our findings reveal that microglia adapt their numbers to changes in pyramidal cell activity during a critical time window in development, consequently adjusting their numbers and function to the demands of the developing local circuits.
Collapse
Affiliation(s)
- Sanjana Kumaraguru
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - James Morgan
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Fong Kuan Wong
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
12
|
Micoli E, Ferrero Restelli F, Barbiera G, Moors R, Nouboers E, Du JX, Bertels H, Liu M, Konstantopoulos D, Takeoka A, Lippi G, Lim L. A single-cell transcriptomic atlas of developing inhibitory neurons reveals expanding and contracting modes of diversification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.636192. [PMID: 40027755 PMCID: PMC11870569 DOI: 10.1101/2025.02.19.636192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The cerebral cortex relies on vastly different types of inhibitory neurons to compute. How this diversity emerges during development remains an open question. The rarity of individual inhibitory neuron types often leads to their underrepresentation in single-cell RNA sequencing (scRNAseq) datasets, limiting insights into their developmental trajectories. To address this problem, we developed a computational pipeline to enrich and integrate rare cell types across multiple datasets. Applying this approach to somatostatin-expressing (SST+) inhibitory neurons-the most diverse inhibitory cell class in the cortex-we constructed the Dev-SST-Atlas, a comprehensive resource containing mouse transcriptomic data of over 51,000 SST+ neurons. We identify three principal groups-Martinotti cells (MCs), non-Martinotti cells (nMCs), and long-range projecting neurons (LRPs)-each following distinct diversification trajectories. MCs commit early, with distinct embryonic and neonatal clusters that map directly to adult counterparts. In contrast, nMCs diversify gradually, with each developmental cluster giving rise to multiple adult cell types. LRPs follow a unique 'contracting' mode. Initially, two clusters are present until postnatal day 5 (P5), but by P7, one type is eliminated through programmed cell death, leaving a single surviving population. This transient LRP type is also found in the fetal human cortex, revealing an evolutionarily conserved feature of cortical development. Together, these findings highlight three distinct modes of SST+ neuron diversification-invariant, expanding, and contracting-offering a new framework to understand how the large repertoire of inhibitory neurons emerges during development.
Collapse
Affiliation(s)
- Elia Micoli
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
- These authors contributed equally
| | - Facundo Ferrero Restelli
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
- These authors contributed equally
| | | | - Rani Moors
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | - Evelien Nouboers
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | - Jessica Xinyun Du
- Department of Neuroscience, Scripps Research Institute, La Jolla, United States of America
| | - Hannah Bertels
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | - Minhui Liu
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
| | | | - Aya Takeoka
- RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Giordiano Lippi
- Department of Neuroscience, Scripps Research Institute, La Jolla, United States of America
| | - Lynette Lim
- VIB Center for Brain and Disease, 3000, Leuven, Belgium
- Department of Neurosciences, Katholieke Universiteit (KU) Leuven, 3000, Leuven, Belgium
- Lead contact
| |
Collapse
|
13
|
Alhesain M, Alzu’bi A, Sankar N, Smith C, Kerwin J, Laws R, Lindsay S, Clowry GJ. Development of the early fetal human thalamus: from a protomap to emergent thalamic nuclei. Front Neuroanat 2025; 19:1530236. [PMID: 39990522 PMCID: PMC11842364 DOI: 10.3389/fnana.2025.1530236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction Most of what is known about thalamic development comes from rodent studies, however, the increased proportion of human association cortex has co-evolved with increased thalamocortical connectivity. Higher order thalamic nuclei, relaying information between cortical regions and important in higher cognitive function, are greatly expanded. Methods This study mapped the emergence of thalamic nuclei in human fetal development (8-16 post conceptional weeks; PCW) by revealing gene expression patterns using in situ hybridization and immunohistochemistry for previously established thalamic development markers. Results In the proliferative thalamic ventricular zone, OLIG3 and NR2F1 immunoreactivity marked the extent of the thalamus, whereas PAX6 and NR2F2 were expressed in gradients, suggesting an early protomap. This was also the case for post-mitotic transcription factors ZIC4, GBX2, FOXP2 and OTX2 which marked thalamic boundaries but also exhibited opposing gradients with ZIC4 expression higher anterior/lateral, and GBX2, FOXP2 and OTX2 higher in posterior/medial. Expression patterns became increasingly compartmentalized as development progressed and by 14 PCW recognizable thalamic nuclei were observed with, for instance, the centromedian nucleus being characterized by high FOXP2 and absent GBX2 expression. SP8-like immunoreactivity was expressed in distinct thalamic locations other than the reticular formation which has not been previously reported. Markers for GABAergic neurons and their precursors revealed the location of the prethalamus and its development into the reticular formation and zona incerta. No GAD67+ neurons were observed in the thalamus at 10 PCW, but by 14 PCW the medial posterior quadrant of the thalamus at various levels was infiltrated by GAD67+/ SOX14+ cells of presumed pretectal/midbrain origin. We compared expression of the neurodevelopmental disease susceptibility gene CNTNAP2 to these patterns. It was highly expressed by glutamatergic neurons in many thalamic regions by 14 PCW, sometimes but not always in conjunction with its upstream expression regulator FOXP2. Conclusion In human discrete thalamic nuclei exhibiting discrete gene expression patterns emerge relatively early from a protomap of gene expression. The migration of GABAergic neurons into the thalamus occurs over a protracted period, first from the midbrain. Disruption of CNTNAP2 activity and function could be hypothezised to have a variety of effects upon thalamic development.
Collapse
Affiliation(s)
- Maznah Alhesain
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| | - Ayman Alzu’bi
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
- Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Niveditha Sankar
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Charles Smith
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Janet Kerwin
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Susan Lindsay
- Newcastle University Biosciences Institute and Human Developmental Biology Resource, Newcastle upon Tyne, United Kingdom
| | - Gavin J. Clowry
- Newcastle University Biosciences Institute and Centre for Transformative Neuroscience, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Vargas-Ortiz J, Lin L, Martinez VK, Liu RJ, Babij R, Duan ZRS, Wacks S, Sun L, Wang A, Khan S, Soto-Vargas JL, De Marco García NV, Che A. Translaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex. Nat Commun 2025; 16:1296. [PMID: 39900899 PMCID: PMC11791040 DOI: 10.1038/s41467-024-55783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Synchronous neuronal activity is a hallmark of the developing mouse primary somatosensory cortex. While the patterns of synchronous neuronal activity in cortical layer 2/3 have been well described, the source of the robust layer 2/3 activity is still unknown. Using a novel microprism preparation and in vivo 2-photon imaging in neonatal mice, we show that synchronous neuronal activity is organized in barrel columns across layers. Monosynaptic rabies tracing and slice electrophysiology experiments reveal that layer 2/3 pyramidal neurons receive significant layer 5 inputs during the first postnatal week, and silencing layer 5 synaptic outputs results in a significant reduction in spontaneous activity, abnormal sensory-evoked activity and disrupted layer 4-layer 2/3 connectivity. Our results demonstrate that translaminar layer 5-layer 2/3 connectivity plays an important role in synchronizing the developing barrel column to ensure the strengthening of layer 4-layer 2/3 connections, supporting the formation of the canonical cortical organization in barrel cortex.
Collapse
Affiliation(s)
- John Vargas-Ortiz
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Lin Lin
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Vena K Martinez
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Rachel Babij
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Zhe Ran S Duan
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Liyuan Sun
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amanda Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sajida Khan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Alicia Che
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Barzó P, Szöts I, Tóth M, Csajbók ÉA, Molnár G, Tamás G. Electrophysiology and Morphology of Human Cortical Supragranular Pyramidal Cells in a Wide Age Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.13.598792. [PMID: 38915496 PMCID: PMC11195274 DOI: 10.1101/2024.06.13.598792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The basic excitatory neurons of the cerebral cortex, the pyramidal cells, are the most important signal integrators for the local circuit. They have quite characteristic morphological and electrophysiological properties that are known to be largely constant with age in the young and adult cortex. However, the brain undergoes several dynamic changes throughout life, such as in the phases of early development and cognitive decline in the aging brain. We set out to search for intrinsic cellular changes in supragranular pyramidal cells across a broad age range: from birth to 85 years of age and we found differences in several biophysical properties between defined age groups. During the first year of life, subthreshold and suprathreshold electrophysiological properties changed in a way that shows that pyramidal cells become less excitable with maturation, but also become temporarily more precise. According to our findings, the morphological features of the three-dimensional reconstructions from different life stages showed consistent morphological properties and systematic dendritic spine analysis of an infantile and an old pyramidal cell showed clear significant differences in the distribution of spine shapes. Overall, the changes that occur during development and aging may have lasting effects on the properties of pyramidal cells in the cerebral cortex. Understanding these changes is important to unravel the complex mechanisms underlying brain development, cognition and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pál Barzó
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Ildikó Szöts
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Martin Tóth
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Éva Adrienn Csajbók
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Molnár
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Gábor Tamás
- HUN-REN-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| |
Collapse
|
16
|
Shiraki A, Kidokoro H, Watanabe H, Taga G, Ushida T, Narita H, Mitsumatsu T, Kumai S, Suzui R, Sawamura F, Ito Y, Yamamoto H, Nakata T, Sato Y, Hayakawa M, Takahashi Y, Natsume J. Sleep state-dependent development of resting-state functional connectivity during the preterm period. Sleep 2024; 47:zsae225. [PMID: 39320057 PMCID: PMC11632190 DOI: 10.1093/sleep/zsae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/24/2024] [Indexed: 09/26/2024] Open
Abstract
STUDY OBJECTIVES The brains of preterm infants exhibit altered functional connectivity (FC) networks, but the potential variation in sleep states and the impact of breathing patterns on FC networks are unclear. This study explores the evolution of resting-state FC from preterm to term, focusing on breathing patterns and distinguishing between active sleep (AS) and quiet sleep (QS). METHODS We recruited 63 preterm infants and 44 healthy-term infants and performed simultaneous electroencephalography and functional near-infrared spectroscopy. FC was calculated using oxy- and deoxyhemoglobin signals across eight channels. First, FC was compared between periodic breathing (PB) and non-PB segments. Then sleep state-dependent FC development was explored. FC was compared between AS and QS segments and between preterm infants at term and term-born infants in each sleep state. Finally, associations between FC at term, clinical characteristics, and neurodevelopmental outcomes in late infancy were assessed in preterm infants. RESULTS In total, 148 records from preterm infants and 44 from term-born infants were analyzed. PB inflated FC values. After excluding PB segments, FC was found to be elevated during AS compared to QS, particularly in connections involving occipital regions. Preterm infants had significantly higher FC in both sleep states compared to term-born infants. Furthermore, stronger FC in specific connections during AS at term was associated with unfavorable neurodevelopment in preterm infants. CONCLUSIONS Sleep states play a critical role in FC development and preterm infants show observable changes in FC.
Collapse
Affiliation(s)
- Anna Shiraki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hama Watanabe
- Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Gentaro Taga
- Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hajime Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takamasa Mitsumatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumire Kumai
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Suzui
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Sawamura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
18
|
Nagappan-Chettiar S, Burbridge TJ, Umemori H. Activity-Dependent Synapse Refinement: From Mechanisms to Molecules. Neuroscientist 2024; 30:673-689. [PMID: 37140155 PMCID: PMC11584027 DOI: 10.1177/10738584231170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The refinement of immature neuronal networks into efficient mature ones is critical to nervous system development and function. This process of synapse refinement is driven by the neuronal activity-dependent competition of converging synaptic inputs, resulting in the elimination of weak inputs and the stabilization of strong ones. Neuronal activity, whether in the form of spontaneous activity or experience-evoked activity, is known to drive synapse refinement in numerous brain regions. More recent studies are now revealing the manner and mechanisms by which neuronal activity is detected and converted into molecular signals that appropriately regulate the elimination of weaker synapses and stabilization of stronger ones. Here, we highlight how spontaneous activity and evoked activity instruct neuronal activity-dependent competition during synapse refinement. We then focus on how neuronal activity is transformed into the molecular cues that determine and execute synapse refinement. A comprehensive understanding of the mechanisms underlying synapse refinement can lead to novel therapeutic strategies in neuropsychiatric diseases characterized by aberrant synaptic function.
Collapse
Affiliation(s)
- Sivapratha Nagappan-Chettiar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J. Burbridge
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Guo X, Lee T, Sun J, Sun J, Cai W, Yang Q, Sun T. Molecular Lineages and Spatial Distributions of Subplate Neurons in the Human Fetal Cerebral Cortex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407137. [PMID: 39495628 DOI: 10.1002/advs.202407137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Indexed: 11/06/2024]
Abstract
The expansion of neural progenitors and production of distinct neurons are crucial for architectural assembly and formation of connectivity in human brains. Subplate neurons (SPNs) are among the firstborn neurons in the human fetal cerebral cortex, and play a critical role in establishing intra- and extracortical connections. However, little is known about SPN origin and developmental lineages. In this study, spatial landscapes and molecular trajectories of SPNs in the human fetal cortices from gestational weeks (GW) 10 to 25 are created by performing spatial transcriptomics and single-cell RNA sequencing. Genes known to be evolutionarily human-specific and genes associated with extracellular matrices (ECMs) are found to maintain stable proportions of subplate neurons among other neuronal types. Enriched ECM gene expression in SPNs varies in distinct cortical regions, with the highest level in the frontal lobe of human fetal brains. This study reveals molecular origin and lineage specification of subplate neurons in the human fetal cerebral cortices, and highlights underpinnings of SPNs to cortical neurogenesis and early structural folding.
Collapse
Affiliation(s)
- Xueyu Guo
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Jason Sun
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, 361005, China
| | - Julianne Sun
- Xiamen Institute of Technology Attached School, Xiamen, Fujian, 361005, China
| | - Wenjie Cai
- Department of Radiation Oncology, First Hospital of Quanzhou, Fujian Medical University, Quanzhou, Fujian, 362046, China
| | - Qingwei Yang
- Department of Neurology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361006, China
| | - Tao Sun
- Center for Precision Medicine, Huaqiao University, Xiamen, Fujian, 361021, China
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China
| |
Collapse
|
20
|
Khalki H, Lacerda DC, Karoutchi C, Delcour M, Dupuis O, Kochmann M, Brezun J, Dupont E, Amin M, Darnaudéry M, Canu M, Barbe MF, Coq J. Early movement restriction impairs the development of sensorimotor integration, motor skills and memory in rats: Towards a preclinical model of developmental coordination disorder? Eur J Neurosci 2024; 60:6830-6850. [PMID: 39523702 PMCID: PMC11612839 DOI: 10.1111/ejn.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 11/16/2024]
Abstract
Children with neurodevelopmental disorders, such as developmental coordination disorder (DCD), exhibit gross to fine sensorimotor impairments, reduced physical activity and interactions with the environment and people. This disorder co-exists with cognitive deficits, executive dysfunctions and learning impairments. Previously, we demonstrated in rats that limited amounts and atypical patterns of movements and somatosensory feedback during early movement restriction manifested in adulthood as degraded postural and locomotor abilities, and musculoskeletal histopathology, including muscle atrophy, hyperexcitability within sensorimotor circuitry and maladaptive cortical plasticity, leading to functional disorganization of the primary somatosensory and motor cortices in the absence of cortical histopathology. In this study, we asked how this developmental sensorimotor restriction (SMR) started to impact the integration of multisensory information and the emergence of sensorimotor reflexes in rats. We also questioned the enduring impact of SMR on motor activities, pain and memory. SMR led to deficits in the emergence of swimming and sensorimotor reflexes, the development of pain and altered locomotor patterns and posture with toe-walking, adult motor performance and night spontaneous activity. In addition, SMR induced exploratory hyperactivity, short-term impairments in object-recognition tasks and long-term deficits in object-location tasks. SMR rats displayed minor alterations in histological features of the hippocampus, entorhinal, perirhinal and postrhinal cortices yet no obvious changes in the prefrontal cortex. Taken all together, these results show similarities with the symptoms observed in children with DCD, although further exploration seems required to postulate whether developmental SMR corresponds to a rat model of DCD.
Collapse
Affiliation(s)
- Hanane Khalki
- Aix Marseille UniversitéMarseilleFrance
- B2DRN, Polydisciplinary Faculty of Béni MellalSultan Moulay Slimane UniversityMorocco
| | - Diego Cabral Lacerda
- Aix Marseille UniversitéMarseilleFrance
- Post Graduate Program in NutritionFederal University of PernambucoRecifePernambucoBrazil
- Present address:
Studies in Nutrition and Phenotypic Plasticity Unit, Department of NutritionFederal University of PernambucoRecifeBrazil
| | - Corane Karoutchi
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS)UMR7289 Institut de Neurosciences de la Timone (INT)MarseilleFrance
- Present address:
Centre d'Investigation Clinique (CIC 1407), Hôpital Cardiologique Louis PradelBronFrance
| | - Maxime Delcour
- Aix Marseille UniversitéMarseilleFrance
- Present address:
Cégep de Saint LaurentMontréalCanada
| | - Orlane Dupuis
- Univ Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS – Unité de Recherche Pluridisciplinaire Sport Santé SociétéLilleFrance
| | - Marine Kochmann
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS)UMR7289 Institut de Neurosciences de la Timone (INT)MarseilleFrance
| | - Jean‐Michel Brezun
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS), UMR7287 Institut des Sciences du Mouvement (ISM)MarseilleFrance
| | - Erwan Dupont
- Univ Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS – Unité de Recherche Pluridisciplinaire Sport Santé SociétéLilleFrance
| | - Mamta Amin
- Aging + Cardiovascular Discovery Center, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Muriel Darnaudéry
- Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), UMR1286 NutriNeuroUniversité de BordeauxBordeauxFrance
| | - Marie‐Hélène Canu
- Univ Lille, Univ Artois, Univ Littoral Côte d'Opale, ULR 7369, URePSSS – Unité de Recherche Pluridisciplinaire Sport Santé SociétéLilleFrance
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Jacques‐Olivier Coq
- Aix Marseille UniversitéMarseilleFrance
- Centre National de la Recherche Scientifique (CNRS)UMR7289 Institut de Neurosciences de la Timone (INT)MarseilleFrance
- Centre National de la Recherche Scientifique (CNRS), UMR7287 Institut des Sciences du Mouvement (ISM)MarseilleFrance
| |
Collapse
|
21
|
Kawikova I, Hakenova K, Lebedeva M, Kleteckova L, Jakob L, Spicka V, Wen L, Spaniel F, Vales K. Perinatal Hypoxia and Immune System Activation in Schizophrenia Pathogenesis: Critical Considerations During COVID-19 Pandemic. Physiol Res 2024; 73:S615-S639. [PMID: 39589306 PMCID: PMC11627263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 11/27/2024] Open
Abstract
Schizophrenia, a severe psychiatric, neurodevelopmental disorder affecting about 0.29-1 % of the global population, is characterized by hallucinations, delusions, cognitive impairments, disorganized thoughts and speech, leading to significant social withdrawal and emotional blunting. During the 1980s, considerations about diseases that result from complex interactions of genetic background and environmental factors started to appear. One of the critical times of vulnerability is the perinatal period. Concerning schizophrenia, obstetric complications that are associated with hypoxia of the fetus or neonate were identified as a risk. Also, maternal infections during pregnancy were linked to schizophrenia by epidemiological, serologic and genetic studies. Research efforts then led to the development of experimental models testing the impact of perinatal hypoxia or maternal immune activation on neurodevelopmental disorders. These perinatal factors are usually studied separately, but given that the models are now validated, it is feasible to investigate both factors together. Inclusion of additional factors, such as metabolic disturbances or chronic stress, may need to be considered also. Understanding the interplay of perinatal factors in schizophrenia's etiology is crucial for developing targeted prevention and therapeutic strategies.
Collapse
Affiliation(s)
- I Kawikova
- Department of Medicine, Yale University, New Haven, CT, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schinz D, Neubauer A, Hippen R, Schulz J, Li HB, Thalhammer M, Schmitz-Koep B, Menegaux A, Wendt J, Ayyildiz S, Brandl F, Priller J, Uder M, Zimmer C, Hedderich DM, Sorg C. Claustrum Volumes Are Lower in Schizophrenia and Mediate Patients' Attentional Deficits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00350-1. [PMID: 39608754 DOI: 10.1016/j.bpsc.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND While the last decade of extensive research revealed the prominent role of the claustrum for mammalian forebrain organization (i.e., widely distributed claustral-cortical circuits coordinate basic cognitive functions such as attention), it is poorly understood whether the claustrum is relevant for schizophrenia and related cognitive symptoms. We hypothesized that claustrum volumes are lower in schizophrenia and also that potentially lower volumes mediate patients' attention deficits. METHODS Based on T1-weighted magnetic resonance imaging, advanced automated claustrum segmentation, and attention symbol coding task in 90 patients with schizophrenia and 96 healthy control participants from 2 independent sites, the COBRE open-source database and Munich dataset, we compared total intracranial volume-normalized claustrum volumes and symbol coding task scores across groups via analysis of covariance and related variables via correlation and mediation analysis. RESULTS Patients had lower claustrum volumes of about 13% (p < .001, Hedges' g = 0.63), which not only correlated with (r = 0.24, p = .014) but also mediated lower symbol coding task scores (indirect effect ab = -1.30 ± 0.69; 95% CI, -3.73 to -1.04). Results were not confounded by age, sex, global and claustrum-adjacent gray matter changes, scanner site, smoking, and medication. CONCLUSIONS Results demonstrate lower claustrum volumes that mediate patients' attention deficits in schizophrenia. Data indicate the claustrum as being relevant for schizophrenia pathophysiology and cognitive functioning.
Collapse
Affiliation(s)
- David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany.
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Center for Neuropathology and Prion Research, University Hospital Munich, Ludwig Maximilians University of Munich, Munich, Germany
| | - Rebecca Hippen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hongwei Bran Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Benita Schmitz-Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sevilay Ayyildiz
- Anatomy Ph.D. Program, Graduate School of Health Sciences, Kocaeli University, Istanbul, Turkey
| | - Felix Brandl
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Josef Priller
- Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany; Technische Universität München Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany; Department of Psychiatry, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Zucca S, La Rosa C, Fellin T, Peretto P, Bovetti S. Developmental encoding of natural sounds in the mouse auditory cortex. Cereb Cortex 2024; 34:bhae438. [PMID: 39503245 PMCID: PMC11538960 DOI: 10.1093/cercor/bhae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/09/2024] Open
Abstract
Mice communicate through high-frequency ultrasonic vocalizations, which are crucial for social interactions such as courtship and aggression. Although ultrasonic vocalization representation has been found in adult brain areas along the auditory pathway, including the auditory cortex, no evidence is available on the neuronal representation of ultrasonic vocalizations early in life. Using in vivo two-photon calcium imaging, we analyzed auditory cortex layer 2/3 neuronal responses to USVs, pure tones (4 to 90 kHz), and high-frequency modulated sweeps from postnatal day 12 (P12) to P21. We found that ACx neurons are tuned to respond to ultrasonic vocalization syllables as early as P12 to P13, with an increasing number of responsive cells as the mouse age. By P14, while pure tone responses showed a frequency preference, no syllable preference was observed. Additionally, at P14, USVs, pure tones, and modulated sweeps activate clusters of largely nonoverlapping responsive neurons. Finally, we show that while cell correlation decreases with increasing processing of peripheral auditory stimuli, neurons responding to the same stimulus maintain highly correlated spontaneous activity after circuits have attained mature organization, forming neuronal subnetworks sharing similar functional properties.
Collapse
Affiliation(s)
- Stefano Zucca
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Chiara La Rosa
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, via Accademia Albertina 13, 10123 Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy
| |
Collapse
|
24
|
Kim SJ, Babola TA, Lee K, Matney CJ, Spiegel AC, Liew MH, Schulteis EM, Coye AE, Proskurin M, Kang H, Kim JA, Chevée M, Lee K, Kanold PO, Goff LA, Kim J, Brown SP. A consensus definition for deep layer 6 excitatory neurons in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621933. [PMID: 39574572 PMCID: PMC11580952 DOI: 10.1101/2024.11.04.621933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
To understand neocortical function, we must first define its cell types. Recent studies indicate that neurons in the deepest cortical layer play roles in mediating thalamocortical interactions and modulating brain state and are implicated in neuropsychiatric disease. However, understanding the functions of deep layer 6 (L6b) neurons has been hampered by the lack of agreed upon definitions for these cell types. We compared commonly used methods for defining L6b neurons, including molecular, transcriptional and morphological approaches as well as transgenic mouse lines, and identified a core population of L6b neurons. This population does not innervate sensory thalamus, unlike layer 6 corticothalamic neurons (L6CThNs) in more superficial layer 6. Rather, single L6b neurons project ipsilaterally between cortical areas. Although L6b neurons undergo early developmental changes, we found that their intrinsic electrophysiological properties were stable after the first postnatal week. Our results provide a consensus definition for L6b neurons, enabling comparisons across studies.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Travis A Babola
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kihwan Lee
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Chanel J Matney
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Alina C Spiegel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Michael H Liew
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eva M Schulteis
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Austin E Coye
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Mikhail Proskurin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Hyunwook Kang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Julia A Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kiwoong Lee
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Patrick O Kanold
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Loyal A Goff
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Juhyun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
25
|
de Groot ER, Dudink J, Austin T. Sleep as a driver of pre- and postnatal brain development. Pediatr Res 2024; 96:1503-1509. [PMID: 38956219 PMCID: PMC11624135 DOI: 10.1038/s41390-024-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
In 1966, Howard Roffwarg proposed the ontogenic sleep hypothesis, relating neural plasticity and development to rapid eye movement (REM) sleep, a hypothesis that current fetal and neonatal sleep research is still exploring. Recently, technological advances have enabled researchers to automatically quantify neonatal sleep architecture, which has caused a resurgence of research in this field as attempts are made to further elucidate the important role of sleep in pre- and postnatal brain development. This article will review our current understanding of the role of sleep as a driver of brain development and identify possible areas for future research. IMPACT: The evidence to date suggests that Roffwarg's ontogenesis hypothesis of sleep and brain development is correct. A better understanding of the relationship between sleep and the development of functional connectivity is needed. Reliable, non-invasive tools to assess sleep in the NICU and at home need to be tested in a real-world environment and the best way to promote healthy sleep needs to be understood before clinical trials promoting and optimizing sleep quality in neonates could be undertaken.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Topun Austin
- NeoLab, Evelyn Perinatal Imaging Centre, The Rosie Hospital, Cambridge University Hospitals, Cambridge, UK.
| |
Collapse
|
26
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
27
|
Louçã M, El Akrouti D, Lemesle A, Louessard M, Dufour N, Baroin C, de la Fouchardière A, Cotter L, Jean-Jacques H, Redeker V, Perrier AL. Huntingtin lowering impairs the maturation and synchronized synaptic activity of human cortical neuronal networks derived from induced pluripotent stem cells. Neurobiol Dis 2024; 200:106630. [PMID: 39106928 DOI: 10.1016/j.nbd.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024] Open
Abstract
Despite growing descriptions of wild-type Huntingtin (wt-HTT) roles in both adult brain function and, more recently, development, several clinical trials are exploring HTT-lowering approaches that target both wt-HTT and the mutant isoform (mut-HTT) responsible for Huntington's disease (HD). This non-selective targeting is based on the autosomal dominant inheritance of HD, supporting the idea that mut-HTT exerts its harmful effects through a toxic gain-of-function or a dominant-negative mechanism. However, the precise amount of wt-HTT needed for healthy neurons in adults and during development remains unclear. In this study, we address this question by examining how wt-HTT loss affects human neuronal network formation, synaptic maturation, and homeostasis in vitro. Our findings establish a role of wt-HTT in the maturation of dendritic arborization and the acquisition of network-wide synchronized activity by human cortical neuronal networks modeled in vitro. Interestingly, the network synchronization defects only became apparent when more than two-thirds of the wt-HTT protein was depleted. Our study underscores the critical need to precisely understand wt-HTT role in neuronal health. It also emphasizes the potential risks of excessive wt-HTT loss associated with non-selective therapeutic approaches targeting both wt- and mut-HTT isoforms in HD patients.
Collapse
Affiliation(s)
- Mathilde Louçã
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Donya El Akrouti
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Aude Lemesle
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Morgane Louessard
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Noëlle Dufour
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Chloé Baroin
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Aurore de la Fouchardière
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Laurent Cotter
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France
| | - Hélène Jean-Jacques
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Virginie Redeker
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell, 91198 Gif-sur-Yvette, France
| | - Anselme L Perrier
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives : Mécanismes, Thérapies, Imagerie, 92265 Fontenay-aux-Roses, France; Université Paris-Saclay, CEA, Molecular Imaging Research Center, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
28
|
Qian L, Jin F, Li T, Wei Z, Ma X, Zheng W, Javanmardi N, Wang Z, Ma J, Lai C, Dong W, Wang T, Feng ZQ. Self-Adhesive and Self-Sustainable Bioelectronic Patch for Physiological Feedback Electronic Modulation of Soft Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406636. [PMID: 39148152 DOI: 10.1002/adma.202406636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Bionic electrical stimulation (Bio-ES) aims to achieve personalized therapy and proprioceptive adaptation by mimicking natural neural signatures of the body, while current Bio-ES devices are reliant on complex sensing and computational simulation systems, thus often limited by the low-fidelity of simulated electrical signals, and failure of interface information interaction due to the mechanical mismatch between soft tissues and rigid electrodes. Here, the study presents a flexible and ultrathin self-sustainable bioelectronic patch (Bio-patch), which can self-adhere to the lesion area of organs and generate bionic electrical signals synchronized vagal nerve envelope in situ to implement Bio-ES. It allows adaptive adjustment of intensity, frequency, and waveform of the Bio-ES to fully meet personalized needs of tissue regeneration based on real-time feedback from the vagal neural controlled organs. With this foundation, the Bio-patch can effectively intervene with excessive fibrosis and microvascular stasis during the natural healing process by regulating the polarization time of macrophages, promoting the reconstruction of the tissue-engineered structure, and accelerating the repair of damaged liver and kidney. This work develops a practical approach to realize biomimetic electronic modulation of the growth and development of soft organs only using a multifunctional Bio-patch, which establishes a new paradigm for precise bioelectronic medicine.
Collapse
Affiliation(s)
- Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiying Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chengteng Lai
- Department of Orthopaedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
29
|
Dumontier D, Liebman SA, Le VH, George S, Valdemar D, Van Aelst L, Pouchelon G. Restoring transient connectivity during development improves dysfunctions in fragile X mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.08.611918. [PMID: 39314327 PMCID: PMC11419037 DOI: 10.1101/2024.09.08.611918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Early-generated circuits are critical for the maturation of cortical network activity and the formation of excitation/inhibition (E/I) balance. This process involves the maturation of specific populations of inhibitory neurons. While parvalbumin (PV)-expressing neurons have been associated with E/I impairments observed in neurodevelopmental disorders, somatostatin-expressing (SST) neurons have recently been shown to regulate PV neuron maturation by controlling neural dynamics in the developing cortex. SST neurons receive transient connections from the sensory thalamus, yet the implications of transient connectivity in neurodevelopmental disorders remain unknown. Here, we show that thalamocortical connectivity to SST neurons is persistent rather than transient in a mouse model of Fragile X syndrome. We were able to restore the transient dynamics using chemogenetics, which led to the recovery of fragile X-associated dysfunctions in circuit maturation and sensory-dependent behavior. Overall, our findings unveil the role of early transient dynamics in controlling downstream maturation of sensory functions.
Collapse
Affiliation(s)
| | | | - Viet-Hang Le
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Shanu George
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | |
Collapse
|
30
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically active piriform cortex neurons promote intracortical recurrent connectivity during development. Neuron 2024; 112:2938-2954.e6. [PMID: 38964330 PMCID: PMC11377168 DOI: 10.1016/j.neuron.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
Affiliation(s)
- David C Wang
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA; Stanford MSTP, Stanford, CA 94305, USA
| | | | - Jun H Song
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Franks
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
de Groot ER, Wang X, Wojtal K, Janson E, Alderliesten T, Tataranno ML, Benders MJNL, Dudink J. Association between sleep stages and brain microstructure in preterm infants: Insights from DTI analysis. Sleep Med 2024; 121:336-342. [PMID: 39053129 DOI: 10.1016/j.sleep.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
STUDY OBJECTIVES The aim of this study was to investigate the relationship between sleep stages and neural microstructure - measured using diffusion tensor imaging - of the posterior limb of the internal capsule and corticospinal tract in preterm infants. METHODS A retrospective cohort of 50 preterm infants born between 24 + 4 and 29 + 3 weeks gestational age was included in the study. Sleep stages were continuously measured for 5-7 consecutive days between 29 + 0 and 31 + 6 weeks postmenstrual age using an in-house-developed, and recently published, automated sleep staging algorithm based on routinely measured heart rate and respiratory rate. Additionally, a diffusion tensor imaging scan was conducted at term equivalent age as part of standard care. Region of interest analysis of the posterior limb of the internal capsule was performed, and tractography was used to analyze the corticospinal tract. The association between sleep and white matter microstructure of the posterior limb of the internal capsule and corticospinal tract was examined using a multiple linear regression model, adjusted for potential confounders. RESULTS The results of the analyses revealed an interaction effect between sleep stage and days of invasive ventilation on the fractional anisotropy of the left and right posterior limb of the internal capsule (β = 0.04, FDR-adjusted p = 0.001 and β = 0.04, FDR-adjusted p = 0.02, respectively). Furthermore, an interaction effect between sleep stage and days of invasive ventilation was observed for the radial diffusivity of the mean of the left and right PLIC (β = -4.1e-05, FDR-adjusted p = 0.04). CONCLUSIONS Previous research has shown that, in very preterm infants, invasive ventilation has a negative effect on white matter tract maturation throughout the brain. A positive association between active sleep and white matter microstructure of the posterior limb of the internal capsule, may indicate a protective role of sleep in this vulnerable population.
Collapse
Affiliation(s)
- Eline R de Groot
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Xiaowan Wang
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Klaudia Wojtal
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Els Janson
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, the Netherlands; Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Iannone AF, Akgül G, Zhang R, Wacks S, Hussein N, Macias CG, Donatelle A, Bauriedel JMJ, Wright C, Abramov D, Johnson MA, Govek EE, Burré J, Milner TA, De Marco García NV. The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex. Cell Rep 2024; 43:114531. [PMID: 39058591 PMCID: PMC11373301 DOI: 10.1016/j.celrep.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Spontaneous and sensory-evoked activity sculpts developing circuits. Yet, how these activity patterns intersect with cellular programs regulating the differentiation of neuronal subtypes is not well understood. Through electrophysiological and in vivo longitudinal analyses, we show that C-X-C motif chemokine ligand 14 (Cxcl14), a gene previously characterized for its association with tumor invasion, is expressed by single-bouquet cells (SBCs) in layer I (LI) of the somatosensory cortex during development. Sensory deprivation at neonatal stages markedly decreases Cxcl14 expression. Additionally, we report that loss of function of this gene leads to increased intrinsic excitability of SBCs-but not LI neurogliaform cells-and augments neuronal complexity. Furthermore, Cxcl14 loss impairs sensory map formation and compromises the in vivo recruitment of superficial interneurons by sensory inputs. These results indicate that Cxcl14 is required for LI differentiation and demonstrate the emergent role of chemokines as key players in cortical network development.
Collapse
Affiliation(s)
- Andrew F Iannone
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Gülcan Akgül
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Robin Zhang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sam Wacks
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nisma Hussein
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carmen Ginelly Macias
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Donatelle
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Julia M J Bauriedel
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Cora Wright
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Debra Abramov
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA; Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Megan A Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | - Jacqueline Burré
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Natalia V De Marco García
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
33
|
Pyott SJ, Pavlinkova G, Yamoah EN, Fritzsch B. Harmony in the Molecular Orchestra of Hearing: Developmental Mechanisms from the Ear to the Brain. Annu Rev Neurosci 2024; 47:1-20. [PMID: 38360566 PMCID: PMC11787624 DOI: 10.1146/annurev-neuro-081423-093942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.
Collapse
Affiliation(s)
- Sonja J Pyott
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Groningen, Graduate School of Medical Sciences, and Research School of Behavioral and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czechia
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA;
| |
Collapse
|
34
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Wilkinson CL, Yankowitz LD, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic components in children 2-44 months of age. Nat Commun 2024; 15:5788. [PMID: 38987558 PMCID: PMC11237135 DOI: 10.1038/s41467-024-50204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Developmental changes in periodic peaks include (1) the presence and then absence of a 9-10 Hz alpha peak between 2-6 months, (2) nonlinear changes in high beta peaks (20-30 Hz) between 4-18 months, and (3) the emergence of a low beta peak (12-20 Hz) in some infants after six months of age. We hypothesized that the emergence of the low beta peak may reflect maturation of thalamocortical network development. Infant anesthesia studies observe that GABA-modulating anesthetics do not induce thalamocortical mediated frontal alpha coherence until 10-12 months of age. Using a small cohort of infants (n = 23) with EEG before and during GABA-modulating anesthesia, we provide preliminary evidence that infants with a low beta peak have higher anesthesia-induced alpha coherence compared to those without a low beta peak.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Lisa D Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Departamento de Anestesia y Medicina Perioperatoria, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
36
|
Marret S, Chadie A, Muller JB, Chollat C. [Neurodevelopment and neuroprotection in young children]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024; 52:481-489. [PMID: 38492741 DOI: 10.1016/j.gofs.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
In France, the most pessimistic estimates put the prevalence of neurodevelopmental disorders (NDD) at 15 % of births. The two largest populations of newborns at highest risk of NDD are premature babies and babies born into siblings with one or more infants who already have an autism spectrum disorder or another NDD. The high prevalence of these disorders justifies a health promotion policy, centred on the child and his or her family. Prevention is based on the early identification of high-risk factors, by informing families and training pregnancy and early childhood professionals, and implementing perinatal prevention protocols for high-risk newborns (antenatal corticosteroid therapy and magnesium sulfate for women at risk of preterm delivery before 32 weeks, developmental care, therapeutic hypothermia for full-term infants with early neonatal encephalopathy presumed to be anoxic). Preventing the severity of NDD depends on their early identification, as early as possible in the highest plastic "1000 days" developmental window, a smooth flow of diagnosis and care for mothers and children, and the establishment of an ecosystem that includes multi-modal early intervention, at the best in multi-disciplinary teams such as the early medical and social action centres, support for families through guidance programs and inclusion in the community, first in day-care centers and then in nursery schools.
Collapse
Affiliation(s)
- Stéphane Marret
- Service de pédiatrie néonatale et réanimation - neuropédiatrie, hôpital Charles-Nicolle, CHU de Rouen et Unité Inserm 1245, UFR santé de Rouen, université de Normandie, Rouen, France.
| | - Alexandra Chadie
- Service de pédiatrie néonatale et réanimation - neuropédiatrie, hôpital Charles-Nicolle, CHU de Rouen et Unité Inserm 1245, UFR santé de Rouen, université de Normandie, Rouen, France
| | - Jean-Baptiste Muller
- Service de pédiatrie néonatale et réanimation - neuropédiatrie, hôpital Charles-Nicolle, CHU de Rouen et Unité Inserm 1245, UFR santé de Rouen, université de Normandie, Rouen, France
| | - Clément Chollat
- Service de néonatologie, hôpital Armand Trousseau, AP-HP, université Paris Cité, Inserm, NeuroDiderot, Paris, France
| |
Collapse
|
37
|
Dwivedi D, Dumontier D, Sherer M, Lin S, Mirow AMC, Qiu Y, Xu Q, Liebman SA, Joseph D, Datta SR, Fishell G, Pouchelon G. Metabotropic signaling within somatostatin interneurons controls transient thalamocortical inputs during development. Nat Commun 2024; 15:5421. [PMID: 38926335 PMCID: PMC11208423 DOI: 10.1038/s41467-024-49732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
During brain development, neural circuits undergo major activity-dependent restructuring. Circuit wiring mainly occurs through synaptic strengthening following the Hebbian "fire together, wire together" precept. However, select connections, essential for circuit development, are transient. They are effectively connected early in development, but strongly diminish during maturation. The mechanisms by which transient connectivity recedes are unknown. To investigate this process, we characterize transient thalamocortical inputs, which depress onto somatostatin inhibitory interneurons during development, by employing optogenetics, chemogenetics, transcriptomics and CRISPR-based strategies in mice. We demonstrate that in contrast to typical activity-dependent mechanisms, transient thalamocortical connectivity onto somatostatin interneurons is non-canonical and involves metabotropic signaling. Specifically, metabotropic-mediated transcription, of guidance molecules in particular, supports the elimination of this connectivity. Remarkably, we found that this process impacts the development of normal exploratory behaviors of adult mice.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | | | - Mia Sherer
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Sherry Lin
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Andrea M C Mirow
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Yanjie Qiu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
| | - Qing Xu
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Center for Genomics & Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Samuel A Liebman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Djeckby Joseph
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA
| | - Sandeep R Datta
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA
| | - Gord Fishell
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
| | - Gabrielle Pouchelon
- Harvard Medical School, Department of Neurobiology, Boston, MA, USA.
- Broad Institute, Stanley Center for Psychiatric Research, Cambridge, MA, USA.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Harbor, NY, USA.
| |
Collapse
|
38
|
Yrjölä P, Vanhatalo S, Tokariev A. Neuronal Coupling Modes Show Differential Development in the Early Cortical Activity Networks of Human Newborns. J Neurosci 2024; 44:e1012232024. [PMID: 38769006 PMCID: PMC11211727 DOI: 10.1523/jneurosci.1012-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The third trimester is a critical period for the development of functional networks that support the lifelong neurocognitive performance, yet the emergence of neuronal coupling in these networks is poorly understood. Here, we used longitudinal high-density electroencephalographic recordings from preterm infants during the period from 33 to 45 weeks of conceptional age (CA) to characterize early spatiotemporal patterns in the development of local cortical function and the intrinsic coupling modes [ICMs; phase-phase (PPCs), amplitude-amplitude (AACs), and phase-amplitude correlations (PACs)]. Absolute local power showed a robust increase with CA across the full frequency spectrum, while local PACs showed sleep state-specific, biphasic development that peaked a few weeks before normal birth. AACs and distant PACs decreased globally at nearly all frequencies. In contrast, the PPCs showed frequency- and region-selective development, with an increase of coupling strength with CA between frontal, central, and occipital regions at low-delta and alpha frequencies together with a wider-spread decrease at other frequencies. Our findings together present the spectrally and spatially differential development of the distinct ICMs during the neonatal period and provide their developmental templates for future basic and clinical research.
Collapse
Affiliation(s)
- Pauliina Yrjölä
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Sampsa Vanhatalo
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| | - Anton Tokariev
- BABA Center, Pediatric Research Center, Department of Clinical Neurophysiology, New Children's Hospital and HUS Diagnostic Center, Helsinki University Hospital, Helsinki 00290, Finland
- Department of Physiology, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
39
|
Zavalin K, Hassan A, Zhang Y, Khera Z, Lagrange AH. Region and layer-specific expression of GABA A receptor isoforms and KCC2 in developing cortex. Front Cell Neurosci 2024; 18:1390742. [PMID: 38894703 PMCID: PMC11184147 DOI: 10.3389/fncel.2024.1390742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction γ-Aminobutyric acid (GABA) type A receptors (GABAARs) are ligand-gated Cl-channels that mediate the bulk of inhibitory neurotransmission in the mature CNS and are targets of many drugs. During cortical development, GABAAR-mediated signals are significantly modulated by changing subunit composition and expression of Cl-transporters as part of developmental processes and early network activity. To date, this developmental evolution has remained understudied, particularly at the level of cortical layer-specific changes. In this study, we characterized the expression of nine major GABAAR subunits and K-Cl transporter 2 (KCC2) in mouse somatosensory cortex from embryonic development to postweaning maturity. Methods We evaluated expression of α1-5, β2-3, γ2, and δ GABAAR subunits using immunohistochemistry and Western blot techniques, and expression of KCC2 using immunohistochemistry in cortices from E13.5 to P25 mice. Results We found that embryonic cortex expresses mainly α3, α5, β3, and γ2, while expression of α1, α2, α4, β2, δ, and KCC2 begins at later points in development; however, many patterns of nuanced expression can be found in specific lamina, cortical regions, and cells and structures. Discussion While the general pattern of expression of each subunit and KCC2 is similar to previous studies, we found a number of unique temporal, regional, and laminar patterns that were previously unknown. These findings provide much needed knowledge of the intricate developmental evolution in GABAAR composition and KCC2 expression to accommodate developmental signals that transition to mature neurotransmission.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Yueli Zhang
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Zain Khera
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Neurology, TVH VA Medical Center, Nashville, TN, United States
| |
Collapse
|
40
|
Arichi T. Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging. Cold Spring Harb Perspect Biol 2024; 16:a041496. [PMID: 38438187 PMCID: PMC11146311 DOI: 10.1101/cshperspect.a041496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| |
Collapse
|
41
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
42
|
Wang DC, Santos-Valencia F, Song JH, Franks KM, Luo L. Embryonically Active Piriform Cortex Neurons Promote Intracortical Recurrent Connectivity during Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593265. [PMID: 38766173 PMCID: PMC11100831 DOI: 10.1101/2024.05.08.593265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used Targeted Recombination in Active Populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing of these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.
Collapse
|
43
|
Miglioli C, Canini M, Vignotto E, Pecco N, Pozzoni M, Victoria-Feser MP, Guerrier S, Candiani M, Falini A, Baldoli C, Cavoretto PI, Della Rosa PA. The maternal-fetal neurodevelopmental groundings of preterm birth risk. Heliyon 2024; 10:e28825. [PMID: 38596101 PMCID: PMC11002256 DOI: 10.1016/j.heliyon.2024.e28825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Background Altered neurodevelopment is a major clinical sequela of Preterm Birth (PTB) being currently unexplored in-utero. Aims To study the link between fetal brain functional (FbF) connectivity and preterm birth, using resting-state functional magnetic resonance imaging (rs-fMRI). Study design Prospective single-centre cohort study. Subjects A sample of 31 singleton pregnancies at 28-34 weeks assigned to a low PTB risk (LR) (n = 19) or high PTB risk (HR) (n = 12) group based on a) the Maternal Frailty Inventory (MaFra) for PTB risk; b) a case-specific PTB risk gradient. Methods Fetal brain rs-fMRI was performed on 1.5T MRI scanner. First, directed causal relations representing fetal brain functional connectivity measurements were estimated using the Greedy Equivalence Search (GES) algorithm. HR vs. LR group differences were then tested with a novel ad-hoc developed Monte Carlo permutation test. Second, a MaFra-only random forest (RF) was compared against a MaFra-Neuro RF, trained by including also the most important fetal brain functional connections. Third, correlation and regression analyses were performed between MaFra-Neuro class probabilities and i) the GA at birth; ii) PTB risk gradient, iii) perinatal clinical conditions and iv) PTB below 37 weeks. Results First, fewer fetal brain functional connections were evident in the HR group. Second, the MaFra-Neuro RF improved PTB risk prediction. Third, MaFra-Neuro class probabilities showed a significant association with: i) GA at birth; ii) PTB risk gradient, iii) perinatal clinical conditions and iv) PTB below 37 weeks. Conclusion Fetal brain functional connectivity is a novel promising predictor of PTB, linked to maternal risk profiles, ahead of birth, and clinical markers of neurodevelopmental risk, at birth, thus potentially "connecting" different PTB phenotypes.
Collapse
Affiliation(s)
- Cesare Miglioli
- Research Center for Statistics, University of Geneva, Boulevard Du Pont-d’Arve 40, 1205 Geneva, Switzerland
| | - Matteo Canini
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| | - Edoardo Vignotto
- Research Center for Statistics, University of Geneva, Boulevard Du Pont-d’Arve 40, 1205 Geneva, Switzerland
| | - Nicolò Pecco
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| | - Mirko Pozzoni
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60 Milan, 20132, Italy
| | - Maria-Pia Victoria-Feser
- Research Center for Statistics, University of Geneva, Boulevard Du Pont-d’Arve 40, 1205 Geneva, Switzerland
| | - Stéphane Guerrier
- Research Center for Statistics, University of Geneva, Boulevard Du Pont-d’Arve 40, 1205 Geneva, Switzerland
- Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva, Switzerland
| | - Massimo Candiani
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60 Milan, 20132, Italy
| | - Andrea Falini
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| | - Cristina Baldoli
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| | - Paolo I. Cavoretto
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60 Milan, 20132, Italy
| | - Pasquale A. Della Rosa
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| |
Collapse
|
44
|
Stepien BK, Wielockx B. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis. Cells 2024; 13:621. [PMID: 38607059 PMCID: PMC11012138 DOI: 10.3390/cells13070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Embryonic neurogenesis can be defined as a period of prenatal development during which divisions of neural stem and progenitor cells give rise to neurons. In the central nervous system of most mammals, including humans, the majority of neocortical neurogenesis occurs before birth. It is a highly spatiotemporally organized process whose perturbations lead to cortical malformations and dysfunctions underlying neurological and psychiatric pathologies, and in which oxygen availability plays a critical role. In case of deprived oxygen conditions, known as hypoxia, the hypoxia-inducible factor (HIF) signaling pathway is activated, resulting in the selective expression of a group of genes that regulate homeostatic adaptations, including cell differentiation and survival, metabolism and angiogenesis. While a physiological degree of hypoxia is essential for proper brain development, imbalanced oxygen levels can adversely affect this process, as observed in common obstetrical pathologies such as prematurity. This review comprehensively explores and discusses the current body of knowledge regarding the role of hypoxia and the HIF pathway in embryonic neurogenesis of the mammalian cortex. Additionally, it highlights existing gaps in our understanding, presents unanswered questions, and provides avenues for future research.
Collapse
Affiliation(s)
- Barbara K. Stepien
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany
- Experimental Centre, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
45
|
Wilkinson CL, Yankowitz L, Chao JY, Gutiérrez R, Rhoades JL, Shinnar S, Purdon PL, Nelson CA. Developmental trajectories of EEG aperiodic and periodic components: Implications for understanding thalamocortical development during infancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.21.550114. [PMID: 37546863 PMCID: PMC10401947 DOI: 10.1101/2023.07.21.550114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The development of neural circuits has long-lasting effects on brain function, yet our understanding of early circuit development in humans remains limited. Here, periodic EEG power features and aperiodic components were examined from longitudinal EEGs collected from 592 healthy 2-44 month-old infants, revealing age-dependent nonlinear changes suggestive of distinct milestones in early brain maturation. Consistent with the transient developmental progression of thalamocortical circuitry, we observe the presence and then absence of periodic alpha and high beta peaks across the three-year period, as well as the emergence of a low beta peak (12-20Hz) after six months of age. We present preliminary evidence that the emergence of the low beta peak is associated with higher thalamocortical-dependent, anesthesia-induced alpha coherence. Together, these findings suggest that early age-dependent changes in alpha and beta periodic peaks may reflect the state of thalamocortical network development.
Collapse
Affiliation(s)
- Carol L Wilkinson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
| | - Lisa Yankowitz
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jerry Y Chao
- Department of Anesthesiology, Montefiore Medical Center, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rodrigo Gutiérrez
- Departamento de Anestesia y Medicina Perioperatoria, Hospital Clínico de la Universidad de Chile, Santiago, Chile
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Jeff L Rhoades
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Shlomo Shinnar
- The Saul R. Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
46
|
Fitzgerald M. The Bayliss-Starling Prize Lecture: The developmental physiology of spinal cord and cortical nociceptive circuits. J Physiol 2024; 602:1003-1016. [PMID: 38426221 DOI: 10.1113/jp283994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
47
|
Clowry GJ. Is there a consensus on the location and composition of the human subplate? J Comp Neurol 2024; 532:e25605. [PMID: 38454555 DOI: 10.1002/cne.25605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Cortical wall of human fetal cerebral cortex (early second trimester immunostained for a synaptic marker [red]) revealing the extent of the subplate, which is considerably wider than the cortical plate at this developmental stage.
Collapse
Affiliation(s)
- Gavin J Clowry
- Biosciences Institute and Centre for Transformative Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
48
|
Shaker T, Dagpa GJ, Cattaud V, Marriott BA, Sultan M, Almokdad M, Jackson J. A simple and reliable method for claustrum localization across age in mice. Mol Brain 2024; 17:10. [PMID: 38368400 PMCID: PMC10874566 DOI: 10.1186/s13041-024-01082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.
Collapse
Affiliation(s)
- Tarek Shaker
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Gwyneth J Dagpa
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Vanessa Cattaud
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariam Sultan
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Mohammed Almokdad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
49
|
Chang M, Nehs S, Xu Z, Kanold PO. Distinct distribution of subplate neuron subtypes between the sensory cortices during the early postnatal period. J Comp Neurol 2024; 532:e25594. [PMID: 38407509 PMCID: PMC11186582 DOI: 10.1002/cne.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/09/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
Subplate neurons (SpNs) are a heterogeneous neuronal population actively involved in early cortical circuit formation. In rodents, many SpNs survive and form layer 6b. The molecular heterogeneity of SpNs raises the question of whether different subpopulations of SpNs survive through the early postnatal period similarly and whether such diverse SpN populations in the auditory cortex (ACtx) share a common distribution pattern with other sensory systems. To address that, we investigated the expression pattern of multiple specific SpN markers in the ACtx, as well as in the visual (VCtx) and somatosensory (SCtx) cortices as controls, using complexin 3 (Cplx3) antibodies and different SpN-specific Cre-driver mice, such as connective tissue growth factor (CTGF), dopamine receptor D1 (Drd1a), and neurexophilin 4 (Nxph4). We focused on two early time windows in auditory development: (1) during the second postnatal week (PNW) before ear-canal opening and (2) during the third PNW after ear-canal opening. We compared the expression pattern of different SpN markers in ACtx with VCtx and SCtx. At both examined timepoints, Cplx3 and Nxph4 expressing SpNs form the largest and smallest population in the ACtx, respectively. Similar distribution patterns are observable in the VCtx and SCtx during the second PNW but not during the third PNW, for a higher proportion of Drd1a expressing SpNs is detected in the VCtx and CTGF expressing SpNs in the SCtx. This study suggests that different populations of SpNs might contribute differently to the development of individual sensory circuits.
Collapse
Affiliation(s)
- Minzi Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sophia Nehs
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zheng Xu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Wang X, de Groot ER, Tataranno ML, van Baar A, Lammertink F, Alderliesten T, Long X, Benders MJNL, Dudink J. Machine Learning-Derived Active Sleep as an Early Predictor of White Matter Development in Preterm Infants. J Neurosci 2024; 44:e1024232023. [PMID: 38124010 PMCID: PMC10860564 DOI: 10.1523/jneurosci.1024-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 12/23/2023] Open
Abstract
White matter dysmaturation is commonly seen in preterm infants admitted to the neonatal intensive care unit (NICU). Animal research has shown that active sleep is essential for early brain plasticity. This study aimed to determine the potential of active sleep as an early predictor for subsequent white matter development in preterm infants. Using heart and respiratory rates routinely monitored in the NICU, we developed a machine learning-based automated sleep stage classifier in a cohort of 25 preterm infants (12 females). The automated classifier was subsequently applied to a study cohort of 58 preterm infants (31 females) to extract active sleep percentage over 5-7 consecutive days during 29-32 weeks of postmenstrual age. Each of the 58 infants underwent high-quality T2-weighted magnetic resonance brain imaging at term-equivalent age, which was used to measure the total white matter volume. The association between active sleep percentage and white matter volume was examined using a multiple linear regression model adjusted for potential confounders. Using the automated classifier with a superior sleep classification performance [mean area under the receiver operating characteristic curve (AUROC) = 0.87, 95% CI 0.83-0.92], we found that a higher active sleep percentage during the preterm period was significantly associated with an increased white matter volume at term-equivalent age [β = 0.31, 95% CI 0.09-0.53, false discovery rate (FDR)-adjusted p-value = 0.021]. Our results extend the positive association between active sleep and early brain development found in animal research to human preterm infants and emphasize the potential benefit of sleep preservation in the NICU setting.
Collapse
Affiliation(s)
- Xiaowan Wang
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
| | - Eline R de Groot
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
| | - Maria Luisa Tataranno
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Anneloes van Baar
- Child and Adolescent Studies, Utrecht University, Utrecht 3584 CS, The Netherlands
| | - Femke Lammertink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
| | - Thomas Alderliesten
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Xi Long
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht 3584 EA, The Netherlands
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|