1
|
Hsiao LC, Lee CH, Mazmanian K, Yoshida M, Ito G, Murata T, Utsunomiya-Tate N, Haino T, Tate SI, Hsu STD. Impacts of D-aspartate on the Aggregation Kinetics and Structural Polymorphism of Amyloid β Peptide 1-42. J Mol Biol 2025; 437:169092. [PMID: 40090459 DOI: 10.1016/j.jmb.2025.169092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Isomerization of L-Aspartate (L-Asp) into D-aspartate (D-Asp) occurs naturally in proteins at a rate that is much faster than that of other amino acid types. Accumulation of D-Asp is age-dependent, which could alter protein structures and, therefore, functions. Site-specific introduction of D-Asp can accelerate aggregation kinetics of a variety of proteins associated with misfolding diseases. Here, we showed by thioflavin T fluorescence that the isomerization of L-Asp at different positions of amyloid β peptide 1-42 (Aβ42) generates opposing effects on its aggregation kinetics. We further determined the atomic structures of Aβ42 amyloid fibrils harboring a single D-Asp at position 23 and two D-Asp at positions 7 and 23 by cryo-electron microscopy helical reconstruction - cross-validated by cryo-electron tomography and atomic force microscopy - to reveal how D-Asp7 contributes to the formation of a unique triple stranded amyloid fibril structure stabilized by two threads of well-ordered water molecules. These findings provide crucial insights into how the conversion from L- to D-Asp influences the aggregation propensity and amyloid polymorphism of Aβ42.
Collapse
Affiliation(s)
- Li-Ching Hsiao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Karine Mazmanian
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Masaya Yoshida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takuya Murata
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Naoko Utsunomiya-Tate
- Department of Biomolecular Chemistry, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Japan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shih-Ichi Tate
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan; Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan; International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM(2)), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
2
|
Das A, Gnewou O, Zuo X, Wang F, Conticello VP. Surfactant-like peptide gels are based on cross-β amyloid fibrils. Faraday Discuss 2025. [PMID: 40376775 DOI: 10.1039/d4fd00190g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Surfactant-like peptides, in which hydrophilic and hydrophobic residues are encoded within different domains in the peptide sequence, undergo facile self-assembly in aqueous solution to form supramolecular hydrogels. These peptides have been explored extensively as substrates for the creation of functional materials since a wide variety of amphipathic sequences can be prepared from commonly available amino acid precursors. The self-assembly behavior of surfactant-like peptides has been compared to that observed for small molecule amphiphiles in which nanoscale phase separation of the hydrophobic domains drives the self-assembly of supramolecular structures. Here, we investigate the relationship between sequence and supramolecular structure for a pair of bola-amphiphilic peptides, Ac-KLIIIK-NH2 (L2) and Ac-KIIILK-NH2 (L5). Despite similar length, composition, and polar sequence pattern, L2 and L5 form morphologically distinct assemblies, nanosheets and nanotubes, respectively. Cryo-EM helical reconstruction was employed to determine the structure of the L5 nanotube at near-atomic resolution. Rather than displaying self-assembly behavior analogous to conventional amphiphiles, the packing arrangement of peptides in the L5 nanotube displayed steric zipper interfaces that resembled those observed in the structures of β-amyloid fibrils. Like amyloids, the supramolecular structures of the L2 and L5 assemblies were sensitive to conservative amino acid substitutions within an otherwise identical amphipathic sequence pattern. This study highlights the need to better understand the relationship between sequence and supramolecular structure to facilitate the development of functional peptide-based materials for biomaterials applications.
Collapse
Affiliation(s)
- Abhinaba Das
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
| | - Ordy Gnewou
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA.
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Fengbin Wang
- Biochemistry and Molecular Genetics Department, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | | |
Collapse
|
3
|
Im D, Lee YE, Yoon G, Goddard WA, Choi TS, Kim HI. Antiparallel β-Sheet as a Key Motif of Amyloid-β Inhibitor Designed via Topological Peptide Reprogramming. Angew Chem Int Ed Engl 2025:e202504640. [PMID: 40345176 DOI: 10.1002/anie.202504640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Peptide inhibitor design targeting self-assembly of amyloid-β (Aβ) represents a promising strategy for suppressing the pathogenic mechanism of Alzheimer's disease (AD). Conventional approaches have primarily mimicked repetitive sequences found in fibrillar structures of Aβ aggregates. However, since the inherent flexibility of Aβ structures promotes the structural changes in the early-stage oligomerization, a structural modulation should be considered in the design of peptide inhibitors. Herein, we introduce topological reprogramming of peptides to control the structural transformation in pathogenic Aβ 1-42 (Aβ42). The eleven-residue peptide scaffold Pa11 (14HQKLVNFAEDV24) identified through the initial screening was dimerized via a disulfide bond. The dimerization stabilizes Aβ42 into higher order structures by promoting antiparallel β-sheet conformations, thereby significantly suppressing Aβ42 aggregation. Our approach underscores that modification in peptide connectivity would be a breakthrough for controlling the intrinsic flexibility of Aβ, surpassing the limitation in conventional, one-dimensional peptide building block.
Collapse
Affiliation(s)
- Dongjoon Im
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ye Eun Lee
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Gyusub Yoon
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tae Su Choi
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
- Center for Mechanogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Harada R, Kudo K, Carmona Soto G, Iwata R, Yanai K, Taki Y, Kudo Y, Furumoto S, Okamura N. Visualization of Apolipoprotein E-Binding Amyloid Plaques in Postmortem Alzheimer's Disease Brains Using a Novel Fluorescent Probe THK-5320. ACS Chem Neurosci 2025; 16:1804-1814. [PMID: 40292539 DOI: 10.1021/acschemneuro.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
(E)-2-(4-(dimethylamino)styryl)-N,N-dimethylquinolin-6-amine) (THK-5320) is a unique fluorescent compound that recognizes apolipoprotein E (ApoE)-binding amyloid plaques in postmortem human brain sections. To understand the distinctive characteristics of THK-5320 chemically and biologically, its fluorescence properties were investigated, and the association of the fluorescence wavelength with plaque subtypes and amyloid isoforms was explored. Blue plaques visualized with THK-5320 were consistent with those with anti-amyloid-β1-16/amyloid-βN3pE-stained antibodies, whereas red plaques visualized with THK-5320 were consistent with those with an ApoE-stained antibody in postmortem brain sections from patients with Alzheimer's disease. In contrast, the amyloid positron emission tomography (PET) tracer PiB and its fluorescent derivative did not show significant signals in ApoE-binding plaques, whereas the signals correlated well with those of amyloid-βN3pE-positive plaques. Thus, THK-5320 may detect ApoE-binding amyloid plaques that conventional amyloid PET probes cannot detect. Multispectral fluorescence imaging with THK-5320 could be a useful tool to better understand the role of ApoE in amyloid pathology.
Collapse
Affiliation(s)
- Ryuichi Harada
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8578, Japan
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8577, Japan
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai 982-0826, Japan
| | - Kaede Kudo
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8577, Japan
| | - Gonzalo Carmona Soto
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8578, Japan
| | - Ren Iwata
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai 982-0826, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai 980-8578, Japan
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai 982-0826, Japan
| | - Yasuyuki Taki
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8577, Japan
| | - Yukitsuka Kudo
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8577, Japan
| | - Shozo Furumoto
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai 982-0826, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8577, Japan
- Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Sendai 982-0826, Japan
| |
Collapse
|
5
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
6
|
Vendruscolo M. The thermodynamic hypothesis of protein aggregation. Mol Aspects Med 2025; 103:101364. [PMID: 40319523 DOI: 10.1016/j.mam.2025.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation drive some of the most prevalent and lethal disorders of our time, including Alzheimer's and Parkinson's diseases, now affecting tens of millions of people worldwide. The complexity of these diseases, which are often multifactorial and related to age and lifestyle, has made it challenging to identify the causes of the accumulation of aberrant protein deposits. An insight into the origins of these deposits comes from reports of a widespread presence of protein aggregates even under normal cellular conditions. This observation is best accounted for by the thermodynamic hypothesis of protein aggregation. According to this hypothesis, many proteins are expressed at levels close to their supersaturation limits, so that their native states are metastable against aggregation. Here we integrate the evidence behind this hypothesis and outline actionable therapeutic strategies that could halt protein aggregation at its source.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
7
|
Ji Y, Chen X, Wang Z, Meek CJ, McLean JL, Yang Y, Yuan C, Rochet JC, Liu F, Xu R. Alzheimer's disease patient brain extracts induce multiple pathologies in novel vascularized neuroimmune organoids for disease modeling and drug discovery. Mol Psychiatry 2025:10.1038/s41380-025-03041-w. [PMID: 40316675 DOI: 10.1038/s41380-025-03041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Alzheimer's Disease (AD) is the most common cause of dementia, afflicting 55 million individuals worldwide, with limited treatment available. Current AD models mainly focus on familial AD (fAD), which is due to genetic mutations. However, models for studying sporadic AD (sAD), which represents over 95% of AD cases without specific genetic mutations, are severely limited. Moreover, the fundamental species differences between humans and animals might significantly contribute to clinical failures for AD therapeutics that have shown success in animal models, highlighting the urgency to develop more translational human models for studying AD, particularly sAD. In this study, we developed a complex human pluripotent stem cell (hPSC)-based vascularized neuroimmune organoid model, which contains multiple cell types affected in human AD brains, including human neurons, microglia, astrocytes, and blood vessels. Importantly, we demonstrated that brain extracts from individuals with sAD can effectively induce multiple AD pathologies in organoids four weeks post-exposure, including amyloid beta (Aβ) plaque-like aggregates, tau tangle-like aggregates, neuroinflammation, elevated microglial synaptic pruning, synapse/neuronal loss, and impaired neural network activity. Proteomics analysis also revealed disrupted AD-related pathways in our vascularized AD neuroimmune organoids. Furthermore, after treatment with Lecanemab, an FDA-approved antibody drug targeting Aβ, AD brain extracts exposed organoids showed a significant reduction of amyloid burden, along with an elevated vascular inflammation response. Thus, the vascularized neuroimmune organoid model provides a unique opportunity to study AD, particularly sAD, under a pathophysiological relevant three-dimensional (3D) human cell environment. It also holds great promise to facilitate AD drug development, particularly for immunotherapies.
Collapse
Affiliation(s)
- Yanru Ji
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Connor Joseph Meek
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jenna Lillie McLean
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY, 10314, USA
| | - Ranjie Xu
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Thompson M, Martín M, Olmo TS, Rajesh C, Koo PK, Bolognesi B, Lehner B. Massive experimental quantification allows interpretable deep learning of protein aggregation. SCIENCE ADVANCES 2025; 11:eadt5111. [PMID: 40305601 PMCID: PMC12042874 DOI: 10.1126/sciadv.adt5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Protein aggregation is a pathological hallmark of more than 50 human diseases and a major problem for biotechnology. Methods have been proposed to predict aggregation from sequence, but these have been trained and evaluated on small and biased experimental datasets. Here we directly address this data shortage by experimentally quantifying the aggregation of >100,000 protein sequences. This unprecedented dataset reveals the limited performance of existing computational methods and allows us to train CANYA, a convolution-attention hybrid neural network that accurately predicts aggregation from sequence. We adapt genomic neural network interpretability analyses to reveal CANYA's decision-making process and learned grammar. Our results illustrate the power of massive experimental analysis of random sequence-spaces and provide an interpretable and robust neural network model to predict aggregation.
Collapse
Affiliation(s)
- Mike Thompson
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Mariano Martín
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Trinidad Sanmartín Olmo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Chandana Rajesh
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Peter K. Koo
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1RQ, UK
| |
Collapse
|
9
|
Kengwerere MK, Kenyaga JM, Xiao P, Gunaga SS, Scott FJ, Wutoh-Hughes X, Wang J, Lum B, Sun Y, Mentink-Vigier F, Wang T, Qiang W. Structural convergence and membrane interactions of Aβ 1-42 along the primary nucleation process studied by solid state NMR. Commun Chem 2025; 8:131. [PMID: 40307575 PMCID: PMC12043865 DOI: 10.1038/s42004-025-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Non-specific disruption of cellular membranes induced by amyloidogenic aggregation of β-amyloid (Aβ) peptides remains a viable cytotoxicity mechanism in Alzheimer's disease (AD). Obtaining structural information about the intermediate states of Aβ-membrane systems and their molecular interactions is challenging due to their heterogeneity and low abundance. Here, we systematically study the molecular interactions of membrane-associated Aβ1-42 peptides using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, focusing on the primary nucleation phase of the fibrillation process. Compared to the less pathogenic Aβ1-40 peptide, Aβ1-42 forms smaller oligomers prior to fibrillation, as evidenced by a higher overall population of lipid-proximity peptides. Aβ1-42 also exhibits more pronounced residue-specific contacts with phospholipid headgroups compared to Aβ1-40, with multiple lipid-proximity segments throughout the entire primary sequence. The segments involved in initial inter-strand assembly overlap with those located near the lipid headgroups in Aβ1-42, whereas these two segments are distinct in Aβ1-40. ssNMR spectroscopy with sensitivity enhanced by Dynamic nuclear polarization (DNP) confirmed local secondary structural convergence during the nucleation process of Aβ1-42 and the presence of long-range tertiary contacts at early stages of nucleation. Overall, our results provide a molecular-level understanding of the Aβ1-42 nucleation process in a membrane-like environment and its membrane-disrupting intermediates. The comparison between Aβ1-42 and Aβ1-40 explains its higher cytotoxicity from the perspective of membrane disruption.
Collapse
Affiliation(s)
- Maurine K Kengwerere
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - June M Kenyaga
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Peng Xiao
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Shubha S Gunaga
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Xyomara Wutoh-Hughes
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - James Wang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Brian Lum
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Yan Sun
- Small Scale System Integration and Packaging (S3IP), Binghamton University, Binghamton, NY, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA.
| |
Collapse
|
10
|
Zhu J, Kreutzer AG, Liu Z, Li X, Richter SM, Pophristic V, Nowick JS. A β-hairpin peptide derived from Aβ forms different oligomers in the crystal state and in aqueous solution. Org Biomol Chem 2025; 23:3881-3893. [PMID: 40130612 PMCID: PMC12003087 DOI: 10.1039/d5ob00296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The supramolecular assembly of amyloid-β into soluble oligomers is critical Alzheimer's disease (AD) progression. Soluble Aβ oligomers have emerged as neurotoxic species involved in AD progression and some Aβ oligomers are thought to be composed of β-hairpins. In this work, we report the X-ray crystallographic and solution-phase assembly of a macrocyclic β-hairpin peptide that mimics a β-hairpin formed by Aβ16-36. In the crystal lattice, the peptide assembles into a symmetric hexamer composed of two identical triangular trimers. In aqueous solution, the peptide assembles to form an asymmetric hexamer. 1H NMR, TOCSY, and 1H,15N HSQC experiments establish that the asymmetric hexamer contains two different species, A and B. 15N-edited NOESY reveals that species A is a cylindrin-like trimer and species B is a triangular trimer that collectively constitute the asymmetric hexamer. Diffusion-ordered NMR spectroscopy (DOSY) suggests that two asymmetric hexamers further assemble to form a dodecamer. NMR-guided molecular mechanics and molecular dynamics studies provide a model for the asymmetric hexamer and suggest how two asymmetric hexamers can form a dodecamer. Solution-phase NMR studies of analogues show that intermolecular hydrogen bonding and the formation of a hydrophobic core help stabilize the asymmetric hexamer. These NMR and crystallographic studies illustrate how an Aβ β-hairpin peptide can assemble to form different well-defined oligomers in the crystal state and in aqueous solution, providing a deeper understanding of the heterogeneity of Aβ oligomers and new structural models of Aβ oligomers composed of Aβ β-hairpins.
Collapse
Affiliation(s)
- Jason Zhu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Adam G Kreutzer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Zhiwei Liu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701, USA
| | - Xingyue Li
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Sabrina M Richter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Vojislava Pophristic
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701, USA
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-2025, USA
| |
Collapse
|
11
|
Gatch AJ, Ding F. Cross-Interaction with Amyloid-β Drives Pathogenic Structural Transformation within the Amyloidogenic Core Region of TDP-43. ACS Chem Neurosci 2025; 16:1565-1581. [PMID: 40167418 PMCID: PMC12003063 DOI: 10.1021/acschemneuro.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Alzheimer's disease (AD) is the world's most prevalent neurodegenerative disorder, characterized neuropathologically by senile plaques and neurofibrillary tangles formed by amyloid-β (Aβ) and tau, respectively. Notably, a subset of AD patients also exhibits pathological aggregates composed of TAR DNA-Binding Protein 43 (TDP-43). Clinically, the presence of TDP-43 copathology in AD correlates with more severe cognitive decline and faster disease progression. While previous studies have shown that TDP-43 can exacerbate Aβ toxicity and modulate its assembly dynamics by delaying fibrillization and promoting oligomer formation, the impact of the Aβ interaction on the structural dynamics and aggregation of TDP-43 remains unclear. Here, we employed all-atom discrete molecular dynamics simulations to study the direct interaction between Aβ42, the more amyloidogenic isoform of Aβ, and the amyloidogenic core region (ACR) of TDP-43, which spans residues 311-360 and is critical for TDP-43 aggregation. We found that monomeric Aβ42 could strongly bind to the ACR, establishing sustained contact through intermolecular hydrogen bonding. In contrast, simulation of ACR dimerization revealed a transient helix-helix interaction, experimentally known to drive the phase separation behavior of TDP-43. The binding of the ACR to an Aβ42 fibril seed resulted in significant structural transformation, with the complete unfolding of the helical region being observed. Furthermore, interaction with the Aβ42 fibril seed catalyzed the formation of a parallel, in-register intermolecular β-sheet between two ACR monomers. Collectively, our computational study provides important theoretical insights into TDP-43 pathology in AD, demonstrating that Aβ42, especially in its fibrillar form, may catalyze the pathogenic structural transformation within the TDP-43 ACR that initiates its aberrant aggregation.
Collapse
Affiliation(s)
- Adam J. Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
12
|
Fukui R, Hafizal U, Kageyama Y, Irie Y, Matsushima Y, Hosoi K, Nakayama T, Kaneda D, Hashizume Y, Miki K, Kita A, Mukaisho KI, Kushima R, Tooyama I, Irie K. Identification of the binding site and immunoreactivity of anti-Aβ antibody 11A1: Comparison with the toxic conformation-specific TxCo-1 antibody. Biochem Biophys Res Commun 2025; 758:151655. [PMID: 40120343 DOI: 10.1016/j.bbrc.2025.151655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Since the advent of anti-amyloid β (Aβ) immunotherapy, exemplified by lecanemab, the development of effective therapeutic agents with minimal side effects has become an urgent priority. Over the past two decades, a number of antibodies have been developed that target toxic Aβ species. The 11A1 antibody is one such example, and is made from E22P-Aβ9-35, which is prone to adopt a toxic conformation with a turn at positions 22/23, as an antigen. This antibody is unique in that it stains not only extracellular but also intracellular Aβ in human AD brains. To identify its recognition domain, we performed X-ray crystallography of 11A1 in complex with E22P-Aβ10-34. We found that 11A1 is a novel N-terminal antibody that recognizes Tyr10-His14 of Aβ. Immunohistochemical studies showed that 11A1 stains senile plaques and vascular Aβ aggregates in brain samples of AD patients. On the other hand, 11A1 recognized Aβ aggregates in neurons, astrocytes, perivascular tissue, and microvesicles of non-AD patients, suggesting that 11A1 can detect a wide range of Aβ types regardless of AD pathology. In contrast, the recently developed TxCo-1 antibody, which specifically recognizes the toxic turn at positions 22/23 of Aβ42, stained only senile plaques and vascular Aβ aggregates from AD patients, but not Aβ species from non-AD patients. These results suggest that the toxic turn structure may be one of the key epitopes for achieving high affinity for pathological Aβ aggregates while minimizing nonspecific binding to aggregates unrelated to pathology.
Collapse
Affiliation(s)
- Rara Fukui
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Uswah Hafizal
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Yusuke Kageyama
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan.
| | - Yumi Irie
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuka Matsushima
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Katsuma Hosoi
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Takahisa Nakayama
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Daita Kaneda
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Toyohashi, 441-8124, Japan
| | - Yoshio Hashizume
- Department of Neuropathology, Choju Medical Institute, Fukushimura Hospital, Toyohashi, 441-8124, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan, Osaka, 590-0494, Japan
| | - Ken-Ichi Mukaisho
- Education Center for Medicine and Nursing, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Ryoji Kushima
- Department of Pathology (Human Pathology), Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Kazuhiro Irie
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan; Organization for Research Initiatives and Development, Doshisha University, Tatara Miyakodani, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
13
|
Liu Q, Song S, Liu L, Hong W. In Vivo Seeding of Amyloid-β Protein and Implications in Modeling Alzheimer's Disease Pathology. Biomolecules 2025; 15:571. [PMID: 40305318 PMCID: PMC12024744 DOI: 10.3390/biom15040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent advances in Aβ seeding studies offer a promising avenue for exploring the mechanisms underlying amyloid deposition and the complex pathological features of AD. However, the extent to which inoculated Aβ seeds can induce reproducible and reliable pathological manifestations remains unclear due to significant variability across studies. In this review, we will discuss several factors that contribute to the induction or acceleration of amyloid deposition and consequent pathologies. Specifically, we focus on the diversity of host animals, sources and recipe of Aβ seeds, and inoculating strategies. By integrating these key aspects, this review aims to offer a comprehensive perspective on Aβ seeding in AD and provide guidance for modeling AD pathogenesis through the exogenous introduction of Aβ seeds.
Collapse
Affiliation(s)
- Qianmin Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Simin Song
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518055, China
| | - Lu Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
14
|
Tycko R. The evolving role of solid state nuclear magnetic resonance methods in studies of amyloid fibrils. Curr Opin Struct Biol 2025; 92:103043. [PMID: 40199041 DOI: 10.1016/j.sbi.2025.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
Beginning in the 1990s, solid state nuclear magnetic resonance (ssNMR) methods played a major role in elucidating the molecular structures and properties of amyloid fibrils. General principles that explain these structures and properties were uncovered and experimentally-based structural models were first developed from ssNMR data. Since 2017, cryogenic electron microscopy (cryo-EM) techniques have become capable of solving amyloid structures at near-atomic resolution. Although cryo-EM measurements are now the main approach for structural studies of amyloid fibrils, ssNMR measurements remain essential for studies of certain structures and structural features, as well as studies of dynamical and mechanistic aspects. Recent publications from various research groups illustrate the continuing importance of ssNMR and the unique information available from ssNMR measurements in amyloid research.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
15
|
Zia A, Yi M, Liu Z, Wang F, Xu B. Fragment-Based Approach for Hierarchical Nanotube Assembly of Small Molecules in Aqueous Phase. Chemistry 2025; 31:e202404630. [PMID: 39946197 PMCID: PMC11975473 DOI: 10.1002/chem.202404630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
A fragment-based approach has proven successful in drug design and protein assemblies, yet its potential for constructing biomaterials from simple organic building blocks remains underexplored, particularly for self-assembly in aqueous phases, where water disrupts intermolecular hydrogen bonding. To the best of our knowledge, this study introduces the first case of integrating fragments from self-assembling molecules to design a small organic molecule that forms novel hierarchical nanotubes with polymorphism. The molecule's compact design incorporates three structural motifs derived from known nanotube assemblies, enabling a hierarchical assembly process: individual molecules with two conformations form dimers, which organize into hexameric units. These hexamers further assemble into nanotubes comprising 2-, 5-, and 6-protofilament fibers. The nanofibers share a nearly identical asymmetric unit - a hexameric triangular plate - with similar axial and lateral interfaces. The lateral interface, involving interactions between phosphate groups and aromatic rings, exhibits plasticity, allowing slight rotational variations between adjacent units. This adaptability facilitates the formation of diverse nanofiber architectures, showcasing the flexibility of these systems in aqueous environments. By leveraging fragments of self-assembling molecules, this work demonstrates a straightforward strategy that combines conformational flexibility and self-assembling fragments to construct advanced supramolecular biomaterials from small organic building blocks in aqueous settings.
Collapse
Affiliation(s)
- Ayisha Zia
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
16
|
Sun KT, Mok SA. Inducers and modulators of protein aggregation in Alzheimer's disease - Critical tools for understanding the foundations of aggregate structures. Neurotherapeutics 2025; 22:e00512. [PMID: 39755501 PMCID: PMC12047394 DOI: 10.1016/j.neurot.2024.e00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau. We aim to provide an overview of how specific molecular factors can impact aggregation kinetics and aggregate structure to promote disease. Looking toward the future, we highlight some research areas of focus that would accelerate efforts to effectively target protein aggregation in AD.
Collapse
Affiliation(s)
- Kerry T Sun
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
17
|
Nam Y, Shin SJ, Kumar V, Won J, Kim S, Moon M. Dual modulation of amyloid beta and tau aggregation and dissociation in Alzheimer's disease: a comprehensive review of the characteristics and therapeutic strategies. Transl Neurodegener 2025; 14:15. [PMID: 40133924 PMCID: PMC11938702 DOI: 10.1186/s40035-025-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Alzheimer's disease (AD) is not a single-cause disease; rather, it is a complex neurodegenerative disease involving multiple pathological pathways influenced by various risk factors. Aggregation and accumulation of amyloid beta (Aβ) and tau are the most prominent features in the brains of AD patients. Aggregated Aβ and tau exert neurotoxic effects in the central nervous system, contributing to the pathogenesis and progression of AD. They also act synergistically to cause neurodegeneration, resulting in memory loss. In this context, dual inhibition of Aβ and tau aggregation, or dissociation of these two aggregates, is considered promising for AD treatment. Recently, dual inhibitors capable of simultaneously targeting the aggregation and dissociation of both Aβ and tau have been investigated. Specific amino acid domains of Aβ and tau associated with their aggregation/dissociation have been identified. Subsequently, therapeutic agents that prevent aggregation or promote disaggregation by targeting these domains have been identified/developed. In this review, we summarize the major domains and properties involved in Aβ and tau aggregation, as well as the therapeutic effects and mechanisms of agents that simultaneously regulate their aggregation and dissociation. This comprehensive review may contribute to the design and discovery of next-generation dual-targeting drugs for Aβ and tau, potentially leading to the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Jihyeon Won
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
18
|
Zaman M, Yang S, Huang Y, Yarbro JM, Hao Y, Wang Z, Liu D, Harper KE, Soliman H, Hemphill A, Harvey S, Pruett-Miller SM, Stewart V, Tanwar AS, Kalathur R, Grace CR, Turk M, Chittori S, Jiao Y, Wu Z, High AA, Wang X, Serrano GE, Beach TG, Yu G, Yang Y, Chen PC, Peng J. Midkine Attenuates Aβ Fibril Assembly and Amyloid Plaque Formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644383. [PMID: 40166321 PMCID: PMC11957132 DOI: 10.1101/2025.03.20.644383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Proteomic profiling of Alzheimer's disease (AD) brains has identified numerous understudied proteins, including midkine (MDK), that are highly upregulated and correlated with Aβ since the early disease stage, but their roles in disease progression are not fully understood. Here we present that MDK attenuates Aβ assembly and influences amyloid formation in the 5xFAD amyloidosis mouse model. MDK protein mitigates fibril formation of both Aβ40 and Aβ42 peptides in Thioflavin T fluorescence assay, circular dichroism, negative stain electron microscopy, and NMR analysis. Knockout of Mdk gene in 5xFAD increases amyloid formation and microglial activation. Further comprehensive mass spectrometry-based profiling of whole proteome and detergent-insoluble proteome in these mouse models indicates significant accumulation of Aβ and Aβ-correlated proteins, along with microglial components. Thus, our structural and mouse model studies reveal a protective role of MDK in counteracting amyloid pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Masihuz Zaman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shu Yang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Present address: Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Ya Huang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jay M. Yarbro
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yanhong Hao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kiara E. Harper
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hadeer Soliman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Alex Hemphill
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sarah Harvey
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Valerie Stewart
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ajay Singh Tanwar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ravi Kalathur
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christy R. Grace
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Martin Turk
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sagar Chittori
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Anthony A. High
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA
| | - Gang Yu
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Yang
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
19
|
Wang C, Jia M, Guan Y, Ahmad S, Mei J, Ai H. Deciphering the full-length PrP C(23-231) receptor and characterizing the size/subphase-dependent impact of Aβ oligomers on the PrP C(23-231) receptor: insights from molecular dynamics simulations. Phys Chem Chem Phys 2025; 27:6079-6091. [PMID: 40035778 DOI: 10.1039/d4cp04813j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As one of the cell surface receptors, cellular prion protein (PrPC) can bind Aβ oligomers (AβOs) and attenuate their neurotoxicity. However, there is still considerable controversy regarding the PrPC-AβO interaction, due to the polymorphism and varying size of the AβO species and the void of a full-length PrPC 3D structure. To solve this problem, we first complemented the missing residues in the residue-lacking crystal structure of PrPC and determined a 3D full-length PrPC receptor using "Alphafold2". We subsequently investigated the complexes formed between the PrPC receptors-both the full-length and those missing the N-terminus-and a variety of Aβ42 species, including Aβ42 monomers, Aβ oligomers (AβOs) of varying sizes across two phases, as well as Aβ42 fibrils (AβFs), using molecular dynamics simulations. The simulated results indicate that the full-length PrPC receptor (23-231) employs a cavity, formed by its amino acid residues 44-51 and AA 95-110 regions, for Aβ42 binding. In contrast, the crystal structure of the PrPC receptor, typically lacking the N-terminal sequence (amino acids 23-87), provides a binding cavity composed of amino acids 95-110 and the C-terminal residues 131-161 to bind Aβ42, which is consistent with the diverse experimental outcomes observed (Nature 2009, 457(7233), 1128-1132; J. Am. Chem. Soc. 2022, 144(21), 9264-9270). This underscores the necessity of the novel full-length PrPC (PrPC23-231) 3D model for replicating experimental findings accurately. Additionally, we utilized both the full-length and truncated models of the PrPC receptor to clarify its disruptive effects on the growth of Aβ42 secondary nuclei structures (AβF) and its inhibitory impact on the disordered AβOs across two phases. This work provides molecular-level insights into the PrP-Aβ interaction, facilitating model selection for future experimental studies and identifying molecular targets for designing drugs intended to alleviate the toxicity of Aβ42 oligomers towards the PrPC receptor.
Collapse
Affiliation(s)
- Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Sajjad Ahmad
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jinfei Mei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
- School of Chemistry and Materials Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
20
|
Liu H, Zhao X, Chen J, Win YY, Cai J. Unnatural foldamers as inhibitors of Aβ aggregation via stabilizing the Aβ helix. Chem Commun (Camb) 2025; 61:4586-4594. [PMID: 40035705 PMCID: PMC11878269 DOI: 10.1039/d4cc05280c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Protein aggregation is a critical factor in the development and progression of several human diseases, including Alzheimer's disease (AD), Huntington's disease, Parkinson's disease, and type 2 diabetes. Among these conditions, AD is recognized as the most prevalent progressive neurodegenerative disorder, characterized by the accumulation of amyloid-beta (Aβ) peptides. Neuronal toxicity is likely driven by soluble oligomeric intermediates of the Aβ peptide, which are thought to play a central role in the cascade leading to neuronal dysfunction and cognitive decline. In response, numerous therapeutic strategies have been developed to inhibit Aβ oligomerization, as this is believed to delay the formation of Aβ protofibrils. Traditional research has focused on discovering small molecules or peptides that antagonize Aβ oligomerization. However, recent studies have explored an alternative approach-developing ligands that stabilize the Aβ peptide in its α-helical conformation. This stabilization is thought to alter the peptide's natural aggregation kinetics, shifting it away from toxic oligomer formation and toward less harmful states. Crucially, by maintaining Aβ in this α-helical form, these ligands have been shown to rescue the peptide's associated cytotoxicity, offering a promising mechanism to mitigate the detrimental effects of Aβ in AD. While challenges remain, including treatment costs and side effects like ARIA (amyloid-related imaging abnormalities), anti-Aβ drug development represents a major advancement in Alzheimer's research and therapeutic options. This brief review aims to highlight the development and potential of these α-helix-stabilizing ligands as antagonists of Aβ aggregation, focusing on their interactions with Aβ and how these compounds induce and maintain secondary structural changes in the Aβ peptide. Notably, this innovative strategy holds promise beyond Aβ-related pathology, as the fundamental principles could be applied to other amyloidogenic proteins implicated in various amyloid-related diseases, potentially broadening the scope of therapeutic intervention for multiple neurodegenerative conditions.
Collapse
Affiliation(s)
- Heng Liu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.
| | - Xue Zhao
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.
| | - Jianyu Chen
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.
| | - Yu Yu Win
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.
| |
Collapse
|
21
|
Vanhentenrijk S, Grodin JL, Augusto SN, Tang WHW. Hereditary Transthyretin Cardiac Amyloidosis With the p.V142I Variant: Mechanistic Insights and Diagnostic Challenges. Circ Heart Fail 2025:e012469. [PMID: 40084403 DOI: 10.1161/circheartfailure.124.012469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
The most common form of hereditary transthyretin cardiac amyloidosis (hATTR-CA) in the United States and the United Kingdom is the p.V142I variant. About 3% to 4% of patients with African ancestry carry this genetic predisposition to develop signs and symptoms of hATTR-CA. Nevertheless, clinical manifestations of hATTR-CA appear only late in the fifth and sixth decades of life, despite its clear genetic background. Imbalances in native protein-stabilizing and elementary breakdown cellular mechanisms are postulated as potential causes for affecting transthyretin structural integrity and myocardial fibril deposition. Noncoding variants, epigenetic and environmental factors, as well as gut microbiome derangements may serve as disease-modifying factors that feature detrimental amyloidogenic organ involvement and impact disease severity. Organ amyloid deposition varies widely among different carriers of a genetic transthyretin variant. The genotype-phenotype interdependence causes unpredictable phenotypic penetrance that results in a variety of signs and symptoms and patient outcomes. Cardiovascular biomarkers and multimodality imaging may identify initial amyloidogenic organ involvement. These early clinical clues through the course of hATTR-CA offer a window of opportunity for early treatment onset to cease disease progression and alter prognosis. Identifying at-risk patients requires information on the genetic background of probands and their relatives. Initiatives to reveal asymptomatic gene carriers early in the disease should be encouraged, as it necessitates stringent patient follow-up and immediate treatment onset to reduce the burden of heart failure hospitalization and mortality in hATTR-CA.
Collapse
Affiliation(s)
- Simon Vanhentenrijk
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, OH (S.V., W.H.W.T.)
| | - Justin L Grodin
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (J.L.G.)
| | - Silvio Nunes Augusto
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH (S.N.A., W.H.W.T.)
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, OH (S.V., W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH (S.N.A., W.H.W.T.)
| |
Collapse
|
22
|
Ruzmetov T, Hung TI, Jonnalagedda SP, Chen SH, Fasihianifard P, Guo Z, Bhanu B, Chang CEA. Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning. J Chem Inf Model 2025; 65:2487-2502. [PMID: 39984300 DOI: 10.1021/acs.jcim.4c01838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Proteins are inherently dynamic, and their conformational ensembles play a crucial role in biological function. Large-scale motions may govern the protein structure-function relationship, and numerous transient but stable conformations of intrinsically disordered proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging, both experimentally and computationally. In this paper, we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from molecular dynamics simulation data. Second, we selected data points through interpolation in the learned latent space to rapidly identify novel synthetic conformations with sophisticated and large-scale side chains and backbone arrangements. Third, with the highly dynamic amyloid-β1-42 (Aβ42) monomer, our deep learning model provided a comprehensive sampling of Aβ42's conformational landscape. Analysis of these synthetic conformations revealed conformational clusters that could be used to rationalize experimental findings. Additionally, the method can identify novel conformations with important interactions in atomistic details that are not included in the training data. New synthetic conformations showed distinct side chain rearrangements that are probed by our electron paramagnetic resonance and amino acid substitution studies. This approach is highly transferable and can be used for any available data for training. The work also demonstrated the ability of deep learning to utilize natural atomistic motions in protein conformation sampling.
Collapse
Affiliation(s)
- Talant Ruzmetov
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ta I Hung
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Saisri Padmaja Jonnalagedda
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Si-Han Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, University of California, Los Angeles, California 90095, United States
| | - Bir Bhanu
- Department of Bioengineering, University of California, Riverside, California 92521, United States
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
23
|
Forrest SL, Kovacs GG. Current concepts and molecular pathology of neurodegenerative diseases. Pathology 2025; 57:178-190. [PMID: 39672768 DOI: 10.1016/j.pathol.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 12/15/2024]
Abstract
Neurodegenerative diseases are a pathologically, clinically and genetically diverse group of diseases characterised by selective dysfunction, loss of synaptic connectivity and neurodegeneration, and are associated with the deposition of misfolded proteins in neurons and/or glia. Molecular studies have highlighted the role of conformationally altered proteins in the pathogenesis of neurodegenerative diseases and have paved the way for developing disease-specific biomarkers that capture and differentiate the main type/s of protein abnormality responsible for neurodegenerative diseases, some of which are currently used in clinical practice. These proteins follow sequential patterns of anatomical involvement and disease spread in the brain and may also be detected in peripheral organs. Recent studies suggest that glia are likely to have an important role in pathological spread throughout the brain and even follow distinct progression patterns from neurons. In addition to morphological and molecular approaches to the classification of these disorders, a further new stratification level incorporates the structure of protein filaments detected by cryogenic electron microscopy. Rather than occurring in isolation, combined deposition of tau, amyloid-β, α-synuclein and TDP-43 are frequently observed in neurodegenerative diseases and in the ageing brain. These can be overlooked, and their clinicopathological relevance is difficult to interpret. This review provides an overview of disease pathogenesis and diagnostic implications, recent molecular and ultrastructural classification of neurodegenerative diseases, how to approach ageing-related and mixed pathologies, and the importance of the protein-based classification system for practising neuropathologists and clinicians. This review also informs general pathologists about the relevance of ongoing full body autopsy studies to understand the spectrum and pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada; Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Edmond J. Safra Program in Parkinson's Disease, Rossy PSP Centre and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
24
|
Zhang J, Han J, Li N, Zhou W. Deciphering the Protective Role of HIF-1α Downregulation on HIBD through the MALAT1/miR-140-5p/TGFBR1/NF-κB Signaling Pathway. Mol Neurobiol 2025; 62:3343-3360. [PMID: 39278884 DOI: 10.1007/s12035-024-04451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.
Collapse
MESH Headings
- Animals
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/genetics
- Signal Transduction/physiology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- NF-kappa B/metabolism
- Down-Regulation
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/genetics
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Animals, Newborn
- Rats, Sprague-Dawley
- Rats
- Apoptosis
- Neurons/metabolism
- Neurons/pathology
- Hippocampus/pathology
- Hippocampus/metabolism
- Male
Collapse
Affiliation(s)
- Jiantao Zhang
- Colorectal & Anal Surgery Department, General Surgery Center, First Hospital of Jilin University, Changchun, 130000, People's Republic of China
| | - Jun Han
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China
| | - Nan Li
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China
| | - Wenli Zhou
- Department of Neonatology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130000, Jilin Province, People's Republic of China.
| |
Collapse
|
25
|
Manka SW. Breaking the Mould: How the First Structure of a Deer Prion Suggests the Framework for Interspecies Strain Diversity and Transmission Barriers. J Neurochem 2025; 169:e70050. [PMID: 40130473 PMCID: PMC11934078 DOI: 10.1111/jnc.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
Our Insight into the Structural Diversity of Prions Has Been Limited by Studies Focused on Rodent-Adapted Sheep (Scrapie) Prion Strains, Until Now. In a Recent Paper (Alam et al. 2024), the Caughey Research Group Presents the First Prion Structure from a Naturally Occurring Chronic Wasting Disease (CWD), Offering a Fresh Perspective.
Collapse
Affiliation(s)
- Szymon W. Manka
- Department of Infectious DiseaseImperial College LondonLondonUK
| |
Collapse
|
26
|
Wu B, Liu Y, Li H, Zhu L, Zeng L, Zhang Z, Peng W. Liver as a new target organ in Alzheimer's disease: insight from cholesterol metabolism and its role in amyloid-beta clearance. Neural Regen Res 2025; 20:695-714. [PMID: 38886936 PMCID: PMC11433892 DOI: 10.4103/1673-5374.391305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 06/20/2024] Open
Abstract
Alzheimer's disease, the primary cause of dementia, is characterized by neuropathologies, such as amyloid plaques, synaptic and neuronal degeneration, and neurofibrillary tangles. Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs, targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment. Metabolic abnormalities are commonly observed in patients with Alzheimer's disease. The liver is the primary peripheral organ involved in amyloid-beta metabolism, playing a crucial role in the pathophysiology of Alzheimer's disease. Notably, impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease. In this review, we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism. Furthermore, we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lemei Zhu
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Lingfeng Zeng
- Academician Workstation, Changsha Medical University, Changsha, Hunan Province, China
| | - Zhen Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Yangsheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Qinhuangdao Shanhaiguan Pharmaceutical Co., Ltd, Qinhuangdao, Hebei Province, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Mental Disorder, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
27
|
Tian Y, Torres-Flores AP, Shang Q, Zhang H, Khursheed A, Tahirbegi B, Pallier PN, Viles JH. The p3 peptides (Aβ 17-40/42) rapidly form amyloid fibrils that cross-seed with full-length Aβ. Nat Commun 2025; 16:2040. [PMID: 40016209 PMCID: PMC11868391 DOI: 10.1038/s41467-025-57341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
The p3 peptides, Aβ17-40/42, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p340/42 peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca2+ influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p342 oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.
Collapse
Affiliation(s)
- Yao Tian
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Andrea P Torres-Flores
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Qi Shang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hui Zhang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Anum Khursheed
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Bogachan Tahirbegi
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patrick N Pallier
- The Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Queen Mary University of London, London, E1 2AT, UK
| | - John H Viles
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
28
|
Muhammedkutty FNK, Zhou HX. Membrane-assisted Aβ40 aggregation pathways. CELL REPORTS. PHYSICAL SCIENCE 2025; 6:102436. [PMID: 40083905 PMCID: PMC11905421 DOI: 10.1016/j.xcrp.2025.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) is caused by the assembly of amyloid-beta (Aβ) peptides into oligomers and fibrils. Endogenous Aβ aggregation may be assisted by cell membranes, which can accelerate the nucleation step enormously, but knowledge of membrane-assisted aggregation is still very limited. Here, we used extensive molecular dynamics (MD) simulations to structurally and energetically characterize key intermediates along the membrane-assisted aggregation pathways of Aβ40. Reinforcing experimental observations, the simulations reveal unique roles of GM1 ganglioside and cholesterol in stabilizing membrane-embedded β sheets and of Y10 and K28 in the ordered release of a small oligomeric seed into solution. The same seed leads to either an open-shaped or R-shaped fibril, with significant stabilization provided by inter- or intra-subunit interfaces between a straight β sheet (residues Q15-D23) and a bent β sheet (residues A30-V36). This work presents a comprehensive picture of membrane-assisted aggregation of Aβ40, with broad implications for developing AD therapies and rationalizing disease-specific polymorphisms of amyloidogenic proteins.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL, USA
- Lead contact
| |
Collapse
|
29
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
30
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Chepyala SR, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human and mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. Nat Commun 2025; 16:1533. [PMID: 39934151 PMCID: PMC11814087 DOI: 10.1038/s41467-025-56853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. Here we present the comprehensive, age-dependent brain proteome and phosphoproteome across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata and prioritized components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Our analysis of the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identifies potential targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh, India
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Surendhar R Chepyala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xusheng Wang
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, West Haven, CT, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
31
|
Xue WF. Trace_y: Software algorithms for structural analysis of individual helical filaments by three-dimensional contact point reconstruction atomic force microscopy. Structure 2025; 33:363-371.e2. [PMID: 39642871 DOI: 10.1016/j.str.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Atomic force microscopy (AFM) is a powerful and increasingly accessible technology that has a wide range of bio-imaging applications. AFM is capable of producing detailed three-dimensional topographical images with high signal-to-noise ratio, which enables the structural features of individual molecules to be studied without the need for ensemble averaging. Here, a software tool Trace_y, designed to reconstruct the three-dimensional surface envelopes of individual helical filament structures from topographical AFM images, is presented. Workflow using Trace_y is demonstrated on the structural analysis of individual helical amyloid protein fibrils where the assembly mechanism of heterogeneous, complex and diverse fibril populations due to structural polymorphism is not understood. The algorithms presented here allow structural information encoded in topographical AFM height images to be extracted and understood as three-dimensional (3D) contact point clouds. This approach will facilitate the use of AFM in structural biology to understand molecular structures and behaviors at individual molecule level.
Collapse
Affiliation(s)
- Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury CT2 7NJ, UK.
| |
Collapse
|
32
|
Baek Y, Kim H, Lee D, Kim D, Jo E, Roh SH, Ha NC. Structural insights into the role of reduced cysteine residues in SOD1 amyloid filament formation. Proc Natl Acad Sci U S A 2025; 122:e2408582122. [PMID: 39874287 PMCID: PMC11804504 DOI: 10.1073/pnas.2408582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025] Open
Abstract
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity. The C6A/C111A mutant SOD1 formed filaments more rapidly than the WT protein. The mutant structure had a unique paired-protofilament arrangement, with a smaller filament core than that of the single-protofilament structure observed in WT SOD1. Although the single-protofilament form developed more slowly, cross-seeding experiments demonstrated the predominance of single-protofilament morphology over paired protofilaments, regardless of the presence of the Cys6 and Cys111 mutations. These findings highlight the importance of the number of amino acid residues within the filament core in determining the energy requirements for assembly. Our study provides insights into ALS pathogenesis by elucidating the initiation and propagation of filament formation, which potentially leads to deleterious amyloid filaments.
Collapse
Affiliation(s)
- Yeongjin Baek
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg69117, Germany
| | - Dukwon Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Doyeon Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Eunbyul Jo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
33
|
Parvin F, Larsson JNK, Jackson WS, Nyström S, Hammarström P. Efficient Seeding of Cerebral Vascular Aβ-Amyloidosis by Recombinant AβM1-42 Amyloid Fibrils. J Mol Biol 2025; 437:168923. [PMID: 39725269 DOI: 10.1016/j.jmb.2024.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Aβ-amyloid plaques and cerebral amyloid angiopathy (CAA) in the brain are pathological hallmarks of Alzheimer's disease (AD) and vascular dementia. The spreading of Aβ amyloidosis in the brain appears to be mediated by a seeding mechanism, where preformed fibrils (called seeds) accelerate Aβ fibril formation by bypassing the rate-determining nucleation step. Several studies have demonstrated that Aβ amyloidosis can be induced in transgenic mice, producing human Aβ, by injecting Aβ-rich brain extracts (seeds) derived from transgenic mice and human AD brains. However, studies on recombinant seeds are limited. Therefore, we investigated the seeding activity of pure recombinant human Aβ fibrils of different compositions. Seeds were inoculated into APP23 mice at the age of 3 months and were analyzed after 6 months of incubation. Recombinant fibril seeds made from Aβ-peptides with an N-terminal methionine (i.e. (preformed fibrils from AβM1-42, AβM1-40, and AβM1-40 + AβM1-42) accelerated Aβ-amyloid plaque formation in vivo compared to non-inoculated transgenic control mice of the same age. In addition, all seeds induced CAA pathology. Interestingly, AβM1-42 containing seeds produced significantly more CAA and amyloid plaques than seeds containing pure AβM1-40, which was surprising given that APP23 mice produce approximately four-fold more Aβ1-40 substrate than Aβ1-42. This study showed that AβM1-42 fibrils are highly potent in seeding CAA and implies that conformational templating occurs in amyloid plaque as deduced by comparative amyloid ligand staining. Our results verify that recombinant Aβ fibrils are transmissible amyloids, and that in vivo seeding can accelerate, and redirect Aβ amyloidosis patterns compared to spontaneous age dependent amyloidosis.
Collapse
Affiliation(s)
- Farjana Parvin
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Johan N K Larsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
| | - Walker S Jackson
- Wallenberg Center for Molecular Medicine, Linköping University, 581 85 Linköping, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| | - Per Hammarström
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
34
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
35
|
Milanesi M, Brotzakis ZF, Vendruscolo M. Transient interactions between the fuzzy coat and the cross-β core of brain-derived Aβ42 filaments. SCIENCE ADVANCES 2025; 11:eadr7008. [PMID: 39813358 PMCID: PMC11734738 DOI: 10.1126/sciadv.adr7008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Several human disorders, including Alzheimer's disease (AD), are characterized by the aberrant formation of amyloid fibrils. In many cases, the amyloid core is flanked by disordered regions, known as fuzzy coat. The structural properties of fuzzy coats, and their interactions with their environments, however, have not been fully described to date. Here, we generate conformational ensembles of two brain-derived amyloid filaments of Aβ42, corresponding respectively to the familial and sporadic forms of AD. Our approach, called metadynamic electron microscopy metainference (MEMMI), provides a characterization of the transient interactions between the fuzzy coat and the cross-β core of the filaments. These calculations indicate that the familial AD filaments are less soluble than the sporadic AD filaments, and that the fuzzy coat contributes to solubilizing both types of filament. These results illustrate how the metainference approach can help analyze cryo-EM maps for the characterization of the properties of amyloid fibrils.
Collapse
Affiliation(s)
- Maria Milanesi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Unit of Macromolecular Interaction Analysis, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20054 Segrate (MI), Italy
| | - Z. Faidon Brotzakis
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
36
|
Sun W, Yu J, Liang X, Xu R, Yin X, Shen B, Yang Y. Plasmon-Enhanced Fluorescence Based on Gold Nanobipyramids with PEG-Controlled Distance for Near-Infrared and Visual Analysis of Amyloid-β Aggregation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3941-3951. [PMID: 39745392 DOI: 10.1021/acsami.4c18393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The number of cases of Alzheimer's disease (AD) characterized by progressive amnestic syndrome is dramatically increased with population aging. It is urgent to detect and diagnose this disease early. The state of amyloid-beta protein 1-42 (Aβ42) was commonly regarded as a hallmark for early diagnosis of AD. Here, a plasmon-enhanced fluorescence (PEF) sensor based on gold nanobipyramids (Au NBPs) was established for sensitive and visual detection of Aβ42 aggregation. Near-infrared (NIR) emitted boron-dipyrromethene (BODIPY) was employed as a fluorescent substance to obtain a 24-fold turn-on signal to recognize the state of aggregation of Aβ42. The distance between BODIPY and Au NBPs was controlled by the length of polyethylene glycol (PEG). The obtained sensor was applied to real-time and sensitive detection of the state of Aβ42 by detecting the aggregation-dependent color transformation in human neuroblastoma (SH-SY5Y) cells. With the advantage of visual and dynamic detection of the cellular environment, the method can be employed to follow the progression of the Aβ42 protein and has promise as a robust diagnostic tool for AD.
Collapse
Affiliation(s)
- Wen Sun
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingtian Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoyan Liang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Rong Xu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiangyuan Yin
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Baoxing Shen
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
37
|
More SR, Jha SK. Multi-Site Red-Edge Excitation Shift Reveals the Residue-Specific Solvation Dynamics during the Native to Amyloid-like Transition of an Amyloidogenic Protein. J Phys Chem B 2025; 129:176-193. [PMID: 39682034 DOI: 10.1021/acs.jpcb.4c07067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Changes in water-protein interactions are crucial for proteins to achieve functional and nonfunctional conformations during structural transitions by modulating local stability. Amyloid-like protein aggregates in deteriorating neurons are hallmarks of neurodegenerative disorders. These aggregates form through significant structural changes, transitioning from functional native conformations to supramolecular cross-β-sheet structures via misfolded and oligomeric intermediates in a multistep process. However, the site-specific dynamics of water molecules from the native to misfolded conformations and further to oligomeric and compact amyloid structures remain poorly understood. In this study, we used the fluorescence method known as red-edge excitation shift (REES) to investigate the solvation dynamics at specific sites in various equilibrium conformations en route to the misfolding and aggregation of the functional domain of the TDP-43 protein (TDP-43tRRM). We generated three single tryptophan-single cysteine mutants of TDP-43tRRM, with the cysteines at different positions and tryptophan at a fixed position. Each sole cysteine was fluorescently labeled and used as a site-specific fluorophore along with the single tryptophan, creating four monitorable sites for REES studies. By investigating the site-specific extent of REES, we developed a residue-specific solvation dynamics map of TDP-43tRRM during its misfolding and aggregation. Our observations revealed that solvation dynamics progressively became more rigid and heterogeneous to varying extents at different sites during the transition from native to amyloid-like conformations.
Collapse
Affiliation(s)
- Sonal R More
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
38
|
Tartaglia MC, Ingelsson M. Molecular Therapeutics in Development to Treat Alzheimer's Disease. Mol Diagn Ther 2025; 29:9-24. [PMID: 39316339 PMCID: PMC11748464 DOI: 10.1007/s40291-024-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Until recently, only symptomatic therapies, in the form of acetylcholine esterase inhibitors and NMDA-receptor antagonists, have been available for the treatment of Alzheimer's disease. However, advancements in our understanding of the amyloid cascade hypothesis have led to a development of disease-modifying therapeutic strategies. These include immunotherapies based on an infusion of monoclonal antibodies against amyloid-β, three of which have been approved for the treatment of Alzheimer's disease in the USA (one of them, lecanemab, has also been approved in several other countries). They all lead to a dramatic reduction of amyloid plaques in the brain, whereas their clinical effects have been more limited. Moreover, they can all lead to side effects in the form of amyloid-related imaging abnormalities. Ongoing developments aim at facilitating their administration, further improving their effects and reducing the risk for amyloid-related imaging abnormalities. Moreover, a number of anti-tau immunotherapies are in clinical trials, but none has so far shown any robust effects on symptoms or pathology. Another line of development is represented by gene therapy. To date, only antisense oligonucleotides against amyloid precursor protein/amyloid-β and tau have reached the clinical trial stage but a variety of gene editing strategies, such as clustered regularly interspaced short palindromic repeats/Cas9-mediated non-homologous end joining, base editing, and prime editing, have all shown promise on preclinical disease models. In addition, a number of other pharmacological compounds targeting a multitude of biochemical processes, believed to be centrally involved in Alzheimer's disease, are currently being evaluated in clinical trials. This article delves into current and future perspectives on the treatment of Alzheimer's disease, with an emphasis on immunotherapeutic and gene therapeutic strategies.
Collapse
Affiliation(s)
- Maria Carmela Tartaglia
- Krembil Brain Institute, University Health Network, 6th Floor, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, 6th Floor, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
39
|
Klingstedt T, Shirani H, Parvin F, Nyström S, Hammarström P, Graff C, Ingelsson M, Vidal R, Ghetti B, Sehlin D, Syvänen S, Nilsson KPR. Dual-ligand fluorescence microscopy enables chronological and spatial histological assignment of distinct amyloid-β deposits. J Biol Chem 2025; 301:108032. [PMID: 39615691 PMCID: PMC11731580 DOI: 10.1016/j.jbc.2024.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
Different types of deposits comprised of amyloid-β (Aβ) peptides are one of the pathological hallmarks of Alzheimer's disease (AD) and novel methods that enable identification of a diversity of Aβ deposits during the AD continuum are essential for understanding the role of these aggregates during the pathogenesis. Herein, different combinations of five fluorescent thiophene-based ligands were used for detection of Aβ deposits in brain tissue sections from transgenic mouse models with aggregated Aβ pathology, as well as brain tissue sections from patients affected by sporadic or dominantly inherited AD. When analyzing the sections with fluorescence microscopy, distinct ligand staining patterns related to the transgenic mouse model or to the age of the mice were observed. Likewise, specific staining patterns of different Aβ deposits were revealed for sporadic versus dominantly inherited AD, as well as for distinct brain regions in sporadic AD. Thus, by using dual-staining protocols with multiple combinations of fluorescent ligands, a chronological and spatial histological designation of different Aβ deposits could be achieved. This study demonstrates the potential of our approach for resolving the role and presence of distinct Aβ aggregates during the AD continuum and pinpoints the necessity of using multiple ligands to obtain an accurate assignment of different Aβ deposits in the neuropathological evaluation of AD, as well as when evaluating therapeutic strategies targeting Aβ aggregates.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Hamid Shirani
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Farjana Parvin
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Ruben Vidal
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Dag Sehlin
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Stina Syvänen
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
40
|
Abraham CB, Lewkowicz E, Gursky O, Straub JE. Elucidating the Mechanism of Recognition and Binding of Heparin to Amyloid Fibrils of Serum Amyloid A. Biochemistry 2024. [PMID: 39688935 DOI: 10.1021/acs.biochem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Amyloid diseases feature pathologic deposition of normally soluble proteins and peptides as insoluble fibrils in vital organs. Amyloid fibrils co-deposit with various nonfibrillar components including heparan sulfate (HS), a glycosaminoglycan that promotes amyloid formation in vitro for many unrelated proteins. HS-amyloid interactions have been proposed as a therapeutic target for inflammation-linked amyloidosis wherein N-terminal fragments of serum amyloid A (SAA) protein deposit in the kidney and liver. The structural basis for these interactions is unclear. Here, we exploit the high-resolution cryoelectron microscopy (cryo-EM) structures of ex vivo murine and human SAA fibrils in a computational study employing molecular docking, Brownian dynamics simulations, and molecular dynamics simulations to elucidate how heparin, a highly sulfated HS mimetic, recognizes and binds to amyloid protein fibrils. Our results demonstrate that negatively charged heparin chains bind to linear arrays of uncompensated positively charged basic residues along the spines of amyloid fibrils facilitated by electrostatic steering. The predicted heparin binding sites match the location of unidentified densities observed in cryo-EM maps of SAA amyloids, suggesting that these extra densities represent bound HS. Since HS is constitutively found in various amyloid deposits, our results suggest a common mechanism for HS-amyloid recognition and binding.
Collapse
Affiliation(s)
- Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
41
|
Baghel D, Ghosh A. Heterotypic Interactions of Amyloid β and the Islet Amyloid Polypeptide Produce Mixed Aggregates with Non-Native Fibril Structure. J Phys Chem Lett 2024; 15:12197-12205. [PMID: 39625456 PMCID: PMC11781043 DOI: 10.1021/acs.jpclett.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloid aggregates are hallmarks of the pathology of a wide range of diseases, including type 2 diabetes (T2D) and Alzheimer's disease (AD). Much epidemiological and pathological evidence points to significant overlap between AD and T2D. Individuals with T2D have a higher likelihood of developing AD; moreover, colocalized aggregates of amyloid β (Aβ) and the islet amyloid polypeptide (IAPP), the two main peptides implicated in the formation of toxic amyloid aggregates in AD and T2D, have also been identified in the brain. However, how these peptides interact with each other is not well understood, and the structural facets of heterotypic mixed fibrils formed via such interactions remain elusive. Here we use atomic force microscopy augmented with infrared spectroscopy to probe the secondary structure of individual aggregates formed via heterotypic interactions of Aβ and IAPP and provide unequivocal direct evidence of mixed aggregates. Furthermore, we show that co-aggregation of the peptides from the monomeric stage leads to the formation of unique polymorphs, in which both peptides undergo structural deviation from their native states, whereas seeding with preformed IAPP fibrils leads to aggregates similar to native Aβ. These findings highlight how heterotypic interactions between amyloidogenic peptides can lead to polymorphic diversity proteinopathies.
Collapse
Affiliation(s)
- Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
42
|
Ruzmetov T, Hung TI, Jonnalagedda SP, Chen SH, Fasihianifard P, Guo Z, Bhanu B, Chang CEA. Sampling Conformational Ensembles of Highly Dynamic Proteins via Generative Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592587. [PMID: 38979147 PMCID: PMC11230202 DOI: 10.1101/2024.05.05.592587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Proteins are inherently dynamic, and their conformational ensembles are functionally important in biology. Large-scale motions may govern protein structure-function relationship, and numerous transient but stable conformations of Intrinsically Disordered Proteins (IDPs) can play a crucial role in biological function. Investigating conformational ensembles to understand regulations and disease-related aggregations of IDPs is challenging both experimentally and computationally. In this paper we first introduce a deep learning-based model, termed Internal Coordinate Net (ICoN), which learns the physical principles of conformational changes from Molecular Dynamics (MD) simulation data. Second, we selected interpolating data points in the learned latent space that rapidly identify novel synthetic conformations with sophisticated and large-scale sidechains and backbone arrangements. Third, with the highly dynamic amyloid-β 1-42 (Aβ42) monomer, our deep learning model provided a comprehensive sampling of Aβ42's conformational landscape. Analysis of these synthetic conformations revealed conformational clusters that can be used to rationalize experimental findings. Additionally, the method can identify novel conformations with important interactions in atomistic details that are not included in the training data. New synthetic conformations showed distinct sidechain rearrangements that are probed by our EPR and amino acid substitution studies. This approach is highly transferable and can be used for any available data for training. The work also demonstrated the ability of deep learning to utilize learned natural atomistic motions in protein conformation sampling.
Collapse
|
43
|
Arutyunyan A, Seuma M, Faure AJ, Bolognesi B, Lehner B. Massively parallel genetic perturbation reveals the energetic architecture of an amyloid beta nucleation reaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604935. [PMID: 39091732 PMCID: PMC11291115 DOI: 10.1101/2024.07.24.604935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Amyloid protein aggregates are pathological hallmarks of more than fifty human diseases but how soluble proteins nucleate to form amyloids is poorly understood. Here we use combinatorial mutagenesis, a kinetic selection assay, and machine learning to massively perturb the energetics of the nucleation reaction of amyloid beta (Aβ42), the protein that aggregates in Alzheimer's disease. In total, we quantify the nucleation rates of >140,000 variants of Aβ42. This allows us to accurately quantify the changes in reaction activation energy for all possible amino acid substitutions in a protein for the first time and, in addition, to quantify >600 energetic interactions between mutations. The data reveal the simple and interpretable genetic architecture of an amyloid nucleation reaction. Strikingly, strong energetic couplings are rare and identify a subset of structural contacts in mature fibrils. Together with the activation energy changes, this strongly suggests that the Aβ42 nucleation reaction transition state is structured in a short C-terminal region, providing a structural model for the reaction that may initiate Alzheimer's disease. We believe this approach can be widely applied to probe the energetics and transition state structures of protein reactions.
Collapse
Affiliation(s)
| | - Mireia Seuma
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Andre J. Faure
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Current address: ALLOX, C/ Dr. Aiguader, 88, PRBB Building, 08003 Barcelona, Spain
| | - Benedetta Bolognesi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Ben Lehner
- Wellcome Sanger Institute, Cambridge, UK
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
44
|
Cehlar O, Njemoga S, Horvath M, Cizmazia E, Bednarikova Z, Barrera EE. Structures of Oligomeric States of Tau Protein, Amyloid-β, α-Synuclein and Prion Protein Implicated in Alzheimer's Disease, Parkinson's Disease and Prionopathies. Int J Mol Sci 2024; 25:13049. [PMID: 39684761 DOI: 10.3390/ijms252313049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
In this review, we focus on the biophysical and structural aspects of the oligomeric states of physiologically intrinsically disordered proteins and peptides tau, amyloid-β and α-synuclein and partly disordered prion protein and their isolations from animal models and human brains. These protein states may be the most toxic agents in the pathogenesis of Alzheimer's and Parkinson's disease. It was shown that oligomers are important players in the aggregation cascade of these proteins. The structural information about these structural states has been provided by methods such as solution and solid-state NMR, cryo-EM, crosslinking mass spectrometry, AFM, TEM, etc., as well as from hybrid structural biology approaches combining experiments with computational modelling and simulations. The reliable structural models of these protein states may provide valuable information for future drug design and therapies.
Collapse
Affiliation(s)
- Ondrej Cehlar
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Stefana Njemoga
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Marian Horvath
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Erik Cizmazia
- Institute of Neuroimmunology, Slovak Academy of Sciences, 84510 Bratislava, Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Exequiel E Barrera
- Instituto de Histología y Embriología (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
| |
Collapse
|
45
|
Beeg M, Rocutto B, Battocchio E, Dacomo L, Corbelli A, Fiordaliso F, Balducci C, Gobbi M. The Detection of Toxic Amyloid-β Fibril Fragments Through a Surface Plasmon Resonance Immunoassay. Int J Mol Sci 2024; 25:13020. [PMID: 39684731 DOI: 10.3390/ijms252313020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Amyloid-β1-42 (Aβ42) forms highly stable and insoluble fibrillar structures, representing the principal components of the amyloid plaques present in the brain of Alzheimer's disease (AD) patients. The involvement of Aβ42 in AD-associated neurodegeneration has also been demonstrated, in particular for smaller and soluble aggregates (oligomers). Based on these findings and on genetic evidence, Aβ42 aggregates are considered key players in the pathogenesis of AD and targets for novel therapies. Different approaches are currently used to detect the various aggregation states of Aβ peptide, including spectrophotometric methods, imaging techniques, and immunoassays, but all of these have specific limitations. To overcome them, we have recently exploited the peculiar properties of surface plasmon resonance (SPR) to develop an immunoassay capable of selectively detecting monomers and oligomers, discriminating them also from bigger fibrils in a mixture of different aggregated species, without any manipulation of the solution. In the present study, we extended these previous studies, showing that the SPR-based immunoassay makes it possible to unveil the fibril fragmentation induced mechanically, a result difficult to be conveniently and reliably assessed with other approaches. Moreover, we show that SPR-recognized fibril fragments are more toxic than the larger fibrillar structures, suggesting the relevance of the proposed SPR-based immunoassay.
Collapse
Affiliation(s)
- Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Beatrice Rocutto
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Elisabetta Battocchio
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Letizia Dacomo
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Alessandro Corbelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Fabio Fiordaliso
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Claudia Balducci
- Laboratory of Biology of Neurodegenerative Disorders, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
46
|
Wilson CB, Lee M, Yau WM, Tycko R. Conformations of a low-complexity protein in homogeneous and phase-separated frozen solutions. Biophys J 2024; 123:4097-4114. [PMID: 39497416 PMCID: PMC11628836 DOI: 10.1016/j.bpj.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/13/2024] Open
Abstract
Solutions of the intrinsically disordered, low-complexity domain of the FUS protein (FUS-LC) undergo liquid-liquid phase separation (LLPS) below a temperature TLLPS. To investigate whether local conformational distributions are detectably different in the homogeneous (i.e., single-phase) and phase-separated states of FUS-LC, we performed solid-state NMR (ssNMR) measurements on solutions that were frozen on submillisecond timescales after equilibration at temperatures well above (50°C) or well below (4°C) TLLPS. Measurements were performed at 25 K with signal enhancements from dynamic nuclear polarization. Crosspeak patterns in two-dimensional ssNMR spectra of rapidly frozen solutions in which FUS-LC was uniformly 15N,13C labeled were found to be nearly identical for the two states. Similar results were obtained for solutions in which FUS-LC was labeled only at Thr, Tyr, and Gly residues, as well as solutions of a FUS construct in which five specific residues were labeled by ligation of synthetic and recombinant fragments. These experiments show that local conformational distributions are nearly the same in the homogeneous and phase-separated solutions, despite the much greater protein concentrations and more abundant intermolecular interactions within phase-separated, protein-rich "droplets." Comparison of the experimental results with simulations of the sensitivity of two-dimensional ssNMR crosspeaks to changes in populations of β strand-like conformations suggests that changes in conformational distributions are no larger than 5-10%.
Collapse
Affiliation(s)
- C Blake Wilson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Myungwoon Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
47
|
Schrempel S, Kottwitz AK, Piechotta A, Gnoth K, Büschgens L, Hartlage-Rübsamen M, Morawski M, Schenk M, Kleinschmidt M, Serrano GE, Beach TG, Rostagno A, Ghiso J, Heneka MT, Walter J, Wirths O, Schilling S, Roßner S. Identification of isoAsp7-Aβ as a major Aβ variant in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Acta Neuropathol 2024; 148:78. [PMID: 39625512 PMCID: PMC11615120 DOI: 10.1007/s00401-024-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024]
Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer's disease (AD). However, there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspartate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immunohistochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. Hence, our findings might have implications for current antibody-based therapies of AD.
Collapse
Affiliation(s)
- Sarah Schrempel
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Katharina Kottwitz
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Kathrin Gnoth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Mathias Schenk
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Jochen Walter
- Center of Neurology, Molecular Cell Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
48
|
Chang HW, Yang CI, Chan JCC. Incubation of Amyloidogenic Peptides in Reverse Micelles Allow Active Control of Oligomer Size and Study of Protein-Protein Interactions. ChemMedChem 2024; 19:e202400310. [PMID: 39090029 DOI: 10.1002/cmdc.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Studies of the structure and dynamics of oligomeric aggregates of amyloidogenic peptides pose challenges due to their transient nature. This concept article provides a brief overview of various nucleation mechanisms with reference to the classical nucleation theory and illustrates the advantages of incubating amyloidogenic peptides in reverse micelles (RMs). The use of RMs not only facilitates size regulation of oligomeric aggregates but also provides an avenue to explore protein-protein interactions among the oligomeric aggregates of various amyloidogenic peptides. Additionally, we envision the feasibility of preparing brain tissue-derived oligomeric aggregates using RMs, potentially advancing the development of monoclonal antibodies with enhanced potency against these pathological species in vivo.
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chien-I Yang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
49
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Wu X, Shirani H, Vidal R, Ghetti B, Ingelsson M, Klingstedt T, Nilsson KPR. Distinct Chemical Determinants are Essential for Achieving Ligands for Superior Optical Detection of Specific Amyloid-β Deposits in Alzheimer's Disease. ChemistryOpen 2024; 13:e202400186. [PMID: 39508558 PMCID: PMC11625938 DOI: 10.1002/open.202400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aggregated forms of different proteins are common hallmarks for several neurodegenerative diseases, including Alzheimer's disease, and ligands that selectively detect specific protein aggregates are vital. Herein, we investigate the molecular requirements of thiophene-vinyl-benzothiazole based ligands to detect a specific type of Aβ deposits found in individuals with dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. The staining of these Aβ deposits was alternated when switching the terminal heterocyclic moiety attached to the thiophene-vinyl-benzothiazole scaffold. The most prevalent staining was observed for ligands having a terminal 3-methyl-1H-indazole moiety or a terminal 1,2-dimethoxybenzene moiety, verifying that specific molecular interactions between these ligands and the aggregates were necessary. The synthesis of additional thiophene-vinyl-benzothiazole ligands aided in pinpointing additional crucial chemical determinants, such as positioning of nitrogen atoms and methyl substituents, for achieving optimal staining of Aβ aggregates. When combining the optimized thiophene-vinyl-benzothiazole based ligands with a conventional ligand, CN-PiB, distinct staining patterns were observed for sporadic Alzheimer's disease versus dominantly inherited Alzheimer's disease caused by the Arctic APP E693G mutation. Our findings provide chemical insights for developing novel ligands that allow for a more precise assignment of Aβ deposits, and might also aid in creating novel agents for clinical imaging of distinct Aβ aggregates in AD.
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Hamid Shirani
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - Ruben Vidal
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of Medicine46202Indianapolis, IndianaUSA
| | - Martin Ingelsson
- Krembil Brain InstituteUniversity Health NetworkM5T 1 M8Toronto, OntarioCanada
- Tanz Centre for Research in Neurodegenerative DiseasesDepartments of Medicine and Laboratory Medicine & PathobiologyUniversity of TorontoM5T 0S8Toronto, OntarioCanada
- Molecular GeriatricsDepartment of Public Health and Caring SciencesUppsala UniversitySE-751 85UppsalaSweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and BiologyLinköping UniversitySE-581 83LinköpingSweden
| |
Collapse
|