1
|
Groshkova M, Alvanos T, Qi Y, Wang F, Wichmann C, Hua Y, Moser T. Investigation of neuromodulation of the endbulb of Held synapse in the cochlear nucleus by serotonin and norepinephrine. Front Cell Neurosci 2025; 19:1575158. [PMID: 40357171 PMCID: PMC12066487 DOI: 10.3389/fncel.2025.1575158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Synapses vary greatly in synaptic strength and plasticity, even within the same circuitry or set of pre- and postsynaptic neurons. Neuromodulation is a candidate mechanism to explain some of this variability. Neuromodulators such as monoamines can differentially regulate presynaptic function and neuronal excitability. Variability is found also for the large calyceal synapses of the auditory pathway that display high synaptic vesicle (SV) release probability (Pvr) and large postsynaptic currents in vitro enabling reliable and temporally precise transmission of auditory information. In this study, we investigated whether the endbulb of Held synapse formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN) of mice is modulated by norepinephrine (NE) and serotonin (5-HT). Methods We used electron microscopy (EM) of the cochlear nucleus (CN) to investigate the presence of monoaminergic projections. Furthermore, we performed immunohistochemistry to study the localization of monoamine transporters and receptors in the AVCN. We performed patch-clamp recordings from BCs to study spontaneous and evoked synaptic transmission as well as short-term plasticity of the endbulb of Held synapse and to investigate the excitability of the BCs. Results We found EM evidence for putative monoaminergic varicosities in both ventral and dorsal divisions of the CN. Immunostaining for vesicular 5-HT and NE transporters revealed NE-containing and 5-HT-containing varicosities in the AVCN, juxtaposed to both endbulbs and BCs. Furthermore, we detected immunofluorescence for 5-HT1B, 5-HT4, and 5-HT7 receptors (R) and α2C-adrenergic receptors (AR) in BCs. Patch-clamp recordings from BCs revealed an increase in frequency of miniature excitatory postsynaptic currents (mEPSCs) upon application of NE but not 5-HT. Evoked synaptic transmission was unaffected by the application of either NE or 5-HT. Similarly, when studying the biophysical properties of the BCs, we did not observe effects of NE or 5-HT on low-voltage-activated K+ (K LVA + ) and hyperpolarization-activated mixed cation (HCN) channels during application. Discussion In summary, we report evidence for the presence of monoaminergic innervation in the cochlear nucleus and for subtle functional NE-neuromodulation at the endbulb of Held synapse.
Collapse
Affiliation(s)
- Maria Groshkova
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Fassberg Campus, Göttingen, Germany
- Collaborative Research Center SFB 1286 “Quantitative Synaptology”, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology (IMPRS), Göttingen, Germany
| | - Theocharis Alvanos
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Fassberg Campus, Göttingen, Germany
- Collaborative Research Center SFB 1286 “Quantitative Synaptology”, University of Göttingen, Göttingen, Germany
| | - Yumeng Qi
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Carolin Wichmann
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center SFB 1286 “Quantitative Synaptology”, University of Göttingen, Göttingen, Germany
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute of Multidisciplinary Sciences, Fassberg Campus, Göttingen, Germany
- Collaborative Research Center SFB 1286 “Quantitative Synaptology”, University of Göttingen, Göttingen, Germany
- Göttingen Graduate School for Neurosciences and Molecular Biosciences, University of Göttingen, Göttingen, Germany
- International Max Planck Research School for Molecular Biology (IMPRS), Göttingen, Germany
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Huang JY, Hess M, Bajpai A, Li X, Hobson LN, Xu AJ, Barton SJ, Lu HC. From initial formation to developmental refinement: GABAergic inputs shape neuronal subnetworks in the primary somatosensory cortex. iScience 2025; 28:112104. [PMID: 40129704 PMCID: PMC11930745 DOI: 10.1016/j.isci.2025.112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neuronal subnetworks, also known as ensembles, are functional units formed by interconnected neurons for information processing and encoding in the adult brain. Our study investigates the establishment of neuronal subnetworks in the mouse primary somatosensory (S1) cortex from postnatal days (P)11 to P21 using in vivo two-photon calcium imaging. We found that at P11, neuronal activity was highly synchronized but became sparser by P21. Clustering analyses revealed that while the number of subnetworks remained constant, their activity patterns became more distinct, with increased coherence, independent of cortical layer or sex. Furthermore, the coherence of neuronal activity within individual subnetworks significantly increased when synchrony frequencies were reduced by augmenting gamma-aminobutyric acid (GABA)ergic activity at P15/16, a period when the neuronal subnetworks were still maturing. Together, these findings indicate the early formation of subnetworks and underscore the pivotal roles of GABAergic inputs in modulating S1 neuronal subnetworks.
Collapse
Affiliation(s)
- Jui-Yen Huang
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Michael Hess
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Abhinav Bajpai
- Research Technologies, Indiana University, Bloomington, IN 47408, USA
| | - Xuan Li
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Liam N. Hobson
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ashley J. Xu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Scott J. Barton
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Hui-Chen Lu
- The Gill Institute for Neuroscience, Indiana University, Bloomington, IN 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Murakami T. Spatial dynamics of spontaneous activity in the developing and adult cortices. Neurosci Res 2025; 212:1-10. [PMID: 39653148 DOI: 10.1016/j.neures.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
Even in the absence of external stimuli, the brain remains remarkably active, with neurons continuously firing and communicating with each other. It is not merely random firing of individual neurons but rather orchestrated patterns of activity that propagate throughout the intricate network. Over two decades, advancements in neuroscience observation tools for hemodynamics, membrane potential, and neural calcium signals, have allowed researchers to analyze the dynamics of spontaneous activity across different spatial scales, from individual neurons to macroscale brain networks. One of the remarkable findings from these studies is that the spatial patterns of spontaneous activity in the developing brain are vastly different from those in the mature adult brain. Spatial patterns of spontaneous activity during development are essential for connection refinement between brain regions, whereas the functional role in the adult brain is still controversial. In this paper, I review the differences in spatial dynamics of spontaneous activity between developing and adult cortices. Then, I delve into the cellular mechanisms underlying spontaneous activity, especially its generation and propagation manner, to contribute to a deeper understanding of brain function and its development.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Abusaada A, De Rosa F, Luhmann HJ, Kilb W, Sinning A. GABAergic integration of transient and persistent neurons in the developing mouse somatosensory cortex. Front Cell Neurosci 2025; 19:1556174. [PMID: 40078325 PMCID: PMC11897519 DOI: 10.3389/fncel.2025.1556174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
GABA is an essential element in the function of neocortical circuits. The origin, migration and mechanisms of synaptogenesis of GABAergic neurons have been intensively studied. However, little information is available when GABAergic synapses are formed within the different cortical layers, neuronal cell types and subcellular compartments. To quantify the distribution of GABAergic synapses in the immature somatosensory mouse cortex, GABAergic synapses were identified by spatially coincident immunoprofiles for the pre- and postsynaptic markers vGAT and gephyrin at postnatal days (P)0-12. Between P0-5, GABAergic synapses are mainly restricted to the marginal zone, while at later developmental stages a more homogenous distribution is obtained. Cajal-Retzius neurons represent a major target of GABAergic synapses in the marginal zone with a homogeneous synapse distribution along the dendrite. The number of GABAergic synapses per pyramidal neuron increases substantially between P0 and P12, with a stable density and distribution in basal dendrites. In contrast, along apical dendrites synapses accumulate to more proximal positions after P8. Overall, the results of this study demonstrate that early GABAergic synaptogenesis is characterized by a consistent increase in the density of synapses with first a stringent overrepresentation in the marginal zone and a delayed establishment of perisomatic synapses in pyramidal neurons.
Collapse
|
5
|
Jiang Y, Wang H, Boergens KM, Rzepka N, Wang F, Hua Y. Efficient cell-wide mapping of mitochondria in electron microscopic volumes using webKnossos. CELL REPORTS METHODS 2025; 5:100989. [PMID: 39999790 PMCID: PMC11955265 DOI: 10.1016/j.crmeth.2025.100989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
Recent technical advances in volume electron microscopy (vEM) and artificial-intelligence-assisted image processing have facilitated high-throughput quantifications of cellular structures, such as mitochondria, that are ubiquitous and morphologically diversified. A still often-overlooked computational challenge is to assign a cell identity to numerous mitochondrial instances, for which both mitochondrial and cell membrane contouring used to be required. Here, we present a vEM reconstruction procedure (called mito-SegEM) that utilizes virtual-path-based annotation to assign automatically segmented mitochondrial instances at the cellular scale, therefore bypassing the requirement of membrane contouring. The embedded toolset in webKnossos (an open-source online annotation platform) is optimized for fast annotation, visualization, and proofreading of cellular organelle networks. We demonstrate the broad applications of mito-SegEM on volumetric datasets from various tissues, including the brain, intestine, and testis, to achieve an accurate and efficient reconstruction of mitochondria in a use-dependent fashion.
Collapse
Affiliation(s)
- Yi Jiang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China.
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China
| | - Kevin M Boergens
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200125 Shanghai, China.
| |
Collapse
|
6
|
Kirk RW, Sun L, Xiao R, Clark EA, Nelson S. Multiplexed CRISPRi Reveals a Transcriptional Switch Between KLF Activators and Repressors in the Maturing Neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636951. [PMID: 39975013 PMCID: PMC11839100 DOI: 10.1101/2025.02.07.636951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
A critical phase of mammalian brain development takes place after birth. Neurons of the mouse neocortex undergo dramatic changes in their morphology, physiology, and synaptic connections during the first postnatal month, while properties of immature neurons, such as the capacity for robust axon outgrowth, are lost. The genetic and epigenetic programs controlling prenatal development are well studied, but our understanding of the transcriptional mechanisms that regulate postnatal neuronal maturation is comparatively lacking. By integrating chromatin accessibility and gene expression data from two subtypes of neocortical pyramidal neurons in the neonatal and maturing brain, we predicted a role for the Krüppel-Like Factor (KLF) family of Transcription Factors in the developmental regulation of neonatally expressed genes. Using a multiplexed CRISPR Interference (CRISPRi) knockdown strategy, we found that a shift in expression from KLF activators (Klf6, Klf7) to repressors (Klf9, Klf13) during early postnatal development functions as a transcriptional 'switch' to first activate, then repress a set of shared targets with cytoskeletal functions including Tubb2b and Dpysl3. We demonstrate that this switch is buffered by redundancy between KLF paralogs, which our multiplexed CRISPRi strategy is equipped to overcome and study. Our results indicate that competition between activators and repressors within the KLF family regulates a conserved component of the postnatal maturation program that may underlie the loss of intrinsic axon growth in maturing neurons. This could facilitate the transition from axon growth to synaptic refinement required to stabilize mature circuits.
Collapse
Affiliation(s)
- Ryan W Kirk
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Liwei Sun
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Ruixuan Xiao
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Erin A Clark
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Sacha Nelson
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
7
|
Grimes WN, Berson DM, Sabnis A, Hoon M, Sinha R, Tian H, Diamond JS. Layer-specific anatomical and physiological features of the retina's neurovascular unit. Curr Biol 2025; 35:109-120.e4. [PMID: 39689705 PMCID: PMC11867051 DOI: 10.1016/j.cub.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/22/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The neurovascular unit (NVU), comprising vascular, glial, and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer-the superficial vascular plexus (SVP)-is associated with astrocytes, like brain capillaries, whereas radial Müller glia interact with vessels in the other layers. Using serial electron microscopic reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the wrapping of brain capillaries by tiled astrocytic endfeet. Gaps in the Müller sheath, found mainly in the intermediate vascular plexus (IVP), permit diverse neuron types to contact pericytes and the endothelial cells directly. Pericyte somata are a favored target, often at spine-like structures with reduced or absent vascular basement lamina. Focal application of ATP to the vitreal surface evoked Ca2+ signals in Müller sheaths in all three vascular layers. Pharmacological experiments confirmed that Müller sheaths express purinergic receptors that, when activated, trigger intracellular Ca2+ signals that are amplified by inositol triphosphate (IP3)-controlled intracellular Ca2+ stores. When rod photoreceptors die in a mouse model of retinitis pigmentosa (rd10), Müller sheaths dissociate from the deep vascular plexus (DVP) but are largely unchanged within the IVP or SVP. Thus, Müller glia interact with retinal vessels in a laminar, compartmentalized manner: glial sheaths are virtually complete in the SVP but fenestrated in the IVP, permitting direct neurovascular contacts. In the DVP, the glial sheath is only modestly fenestrated and is vulnerable to photoreceptor degeneration.
Collapse
Affiliation(s)
- William N Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Adit Sabnis
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jeffrey S Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
8
|
Qi Y, Zhao R, Tian J, Lu J, He M, Tai Y. Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network. Neurosci Bull 2024; 40:1774-1788. [PMID: 39080101 PMCID: PMC11607270 DOI: 10.1007/s12264-024-01266-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 11/30/2024] Open
Abstract
Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Yanqing Qi
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jifeng Tian
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiangteng Lu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurobiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Midorikawa M, Sakamoto H, Nakamura Y, Hirose K, Miyata M. Developmental refinement of the active zone nanotopography and axon wiring at the somatosensory thalamus. Cell Rep 2024; 43:114770. [PMID: 39321021 DOI: 10.1016/j.celrep.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Functional refinement of neural circuits is a crucial developmental process in the brain. However, how synaptic maturation and axon wiring proceed cooperatively to establish reliable signal transmission is unclear. Here, we combined nanotopography of release machinery at the active zone (AZ), nanobiophysics of neurotransmitter release, and single-neuron reconstruction of axon arbors of lemniscal fibers (LFs) in the developing mouse somatosensory thalamus. With development, the cluster of Cav2.1 enlarges and translocates closer to vesicle release sites inside the bouton, and LFs drastically shrink their arbors and form larger boutons on the perisomatic region of target neurons. Experimentally constrained simulations show that the nanotopography of mature synapses enables not only rapid vesicular release but also reliable transmission following repetitive firing. Sensory deprivation impairs the developmental shift of molecular nanotopography and axon wiring. Thus, we uncovered the cooperative nanotopographical and morphological mechanisms underlying the developmental establishment of reliable synaptic transmission.
Collapse
Affiliation(s)
- Mitsuharu Midorikawa
- Division of Biofunction, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
10
|
Wu MW, Kourdougli N, Portera-Cailliau C. Network state transitions during cortical development. Nat Rev Neurosci 2024; 25:535-552. [PMID: 38783147 PMCID: PMC11825063 DOI: 10.1038/s41583-024-00824-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Mammalian cortical networks are active before synaptogenesis begins in earnest, before neuronal migration is complete, and well before an animal opens its eyes and begins to actively explore its surroundings. This early activity undergoes several transformations during development. The most important of these is a transition from episodic synchronous network events, which are necessary for patterning the neocortex into functionally related modules, to desynchronized activity that is computationally more powerful and efficient. Network desynchronization is perhaps the most dramatic and abrupt developmental event in an otherwise slow and gradual process of brain maturation. In this Review, we summarize what is known about the phenomenology of developmental synchronous activity in the rodent neocortex and speculate on the mechanisms that drive its eventual desynchronization. We argue that desynchronization of network activity is a fundamental step through which the cortex transitions from passive, bottom-up detection of sensory stimuli to active sensory processing with top-down modulation.
Collapse
Affiliation(s)
- Michelle W Wu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Neuroscience Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Nazim Kourdougli
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Wang Q, Ding X, Xu Z, Wang B, Wang A, Wang L, Ding Y, Song S, Chen Y, Zhang S, Jiang L, Ding X. The mouse multi-organ proteome from infancy to adulthood. Nat Commun 2024; 15:5752. [PMID: 38982135 PMCID: PMC11233712 DOI: 10.1038/s41467-024-50183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.
Collapse
Affiliation(s)
- Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiao Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sunfengda Song
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youming Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
Lu C, Chen K, Qiu H, Chen X, Chen G, Qi X, Jiang H. Diffusion-based deep learning method for augmenting ultrastructural imaging and volume electron microscopy. Nat Commun 2024; 15:4677. [PMID: 38824146 PMCID: PMC11144272 DOI: 10.1038/s41467-024-49125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Electron microscopy (EM) revolutionized the way to visualize cellular ultrastructure. Volume EM (vEM) has further broadened its three-dimensional nanoscale imaging capacity. However, intrinsic trade-offs between imaging speed and quality of EM restrict the attainable imaging area and volume. Isotropic imaging with vEM for large biological volumes remains unachievable. Here, we developed EMDiffuse, a suite of algorithms designed to enhance EM and vEM capabilities, leveraging the cutting-edge image generation diffusion model. EMDiffuse generates realistic predictions with high resolution ultrastructural details and exhibits robust transferability by taking only one pair of images of 3 megapixels to fine-tune in denoising and super-resolution tasks. EMDiffuse also demonstrated proficiency in the isotropic vEM reconstruction task, generating isotropic volume even in the absence of isotropic training data. We demonstrated the robustness of EMDiffuse by generating isotropic volumes from seven public datasets obtained from different vEM techniques and instruments. The generated isotropic volume enables accurate three-dimensional nanoscale ultrastructure analysis. EMDiffuse also features self-assessment functionalities on predictions' reliability. We envision EMDiffuse to pave the way for investigations of the intricate subcellular nanoscale ultrastructure within large volumes of biological systems.
Collapse
Affiliation(s)
- Chixiang Lu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Kai Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiaojun Chen
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gu Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiaojuan Qi
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Shapson-Coe A, Januszewski M, Berger DR, Pope A, Wu Y, Blakely T, Schalek RL, Li PH, Wang S, Maitin-Shepard J, Karlupia N, Dorkenwald S, Sjostedt E, Leavitt L, Lee D, Troidl J, Collman F, Bailey L, Fitzmaurice A, Kar R, Field B, Wu H, Wagner-Carena J, Aley D, Lau J, Lin Z, Wei D, Pfister H, Peleg A, Jain V, Lichtman JW. A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution. Science 2024; 384:eadk4858. [PMID: 38723085 PMCID: PMC11718559 DOI: 10.1126/science.adk4858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
To fully understand how the human brain works, knowledge of its structure at high resolution is needed. Presented here is a computationally intensive reconstruction of the ultrastructure of a cubic millimeter of human temporal cortex that was surgically removed to gain access to an underlying epileptic focus. It contains about 57,000 cells, about 230 millimeters of blood vessels, and about 150 million synapses and comprises 1.4 petabytes. Our analysis showed that glia outnumber neurons 2:1, oligodendrocytes were the most common cell, deep layer excitatory neurons could be classified on the basis of dendritic orientation, and among thousands of weak connections to each neuron, there exist rare powerful axonal inputs of up to 50 synapses. Further studies using this resource may bring valuable insights into the mysteries of the human brain.
Collapse
Affiliation(s)
- Alexander Shapson-Coe
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Queen Mary, University of London; London E1 4NS, United Kingdom
| | | | - Daniel R. Berger
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Art Pope
- Google Research; Mountain View, CA 94043, United States
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Tim Blakely
- Google Research; Seattle, WA 98103, United States
| | - Richard L. Schalek
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Peter H. Li
- Google Research; Mountain View, CA 94043, United States
| | - Shuohong Wang
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | | | - Neha Karlupia
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Sven Dorkenwald
- Google Research; Mountain View, CA 94043, United States
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, United States
- Computer Science Department, Princeton University, Princeton, NJ 08540, United States
| | - Evelina Sjostedt
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | | | - Dongil Lee
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Dept. of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology; Daejeon 34141, Republic of Korea
| | - Jakob Troidl
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA 02138, United States
| | - Forrest Collman
- Allen Institute for Brain Science; Seattle, WA 98109, United States
| | - Luke Bailey
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Angerica Fitzmaurice
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Rohin Kar
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Benjamin Field
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Hank Wu
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Northeastern University; Boston, MA 02115, United States
| | - Julian Wagner-Carena
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - David Aley
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Joanna Lau
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| | - Zudi Lin
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA 02138, United States
| | - Donglai Wei
- Computer Science Department, Boston College; Chestnut Hill, MA 02467, United States
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA 02138, United States
| | - Adi Peleg
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
- Google; Cambridge, MA 02142, United States
| | - Viren Jain
- Google Research; Mountain View, CA 94043, United States
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University; Cambridge, MA 02138, United States
| |
Collapse
|
15
|
Bragg-Gonzalo L, Aguilera A, González-Arias C, De León Reyes NS, Sánchez-Cruz A, Carballeira P, Leroy F, Perea G, Nieto M. Early cortical GABAergic interneurons determine the projection patterns of L4 excitatory neurons. SCIENCE ADVANCES 2024; 10:eadj9911. [PMID: 38728406 PMCID: PMC11086621 DOI: 10.1126/sciadv.adj9911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
During cerebral cortex development, excitatory pyramidal neurons (PNs) establish specific projection patterns while receiving inputs from GABAergic inhibitory interneurons (INs). Whether these inhibitory inputs can shape PNs' projection patterns is, however, unknown. While layer 4 (L4) PNs of the primary somatosensory (S1) cortex are all born as long-range callosal projection neurons (CPNs), most of them acquire local connectivity upon activity-dependent elimination of their interhemispheric axons during postnatal development. Here, we demonstrate that precise developmental regulation of inhibition is key for the retraction of S1L4 PNs' callosal projections. Ablation of somatostatin INs leads to premature inhibition from parvalbumin INs onto S1L4 PNs and prevents them from acquiring their barrel-restricted local connectivity pattern. As a result, adult S1L4 PNs retain interhemispheric projections responding to tactile stimuli, and the mice lose whisker-based texture discrimination. Overall, we show that temporally ordered IN activity during development is key to shaping local ipsilateral S1L4 PNs' projection pattern, which is required for fine somatosensory processing.
Collapse
Affiliation(s)
- Lorena Bragg-Gonzalo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Alfonso Aguilera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Candela González-Arias
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Noelia S. De León Reyes
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Alonso Sánchez-Cruz
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Paula Carballeira
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Félix Leroy
- Instituto de Neurociencias (CSIC-UMH), Av. Ramón y Cajal s/n, San Juan de Alicante, Alicante, Spain
| | - Gertrudis Perea
- Functional and Systems Neurobiology Department, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
16
|
Théberge S, Belliveau C, Xie D, Khalaf R, Perlman K, Rahimian R, Davoli MA, Turecki G, Mechawar N. Parvalbumin interneurons in human ventromedial prefrontal cortex: a comprehensive post-mortem study of myelination and perineuronal nets in neurotypical individuals and depressed suicides with and without a history of child abuse. Cereb Cortex 2024; 34:bhae197. [PMID: 38760318 PMCID: PMC11101286 DOI: 10.1093/cercor/bhae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.
Collapse
Affiliation(s)
- Stéphanie Théberge
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Claudia Belliveau
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Dongyue Xie
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Roy Khalaf
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Kelly Perlman
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Maria Antonietta Davoli
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montreal, QC, Canada
- Department of Psychiatry, McGill University, 1033 Av des Pins Ouest, H3A 1A1, Montréal, QC, Canada
| |
Collapse
|
17
|
Grimes WN, Berson DM, Sabnis A, Hoon M, Sinha R, Tian H, Diamond JS. The retina's neurovascular unit: Müller glial sheaths and neuronal contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591885. [PMID: 38903067 PMCID: PMC11188116 DOI: 10.1101/2024.04.30.591885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The neurovascular unit (NVU), comprising vascular, glial and neural elements, supports the energetic demands of neural computation, but this aspect of the retina's trilaminar vessel network is poorly understood. Only the innermost vessel layer - the superficial vascular plexus (SVP) - is ensheathed by astrocytes, like brain capillaries, whereas glial ensheathment in other layers derives from radial Müller glia. Using serial electron microscopy reconstructions from mouse and primate retina, we find that Müller processes cover capillaries in a tessellating pattern, mirroring the tiled astrocytic endfeet wrapping brain capillaries. However, gaps in the Müller sheath, found mainly in the intermediate vascular plexus (IVP), permit different neuron types to contact pericytes and the endothelial cells directly. Pericyte somata are a favored target, often at spine-like structures with a reduced or absent vascular basement lamina. Focal application of adenosine triphosphate (ATP) to the vitreal surface evoked Ca2+ signals in Müller sheaths in all three vascular layers. Pharmacological experiments confirmed that Müller sheaths express purinergic receptors that, when activated, trigger intracellular Ca2+ signals that are amplified by IP3-controlled intracellular Ca2+ stores. When rod photoreceptors die in a mouse model of retinitis pigmentosa (rd10), Müller sheaths dissociate from the deep vascular plexus (DVP) but are largely unchanged within the IVP or SVP. Thus, Müller glia interact with retinal vessels in a laminar, compartmentalized manner: glial sheathes are virtually complete in the SVP but fenestrated in the IVP, permitting direct neural-to-vascular contacts. In the DVP, the glial sheath is only modestly fenestrated and is vulnerable to photoreceptor degeneration.
Collapse
Affiliation(s)
- William N. Grimes
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI
| | - Adit Sabnis
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| | - Mrinalini Hoon
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI
| | - Hua Tian
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| | - Jeffrey S. Diamond
- Synaptic Physiology Section, National Institute of Neurological Disorder and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Feng Z, Fang C, Ma Y, Chang J. Obesity-induced blood-brain barrier dysfunction: phenotypes and mechanisms. J Neuroinflammation 2024; 21:110. [PMID: 38678254 PMCID: PMC11056074 DOI: 10.1186/s12974-024-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.
Collapse
Affiliation(s)
- Ziying Feng
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yinzhong Ma
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
19
|
Dummer PD, Lee DI, Hossain S, Wang R, Evard A, Newman G, Ho C, Schneider-Mizell CM, Menon V, Au E. Multidimensional analysis of cortical interneuron synaptic features reveals underlying synaptic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586340. [PMID: 38659827 PMCID: PMC11042224 DOI: 10.1101/2024.03.22.586340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cortical interneurons represent a diverse set of neuronal subtypes characterized in part by their striking degree of synaptic specificity. However, little is known about the extent of synaptic diversity because of the lack of unbiased methods to extract synaptic features among interneuron subtypes. Here, we develop an approach to aggregate image features from fluorescent confocal images of interneuron synapses and their post-synaptic targets, in order to characterize the heterogeneity of synapses at fine scale. We started by training a model that recognizes pre- and post-synaptic compartments and then determines the target of each genetically-identified interneuron synapse in vitro and in vivo. Our model extracts hundreds of spatial and intensity features from each analyzed synapse, constructing a multidimensional data set, consisting of millions of synapses, which allowed us to perform an unsupervised analysis on this dataset, uncovering novel synaptic subgroups. The subgroups were spatially distributed in a highly structured manner that revealed the local underlying topology of the postsynaptic environment. Dendrite-targeting subgroups were clustered onto subdomains of the dendrite along the proximal to distal axis. Soma-targeting subgroups were enriched onto different postsynaptic cell types. We also find that the two main subclasses of interneurons, basket cells and somatostatin interneurons, utilize distinct strategies to enact inhibitory coverage. Thus, our analysis of multidimensional synaptic features establishes a conceptual framework for studying interneuron synaptic diversity.
Collapse
Affiliation(s)
- Patrick D. Dummer
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Dylan I. Lee
- Department of Neurology, Columbia Irving Medical Center, New York NY, 10032
| | - Sakib Hossain
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Runsheng Wang
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Andre Evard
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Gabriel Newman
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | - Claire Ho
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
| | | | - Vilas Menon
- Department of Neurology, Columbia Irving Medical Center, New York NY, 10032
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia Irving Medical Center, New York NY, 10032
- Columbia Translation Neuroscience Initiative Fellow, Columbia Irving Medical Center, New York NY, 10032
| |
Collapse
|
20
|
Cano-Astorga N, Plaza-Alonso S, Turegano-Lopez M, Rodrigo-Rodríguez J, Merchan-Perez A, DeFelipe J. Unambiguous identification of asymmetric and symmetric synapses using volume electron microscopy. Front Neuroanat 2024; 18:1348032. [PMID: 38645671 PMCID: PMC11026665 DOI: 10.3389/fnana.2024.1348032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The brain contains thousands of millions of synapses, exhibiting diverse structural, molecular, and functional characteristics. However, synapses can be classified into two primary morphological types: Gray's type I and type II, corresponding to Colonnier's asymmetric (AS) and symmetric (SS) synapses, respectively. AS and SS have a thick and thin postsynaptic density, respectively. In the cerebral cortex, since most AS are excitatory (glutamatergic), and SS are inhibitory (GABAergic), determining the distribution, size, density, and proportion of the two major cortical types of synapses is critical, not only to better understand synaptic organization in terms of connectivity, but also from a functional perspective. However, several technical challenges complicate the study of synapses. Potassium ferrocyanide has been utilized in recent volume electron microscope studies to enhance electron density in cellular membranes. However, identifying synaptic junctions, especially SS, becomes more challenging as the postsynaptic densities become thinner with increasing concentrations of potassium ferrocyanide. Here we describe a protocol employing Focused Ion Beam Milling and Scanning Electron Microscopy for studying brain tissue. The focus is on the unequivocal identification of AS and SS types. To validate SS observed using this protocol as GABAergic, experiments with immunocytochemistry for the vesicular GABA transporter were conducted on fixed mouse brain tissue sections. This material was processed with different concentrations of potassium ferrocyanide, aiming to determine its optimal concentration. We demonstrate that using a low concentration of potassium ferrocyanide (0.1%) improves membrane visualization while allowing unequivocal identification of synapses as AS or SS.
Collapse
Affiliation(s)
- Nicolás Cano-Astorga
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Turegano-Lopez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - José Rodrigo-Rodríguez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Merchan-Perez
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Arquitectura y Tecnología de Sistemas Informáticos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Zhu YJ, Deng CY, Fan L, Wang YQ, Zhou H, Xu HT. Combinatorial expression of γ-protocadherins regulates synaptic connectivity in the mouse neocortex. eLife 2024; 12:RP89532. [PMID: 38470230 DOI: 10.7554/elife.89532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
In the process of synaptic formation, neurons must not only adhere to specific principles when selecting synaptic partners but also possess mechanisms to avoid undesirable connections. Yet, the strategies employed to prevent unwarranted associations have remained largely unknown. In our study, we have identified the pivotal role of combinatorial clustered protocadherin gamma (γ-PCDH) expression in orchestrating synaptic connectivity in the mouse neocortex. Through 5' end single-cell sequencing, we unveiled the intricate combinatorial expression patterns of γ-PCDH variable isoforms within neocortical neurons. Furthermore, our whole-cell patch-clamp recordings demonstrated that as the similarity in this combinatorial pattern among neurons increased, their synaptic connectivity decreased. Our findings elucidate a sophisticated molecular mechanism governing the construction of neural networks in the mouse neocortex.
Collapse
Affiliation(s)
- Yi-Jun Zhu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Yun Deng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liu Fan
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ya-Qian Wang
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hui Zhou
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Hua-Tai Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
22
|
Wildenberg G, Li H, Sampathkumar V, Sorokina A, Kasthuri N. Isochronic development of cortical synapses in primates and mice. Nat Commun 2023; 14:8018. [PMID: 38049416 PMCID: PMC10695974 DOI: 10.1038/s41467-023-43088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
The neotenous, or delayed, development of primate neurons, particularly human ones, is thought to underlie primate-specific abilities like cognition. We tested whether synaptic development follows suit-would synapses, in absolute time, develop slower in longer-lived, highly cognitive species like non-human primates than in shorter-lived species with less human-like cognitive abilities, e.g., the mouse? Instead, we find that excitatory and inhibitory synapses in the male Mus musculus (mouse) and Rhesus macaque (primate) cortex form at similar rates, at similar times after birth. Primate excitatory and inhibitory synapses and mouse excitatory synapses also prune in such an isochronic fashion. Mouse inhibitory synapses are the lone exception, which are not pruned and instead continuously added throughout life. The monotony of synaptic development clocks across species with disparate lifespans, experiences, and cognitive abilities argues that such programs are likely orchestrated by genetic events rather than experience.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Anastasia Sorokina
- Department of Neurobiology, The University of Chicago, Chicago, USA
- Argonne National Laboratory, Biosciences Division, Lemont, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago, Chicago, USA.
- Argonne National Laboratory, Biosciences Division, Lemont, USA.
| |
Collapse
|
23
|
Gonda S, Riedel C, Reiner A, Köhler I, Wahle P. Axons of cortical basket cells originating from dendrites develop higher local complexity than axons emerging from basket cell somata. Development 2023; 150:dev202305. [PMID: 37902086 PMCID: PMC10690106 DOI: 10.1242/dev.202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Neuronal differentiation is regulated by neuronal activity. Here, we analyzed dendritic and axonal growth of Basket cells (BCs) and non-Basket cells (non-BCs) using sparse transfection of channelrhodopsin-YFP and repetitive optogenetic stimulation in slice cultures of rat visual cortex. Neocortical interneurons often display axon-carrying dendrites (AcDs). We found that the AcDs of BCs and non-BCs were, on average, the most complex dendrites. Further, the AcD configuration had an influence on BC axonal development. Axons originating from an AcD formed denser arborizations with more terminal endings within the dendritic field of the parent cell. Intriguingly, this occurred already in unstimulated BCs, and complexity was not increased further by optogenetic stimulation. However, optogenetic stimulation exerted a growth-promoting effect on axons emerging from BC somata. The axons of non-BCs neither responded to the AcD configuration nor to the optogenetic stimulation. The results suggest that the formation of locally dense BC plexuses is regulated by spontaneous activity. Moreover, in the AcD configuration, the AcD and the axon it carries mutually support each other's growth.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ina Köhler
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
24
|
Venkadesh S, Santarelli A, Boesen T, Dong HW, Ascoli GA. Combinatorial quantification of distinct neural projections from retrograde tracing. Nat Commun 2023; 14:7271. [PMID: 37949860 PMCID: PMC10638408 DOI: 10.1038/s41467-023-43124-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Comprehensive quantification of neuronal architectures underlying anatomical brain connectivity remains challenging. We introduce a method to identify distinct axonal projection patterns from a source to a set of target regions and the count of neurons with each pattern. A source region projecting to n targets could have 2n-1 theoretically possible projection types, although only a subset of these types typically exists. By injecting uniquely labeled retrograde tracers in k target regions (k < n), one can experimentally count the cells expressing different color combinations in the source region. The neuronal counts for different color combinations from n-choose-k experiments provide constraints for a model that is robustly solvable using evolutionary algorithms. Here, we demonstrate this method's reliability for 4 targets using simulated triple injection experiments. Furthermore, we illustrate the experimental application of this framework by quantifying the projections of male mouse primary motor cortex to the primary and secondary somatosensory and motor cortices.
Collapse
Affiliation(s)
- Siva Venkadesh
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA
- Center for Neural Informatics, Structures, and Plasticity, George Mason University, Fairfax, VA, 22030, USA
| | - Anthony Santarelli
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90089, USA
| | - Tyler Boesen
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90089, USA
| | - Hong-Wei Dong
- UCLA Brain Research & Artificial Intelligence Nexus, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90089, USA
| | - Giorgio A Ascoli
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, 22030, USA.
- Center for Neural Informatics, Structures, and Plasticity, George Mason University, Fairfax, VA, 22030, USA.
| |
Collapse
|
25
|
Tzilivaki A, Tukker JJ, Maier N, Poirazi P, Sammons RP, Schmitz D. Hippocampal GABAergic interneurons and memory. Neuron 2023; 111:3154-3175. [PMID: 37467748 PMCID: PMC10593603 DOI: 10.1016/j.neuron.2023.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
One of the most captivating questions in neuroscience revolves around the brain's ability to efficiently and durably capture and store information. It must process continuous input from sensory organs while also encoding memories that can persist throughout a lifetime. What are the cellular-, subcellular-, and network-level mechanisms that underlie this remarkable capacity for long-term information storage? Furthermore, what contributions do distinct types of GABAergic interneurons make to this process? As the hippocampus plays a pivotal role in memory, our review focuses on three aspects: (1) delineation of hippocampal interneuron types and their connectivity, (2) interneuron plasticity, and (3) activity patterns of interneurons during memory-related rhythms, including the role of long-range interneurons and disinhibition. We explore how these three elements, together showcasing the remarkable diversity of inhibitory circuits, shape the processing of memories in the hippocampus.
Collapse
Affiliation(s)
- Alexandra Tzilivaki
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany
| | - John J Tukker
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Panayiota Poirazi
- Foundation for Research and Technology Hellas (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), N. Plastira 100, Heraklion, Crete, Greece
| | - Rosanna P Sammons
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Einstein Center for Neurosciences, Chariteplatz 1, 10117 Berlin, Germany; NeuroCure Cluster of Excellence, Chariteplatz 1, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstrasse. 13, 10115 Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany.
| |
Collapse
|
26
|
Kourdougli N, Suresh A, Liu B, Juarez P, Lin A, Chung DT, Graven Sams A, Gandal MJ, Martínez-Cerdeño V, Buonomano DV, Hall BJ, Mombereau C, Portera-Cailliau C. Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron 2023; 111:2863-2880.e6. [PMID: 37451263 PMCID: PMC10529373 DOI: 10.1016/j.neuron.2023.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 04/14/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.
Collapse
Affiliation(s)
| | - Anand Suresh
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Benjamin Liu
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Pablo Juarez
- Department of Pathology, UC Davis, Davis, CA, USA
| | - Ashley Lin
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Dean V Buonomano
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | - Carlos Portera-Cailliau
- Department of Neurology, UCLA, Los Angeles, CA, USA; Department of Neurobiology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Hu A, Zhao R, Ren B, Li Y, Lu J, Tai Y. Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex. Neurosci Bull 2023; 39:1050-1068. [PMID: 36849716 PMCID: PMC10313623 DOI: 10.1007/s12264-023-01038-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/22/2022] [Indexed: 03/01/2023] Open
Abstract
The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
Collapse
Affiliation(s)
- Ankang Hu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- School of Clinical Medicine, Fudan University, Shanghai, 200032, China
| | - Rui Zhao
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Baihui Ren
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Li
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Jiangteng Lu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 201210, China.
| | - Yilin Tai
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Wilson A, Babadi M. SynapseCLR: Uncovering features of synapses in primary visual cortex through contrastive representation learning. PATTERNS (NEW YORK, N.Y.) 2023; 4:100693. [PMID: 37123442 PMCID: PMC10140600 DOI: 10.1016/j.patter.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023]
Abstract
3D electron microscopy (EM) connectomics image volumes are surpassing 1 mm3, providing information-dense, multi-scale visualizations of brain circuitry and necessitating scalable analysis techniques. We present SynapseCLR, a self-supervised contrastive learning method for 3D EM data, and use it to extract features of synapses from mouse visual cortex. SynapseCLR feature representations separate synapses by appearance and functionally important structural annotations. We demonstrate SynapseCLR's utility for valuable downstream tasks, including one-shot identification of defective synapse segmentations, dataset-wide similarity-based querying, and accurate imputation of annotations for unlabeled synapses, using manual annotation of only 0.2% of the dataset's synapses. In particular, excitatory versus inhibitory neuronal types can be assigned with >99.8% accuracy to individual synapses and highly truncated neurites, enabling neurite-enhanced connectomics analysis. Finally, we present a data-driven, unsupervised study of synaptic structural variation on the representation manifold, revealing its intrinsic axes of variation and showing that representations contain inhibitory subtype information.
Collapse
Affiliation(s)
- Alyssa Wilson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Mehrtash Babadi
- Data Sciences Platform, Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
29
|
Wildenberg G, Li H, Kasthuri N. The Development of Synapses in Mouse and Macaque Primary Sensory Cortices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528564. [PMID: 36824798 PMCID: PMC9949058 DOI: 10.1101/2023.02.15.528564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We report that the rate of synapse development in primary sensory cortices of mice and macaques is unrelated to lifespan, as was previously thought. We analyzed 28,084 synapses over multiple developmental time points in both species and find, instead, that net excitatory synapse development of mouse and macaque neurons primarily increased at similar rates in the first few postnatal months, and then decreased over a span of 1-1.5 years of age. The development of inhibitory synapses differed qualitatively across species. In macaques, net inhibitory synapses first increase and then decrease on excitatory soma at similar ages as excitatory synapses. In mice, however, such synapses are added throughout life. These findings contradict the long-held belief that the cycle of synapse formation and pruning occurs earlier in shorter-lived animals. Instead, our results suggest more nuanced rules, with the development of different types of synapses following different timing rules or different trajectories across species.
Collapse
Affiliation(s)
- Gregg Wildenberg
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Hanyu Li
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| | - Narayanan Kasthuri
- Department of Neurobiology, The University of Chicago
- Argonne National Laboratory, Biosciences Division
| |
Collapse
|
30
|
Bryson A, Petrou S. SCN1A channelopathies: Navigating from genotype to neural circuit dysfunction. Front Neurol 2023; 14:1173460. [PMID: 37139072 PMCID: PMC10149698 DOI: 10.3389/fneur.2023.1173460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The SCN1A gene is strongly associated with epilepsy and plays a central role for supporting cortical excitation-inhibition balance through the expression of NaV1.1 within inhibitory interneurons. The phenotype of SCN1A disorders has been conceptualized as driven primarily by impaired interneuron function that predisposes to disinhibition and cortical hyperexcitability. However, recent studies have identified SCN1A gain-of-function variants associated with epilepsy, and the presence of cellular and synaptic changes in mouse models that point toward homeostatic adaptations and complex network remodeling. These findings highlight the need to understand microcircuit-scale dysfunction in SCN1A disorders to contextualize genetic and cellular disease mechanisms. Targeting the restoration of microcircuit properties may be a fruitful strategy for the development of novel therapies.
Collapse
Affiliation(s)
- Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Alexander Bryson,
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA, United States
| |
Collapse
|
31
|
Chequer Charan D, Hua Y, Wang H, Huang W, Wang F, Elgoyhen AB, Boergens KM, Di Guilmi MN. Volume electron microscopy reveals age-related circuit remodeling in the auditory brainstem. Front Cell Neurosci 2022; 16:1070438. [PMID: 36589288 PMCID: PMC9799098 DOI: 10.3389/fncel.2022.1070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is an integral component of the auditory brainstem circuitry involved in sound localization. The giant presynaptic nerve terminal with multiple active zones, the calyx of Held (CH), is a hallmark of this nucleus, which mediates fast and synchronized glutamatergic synaptic transmission. To delineate how these synaptic structures adapt to reduced auditory afferents due to aging, we acquired and reconstructed circuitry-level volumes of mouse MNTB at different ages (3 weeks, 6, 18, and 24 months) using serial block-face electron microscopy. We used C57BL/6J, the most widely inbred mouse strain used for transgenic lines, which displays a type of age-related hearing loss. We found that MNTB neurons reduce in density with age. Surprisingly we observed an average of approximately 10% of poly-innervated MNTB neurons along the mouse lifespan, with prevalence in the low frequency region. Moreover, a tonotopy-dependent heterogeneity in CH morphology was observed in young but not in older mice. In conclusion, our data support the notion that age-related hearing impairments can be in part a direct consequence of several structural alterations and circuit remodeling in the brainstem.
Collapse
Affiliation(s)
- Daniela Chequer Charan
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Huang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Kevin M. Boergens
- Department of Physics, The University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| | - Mariano N. Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| |
Collapse
|
32
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
33
|
Kievits AJ, Lane R, Carroll EC, Hoogenboom JP. How innovations in methodology offer new prospects for volume electron microscopy. J Microsc 2022; 287:114-137. [PMID: 35810393 PMCID: PMC9546337 DOI: 10.1111/jmi.13134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
Detailed knowledge of biological structure has been key in understanding biology at several levels of organisation, from organs to cells and proteins. Volume electron microscopy (volume EM) provides high resolution 3D structural information about tissues on the nanometre scale. However, the throughput rate of conventional electron microscopes has limited the volume size and number of samples that can be imaged. Recent improvements in methodology are currently driving a revolution in volume EM, making possible the structural imaging of whole organs and small organisms. In turn, these recent developments in image acquisition have created or stressed bottlenecks in other parts of the pipeline, like sample preparation, image analysis and data management. While the progress in image analysis is stunning due to the advent of automatic segmentation and server-based annotation tools, several challenges remain. Here we discuss recent trends in volume EM, emerging methods for increasing throughput and implications for sample preparation, image analysis and data management.
Collapse
Affiliation(s)
- Arent J. Kievits
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | - Ryan Lane
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| | | | - Jacob P. Hoogenboom
- Department of Imaging PhysicsDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
34
|
Chini M, Pfeffer T, Hanganu-Opatz I. An increase of inhibition drives the developmental decorrelation of neural activity. eLife 2022; 11:78811. [PMID: 35975980 PMCID: PMC9448324 DOI: 10.7554/elife.78811] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Throughout development, the brain transits from early highly synchronous activity patterns to a mature state with sparse and decorrelated neural activity, yet the mechanisms underlying this process are poorly understood. The developmental transition has important functional consequences, as the latter state is thought to allow for more efficient storage, retrieval, and processing of information. Here, we show that, in the mouse medial prefrontal cortex (mPFC), neural activity during the first two postnatal weeks decorrelates following specific spatial patterns. This process is accompanied by a concomitant tilting of excitation-inhibition (E-I) ratio toward inhibition. Using optogenetic manipulations and neural network modeling, we show that the two phenomena are mechanistically linked, and that a relative increase of inhibition drives the decorrelation of neural activity. Accordingly, in mice mimicking the etiology of neurodevelopmental disorders, subtle alterations in E-I ratio are associated with specific impairments in the correlational structure of spike trains. Finally, capitalizing on EEG data from newborn babies, we show that an analogous developmental transition takes place also in the human brain. Thus, changes in E-I ratio control the (de)correlation of neural activity and, by these means, its developmental imbalance might contribute to the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mattia Chini
- Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Pfeffer
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ileana Hanganu-Opatz
- Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Zeng H. What is a cell type and how to define it? Cell 2022; 185:2739-2755. [PMID: 35868277 DOI: 10.1016/j.cell.2022.06.031] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022]
Abstract
Cell types are the basic functional units of an organism. Cell types exhibit diverse phenotypic properties at multiple levels, making them challenging to define, categorize, and understand. This review provides an overview of the basic principles of cell types rooted in evolution and development and discusses approaches to characterize and classify cell types and investigate how they contribute to the organism's function, using the mammalian brain as a primary example. I propose a roadmap toward a conceptual framework and knowledge base of cell types that will enable a deeper understanding of the dynamic changes of cellular function under healthy and diseased conditions.
Collapse
Affiliation(s)
- Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
36
|
Dard RF, Leprince E, Denis J, Rao Balappa S, Suchkov D, Boyce R, Lopez C, Giorgi-Kurz M, Szwagier T, Dumont T, Rouault H, Minlebaev M, Baude A, Cossart R, Picardo MA. The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion. eLife 2022; 11:e78116. [PMID: 35856497 PMCID: PMC9363116 DOI: 10.7554/elife.78116] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly driven by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas, including the hippocampus, which, in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week, whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within 2 days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal hippocampal dynamics.
Collapse
Affiliation(s)
- Robin F Dard
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Erwan Leprince
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Julien Denis
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Shrisha Rao Balappa
- Turing Centre for Living systems, Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332)MarseilleFrance
| | - Dmitrii Suchkov
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Richard Boyce
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Catherine Lopez
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Marie Giorgi-Kurz
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Tom Szwagier
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
- Mines ParisTech, PSL Research UniversityParisFrance
| | - Théo Dumont
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
- Mines ParisTech, PSL Research UniversityParisFrance
| | - Hervé Rouault
- Turing Centre for Living systems, Aix-Marseille University, Université de Toulon, CNRS, CPT (UMR 7332)MarseilleFrance
| | - Marat Minlebaev
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Agnès Baude
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Rosa Cossart
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| | - Michel A Picardo
- Turing Centre for Living systems, Aix-Marseille University, INSERM, INMED U1249MarseilleFrance
| |
Collapse
|
37
|
Loomba S, Straehle J, Gangadharan V, Heike N, Khalifa A, Motta A, Ju N, Sievers M, Gempt J, Meyer HS, Helmstaedter M. Connectomic comparison of mouse and human cortex. Science 2022; 377:eabo0924. [PMID: 35737810 DOI: 10.1126/science.abo0924] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cerebral cortex houses 1,000 times more neurons than the cerebral cortex of a mouse, but the possible differences in synaptic circuits between these species are still poorly understood. We used 3-dimensional electron microscopy of mouse, macaque and human cortical samples to study their cell type composition and synaptic circuit architecture. The 2.5-fold increase in interneurons in humans compared to mouse was compensated by a change in axonal connection probabilities and therefore did not yield a commensurate increase in inhibitory-vs-excitatory synaptic input balance on human pyramidal cells. Rather, increased inhibition created an expanded interneuron-to-interneuron network, driven by an expansion of interneuron-targeting interneuron types and an increase in their synaptic selectivity for interneuron innervation. These constitute key neuronal network alterations in human cortex.
Collapse
Affiliation(s)
- Sahil Loomba
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.,Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jakob Straehle
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Vijayan Gangadharan
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Natalie Heike
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Abdelrahman Khalifa
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Alessandro Motta
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Niansheng Ju
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Meike Sievers
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany.,Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Jens Gempt
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Hanno S Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Germany
| | - Moritz Helmstaedter
- Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
38
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
39
|
Kirmse K, Zhang C. Principles of GABAergic signaling in developing cortical network dynamics. Cell Rep 2022; 38:110568. [PMID: 35354036 DOI: 10.1016/j.celrep.2022.110568] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
GABAergic signaling provides inhibitory stabilization and spatiotemporally coordinates the firing of recurrently connected excitatory neurons in mature cortical circuits. Inhibition thus enables self-generated neuronal activity patterns that underlie various aspects of sensation and cognition. In this review, we aim to provide a conceptual framework describing how and when GABA-releasing interneurons acquire their network functions during development. Focusing on the developing visual neocortex and hippocampus in mice and rats in vivo, we hypothesize that at the onset of patterned activity, glutamatergic neurons are stable by themselves and inhibitory stabilization is not yet functional. We review important milestones in the development of GABAergic signaling and illustrate how the cell-type-specific strengthening of synaptic inhibition toward eye opening shapes cortical network dynamics and allows the developing cortex to progressively disengage from extra-cortical synaptic drive. We translate this framework to human cortical development and discuss clinical implications for the treatment of neonatal seizures.
Collapse
Affiliation(s)
- Knut Kirmse
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany.
| | - Chuanqiang Zhang
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
40
|
Turner NL, Macrina T, Bae JA, Yang R, Wilson AM, Schneider-Mizell C, Lee K, Lu R, Wu J, Bodor AL, Bleckert AA, Brittain D, Froudarakis E, Dorkenwald S, Collman F, Kemnitz N, Ih D, Silversmith WM, Zung J, Zlateski A, Tartavull I, Yu SC, Popovych S, Mu S, Wong W, Jordan CS, Castro M, Buchanan J, Bumbarger DJ, Takeno M, Torres R, Mahalingam G, Elabbady L, Li Y, Cobos E, Zhou P, Suckow S, Becker L, Paninski L, Polleux F, Reimer J, Tolias AS, Reid RC, da Costa NM, Seung HS. Reconstruction of neocortex: Organelles, compartments, cells, circuits, and activity. Cell 2022; 185:1082-1100.e24. [PMID: 35216674 PMCID: PMC9337909 DOI: 10.1016/j.cell.2022.01.023] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/26/2021] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
We assembled a semi-automated reconstruction of L2/3 mouse primary visual cortex from ∼250 × 140 × 90 μm3 of electron microscopic images, including pyramidal and non-pyramidal neurons, astrocytes, microglia, oligodendrocytes and precursors, pericytes, vasculature, nuclei, mitochondria, and synapses. Visual responses of a subset of pyramidal cells are included. The data are publicly available, along with tools for programmatic and three-dimensional interactive access. Brief vignettes illustrate the breadth of potential applications relating structure to function in cortical circuits and neuronal cell biology. Mitochondria and synapse organization are characterized as a function of path length from the soma. Pyramidal connectivity motif frequencies are predicted accurately using a configuration model of random graphs. Pyramidal cells receiving more connections from nearby cells exhibit stronger and more reliable visual responses. Sample code shows data access and analysis.
Collapse
Affiliation(s)
- Nicholas L Turner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - J Alexander Bae
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Electrical and Computer Engineering Department, Princeton University, Princeton, NJ 08544, USA
| | - Runzhe Yang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Alyssa M Wilson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | | | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Brain & Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Agnes L Bodor
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Dodam Ih
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | | | - Jonathan Zung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Aleksandar Zlateski
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ignacio Tartavull
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA
| | - Shang Mu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - William Wong
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - JoAnn Buchanan
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Marc Takeno
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Russel Torres
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Leila Elabbady
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yang Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Erick Cobos
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pengcheng Zhou
- Department of Statistics, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Shelby Suckow
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lynne Becker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Liam Paninski
- Department of Statistics, Columbia University, New York, NY 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science at Columbia University, New York, NY 10027, USA
| | - Franck Polleux
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Neuroscience, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science at Columbia University, New York, NY 10027, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - R Clay Reid
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Computer Science Department, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
41
|
Schneider-Mizell CM, Bodor AL, Collman F, Brittain D, Bleckert A, Dorkenwald S, Turner NL, Macrina T, Lee K, Lu R, Wu J, Zhuang J, Nandi A, Hu B, Buchanan J, Takeno MM, Torres R, Mahalingam G, Bumbarger DJ, Li Y, Chartrand T, Kemnitz N, Silversmith WM, Ih D, Zung J, Zlateski A, Tartavull I, Popovych S, Wong W, Castro M, Jordan CS, Froudarakis E, Becker L, Suckow S, Reimer J, Tolias AS, Anastassiou CA, Seung HS, Reid RC, da Costa NM. Structure and function of axo-axonic inhibition. eLife 2021; 10:e73783. [PMID: 34851292 PMCID: PMC8758143 DOI: 10.7554/elife.73783] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibitory neurons in mammalian cortex exhibit diverse physiological, morphological, molecular, and connectivity signatures. While considerable work has measured the average connectivity of several interneuron classes, there remains a fundamental lack of understanding of the connectivity distribution of distinct inhibitory cell types with synaptic resolution, how it relates to properties of target cells, and how it affects function. Here, we used large-scale electron microscopy and functional imaging to address these questions for chandelier cells in layer 2/3 of the mouse visual cortex. With dense reconstructions from electron microscopy, we mapped the complete chandelier input onto 153 pyramidal neurons. We found that synapse number is highly variable across the population and is correlated with several structural features of the target neuron. This variability in the number of axo-axonic ChC synapses is higher than the variability seen in perisomatic inhibition. Biophysical simulations show that the observed pattern of axo-axonic inhibition is particularly effective in controlling excitatory output when excitation and inhibition are co-active. Finally, we measured chandelier cell activity in awake animals using a cell-type-specific calcium imaging approach and saw highly correlated activity across chandelier cells. In the same experiments, in vivo chandelier population activity correlated with pupil dilation, a proxy for arousal. Together, these results suggest that chandelier cells provide a circuit-wide signal whose strength is adjusted relative to the properties of target neurons.
Collapse
Affiliation(s)
| | - Agnes L Bodor
- Allen Institute for Brain SciencesSeattleUnited States
| | | | | | - Adam Bleckert
- Allen Institute for Brain SciencesSeattleUnited States
| | - Sven Dorkenwald
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - Nicholas L Turner
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - Thomas Macrina
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - Kisuk Lee
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Brain & Cognitive Sciences Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Ran Lu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jingpeng Wu
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jun Zhuang
- Allen Institute for Brain SciencesSeattleUnited States
| | - Anirban Nandi
- Allen Institute for Brain SciencesSeattleUnited States
| | - Brian Hu
- Allen Institute for Brain SciencesSeattleUnited States
| | | | - Marc M Takeno
- Allen Institute for Brain SciencesSeattleUnited States
| | - Russel Torres
- Allen Institute for Brain SciencesSeattleUnited States
| | | | | | - Yang Li
- Allen Institute for Brain SciencesSeattleUnited States
| | | | - Nico Kemnitz
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | | | - Dodam Ih
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jonathan Zung
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Aleksandar Zlateski
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Ignacio Tartavull
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sergiy Popovych
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - William Wong
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Manuel Castro
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Chris S Jordan
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Lynne Becker
- Allen Institute for Brain SciencesSeattleUnited States
| | - Shelby Suckow
- Allen Institute for Brain SciencesSeattleUnited States
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Center for Neuroscience and Artificial Intelligence, Baylor College of MedicineHoustonUnited States
- Department of Electrical and Computer Engineering, Rice UniversityHoustonUnited States
| | - Costas A Anastassiou
- Allen Institute for Brain SciencesSeattleUnited States
- Department of Neurology, University of British ColumbiaVancouverCanada
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Computer Science Department, Princeton UniversityPrincetonUnited States
| | - R Clay Reid
- Allen Institute for Brain SciencesSeattleUnited States
| | | |
Collapse
|
42
|
Dudok B, Szoboszlay M, Paul A, Klein PM, Liao Z, Hwaun E, Szabo GG, Geiller T, Vancura B, Wang BS, McKenzie S, Homidan J, Klaver LMF, English DF, Huang ZJ, Buzsáki G, Losonczy A, Soltesz I. Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior. Neuron 2021; 109:3838-3850.e8. [PMID: 34648750 PMCID: PMC8639676 DOI: 10.1016/j.neuron.2021.09.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022]
Abstract
The axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the "chandelier" or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest. Bidirectional intervention experiments in head-restrained mice performing a random foraging task revealed that AACs inhibit CA1 pyramidal cells, indicating that the effect of GABA on the initial segments in the hippocampus is inhibitory in vivo. Finally, optogenetic inhibition of AACs at specific track locations induced remapping of pyramidal cell place fields. These results demonstrate brain-state-specific dynamics of a critical inhibitory controller of cortical circuits.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.
| | - Miklos Szoboszlay
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Anirban Paul
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Peter M Klein
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Ernie Hwaun
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bert Vancura
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Bor-Shuen Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA; NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Jesslyn Homidan
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F English
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - György Buzsáki
- NYU Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Micheva KD, Kiraly M, Perez MM, Madison DV. Extensive Structural Remodeling of the Axonal Arbors of Parvalbumin Basket Cells during Development in Mouse Neocortex. J Neurosci 2021; 41:9326-9339. [PMID: 34583957 PMCID: PMC8580153 DOI: 10.1523/jneurosci.0871-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Parvalbumin-containing (PV+) basket cells are specialized cortical interneurons that regulate the activity of local neuronal circuits with high temporal precision and reliability. To understand how the PV+ interneuron connectivity underlying these functional properties is established during development, we used array tomography to map pairs of synaptically connected PV+ interneurons and postsynaptic neurons from the neocortex of mice of both sexes. We focused on the axon-myelin unit of the PV+ interneuron and quantified the number of synapses onto the postsynaptic neuron, length of connecting axonal paths, and their myelination at different time points between 2 weeks and 7 months of age. We find that myelination of the proximal axon occurs very rapidly during the third and, to a lesser extent, fourth postnatal weeks. The number of synaptic contacts made by the PV+ interneuron on its postsynaptic partner meanwhile is significantly reduced to about one-third by the end of the first postnatal month. The number of autapses, the synapses that PV+ interneurons form on themselves, however, remains constant throughout the examined period. Axon reorganizations continue beyond postnatal month 2, with the postsynaptic targets of PV+ interneurons gradually shifting to more proximal locations, and the length of axonal paths and their myelin becoming conspicuously uniform per connection. These continued microcircuit refinements likely provide the structural substrate for the robust inhibitory effects and fine temporal precision of adult PV+ basket cells.SIGNIFICANCE STATEMENT The axon of adult parvalbumin-containing (PV+) interneurons is highly specialized for fast and reliable neurotransmission. It is myelinated and forms synapses mostly onto the cell bodies and proximal dendrites of postsynaptic neurons for maximal impact. In this study, we follow the development of the PV+ interneuron axon, its myelination and synapse formation, revealing a rapid sequence of axonal reorganization, myelination of the PV+ interneuron proximal axon, and pruning of almost two-thirds of the synapses in an individual connection. This is followed by a prolonged period of axon refinement and additional myelination leading to a remarkable precision of connections in the adult mouse cortex, consistent with the temporal precision and fidelity of PV+ interneuron action.
Collapse
Affiliation(s)
- Kristina D Micheva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marianna Kiraly
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Marc M Perez
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305
| |
Collapse
|
44
|
Endo M, Maruoka H, Okabe S. Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Front Neuroanat 2021; 15:757499. [PMID: 34803616 PMCID: PMC8595196 DOI: 10.3389/fnana.2021.757499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
The neural network in the brain can be viewed as an integrated system assembled from a large number of local neural circuits specialized for particular brain functions. Activities of neurons in local neural circuits are thought to be organized both spatially and temporally under the rules optimized for their roles in information processing. It is well perceived that different areas of the mammalian neocortex have specific cognitive functions and distinct computational properties. However, the organizational principles of the local neural circuits in different cortical regions have not yet been clarified. Therefore, new research principles and related neuro-technologies that enable efficient and precise recording of large-scale neuronal activities and synaptic connections are necessary. Innovative technologies for structural analysis, including tissue clearing and expansion microscopy, have enabled super resolution imaging of the neural circuits containing thousands of neurons at a single synapse resolution. The imaging resolution and volume achieved by new technologies are beyond the limits of conventional light or electron microscopic methods. Progress in genome editing and related technologies has made it possible to label and manipulate specific cell types and discriminate activities of multiple cell types. These technologies will provide a breakthrough for multiscale analysis of the structure and function of local neural circuits. This review summarizes the basic concepts and practical applications of the emerging technologies and new insight into local neural circuits obtained by these technologies.
Collapse
Affiliation(s)
| | | | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
46
|
Wildenberg GA, Rosen MR, Lundell J, Paukner D, Freedman DJ, Kasthuri N. Primate neuronal connections are sparse in cortex as compared to mouse. Cell Rep 2021; 36:109709. [PMID: 34525373 DOI: 10.1016/j.celrep.2021.109709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Detailing how primate and mouse neurons differ is critical for creating generalized models of how neurons process information. We reconstruct 15,748 synapses in adult Rhesus macaques and mice and ask how connectivity differs on identified cell types in layer 2/3 of primary visual cortex. Primate excitatory and inhibitory neurons receive 2-5 times fewer excitatory and inhibitory synapses than similar mouse neurons. Primate excitatory neurons have lower excitatory-to-inhibitory (E/I) ratios than mouse but similar E/I ratios in inhibitory neurons. In both species, properties of inhibitory axons such as synapse size and frequency are unchanged, and inhibitory innervation of excitatory neurons is local and specific. Using artificial recurrent neural networks (RNNs) optimized for different cognitive tasks, we find that penalizing networks for creating and maintaining synapses, as opposed to neuronal firing, reduces the number of connections per node as the number of nodes increases, similar to primate neurons compared with mice.
Collapse
Affiliation(s)
- Gregg A Wildenberg
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Matt R Rosen
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Jack Lundell
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Dawn Paukner
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - David J Freedman
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
47
|
Bucher EA, Collins JM, King AE, Vickers JC, Kirkcaldie MTK. Coherence and cognition in the cortex: the fundamental role of parvalbumin, myelin, and the perineuronal net. Brain Struct Funct 2021; 226:2041-2055. [PMID: 34175994 DOI: 10.1007/s00429-021-02327-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022]
Abstract
The calcium binding protein parvalbumin is expressed in interneurons of two main morphologies, the basket and chandelier cells, which target perisomatic domains on principal cells and are extensively interconnected in laminar networks by synapses and gap junctions. Beyond its utility as a convenient cellular marker, parvalbumin is an unambiguous identifier of the key role that these interneurons play in the fundamental functions of the cortex. They provide a temporal framework for principal cell activity by propagating gamma oscillation, providing coherence for cortical information processing and the basis for timing-dependent plasticity processes. As these parvalbumin networks mature, they are physically and functionally stabilised by axonal myelination and development of the extracellular matrix structure termed the perineuronal net. This maturation correlates with the emergence of high-speed, highly energetic activity and provides a coherent foundation for the unique ability of the cortex to cross-correlate activity across sensory modes and internal representations.
Collapse
Affiliation(s)
- Ellie A Bucher
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Private Bag 143, Hobart, TAS, 7001, Australia.
| |
Collapse
|
48
|
Peng Y, Barreda Tomas FJ, Pfeiffer P, Drangmeister M, Schreiber S, Vida I, Geiger JRP. Spatially structured inhibition defined by polarized parvalbumin interneuron axons promotes head direction tuning. SCIENCE ADVANCES 2021; 7:7/25/eabg4693. [PMID: 34134979 PMCID: PMC8208710 DOI: 10.1126/sciadv.abg4693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/04/2021] [Indexed: 05/04/2023]
Abstract
In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a "blanket of inhibition." We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.
Collapse
Affiliation(s)
- Yangfan Peng
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Federico J Barreda Tomas
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Paul Pfeiffer
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Moritz Drangmeister
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Susanne Schreiber
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Jörg R P Geiger
- Institute for Neurophysiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
49
|
Bitzenhofer SH, Pöpplau JA, Chini M, Marquardt A, Hanganu-Opatz IL. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron 2021; 109:1350-1364.e6. [PMID: 33675685 PMCID: PMC8063718 DOI: 10.1016/j.neuron.2021.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Disturbed neuronal activity in neuropsychiatric pathologies emerges during development and might cause multifold neuronal dysfunction by interfering with apoptosis, dendritic growth, and synapse formation. However, how altered electrical activity early in life affects neuronal function and behavior in adults is unknown. Here, we address this question by transiently increasing the coordinated activity of layer 2/3 pyramidal neurons in the medial prefrontal cortex of neonatal mice and monitoring long-term functional and behavioral consequences. We show that increased activity during early development causes premature maturation of pyramidal neurons and affects interneuronal density. Consequently, altered inhibitory feedback by fast-spiking interneurons and excitation/inhibition imbalance in prefrontal circuits of young adults result in weaker evoked synchronization of gamma frequency. These structural and functional changes ultimately lead to poorer mnemonic and social abilities. Thus, prefrontal activity during early development actively controls the cognitive performance of adults and might be critical for cognitive symptoms in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sebastian H Bitzenhofer
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Jastyn A Pöpplau
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mattia Chini
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette Marquardt
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|