1
|
Hu C. Prevention of cardiovascular disease for healthy aging and longevity: A new scoring system and related "mechanisms-hallmarks-biomarkers". Ageing Res Rev 2025; 107:102727. [PMID: 40096912 DOI: 10.1016/j.arr.2025.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Healthy "environment-sleep-emotion-exercise-diet" intervention [E(e)SEEDi] lifestyle can improve the quality of life, prolong aging and promote longevity due to improvement of human immunity and prevention of cardiovascular diseases (CVD). Here, the author reviewed the associations between these core elements with CVD and cardiovascular aging, and developed a new scoring system based on the healthy E(e)SEEDi lifestyle for prediction and evaluation of life expectancy. These core factors are assigned 20 points each (120 points in total), and a higher score predicts healthier aging and longevity. The E(e)SEEDi represents "a tree of life" bearing the fruits of longevity as well as "a rocket of anti-ageing" carrying people around the world on a journey of longevity. In conclusion, the E(e)SEEDi can delay aging and increase the life expectancy due to the role of a series of cellular and molecular "mechanisms-hallmarks-biomarkers". It's believed that the novel scoring system has a huge potential and beautiful prospects.
Collapse
Affiliation(s)
- Chunsong Hu
- Department of Cardiovascular Medicine, Nanchang University, Hospital of Nanchang University, Jiangxi Academy of Medical Science, No. 461 Bayi Ave, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
2
|
Liu Y, Zhang L, Jin Z, Zhang L, Song Y, He L. Association of longitudinal body mass index trajectories with phenotypic age acceleration: a cross-sectional study based on growth mixture modeling. GeroScience 2025:10.1007/s11357-025-01681-y. [PMID: 40307654 DOI: 10.1007/s11357-025-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
To examine the association between body mass index (BMI) trajectories, early and recent BMI changes, and phenotypic age acceleration (PhenoAgeAccel), addressing inconsistent findings in previous studies on weight change and aging. Data from the National Health and Nutrition Examination Survey from 2005 to 2018 were used, selecting participants aged 50 years and older. A growth mixture model was employed to identify BMI trajectories. The association between different BMI trajectories and PhenoAgeAccel was assessed using linear and multinomial logistic regression models. The nonlinear effects of BMI changes were identified through threshold effect analysis. Among 5404 participants, the four BMI trajectories identified were as follows: stable weight (29.07%), midlife weight gain (24.31%), late-life weight gain (32.22%), and chronic obesity (14.41%). The chronic obesity group exhibited the most significant elevations in PhenoAgeAccel, indicating they were phenotypically older compared to other groups (β = 4.34, 95% confidence interval 3.67-5.02). Early BMI changes of less than 6% were associated with being phenotypically younger (β = - 5.06, P = 0.029), whereas increases exceeding 6% were linked to being phenotypically older (β = 2.83, P < 0.001). The key threshold for recent BMI changes was 2%; changes below this level were associated with being phenotypically younger, while those exceeding this threshold were linked to being phenotypically older (P < 0.001). This cross-sectional study suggests that individuals with long-term chronic obesity tend to be phenotypically older, whereas those with stable body weight are more likely to be phenotypically younger.
Collapse
Affiliation(s)
- Yalan Liu
- Nanan District Center for Disease Control and Prevention, Chongqing, 401336, China
| | - Li Zhang
- Qianxi People's Hospital, Guizhou, 551500, Qianxi, China
| | - Zhaofeng Jin
- Kweichow Moutai Hospital, RenhuaiGuizhou, 564500, China
| | - Lin Zhang
- Qianxi People's Hospital, Guizhou, 551500, Qianxi, China
| | - Yan Song
- Qianxi People's Hospital, Guizhou, 551500, Qianxi, China.
| | - Li He
- Qianxi People's Hospital, Guizhou, 551500, Qianxi, China.
| |
Collapse
|
3
|
Kumar V, Hevener AL, Ruby JG, Sebastiani P, Kuchel GA. Workshop Report-Heterogeneity and Successful Aging Part II: Approaches to Investigate Heterogeneity in Aging Research. J Gerontol A Biol Sci Med Sci 2025; 80:glaf021. [PMID: 40257451 PMCID: PMC12010706 DOI: 10.1093/gerona/glaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 04/22/2025] Open
Abstract
Heterogeneity in aging is a fundamental biological process arising from multifactorial etiologies, including genetic, lifestyle, and socioeconomic factors. Modeling this heterogeneity in animal systems is critical for elucidating the underlying mechanisms of aging and for leveraging these insights in translational research. Here we present part II, a summary of the model organism research presented at the NIA Heterogeneity and Successful Aging workshop, held in May 2023.
Collapse
Affiliation(s)
- Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Andrea L Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- VA Greater Los Angeles Healthcare System Geriatric Research Education Clinical Center (GRECC), Los Angeles, California, USA
| | - J Graham Ruby
- Calico Life Sciences LLC, South San Francisco, California, USA
| | - Paola Sebastiani
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts, USA
- School of Medicine, Tufts University, Boston, Massachusetts, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Gadek M, Shaw CK, Abdulai-Saiku S, Saloner R, Marino F, Wang D, Bonham LW, Yokoyama JS, Panning B, Benayoun BA, Casaletto KB, Ramani V, Dubal DB. Aging activates escape of the silent X chromosome in the female mouse hippocampus. SCIENCE ADVANCES 2025; 11:eads8169. [PMID: 40043106 PMCID: PMC11881916 DOI: 10.1126/sciadv.ads8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 03/09/2025]
Abstract
Women live longer than men and exhibit less cognitive aging. The X chromosome contributes to sex differences, as females harbor an inactive X (Xi) and active X (Xa), in contrast to males with only an Xa. Thus, reactivation of silent Xi genes may contribute to sex differences. We use allele-specific, single-nucleus RNA sequencing to show that aging remodels transcription of the Xi and Xa across hippocampal cell types. Aging preferentially changed gene expression on the X's relative to autosomes. Select genes on the Xi underwent activation, with new escape across cells including in the dentate gyrus, critical to learning and memory. Expression of the Xi escapee Plp1, a myelin component, was increased in the aging hippocampus of female mice and parahippocampus of women. AAV-mediated Plp1 elevation in the dentate gyrus of aging male and female mice improved cognition. Understanding how the Xi may confer female advantage could lead to novel targets that counter brain aging and disease in both sexes.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Cayce K. Shaw
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Saloner
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luke W. Bonham
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine; USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| | - Kaitlin B. Casaletto
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Richardson TG, Urquijo H, Howe LJ, Hawkes G, DePaolo J, Damrauer SM, Frayling TM, Davey Smith G. Effects of childhood and adult height on later life cardiovascular disease risk estimated through Mendelian randomization. Eur J Epidemiol 2025; 40:167-176. [PMID: 40106116 PMCID: PMC12018521 DOI: 10.1007/s10654-025-01203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/18/2025] [Indexed: 03/22/2025]
Abstract
Taller individuals are at elevated and protected risk of various cardiovascular disease endpoints. Whether this is due to a direct consequence of their height during childhood, a long-term effect of remaining tall throughout the lifecourse, or confounding by other factors, is unknown. We sought to address this by harnessing human genetic data from the UK Biobank to separate the independent effects of childhood and adulthood height using an approach known as lifecourse Mendelian randomization (MR). Protective effects of taller childhood height on risk of later life coronary artery disease (OR = 0.78 per change in height category, 95% CI = 0.70 to 0.86, P = 4 × 10- 10) and stroke (OR = 0.93, 95% CI = 0.86 to 1.00, P = 0.03) using data from large-scale consortia were found using a univariable model, although evidence of these effects attenuated in a multivariable setting upon accounting for adulthood height. In contrast, direct effects of taller childhood height on increased risk of later life atrial fibrillation (OR = 1.61, 95% CI = 1.42 to 1.79, P = 5 × 10- 7) and thoracic aortic aneurysm (OR = 1.55, 95% CI = 1.16 to 1.95, P = 0.03) were found even after accounting for adulthood height. Evidence for both of these direct effects was replicated in the Million Veterans Program. The protective effect of childhood height on risk of coronary artery disease and stroke can be largely explained by taller children typically becoming taller individuals in later life. Conversely, the independent effect of childhood height on increased risk of atrial fibrillation and thoracic aortic aneurysm may point towards developmental mechanisms in early life which confer a lifelong risk on these disease outcomes.
Collapse
Affiliation(s)
- Tom G Richardson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK.
| | - Helena Urquijo
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Laurence J Howe
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - Gareth Hawkes
- Genetics of Complex Traits, College of Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, Devon, UK
| | - John DePaolo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott M Damrauer
- Division of Vascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Timothy M Frayling
- Department of Genetic Medicine and Development, Faculty of Medicine, CMU, Geneva, Suisse
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- NIHR Bristol Biomedical Research Centre Bristol, University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Faizan MI, Kaur G, Shaikh SB, Effah F, Unwalla H, Rahman I. Genetic diversity leads to differential inflammatory responses to cigarette smoke in mice. Physiol Rep 2025; 13:e70199. [PMID: 39844449 PMCID: PMC11754243 DOI: 10.14814/phy2.70199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO). The UM-HET3 (HET3) mouse strain, typically used in aging intervention studies, has also been used to evaluate the translatability of this model for age-associated pathologies. The study involves a comprehensive approach, including BALF cytokine analysis, evaluation of lung tissue architecture, assessment of macrophages and its associated proteins (MMP9 & MMP12) abundance. Several cytokines/chemokines were found to be upregulated across three strains. Notably, the UNC strain exclusively showed upregulation of TNF-α, IL-17A, and IL-13, whereas the J:DO showed an upregulation in KC. The number of alveolar macrophages in the lungs of UNC mice was very low at baseline compared to other strains studied in this study, which is indicative of some inherent shift in the pulmonary immune profiles of these inbred mice. In contrast, the J:DO strain, characterized by genetic outbreeding, showed a much more robust lung macrophage response comparable to C57BL/6J. The findings provide valuable insight into how genetic diversity affects immune responses in response to acute CS/ETS exposure, with implications for understanding diverse human responses to environmental stressors in studying lung pathophysiology.
Collapse
Affiliation(s)
- Md Imam Faizan
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Gagandeep Kaur
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Sadiya Bi Shaikh
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Felix Effah
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of MedicineFlorida International UniversityMiamiFloridaUSA
| | - Irfan Rahman
- Department of Environmental MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
7
|
Mullis MN, Wright KM, Raj A, Gatti DM, Reifsnyder PC, Flurkey K, Archer JR, Robinson L, Di Francesco A, Svenson KL, Korstanje R, Harrison DE, Ruby JG, Churchill GA. Analysis of lifespan across Diversity Outbred mouse studies identifies multiple longevity-associated loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624531. [PMID: 39605744 PMCID: PMC11601611 DOI: 10.1101/2024.11.20.624531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lifespan is an integrative phenotype whose genetic architecture is likely to highlight multiple processes with high impact on health and aging. Here, we conduct a genetic meta-analysis of longevity in Diversity Outbred (DO) mice that includes 2,444 animals from three independently conducted lifespan studies. We identify six loci that contribute significantly to lifespan independently of diet and drug treatment, one of which also influences lifespan in a sex-dependent manner, as well as an additional locus with a diet-specific effect on lifespan. Collectively, these loci explain over half of the estimated heritable variation in lifespan across these studies and provide insight into the genetic architecture of lifespan in DO mice.
Collapse
|
8
|
Endicott SJ. Chaperone-mediated autophagy as a modulator of aging and longevity. FRONTIERS IN AGING 2024; 5:1509400. [PMID: 39687864 PMCID: PMC11647017 DOI: 10.3389/fragi.2024.1509400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Chaperone-mediated autophagy (CMA) is the lysosomal degradation of individually selected proteins, independent of vesicle fusion. CMA is a central part of the proteostasis network in vertebrate cells. However, CMA is also a negative regulator of anabolism, and it degrades enzymes required for glycolysis, de novo lipogenesis, and translation at the cytoplasmic ribosome. Recently, CMA has gained attention as a possible modulator of rodent aging. Two mechanistic models have been proposed to explain the relationship between CMA and aging in mice. Both of these models are backed by experimental data, and they are not mutually exclusionary. Model 1, the "Longevity Model," states that lifespan-extending interventions that decrease signaling through the INS/IGF1 signaling axis also increase CMA, which degrades (and thereby reduces the abundance of) several proteins that negatively regulate vertebrate lifespan, such as MYC, NLRP3, ACLY, and ACSS2. Therefore, enhanced CMA, in early and midlife, is hypothesized to slow the aging process. Model 2, the "Aging Model," states that changes in lysosomal membrane dynamics with age lead to age-related losses in the essential CMA component LAMP2A, which in turn reduces CMA, contributes to age-related proteostasis collapse, and leads to overaccumulation of proteins that contribute to age-related diseases, such as Alzheimer's disease, Parkinson's disease, cancer, atherosclerosis, and sterile inflammation. The objective of this review paper is to comprehensively describe the data in support of both of these explanatory models, and to discuss the strengths and limitations of each.
Collapse
Affiliation(s)
- S. Joseph Endicott
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, (AIM CoBRE), University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
9
|
Félix J, Bellanco A, Díaz-Del Cerro E, Martínez-Cuesta MC, Requena T, De la Fuente M. High exposure to carrageenan in young mice may impair behavior, immunity, redox and inflammatory states throughout the aging process. Food Res Int 2024; 197:115143. [PMID: 39593356 DOI: 10.1016/j.foodres.2024.115143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The rate of aging can be determined, among other factors, by the diet during childhood and adolescence. Many additives are currently added to food, including carrageenan (E-407), a thickener derived from red algae. Although the acceptable daily intake for carrageenan is periodically re-evaluated, children show the highest levels of exposure with unknown potential effects on the aging process and longevity. Therefore, the aim of the present study is to know the effects in young mice of carrageenan intake, at the maximum level exposure scenario surveyed in children, on the homeostatic (nervous and immune) systems, the redox-inflammatory state and the repercussion that this may have on the aging and longevity of the animals. Swiss mice of 2 months of age (equivalent to 8 years old children) were used and 4 experimental groups were created (N = 10 animals/group): females and males that ingested carrageenan (540 mg/kg of κ-carrageenan in 200 μL of drinking water by pipette tip administration) and control females and males that took 200 μL of water, daily for 15 days. After that time, a battery of behavioral tests was performed, and peritoneal leukocytes were extracted to assess different immune functions and their redox and inflammatory state. These tests were repeated when the mice reached adulthood (7 months) and old age (18 months). Fecal microbiota was analyzed at the same sampling times. The results showed that animals that ingested carrageenan presented elevated levels of anxiety, impaired immune function and increased oxidative-inflammatory stress, with these effects extending into adulthood and old age and leading to reduced longevity in these mice. Overall, observed microbiota changes were related more to the aging process than the carrageenan intake. In conclusion, the exposure to high doses of the food additive carrageenan in childhood may contribute to an impairment of homeostasis, and consequently of health, with an increased oxidative-inflammatory stress, which implies an accelerated aging process, leading to a lower longevity.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Alicia Bellanco
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación CIAL-CSIC, Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación CIAL-CSIC, Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación CIAL-CSIC, Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain
| |
Collapse
|
10
|
Martinez-Romero J, Fernandez ME, Bernier M, Price NL, Mueller W, Candia J, Camandola S, Meirelles O, Hu YH, Li Z, Asefa N, Deighan A, Vieira Ligo Teixeira C, Palliyaguru DL, Serrano C, Escobar-Velasquez N, Dickinson S, Shiroma EJ, Ferrucci L, Churchill GA, Allison DB, Launer LJ, de Cabo R. A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age. NATURE AGING 2024; 4:1882-1896. [PMID: 39424993 DOI: 10.1038/s43587-024-00728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Biological clocks and other molecular biomarkers of aging are difficult to implement widely in a clinical setting. In this study, we used routinely collected hematological markers to develop an aging clock to predict blood age and determine whether the difference between predicted age and chronologic age (aging gap) is associated with advanced aging in mice. Data from 2,562 mice of both sexes and three strains were drawn from two longitudinal studies of aging. Eight hematological variables and two metabolic indices were collected longitudinally (12,010 observations). Blood age was predicted using a deep neural network. Blood age was significantly correlated with chronological age, and aging gap was positively associated with mortality risk and frailty. Platelets were identified as the strongest age predictor by the deep neural network. An aging clock based on routinely collected blood measures has the potential to provide a practical clinical tool to better understand individual variability in the aging process.
Collapse
Affiliation(s)
- Jorge Martinez-Romero
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | | | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - William Mueller
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Simonetta Camandola
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Nigus Asefa
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | | | | | | | - Carlos Serrano
- Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | | | - Stephanie Dickinson
- Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Eric J Shiroma
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | | | - David B Allison
- Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
11
|
Masson SWC, Cutler HB, James DE. Unlocking metabolic insights with mouse genetic diversity. EMBO J 2024; 43:4814-4821. [PMID: 39284908 PMCID: PMC11535531 DOI: 10.1038/s44318-024-00221-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/06/2024] Open
Abstract
As part of EMBO Journal’s 2024 metabolism methods series, this commentary revisits the impact of genetics on metabolic studies, enabling dissection of novel mechanisms and phenotypes.
Collapse
Affiliation(s)
- Stewart W C Masson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Harry B Cutler
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Gallage S, Irvine EE, Barragan Avila JE, Reen V, Pedroni SMA, Duran I, Ranvir V, Khadayate S, Pombo J, Brookes S, Heide D, Dharmalingham G, Choudhury AI, Singh I, Herranz N, Vernia S, Heikenwalder M, Gil J, Withers DJ. Ribosomal S6 kinase 1 regulates inflammaging via the senescence secretome. NATURE AGING 2024; 4:1544-1561. [PMID: 39210150 PMCID: PMC11564105 DOI: 10.1038/s43587-024-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Inhibition of S6 kinase 1 (S6K1) extends lifespan and improves healthspan in mice, but the underlying mechanisms are unclear. Cellular senescence is a stable growth arrest accompanied by an inflammatory senescence-associated secretory phenotype (SASP). Cellular senescence and SASP-mediated chronic inflammation contribute to age-related pathology, but the specific role of S6K1 has not been determined. Here we show that S6K1 deletion does not reduce senescence but ameliorates inflammation in aged mouse livers. Using human and mouse models of senescence, we demonstrate that reduced inflammation is a liver-intrinsic effect associated with S6K deletion. Specifically, we show that S6K1 deletion results in reduced IRF3 activation; impaired production of cytokines, such as IL1β; and reduced immune infiltration. Using either liver-specific or myeloid-specific S6K knockout mice, we also demonstrate that reduced immune infiltration and clearance of senescent cells is a hepatocyte-intrinsic phenomenon. Overall, deletion of S6K reduces inflammation in the liver, suggesting that suppression of the inflammatory SASP by loss of S6K could underlie the beneficial effects of inhibiting this pathway on healthspan and lifespan.
Collapse
Affiliation(s)
- Suchira Gallage
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University of Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany
| | - Elaine E Irvine
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Virinder Reen
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Silvia M A Pedroni
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Imanol Duran
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Vikas Ranvir
- Emmy Noether Research Group, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Epigenetic Machineries and Cancer, Heidelberg, Germany
| | - Sanjay Khadayate
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Joaquim Pombo
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Sharon Brookes
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Danijela Heide
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gopuraja Dharmalingham
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Agharul I Choudhury
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Indrabahadur Singh
- Emmy Noether Research Group, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Epigenetic Machineries and Cancer, Heidelberg, Germany
| | - Nicolás Herranz
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Santiago Vernia
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- University of Tübingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Tübingen, Germany.
| | - Jesús Gil
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| | - Dominic J Withers
- Medical Research Council Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
13
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
14
|
Gao AW, El Alam G, Zhu Y, Li W, Sulc J, Li X, Katsyuba E, Li TY, Overmyer KA, Lalou A, Mouchiroud L, Sleiman MB, Cornaglia M, Morel JD, Houtkooper RH, Coon JJ, Auwerx J. High-content phenotypic analysis of a C. elegans recombinant inbred population identifies genetic and molecular regulators of lifespan. Cell Rep 2024; 43:114836. [PMID: 39368088 PMCID: PMC11996002 DOI: 10.1016/j.celrep.2024.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/10/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 C. elegans recombinant inbred advanced intercross lines (RIAILs). We assessed molecular profiles-transcriptome, proteome, and lipidome-and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which correlated positively with developmental time. We validated three longevity modulators, including rict-1, gfm-1, and mltn-1, among the top candidates obtained from multiomics data integration and quantitative trait locus (QTL) mapping. We translated their relevance to humans using UK Biobank data and showed that variants in GFM1 are associated with an elevated risk of age-related heart failure. We organized our dataset as a resource that allows interactive explorations for new longevity targets.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Terytty Y Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53515, USA
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Matteo Cornaglia
- Nagi Bioscience SA, EPFL Innovation Park, 1025 Saint-Sulpice, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53515, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Wang M, Sheng W, Zhang J, Cao Q, Du X, Li Q. A Mutation Losing an RBP-Binding Site in the LncRNA NORSF Transcript Influences Granulosa Cell Apoptosis and Sow Fertility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404747. [PMID: 39120076 PMCID: PMC11516108 DOI: 10.1002/advs.202404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/14/2024] [Indexed: 08/10/2024]
Abstract
Sow fertility is an economically important quantitative trait. Hundreds of quantitative trait loci (QTLs) containing tens of thousands of potential candidate genes are excavated. However, among these genes, non-coding RNAs including long non-coding RNAs (lncRNAs) are often overlooked. Here, it is reported that NORSF is a novel causal lncRNA for sow fertility traits in QTLs. QTLs are characterized for sow fertility traits at the genome-wide level and identified 4,630 potential candidate lncRNAs, with 13 differentially expressed during sow follicular atresia. NORSF, a lncRNA that involved in sow granulosa cell (sGC) function, is identified as a candidate gene for sow fertility traits as a G to A transversion at 128 nt in its transcript is shown to be markedly associated with sow fertility traits. Mechanistically, after forming the RNA:dsDNA triplexes with the promoter of Caspase8, NORSF transcript with allele G binds to an RNA-binding protein (RBP) NR2C1 and recruits it to the promoter of Caspase8, to induce Caspase8 transcription in sGCs. Functionally, this leads to a loss of inducing effect of NORSF on sGC apoptosis by inactivating the death receptor-mediated apoptotic pathway. This study identified a novel causal lncRNA that can be used for the genetic improvement of sow fertility traits.
Collapse
Affiliation(s)
- Miaomiao Wang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Wenmin Sheng
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jiyu Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Qiuyu Cao
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Xing Du
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Qifa Li
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
16
|
Di Francesco A, Deighan AG, Litichevskiy L, Chen Z, Luciano A, Robinson L, Garland G, Donato H, Vincent M, Schott W, Wright KM, Raj A, Prateek GV, Mullis M, Hill WG, Zeidel ML, Peters LL, Harding F, Botstein D, Korstanje R, Thaiss CA, Freund A, Churchill GA. Dietary restriction impacts health and lifespan of genetically diverse mice. Nature 2024; 634:684-692. [PMID: 39385029 PMCID: PMC11485257 DOI: 10.1038/s41586-024-08026-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
Caloric restriction extends healthy lifespan in multiple species1. Intermittent fasting, an alternative form of dietary restriction, is potentially more sustainable in humans, but its effectiveness remains largely unexplored2-8. Identifying the most efficacious forms of dietary restriction is key for developing interventions to improve human health and longevity9. Here we performed an extensive assessment of graded levels of caloric restriction (20% and 40%) and intermittent fasting (1 and 2 days fasting per week) on the health and survival of 960 genetically diverse female mice. We show that caloric restriction and intermittent fasting both resulted in lifespan extension in proportion to the degree of restriction. Lifespan was heritable and genetics had a larger influence on lifespan than dietary restriction. The strongest trait associations with lifespan included retention of body weight through periods of handling-an indicator of stress resilience, high lymphocyte proportion, low red blood cell distribution width and high adiposity in late life. Health effects differed between interventions and exhibited inconsistent relationships with lifespan extension. 40% caloric restriction had the strongest lifespan extension effect but led to a loss of lean mass and changes in the immune repertoire that could confer susceptibility to infections. Intermittent fasting did not extend the lifespan of mice with high pre-intervention body weight, and two-day intermittent fasting was associated with disruption of erythroid cell populations. Metabolic responses to dietary restriction, including reduced adiposity and lower fasting glucose, were not associated with increased lifespan, suggesting that dietary restriction does more than just counteract the negative effects of obesity. Our findings indicate that improving health and extending lifespan are not synonymous and raise questions about which end points are the most relevant for evaluating aging interventions in preclinical models and clinical trials.
Collapse
Affiliation(s)
| | | | - Lev Litichevskiy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenghao Chen
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | - Kevin M Wright
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Actio Biosciences, San Diego, CA, USA
| | - Anil Raj
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - G V Prateek
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Martin Mullis
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | - Warren G Hill
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Mark L Zeidel
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Fiona Harding
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Freund
- Calico Life Sciences LLC, South San Francisco, CA, USA
- Arda Therapeutics, San Carlos, CA, USA
| | | |
Collapse
|
17
|
Jayarathne HSM, Sullivan R, Stilgenbauer L, Debarba LK, Kuchumov A, Koshko L, Scofield S, Liu W, Ginsburg BC, Miller RA, Sadagurski M. Hypothalamic sex-specific metabolic shift by canagliflozin during aging. GeroScience 2024; 46:4479-4493. [PMID: 38801647 PMCID: PMC11335982 DOI: 10.1007/s11357-024-01214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
The hypothalamus undergoes significant changes with aging and plays crucial roles in age-related metabolic alterations. Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are anti-diabetic agents that promote glucose excretion, and metabolic homeostasis. Recent studies have shown that a SGLT2i, Canagliflozin (Cana), can extend the median survival of genetically heterogeneous UM-HET3 male mice and improve central metabolic control via increases in hypothalamic insulin responsiveness in aged males, as well as reduced age-associated hypothalamic inflammation. We studied the long- and short-term effects of Cana on hypothalamic metabolic control in UM-HET3 mice. Starting the treatment from 7 months of age, we show that 4 weeks of Cana treatment significantly reduced body weight and fat mass in male but not female mice that was associated with enhanced glucose tolerance and insulin sensitivity observed by 12 months. Indirect calorimetry showed that Cana treatment increased energy expenditure in male, but not female mice, at 12 months of age. Long-term Cana treatment increased metabolic rates in both sexes, and markedly increasing formation of both orexigenic and anorexigenic projections to the paraventricular nucleus of the hypothalamus (PVH) mostly in females by 25 months. Hypothalamic RNA-sequencing analysis revealed increased sex-specific genes and signaling pathways related to insulin signaling, glycogen catabolic pathway, neuropeptide signaling, and mitochondrial function upregulated by Cana, with males showing a more pronounced and sustained effect on metabolic pathways at both age groups. Overall, our data provide critical evidence for sex-specific mechanisms that are affected by Cana during aging suggesting key targets of hypothalamic Cana-induced neuroprotection for metabolic control.
Collapse
Affiliation(s)
- Hashan S M Jayarathne
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Ryan Sullivan
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Lukas Stilgenbauer
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Lucas K Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Artur Kuchumov
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Sydney Scofield
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA
| | - Wanqing Liu
- Department of Pharmaceutical Science, Wayne State University, Detroit, MI, USA
| | - Brett C Ginsburg
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Room 2418 IBio, 6135 Woodward, Detroit, MI, 48202, USA.
- Institute of Environmental Health Sciences, iBio (Integrative Biosciences Center), Wayne State University, Detroit, MI, USA.
| |
Collapse
|
18
|
Zumerle S, Sarill M, Saponaro M, Colucci M, Contu L, Lazzarini E, Sartori R, Pezzini C, Rinaldi A, Scanu A, Sgrignani J, Locatelli P, Sabbadin M, Valdata A, Brina D, Giacomini I, Rizzo B, Pierantoni A, Sharifi S, Bressan S, Altomare C, Goshovska Y, Giraudo C, Luisetto R, Iaccarino L, Torcasio C, Mosole S, Pasquini E, Rinaldi A, Pellegrini L, Peron G, Fassan M, Masiero S, Giori AM, Dall'Acqua S, Auwerx J, Cippà P, Cavalli A, Bolis M, Sandri M, Barile L, Montopoli M, Alimonti A. Targeting senescence induced by age or chemotherapy with a polyphenol-rich natural extract improves longevity and healthspan in mice. NATURE AGING 2024; 4:1231-1248. [PMID: 38951692 PMCID: PMC11408255 DOI: 10.1038/s43587-024-00663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 05/31/2024] [Indexed: 07/03/2024]
Abstract
Accumulating senescent cells within tissues contribute to the progression of aging and age-related diseases. Botanical extracts, rich in phytoconstituents, present a useful resource for discovering therapies that could target senescence and thus improve healthspan. Here, we show that daily oral administration of a standardized extract of Salvia haenkei (Haenkenium (HK)) extended lifespan and healthspan of naturally aged mice. HK treatment inhibited age-induced inflammation, fibrosis and senescence markers across several tissues, as well as increased muscle strength and fur thickness compared with age-matched controls. We also found that HK treatment reduced acutely induced senescence by the chemotherapeutic agent doxorubicin, using p16LUC reporter mice. We profiled the constituent components of HK by mass spectrometry, and identified luteolin-the most concentrated flavonoid in HK-as a senomorphic compound. Mechanistically, by performing surface plasmon resonance and in situ proximity ligation assay, we found that luteolin disrupted the p16-CDK6 interaction. This work demonstrates that administration of HK promotes longevity in mice, possibly by modulating cellular senescence and by disrupting the p16-CDK6 interaction.
Collapse
Affiliation(s)
- Sara Zumerle
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Miles Sarill
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Miriam Saponaro
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Urology and Pediatric Urology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Liliana Contu
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Lazzarini
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Roberta Sartori
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Camilla Pezzini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Rinaldi
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Anna Scanu
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Patrizia Locatelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Isabella Giacomini
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Beatrice Rizzo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Alessandra Pierantoni
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute for Research on Cancer and Aging, Nice, France
| | - Saman Sharifi
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Medicine, University of Padova, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Bressan
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Claudia Altomare
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yulia Goshovska
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Chiara Giraudo
- Department of Medicine, University of Padova, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health - DCTV, University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Luca Iaccarino
- Department of Medicine, University of Padova, Padova, Italy
| | - Cristina Torcasio
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Fassan
- Department of Medicine, University of Padova, Padova, Italy
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Stefano Masiero
- Department of Neuroscience, Rehabilitation Unit, University of Padova, Padova, Italy
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pietro Cippà
- Università della Svizzera italiana, Lugano, Switzerland
- Department of Medicine, Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Università della Svizzera italiana, Lugano, Switzerland
| | - Marco Sandri
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana, Lugano, Switzerland
| | - Monica Montopoli
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Andrea Alimonti
- Veneto Institute of Molecular Medicine, Padova, Italy.
- Department of Medicine, University of Padova, Padova, Italy.
- Institute of Oncology Research (IOR), Bellinzona, Switzerland.
- Università della Svizzera italiana, Lugano, Switzerland.
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Zurich, Switzerland.
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| |
Collapse
|
19
|
Dave A, Park EJ, Kofsky P, Dufresne A, Chakraborty S, Pezzuto JM. Long-Term Dietary Consumption of Grapes Affects Kidney Health in C57BL/6J Mice. Nutrients 2024; 16:2309. [PMID: 39064752 PMCID: PMC11280382 DOI: 10.3390/nu16142309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Starting at 4 weeks of age, male and female C57BL/6J mice were provided with a semi-synthetic diet for a period of one year and then continued on the semi-synthetic diet with or without grape supplementation for the duration of their lives. During the course of the study, no variation of body weights was noted between the groups. At 2.5 years of age, the body-weight-to-tissue-weight ratios did not vary for the liver, colon, muscle, prostate, or ovary. However, relative to the standard diet, the body/kidney weight ratio was significantly lower in the male and female groups with grape-supplemented diets. With the mice provided with the standard diet, the BUN/creatinine ratios were 125 and 152 for males and females, respectively, and reduced to 63.7 and 40.4, respectively, when provided with the grape diet. A histological evaluation suggested that this may be due to enhanced/improved perfusion in the kidney as a preventive/protective effect. In response to the dietary grapes, an RNA seq analysis revealed up-regulation of 21 and 109 genes with male and female mice, respectively, with a corresponding down-regulation of 108 and 65 genes. The downward movement of the FPKM values in the males (alox5, btk, fga, fpr1, hmox1, lox, ltf, lyve1, marco, mmp8, prg4, s100a8/9, serpina3n, and vsig4) and upward movement of the FPKM values in the females (camp, cd300lf, cd72, fcgr4, fgr, fpr2, htra4, il10, lilrb4b, lipg, pilra, and tlr8) suggest beneficial kidney effects. The expression of some genes related to the immunological activity was also modulated by the grape diet, mainly downward in the males and upward in the females. The reactome pathway analysis, KEGG analysis, and GSEA normalized enrichment scores illustrate that several pathways related to immune function, collagenase degradation, extracellular matrix regulation, metabolism of vitamins and cofactors, pancreatic secretion, aging, and mitochondrial function were enriched in both the males and females provided with the grape diet. Overall, these results indicate that the long-term dietary consumption of grapes contributes to renal health and resilience against fibrosis and related pathologies.
Collapse
Affiliation(s)
- Asim Dave
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA;
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA; (E.-J.P.); (P.K.)
| | - Paulette Kofsky
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA; (E.-J.P.); (P.K.)
| | - Alexandre Dufresne
- Baystate Research Facility, Baystate Medical Center, Springfield, MA 01199, USA;
| | - Soma Chakraborty
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, MA 01199, USA;
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA; (E.-J.P.); (P.K.)
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA 01199, USA
| |
Collapse
|
20
|
Wang Q, Ding X, Xu Z, Wang B, Wang A, Wang L, Ding Y, Song S, Chen Y, Zhang S, Jiang L, Ding X. The mouse multi-organ proteome from infancy to adulthood. Nat Commun 2024; 15:5752. [PMID: 38982135 PMCID: PMC11233712 DOI: 10.1038/s41467-024-50183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.
Collapse
Affiliation(s)
- Qingwen Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinwen Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixiao Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sunfengda Song
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Youming Chen
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Evans AK, Saw NL, Woods CE, Vidano LM, Blumenfeld SE, Lam RK, Chu EK, Reading C, Shamloo M. Impact of high-fat diet on cognitive behavior and central and systemic inflammation with aging and sex differences in mice. Brain Behav Immun 2024; 118:334-354. [PMID: 38408498 PMCID: PMC11019935 DOI: 10.1016/j.bbi.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Aging and age-related diseases are associated with cellular stress, metabolic imbalance, oxidative stress, and neuroinflammation, accompanied by cognitive impairment. Lifestyle factors such as diet, sleep fragmentation, and stress can potentiate damaging cellular cascades and lead to an acceleration of brain aging and cognitive impairment. High-fat diet (HFD) has been associated with obesity, metabolic disorders like diabetes, and cardiovascular disease. HFD also induces neuroinflammation, impairs learning and memory, and may increase anxiety-like behavior. Effects of a HFD may also vary between sexes. The interaction between Age- and Sex- and Diet-related changes in neuroinflammation and cognitive function is an important and poorly understood area of research. This study was designed to examine the effects of HFD on neuroinflammation, behavior, and neurodegeneration in mice in the context of aging or sex differences. In a series of studies, young (2-3 months) or old (12-13 months) C57BL/6J male mice or young male and female C57Bl/6J mice were fed either a standard diet (SD) or a HFD for 5-6 months. Behavior was assessed in Activity Chamber, Y-maze, Novel Place Recognition, Novel Object Recognition, Elevated Plus Maze, Open Field, Morris Water Maze, and Fear Conditioning. Post-mortem analyses assessed a panel of inflammatory markers in the plasma and hippocampus. Additionally, proteomic analysis of the hypothalamus, neurodegeneration, neuroinflammation in the locus coeruleus, and neuroinflammation in the hippocampus were assessed in a subset of young and aged male mice. We show that HFD increased body weight and decreased locomotor activity across groups compared to control mice fed a SD. HFD altered anxiety-related exploratory behavior. HFD impaired spatial learning and recall in young male mice and impaired recall in cued fear conditioning in young and aged male mice, with no effects on spatial learning or fear conditioning in young female mice. Effects of Age and Sex were observed on neuroinflammatory cytokines, with only limited effects of HFD. HFD had a more significant impact on systemic inflammation in plasma across age and sex. Aged male mice had induction of microglial immunoreactivity in both the locus coeruleus (LC) and hippocampus an effect that HFD exacerbated in the hippocampal CA1 region. Proteomic analysis of the hypothalamus revealed changes in pathways related to metabolism and neurodegeneration with both aging and HFD in male mice. Our findings suggest that HFD induces widespread systemic inflammation and limited neuroinflammation. In addition, HFD alters exploratory behavior in male and female mice, and impairs learning and memory in male mice. These results provide valuable insight into the impact of diet on cognition and aging pathophysiology.
Collapse
Affiliation(s)
- Andrew K Evans
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Nay L Saw
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Claire E Woods
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Laura M Vidano
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Sarah E Blumenfeld
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Rachel K Lam
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | - Emily K Chu
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304
| | | | - Mehrdad Shamloo
- Stanford University School of Medicine, Department of Neurosurgery, 1050 Arastradero Road, Building A, Palo Alto, CA 94304.
| |
Collapse
|
22
|
Jiang N, Cheng CJ, Strong R, Nelson JF. Castration reduces mortality and increases resilience in male mice: what is next? GeroScience 2024; 46:2787-2790. [PMID: 37861928 PMCID: PMC10828236 DOI: 10.1007/s11357-023-00973-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
This commentary concerns our recent report that prepubertal castration rescued the shorter lifespan of males, using the first mouse line that robustly shows the same shorter longevity with a similar age-variable mortality disadvantage as human males. This model provides a unique opportunity for research to uncover the basis for this clinically important sex difference in aging. Researchers can now identify the hormones involved, the duration of exposure required, and, most important, the cellular and molecular targets, with the ultimate goal of developing therapeutic interventions to enhance health and reduce mortality without castration-compromising reproductive function.
Collapse
Affiliation(s)
- Nisi Jiang
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Catherine J Cheng
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA
| | - Randy Strong
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA
- Research Service of the South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX, USA
| | - James F Nelson
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
23
|
Vlachou D, Veretennikova M, Usselmann L, Vasilyev V, Ott S, Bjarnason GA, Dallmann R, Levi F, Rand DA. TimeTeller: A tool to probe the circadian clock as a multigene dynamical system. PLoS Comput Biol 2024; 20:e1011779. [PMID: 38422117 DOI: 10.1371/journal.pcbi.1011779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/12/2024] [Accepted: 12/21/2023] [Indexed: 03/02/2024] Open
Abstract
Recent studies have established that the circadian clock influences onset, progression and therapeutic outcomes in a number of diseases including cancer and heart diseases. Therefore, there is a need for tools to measure the functional state of the molecular circadian clock and its downstream targets in patients. Moreover, the clock is a multi-dimensional stochastic oscillator and there are few tools for analysing it as a noisy multigene dynamical system. In this paper we consider the methodology behind TimeTeller, a machine learning tool that analyses the clock as a noisy multigene dynamical system and aims to estimate circadian clock function from a single transcriptome by modelling the multi-dimensional state of the clock. We demonstrate its potential for clock systems assessment by applying it to mouse, baboon and human microarray and RNA-seq data and show how to visualise and quantify the global structure of the clock, quantitatively stratify individual transcriptomic samples by clock dysfunction and globally compare clocks across individuals, conditions and tissues thus highlighting its potential relevance for advancing circadian medicine.
Collapse
Affiliation(s)
- Denise Vlachou
- Mathematics Institute & Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Maria Veretennikova
- Mathematics Institute & Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vadim Vasilyev
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Georg A Bjarnason
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Francis Levi
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
- UPR "Chronotherapy, Cancer and Transplantation", Medical School, Paris-Saclay University, Medical Oncology Department, Paul Brousse Hospital, Villejuif, France
| | - David A Rand
- Mathematics Institute & Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
24
|
Gao AW, Alam GE, Zhu Y, Li W, Katsyuba E, Sulc J, Li TY, Li X, Overmyer KA, Lalou A, Mouchiroud L, Sleiman MB, Cornaglia M, Morel JD, Houtkooper RH, Coon JJ, Auwerx J. High-content phenotypic analysis of a C. elegans recombinant inbred population identifies genetic and molecular regulators of lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575638. [PMID: 38293129 PMCID: PMC10827074 DOI: 10.1101/2024.01.15.575638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.
Collapse
Affiliation(s)
- Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Weisha Li
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Jonathan Sulc
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Terytty Y. Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Present address: State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Laboratory of Longevity and Metabolic Adaptations, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
| | - Amelia Lalou
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Laurent Mouchiroud
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matteo Cornaglia
- Nagi Bioscience SA, EPFL Innovation Park, CH-1025 Saint-Sulpice, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53506, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53515, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53506, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
25
|
Bartke A, Hascup E, Hascup K. Responses to Many Anti-Aging Interventions Are Sexually Dimorphic. World J Mens Health 2024; 42:29-38. [PMID: 37118966 PMCID: PMC10782120 DOI: 10.5534/wjmh.230015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/30/2023] Open
Abstract
There is increasing appreciation that sex differences are not limited to reproductive organs or traits related to reproduction and that sex is an important biological variable in most characteristics of a living organism. The biological process of aging and aging-related traits are no exception and exhibit numerous, often major, sex differences. This article explores one aspect of these differences, namely sex differences in the responses to anti-aging interventions. Aging can be slowed down and/or postponed by a variety of environmental ("lifestyle"), genetic or pharmacological interventions. Although many, particularly older studies utilized only one sex of experimental animals, there is considerable evidence that responses to these interventions can be very different in females and males. Calorie restriction (CR), that is reducing food intake without malnutrition can extend longevity in both sexes, but specific metabolic alterations and health benefits induced by CR are not the same in women and men. In laboratory mice, several of the genetic alterations that reduce insulin-like growth factor I (IGF-1) signaling extend longevity more effectively in females or in females only. Beneficial effects of rapamycin, an inhibitor of mTOR signaling, on mouse longevity are greater in females. In contrast, several anti-aging compounds, including a weak estrogen, 17 alpha estradiol, extend longevity of male, but not female, mice. Apparently, fundamental mechanisms of aging are not identical in females and males and it is essential to use both sexes in studies aimed at identifying novel anti-aging interventions. Recommendations for lifestyle modifications, drugs, and dietary supplements to maintain good health and functionality into advanced age and to live longer will likely need to be tailored to the sex of the user.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
26
|
Chang Y, Zhou Y, Zhou J, Li W, Cao J, Jing Y, Zhang S, Shen Y, Lin Q, Fan X, Yang H, Dong X, Zhang S, Yi X, Shuai L, Shi L, Liu Z, Yang J, Ma X, Hao J, Chen K, Li MJ, Wang F, Huang D. Unraveling the causal genes and transcriptomic determinants of human telomere length. Nat Commun 2023; 14:8517. [PMID: 38129441 PMCID: PMC10739845 DOI: 10.1038/s41467-023-44355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Telomere length (TL) shortening is a pivotal indicator of biological aging and is associated with many human diseases. The genetic determinates of human TL have been widely investigated, however, most existing studies were conducted based on adult tissues which are heavily influenced by lifetime exposure. Based on the analyses of terminal restriction fragment (TRF) length of telomere, individual genotypes, and gene expressions on 166 healthy placental tissues, we systematically interrogate TL-modulated genes and their potential functions. We discover that the TL in the placenta is comparatively longer than in other adult tissues, but exhibiting an intra-tissue homogeneity. Trans-ancestral TL genome-wide association studies (GWASs) on 644,553 individuals identify 20 newly discovered genetic associations and provide increased polygenic determination of human TL. Next, we integrate the powerful TL GWAS with placental expression quantitative trait locus (eQTL) mapping to prioritize 23 likely causal genes, among which 4 are functionally validated, including MMUT, RRM1, KIAA1429, and YWHAZ. Finally, modeling transcriptomic signatures and TRF-based TL improve the prediction performance of human TL. This study deepens our understanding of causal genes and transcriptomic determinants of human TL, promoting the mechanistic research on fine-grained TL regulation.
Collapse
Affiliation(s)
- Ying Chang
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junrui Zhou
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wen Li
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Jiasong Cao
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yaqing Jing
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Zhang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongmei Shen
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Qimei Lin
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Lei Shi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Wang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China.
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China.
| | - Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
27
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
28
|
Jiang N, Cheng CJ, Gelfond J, Strong R, Diaz V, Nelson JF. Prepubertal castration eliminates sex differences in lifespan and growth trajectories in genetically heterogeneous mice. Aging Cell 2023; 22:e13891. [PMID: 37221997 PMCID: PMC10410013 DOI: 10.1111/acel.13891] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Sex differences in aging and longevity have been widely observed, with females consistently outliving males across human populations. However, the mechanisms driving these disparities remain poorly understood. In this study, we explored the influence of post-pubertal testicular effects on sex differences in aging by prepubertally castrating genetically heterogeneous (UM-HET3) mice, a unique mouse model that emulates human sex differences in age-related mortality. Prepubertal castration eliminated the longevity disparity between sexes by reducing the elevated early- to mid-life mortality rate observed in males and extending their median lifespan to match that of females. Additionally, castration extended the duration of body weight growth and attenuated the inverse correlation between early-age body weight and lifespan in males, aligning their growth trajectories with those of females. Our findings suggest that post-pubertal testicular actions in genetically diverse mice are primarily responsible for sex differences in longevity as well as growth trajectories. These findings offer a foundation for further investigation into the fundamental mechanisms driving sex-specific aging patterns and the development of potential pro-longevity interventions.
Collapse
Affiliation(s)
- Nisi Jiang
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San AntonioSan AntonioTexasUSA
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Catherine J. Cheng
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San AntonioSan AntonioTexasUSA
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| | - Jonathan Gelfond
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
| | - Randy Strong
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San AntonioSan AntonioTexasUSA
- Department of PharmacologyUT Health San AntonioSan AntonioTexasUSA
- Research Service of the South Texas Veterans Health Care SystemSan AntonioTexasUSA
| | - Vivian Diaz
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San AntonioSan AntonioTexasUSA
| | - James F. Nelson
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, UT Health San AntonioSan AntonioTexasUSA
- Department of Cellular and Integrative PhysiologyUT Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
29
|
Zhang KK, Zhang P, Kodur A, Erturk I, Burns CM, Kenyon C, Miller RA, Endicott SJ. LAMP2A, and other chaperone-mediated autophagy related proteins, do not decline with age in genetically heterogeneous UM-HET3 mice. Aging (Albany NY) 2023; 15:4685-4698. [PMID: 37315291 PMCID: PMC10292871 DOI: 10.18632/aging.204796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Chaperone-mediated autophagy (CMA) selectively degrades proteins that are crucial for glycolysis, fatty acid metabolism, and the progression of several age-associated diseases. Several previous studies, each of which evaluated males of a single inbred mouse or rat strain, have reported that CMA declines with age in many tissues, attributed to an age-related loss of LAMP2A, the primary and indispensable component of the CMA translocation complex. This has led to a paradigm in the field of CMA research, stating that the age-associated decline in LAMP2A in turn decreases CMA, contributing to the pathogenesis of late-life disease. We assessed LAMP2A levels and CMA substrate uptake in both sexes of the genetically heterogeneous UM-HET3 mouse stock, which is the current global standard for the evaluation of anti-aging interventions. We found no evidence for age-related changes in LAMP2A levels, CMA substrate uptake, or whole liver levels of CMA degradation targets, despite identifying sex differences in CMA.
Collapse
Affiliation(s)
- Katherine K. Zhang
- University of Michigan, College of Literature, Science, and The Arts, Ann Arbor, MI 48109, USA
| | - Peichuan Zhang
- Calico Life Sciences, South San Francisco, CA 94080, USA
- Current Affiliation: WuXi AppTec, Shanghai, China
| | - Anagha Kodur
- University of Michigan, College of Literature, Science, and The Arts, Ann Arbor, MI 48109, USA
| | - Ilkim Erturk
- University of Michigan, Department of Pathology, Ann Arbor, MI 48109, USA
| | - Calvin M. Burns
- University of Michigan, Department of Pathology, Ann Arbor, MI 48109, USA
| | - Cynthia Kenyon
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Richard A. Miller
- University of Michigan, Department of Pathology, Ann Arbor, MI 48109, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI 48109, USA
| | - S. Joseph Endicott
- University of Michigan, Department of Pathology, Ann Arbor, MI 48109, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Zhang W, Huang Q, Kang Y, Li H, Tan G. Which Factors Influence Healthy Aging? A Lesson from the Longevity Village of Bama in China. Aging Dis 2023; 14:825-839. [PMID: 37191421 PMCID: PMC10187713 DOI: 10.14336/ad.2022.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
A growing aging population is associated with increasing incidences of aging-related diseases and socioeconomic burdens. Hence, research into healthy longevity and aging is urgently needed. Longevity is an important phenomenon in healthy aging. The present review summarizes the characteristics of longevity in the elderly population in Bama, China, where the proportion of centenarians is 5.7-fold greater than the international standard. We examined the impact of genetic and environmental factors on longevity from multiple perspectives. We proposed that the phenomenon of longevity in this region is of high value for future investigations in healthy aging and aging-related disease and may provide guidance for fostering the establishment and maintenance of a healthy aging society.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Qingyun Huang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Yongxin Kang
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Hao Li
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| | - Guohe Tan
- Department of Human Anatomy, Institute of Neuroscience and Guangxi Key Laboratory of Brain Science, Guangxi Health Commission Key Laboratory of Basic Research on Brain Function and Disease, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Nanning, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Nanning, Guangxi, China.
- China-ASEAN Research Center for Innovation and Development in Brain Science, Nanning, Guangxi, China.
| |
Collapse
|
31
|
Parra-Vargas M, Bouret SG, Bruning JC, de Moura EG, Garland T, Lisboa PC, Ozanne SE, Patti ME, Plagemann A, Speakman JR, Tena-Sempere M, Vergely C, Zeltser LM, Jiménez-Chillarón JC. The long-lasting shadow of litter size in rodents: litter size is an underreported variable that strongly determines adult physiology. Mol Metab 2023; 71:101707. [PMID: 36933618 PMCID: PMC10074241 DOI: 10.1016/j.molmet.2023.101707] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND/PURPOSE Litter size is a biological variable that strongly influences adult physiology in rodents. Despite evidence from previous decades and recent studies highlighting its major impact on metabolism, information about litter size is currently underreported in the scientific literature. Here, we urge that this important biological variable should be explicitly stated in research articles. RESULTS/CONCLUSION Below, we briefly describe the scientific evidence supporting the impact of litter size on adult physiology and outline a series of recommendations and guidelines to be implemented by investigators, funding agencies, editors in scientific journals, and animal suppliers to fill this important gap.
Collapse
Affiliation(s)
- Marcela Parra-Vargas
- Institut de Recerca Sant Joan de Déu, SJD-Barcelona Children's Hospital, Endocrine Division, Esplugues, Barcelona, Spain
| | - Sebastien G Bouret
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, F-59000, Lille, France
| | - Jens C Bruning
- Max Planck Institute for Metabolism Research, Policlinic for Endocrinology, Diabetes and Preventive Medicine, University Hospital Cologne, Cologne, Germany
| | - Egberto G de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Patricia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Welcome-MRC Institute of Metabolic Science, University of Cambridge, UK
| | - Mary-Elizabeth Patti
- Joslin Diabetes Center, Section of Integrative Physiology and Metabolism, Harvard Medical School, Boston, MA, USA
| | - Andreas Plagemann
- Division of 'Experimental Obstetrics,' Clinic of Obstetrics, Charité - Universitätsmedizin Berlin. Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Cordoba, Spain
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular diseases (PEC2) research team, Faculty of Health Sciences, University of Bourgogne, Dijon, France
| | - Lori M Zeltser
- Naomi Berrie Diabetes Center, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA
| | - Josep C Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu, SJD-Barcelona Children's Hospital, Endocrine Division, Esplugues, Barcelona, Spain; Department of Physiological Sciences, School of Medicine, University of Barcelona, L'Hospitalet, Barcelona, Spain.
| |
Collapse
|
32
|
Razzoli M, Nyuyki-Dufe K, Chen BH, Bartolomucci A. Contextual modifiers of healthspan, lifespan, and epigenome in mice under chronic social stress. Proc Natl Acad Sci U S A 2023; 120:e2211755120. [PMID: 37043532 PMCID: PMC10120026 DOI: 10.1073/pnas.2211755120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Sustained life stress and low socioeconomic status are among the major causes of aging-related diseases and decreased life expectancy. Experimental rodent models can help to identify the underlying mechanisms, yet very few studies address the long-term consequences of social stress on aging. We conducted a randomized study involving more than 300 male mice of commonly used laboratory strains (C57BL/6J, CD1, and Sv129Ev) chosen for the spontaneous aggression gradient and stress-vulnerability. Mice were exposed to a lifelong chronic psychosocial stress protocol to model social gradients in aging and disease vulnerability. Low social rank, inferred based on a discretized aggression index, was found to negatively impact lifespan in our study population. However, social rank interacted with genetic background in that low-ranking C57BL/6J, high-ranking Sv129Ev, and middle-ranking CD1 mice had lower survival, respectively, implying a cost of maintaining a given social rank that varies across strains. Machine learning linear discriminant analysis identified baseline fat-free mass as the most important predictor of mouse genetic background and social rank in the present dataset. Finally, strain and social rank differences were significantly associated with epigenetic changes, most significantly in Sv129Ev mice and in high-ranking compared to lower ranking subjects. Overall, we identified genetic background and social rank as critical contextual modifiers of aging and lifespan in an ethologically relevant rodent model of social stress, thereby providing a preclinical experimental paradigm to study the impact of social determinants of health disparities and accelerated aging.
Collapse
Affiliation(s)
- Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Kewir Nyuyki-Dufe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| | - Brian H. Chen
- FOXO Technologies Inc., Minneapolis, MN55401
- Division of Epidemiology, The Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA92093
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
33
|
Simons MJP, Dobson AJ. The importance of reaction norms in dietary restriction and ageing research. Ageing Res Rev 2023; 87:101926. [PMID: 37019387 DOI: 10.1016/j.arr.2023.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023]
Abstract
Ageing research has progressed rapidly through our ability to modulate the ageing process. Pharmacological and dietary treatments can increase lifespan and have been instrumental in our understanding of the mechanisms of ageing. Recently, several studies have reported genetic variance in response to these anti-ageing interventions, questioning their universal application and making a case for personalised medicine in our field. As an extension of these findings the response to dietary restriction was found to not be repeatable when the same genetic mouse lines were retested. We show here that this effect is more widespread with the response to dietary restriction also showing low repeatability across genetic lines in the fly (Drosophila melanogaster). We further argue that variation in reaction norms, the relationship between dose and response, can explain such conflicting findings in our field. We simulate genetic variance in reaction norms and show that such variation can: 1) lead to over- or under-estimation of treatment responses, 2) dampen the response measured if a genetically heterogeneous population is studied, and 3) illustrate that genotype-by-dose-by-environment interactions can lead to low repeatability of DR and potentially other anti-ageing interventions. We suggest that putting experimental biology and personalised geroscience in a reaction norm framework will aid progress in ageing research.
Collapse
Affiliation(s)
- Mirre J P Simons
- School of Biosciences, University of Sheffield, Western Bank S10 2TN, UK.
| | - Adam J Dobson
- School of Molecular Biosciences, University of Glasgow, G12 8QQ, UK
| |
Collapse
|
34
|
Khan J, Pernicova I, Nisar K, Korbonits M. Mechanisms of ageing: growth hormone, dietary restriction, and metformin. Lancet Diabetes Endocrinol 2023; 11:261-281. [PMID: 36848915 DOI: 10.1016/s2213-8587(23)00001-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 03/01/2023]
Abstract
Tackling the mechanisms underlying ageing is desirable to help to extend the duration and improve the quality of life. Life extension has been achieved in animal models by suppressing the growth hormone-insulin-like growth factor 1 (IGF-1) axis and also via dietary restriction. Metformin has become the focus of increased interest as a possible anti-ageing drug. There is some overlap in the postulated mechanisms of how these three approaches could produce anti-ageing effects, with convergence on common downstream pathways. In this Review, we draw on evidence from both animal models and human studies to assess the effects of suppression of the growth hormone-IGF-1 axis, dietary restriction, and metformin on ageing.
Collapse
Affiliation(s)
- Jansher Khan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ida Pernicova
- Endocrinology and Metabolic Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Kiran Nisar
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
35
|
Jurrjens AW, Seldin MM, Giles C, Meikle PJ, Drew BG, Calkin AC. The potential of integrating human and mouse discovery platforms to advance our understanding of cardiometabolic diseases. eLife 2023; 12:e86139. [PMID: 37000167 PMCID: PMC10065800 DOI: 10.7554/elife.86139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Cardiometabolic diseases encompass a range of interrelated conditions that arise from underlying metabolic perturbations precipitated by genetic, environmental, and lifestyle factors. While obesity, dyslipidaemia, smoking, and insulin resistance are major risk factors for cardiometabolic diseases, individuals still present in the absence of such traditional risk factors, making it difficult to determine those at greatest risk of disease. Thus, it is crucial to elucidate the genetic, environmental, and molecular underpinnings to better understand, diagnose, and treat cardiometabolic diseases. Much of this information can be garnered using systems genetics, which takes population-based approaches to investigate how genetic variance contributes to complex traits. Despite the important advances made by human genome-wide association studies (GWAS) in this space, corroboration of these findings has been hampered by limitations including the inability to control environmental influence, limited access to pertinent metabolic tissues, and often, poor classification of diseases or phenotypes. A complementary approach to human GWAS is the utilisation of model systems such as genetically diverse mouse panels to study natural genetic and phenotypic variation in a controlled environment. Here, we review mouse genetic reference panels and the opportunities they provide for the study of cardiometabolic diseases and related traits. We discuss how the post-GWAS era has prompted a shift in focus from discovery of novel genetic variants to understanding gene function. Finally, we highlight key advantages and challenges of integrating complementary genetic and multi-omics data from human and mouse populations to advance biological discovery.
Collapse
Affiliation(s)
- Aaron W Jurrjens
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, United States
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Anna C Calkin
- Baker Heart and Diabetes Institute, Melbourne, Australia
- Central Clinical School, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Meyers AK, Wang Z, Han W, Zhao Q, Zabalawi M, Duan L, Liu J, Zhang Q, Manne RK, Lorenzo F, Quinn MA, Song Q, Fan D, Lin HK, Furdui CM, Locasale JW, McCall CE, Zhu X. Pyruvate dehydrogenase kinase supports macrophage NLRP3 inflammasome activation during acute inflammation. Cell Rep 2023; 42:111941. [PMID: 36640341 PMCID: PMC10117036 DOI: 10.1016/j.celrep.2022.111941] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 08/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Activating the macrophage NLRP3 inflammasome can promote excessive inflammation with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and interleukin-1β (IL-1β) secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves crista ultrastructure, and attenuates mitochondrial reactive oxygen species (ROS) production. The suppressive effect of PDHK inhibition on the NLRP3 inflammasome is independent of its canonical role as a pyruvate dehydrogenase regulator. Our study suggestsa non-canonical role of mitochondrial PDHK in promoting mitochondrial stress and supporting NLRP3 inflammasome activation during acute inflammation.
Collapse
Affiliation(s)
- Allison K Meyers
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhan Wang
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Wenzheng Han
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qingxia Zhao
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Manal Zabalawi
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Likun Duan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qianyi Zhang
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Rajesh K Manne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Felipe Lorenzo
- Section on Endocrinology and Metabolism, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Matthew A Quinn
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Cristina M Furdui
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles E McCall
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Section on Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
37
|
Zhang J, Wang S, Liu B. New Insights into the Genetics and Epigenetics of Aging Plasticity. Genes (Basel) 2023; 14:329. [PMID: 36833255 PMCID: PMC9956228 DOI: 10.3390/genes14020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Biological aging is characterized by irreversible cell cycle blockade, a decreased capacity for tissue regeneration, and an increased risk of age-related diseases and mortality. A variety of genetic and epigenetic factors regulate aging, including the abnormal expression of aging-related genes, increased DNA methylation levels, altered histone modifications, and unbalanced protein translation homeostasis. The epitranscriptome is also closely associated with aging. Aging is regulated by both genetic and epigenetic factors, with significant variability, heterogeneity, and plasticity. Understanding the complex genetic and epigenetic mechanisms of aging will aid the identification of aging-related markers, which may in turn aid the development of effective interventions against this process. This review summarizes the latest research in the field of aging from a genetic and epigenetic perspective. We analyze the relationships between aging-related genes, examine the possibility of reversing the aging process by altering epigenetic age.
Collapse
Affiliation(s)
- Jie Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Shixiao Wang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen 518000, China
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Medical School, Lihu Campus, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
38
|
Olovnikov AM. Planetary Metronome as a Regulator of Lifespan and Aging Rate: The Metronomic Hypothesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1640-1650. [PMID: 36717453 DOI: 10.1134/s0006297922120197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A metronomic mechanism for the duration control of ontogenetic cycle periods of an animal is proposed. The components of the proposed metronomic system include the ventricular system of the brain, planet Earth as a generator of metronomic signals, and temporal DNA (tDNA) as a substrate that is epigenetically marked to measure elapsed time of ontogenesis. The metronomic system generates repetitive signals in the form of hydrodynamic disturbances in the cerebrospinal fluid (CSF). The metronomic effect arises due to the superposition of two processes - the near-wall unidirectional flow of CSF and oscillations in the movement of the planet. Hydrodynamic impacts of the metronome are transformed into nerve impulses that initiate epigenetic modification of tDNA in neurons, changing the content of factors expressed by this DNA for innervated targets of the body. The duration of ontogenetic cycle periods, including duration of the adult life, depends on the rate of addition of epigenetic marks to tDNA. This rate depends mainly on the frequency of the metronomic signals used by each particular species. But epigenetic modifications can also be influenced by factors that modulate metabolism and the rate of chromatin modifications, such as a calorie-restricted diet.
Collapse
Affiliation(s)
- Alexey M Olovnikov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
39
|
Abstract
Genetically diverse mice and cross-species comparison uncover links to longevity.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Drew L. Genes' effect on lifespan depends on sex and age, mouse study finds. Nature 2022:10.1038/d41586-022-03113-9. [PMID: 36180747 DOI: 10.1038/d41586-022-03113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|