1
|
Dinglasan JLN, Otani H, Doering DT, Udwary D, Mouncey NJ. Microbial secondary metabolites: advancements to accelerate discovery towards application. Nat Rev Microbiol 2025; 23:338-354. [PMID: 39824928 DOI: 10.1038/s41579-024-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/20/2025]
Abstract
Microbial secondary metabolites not only have key roles in microbial processes and relationships but are also valued in various sectors of today's economy, especially in human health and agriculture. The advent of genome sequencing has revealed a previously untapped reservoir of biosynthetic capacity for secondary metabolites indicating that there are new biochemistries, roles and applications of these molecules to be discovered. New predictive tools for biosynthetic gene clusters (BGCs) and their associated pathways have provided insights into this new diversity. Advanced molecular and synthetic biology tools and workflows including cell-based and cell-free expression facilitate the study of previously uncharacterized BGCs, accelerating the discovery of new metabolites and broadening our understanding of biosynthetic enzymology and the regulation of BGCs. These are complemented by new developments in metabolite detection and identification technologies, all of which are important for unlocking new chemistries that are encoded by BGCs. This renaissance of secondary metabolite research and development is catalysing toolbox development to power the bioeconomy.
Collapse
Affiliation(s)
- Jaime Lorenzo N Dinglasan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hiroshi Otani
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Drew T Doering
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Salamzade R, Kalan LR. Context matters: assessing the impacts of genomic background and ecology on microbial biosynthetic gene cluster evolution. mSystems 2025; 10:e0153824. [PMID: 39992097 PMCID: PMC11915812 DOI: 10.1128/msystems.01538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Encoded within many microbial genomes, biosynthetic gene clusters (BGCs) underlie the synthesis of various secondary metabolites that often mediate ecologically important functions. Several studies and bioinformatics methods developed over the past decade have advanced our understanding of both microbial pangenomes and BGC evolution. In this minireview, we first highlight challenges in broad evolutionary analysis of BGCs, including delineation of BGC boundaries and clustering of BGCs across genomes. We further summarize key findings from microbial comparative genomics studies on BGC conservation across taxa and habitats and discuss the potential fitness effects of BGCs in different settings. Afterward, recent research showing the importance of genomic context on the production of secondary metabolites and the evolution of BGCs is highlighted. These studies draw parallels to recent, broader, investigations on gene-to-gene associations within microbial pangenomes. Finally, we describe mechanisms by which microbial pangenomes and BGCs evolve, ranging from the acquisition or origination of entire BGCs to micro-evolutionary trends of individual biosynthetic genes. An outlook on how expansions in the biosynthetic capabilities of some taxa might support theories that open pangenomes are the result of adaptive evolution is also discussed. We conclude with remarks about how future work leveraging longitudinal metagenomics across diverse ecosystems is likely to significantly improve our understanding on the evolution of microbial genomes and BGCs.
Collapse
Affiliation(s)
- Rauf Salamzade
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Wang M, Chen L, Zhang Z, Wang Q. Recent advances in genome mining and synthetic biology for discovery and biosynthesis of natural products. Crit Rev Biotechnol 2025; 45:236-256. [PMID: 39134459 DOI: 10.1080/07388551.2024.2383754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/28/2023] [Accepted: 07/13/2024] [Indexed: 12/17/2024]
Abstract
Natural products have long served as critical raw materials in chemical and pharmaceutical manufacturing, primarily which can provide superior scaffolds or intermediates for drug discovery and development. Over the last century, natural products have contributed to more than a third of therapeutic drug production. However, traditional methods of producing drugs from natural products have become less efficient and more expensive over the past few decades. The combined utilization of genome mining and synthetic biology based on genome sequencing, bioinformatics tools, big data analytics, genetic engineering, metabolic engineering, and systems biology promises to counter this trend. Here, we reviewed recent (2020-2023) examples of genome mining and synthetic biology used to resolve challenges in the production of natural products, such as less variety, poor efficiency, and low yield. Additionally, the emerging efficient tools, design principles, and building strategies of synthetic biology and its application prospects in NPs synthesis have also been discussed.
Collapse
Affiliation(s)
- Mingpeng Wang
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lei Chen
- School of Life Sciences, Qufu Normal University, Qufu, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of WY, Laramie, Laramie, WY, USA
| | - Qinhong Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
4
|
Velsko IM, Warinner C. Streptococcus abundance and oral site tropism in humans and non-human primates reflects host and lifestyle differences. NPJ Biofilms Microbiomes 2025; 11:19. [PMID: 39824852 PMCID: PMC11748738 DOI: 10.1038/s41522-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
The genus Streptococcus is highly diverse and a core member of the primate oral microbiome. Streptococcus species are grouped into at least eight phylogenetically-supported clades, five of which are found almost exclusively in the oral cavity. We explored the dominant Streptococcus phylogenetic clades in samples from multiple oral sites and from ancient and modern-day humans and non-human primates and found that clade dominance is conserved across human oral sites, with most Streptococcus reads assigned to species falling in the Sanguinis or Mitis clades. However, minor differences in the presence and abundance of individual species within each clade differentiated human lifestyles, with loss of S. sinensis appearing to correlate with toothbrushing. Of the non-human primates, only baboons show clade abundance patterns similar to humans, suggesting that a habitat and diet similar to that of early humans may favor the growth of Sanguinis and Mitis clade species.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Archaeogenetics Research Unit, Leibniz Institute for Natural Products Research and Infection Biology Hans Knöll Institute, Jena, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Radcliffe Institute for Advanced Study, Cambridge, MA, USA.
- Department of Anthropology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Puiggené Ò, Favoino G, Federici F, Partipilo M, Orsi E, Alván-Vargas MVG, Hernández-Sancho JM, Dekker NK, Ørsted EC, Bozkurt EU, Grassi S, Martí-Pagés J, Volke DC, Nikel PI. Seven critical challenges in synthetic one-carbon assimilation and their potential solutions. FEMS Microbiol Rev 2025; 49:fuaf011. [PMID: 40175298 PMCID: PMC12010959 DOI: 10.1093/femsre/fuaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
Synthetic C1 assimilation holds the promise of facilitating carbon capture while mitigating greenhouse gas emissions, yet practical implementation in microbial hosts remains relatively limited. Despite substantial progress in pathway design and prototyping, most efforts stay at the proof-of-concept stage, with frequent failures observed even under in vitro conditions. This review identifies seven major barriers constraining the deployment of synthetic C1 metabolism in microorganisms and proposes targeted strategies for overcoming these issues. A primary limitation is the low catalytic activity of carbon-fixing enzymes, particularly carboxylases, which restricts the overall pathway performance. In parallel, challenges in expressing multiple heterologous genes-especially those encoding metal-dependent or oxygen-sensitive enzymes-further hinder pathway functionality. At the systems level, synthetic C1 pathways often exhibit poor flux distribution, limited integration with the host metabolism, accumulation of toxic intermediates, and disruptions in redox and energy balance. These factors collectively reduce biomass formation and compromise product yields in biotechnological setups. Overcoming these interconnected challenges is essential for moving synthetic C1 assimilation beyond conceptual stages and enabling its application in scalable, efficient bioprocesses towards a circular bioeconomy.
Collapse
Affiliation(s)
- Òscar Puiggené
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Giusi Favoino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Filippo Federici
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michele Partipilo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Maria V G Alván-Vargas
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Javier M Hernández-Sancho
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nienke K Dekker
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sara Grassi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Julia Martí-Pagés
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Wang X, Wang M, Zhang W, Li H, Tiedje JM, Zhou J, Topp E, Luo Y, Chen Z. Treatment of antibiotic-manufacturing wastewater enriches for Aeromonas veronii, a zoonotic antibiotic-resistant emerging pathogen. THE ISME JOURNAL 2025; 19:wraf077. [PMID: 40257199 DOI: 10.1093/ismejo/wraf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 04/22/2025]
Abstract
Antibiotic-manufacturing wastewater treatment plants primarily target chemical pollutants, but their processes may select for antibiotic-resistant pathogens and antibiotic resistance genes. Leveraging the combined strengths of deep metagenomic sequencing, 16S rRNA gene sequencing, quantitative polymerase chain reaction, and bacterial culturing, we investigated bacterial communities and antibiotic resistomes across eleven treatment units in a full-scale antibiotic-manufacturing wastewater treatment plant processing wastewater from a β-lactam manufacturing facility. Both bacterial communities and antibiotic resistance gene compositions varied across the treatment units, but were associated. Certain antibiotic resistance gene persisted through treatment, either carried by identical bacterial species, or linked to mobile genetic elements in different species. Despite the satisfactory performance in chemical removal, this plant continuously enriched zoonotic antibiotic-resistant Aeromonas veronii (an emerging pathogen responsible for substantial economic losses in aquaculture and human health) from influent to effluent, probably due to prolonged β-lactam selection pressure and aquatic nature of A. veronii. This enrichment resulted in a significantly higher abundance of A. veronii than other aquatic samples worldwide. Furthermore, the closest evolutionary relative to the retrieved A. veronii was an isolate obtained from the stool of a local diarrhea patient. These findings highlighted a substantial public health risk posed by antibiotic-manufacturing wastewater treatment, underlining its potential role in enriching and disseminating zoonotic antibiotic-resistant pathogens. Beyond chemical monitoring, enhanced surveillance of antibiotic-resistant pathogens and antibiotic resistance genes is needed in effluent discharge standard for antibiotic-manufacturing wastewater treatment plants.
Collapse
Affiliation(s)
- Xingshuo Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Meilun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Edward Topp
- Agroecology Research Unit, Bourgogne Franche-Comté Research Centre, National Research Institute for Agriculture, Food and the Environment, Dijon 35000, France
| | - Yi Luo
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Suma HR, Stallforth P. Pleiotropic regulation of bacterial toxin production and Allee effect govern microbial predator-prey interactions. ISME COMMUNICATIONS 2025; 5:ycaf031. [PMID: 40083912 PMCID: PMC11904905 DOI: 10.1093/ismeco/ycaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 03/16/2025]
Abstract
Bacteria are social organisms, which are constantly exposed to predation by nematodes or amoebae. To counteract these predation pressures, bacteria have evolved a variety of potent antipredator strategies. Bacteria of the genus Pseudomonas, for instance, evade amoebal predation by the secretion of amoebicidal natural products. The soil bacterium Pseudomonas fluorescens HKI0770 produces pyreudione alkaloids that can kill amoebae. Even though the mode of action of the pyreudiones has been elucidated, the spatiotemporal dynamics underlying this predator-prey interaction remain unknown. Using a combination of microscopy and analytical techniques, we elucidated the intricate relationship of this predator-prey association. We used the chromatic bacteria toolbox for intraspecific differentiation of the amoebicide-producing wildtype and the non-producing mutant within microcosms. These allow for variations in nutrient availability and the emergence of predation-evasion strategies of interacting microorganisms. Imaging of the co-cultures revealed that the amoebae initially ingest both the non-producer as well as the toxin-producer cells. The outcomes of predator-prey interactions are governed by the population size and fitness of the interacting partners. We identified that changes in the cell density coupled with alterations in nutrient availability led to a strong Allee effect resulting in the diminished production of pyreudione A. The loss of defense capabilities renders P. fluorescens HKI0770 palatable to amoebae. Such a multifaceted regulation provides the basis for a model by which predator-prey populations are being regulated in specific niches. Our results demonstrate how the spatiotemporal regulation of bacterial toxin production alters the feeding behavior of amoeba.
Collapse
Affiliation(s)
- Harikumar R Suma
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology—Leibniz-HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, 07743 Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology—Leibniz-HKI, Beutenbergstrasse 11a, 07745 Jena, Germany
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University, Humboldtstrasse 10, 07743 Jena, Germany
| |
Collapse
|
8
|
Pinto Y, Bhatt AS. Sequencing-based analysis of microbiomes. Nat Rev Genet 2024; 25:829-845. [PMID: 38918544 DOI: 10.1038/s41576-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level.
Collapse
Affiliation(s)
- Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Velsko IM, Fagernäs Z, Tromp M, Bedford S, Buckley HR, Clark G, Dudgeon J, Flexner J, Galipaud JC, Kinaston R, Lewis CM, Matisoo-Smith E, Nägele K, Ozga AT, Posth C, Rohrlach AB, Shing R, Simanjuntak T, Spriggs M, Tamarii A, Valentin F, Willie E, Warinner C. Exploring the potential of dental calculus to shed light on past human migrations in Oceania. Nat Commun 2024; 15:10191. [PMID: 39582065 PMCID: PMC11586442 DOI: 10.1038/s41467-024-53920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
The Pacific islands and Island Southeast Asia have experienced multiple waves of human migrations, providing a case study for exploring the potential of ancient microbiomes to study human migration. We perform a metagenomic study of archaeological dental calculus from 102 individuals, originating from 10 Pacific islands and 1 island in Island Southeast Asia spanning ~3000 years. Oral microbiome DNA preservation in calculus is far higher than that of human DNA in archaeological bone, and comparable to that of calculus from temperate regions. Oral microbial community composition is minimally driven by time period and geography in Pacific and Island Southeast Asia calculus, but is found to be distinctive compared to calculus from Europe, Africa, and Asia. Phylogenies of individual bacterial species in Pacific and Island Southeast Asia calculus reflect geography. Archaeological dental calculus shows good preservation in tropical regions and the potential to yield information about past human migrations, complementing studies of the human genome.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Zandra Fagernäs
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- University of Copenhagen, Globe Institute, Copenhagen, Denmark
| | - Monica Tromp
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Southern Pacific Archaeological Research, Archaeology Programme, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stuart Bedford
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australia
- Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Hallie R Buckley
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Geoffrey Clark
- Department of Archaeology and Natural History, College of Asia and the Pacific, The Australian National University, Canberra, Australia
| | - John Dudgeon
- Department of Anthropology, Idaho State University, Pocatello, ID, USA
| | - James Flexner
- Archaeology, School of Humanities, University of Sydney, Sydney, Australia
| | | | | | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| | - Elizabeth Matisoo-Smith
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew T Ozga
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Biological Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Truman Simanjuntak
- National Research and Development Centre for Archaeology, Jakarta, Indonesia
| | - Matthew Spriggs
- Vanuatu Cultural Centre, Port-Vila, Vanuatu
- School of Archaeology and Anthropology, College of Arts & Social Sciences, The Australian National University, Canberra, Australia
| | | | | | | | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany.
- Archaeogenetics Unit, Leibniz Institute for Infection Biology and Natural Products Research Hans Knoll Institute, Jena, Germany.
- Department of Anthropology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
10
|
Klapper M, Stallforth P. Accessing microbial natural products of the past. MICROLIFE 2024; 5:uqae023. [PMID: 39660047 PMCID: PMC11630838 DOI: 10.1093/femsml/uqae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/09/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Microbial natural products-low molecular weight compounds biosynthesized by microorganisms-form the foundation of important modern therapeutics, including antibiotics, immunomodulators, and anti-cancer agents. This perspective discusses and contrasts two emerging approaches for uncovering natural products of the past. On the one hand, ancestral sequence reconstruction allows recreating biosynthetic pathways that date back hundreds of millions of years. On the other hand, sequencing and de novo assembly of ancient DNA reveals the biosynthetic potential of ancient microbial communities up to 100 000 years. Together, these approaches unveil an otherwise hidden reservoir of functional and structural molecular diversity. They also offer new opportunities to study the biological function and evolution of these molecules within an archaeological context.
Collapse
Affiliation(s)
- Martin Klapper
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Department of Paleobiotechnology, Beutenbergstraße 11a, D-07745 Jena, Germany
| | - Pierre Stallforth
- Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Department of Paleobiotechnology, Beutenbergstraße 11a, D-07745 Jena, Germany
- Friedrich Schiller University Jena, Institute for Organic Chemistry and Macromolecular Chemistry, Humboldtstraße 10, D-07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, D-07743 Jena, Germany
| |
Collapse
|
11
|
Klapper M, Ramm M, Stallforth P. Naturstoffe aus der Vergangenheit. BIOSPEKTRUM 2024; 30:744-746. [DOI: 10.1007/s12268-024-2339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractLow molecular weight compounds biosynthesized by microorganisms, commonly known as natural products, are indispensable in modern medicine. They serve as the basis for many antibiotics, immunomodulators, and anti cancer agents. The new research field of paleobiotechnology allows access to natural products of the past. Based on ancient DNA from dental calculus, it was possible to generate bacterial natural products dating back over 100,000 years.
Collapse
|
12
|
Zuckerman MK, Hofman CA. Lessons from ancient pathogens. Science 2024; 385:490-492. [PMID: 39088602 DOI: 10.1126/science.adk0584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Ancient infectious diseases and microbes can be used to address contemporary disease.
Collapse
Affiliation(s)
- Molly K Zuckerman
- Department of Anthropology and Middle Eastern Cultures, Mississippi State University, Mississippi State, MS, USA
- Cobb Institute of Archaeology, Mississippi State University, Mississippi State, MS, USA
- The Department of Anthropology, National Museum of Natural History, Washington, DC, USA
| | - Courtney A Hofman
- Cobb Institute of Archaeology, Mississippi State University, Mississippi State, MS, USA
- The Department of Anthropology, National Museum of Natural History, Washington, DC, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA
- Department of Anthropology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
13
|
Cano-Prieto C, Undabarrena A, de Carvalho AC, Keasling JD, Cruz-Morales P. Triumphs and Challenges of Natural Product Discovery in the Postgenomic Era. Annu Rev Biochem 2024; 93:411-445. [PMID: 38639989 DOI: 10.1146/annurev-biochem-032620-104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.
Collapse
Affiliation(s)
- Carolina Cano-Prieto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Agustina Undabarrena
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
- Department of Bioengineering, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
14
|
Dahlquist-Axe G, Standeven FJ, Speller CF, Tedder A, Meehan CJ. Inferring diet, disease and antibiotic resistance from ancient human oral microbiomes. Microb Genom 2024; 10:001251. [PMID: 38739117 PMCID: PMC11165619 DOI: 10.1099/mgen.0.001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
The interaction between a host and its microbiome is an area of intense study. For the human host, it is known that the various body-site-associated microbiomes impact heavily on health and disease states. For instance, the oral microbiome is a source of various pathogens and potential antibiotic resistance gene pools. The effect of historical changes to the human host and environment to the associated microbiome, however, has been less well explored. In this review, we characterize several historical and prehistoric events which are considered to have impacted the oral environment and therefore the bacterial communities residing within it. The link between evolutionary changes to the oral microbiota and the significant societal and behavioural changes occurring during the pre-Neolithic, Agricultural Revolution, Industrial Revolution and Antibiotic Era is outlined. While previous studies suggest the functional profile of these communities may have shifted over the centuries, there is currently a gap in knowledge that needs to be filled. Biomolecular archaeological evidence of innate antimicrobial resistance within the oral microbiome shows an increase in the abundance of antimicrobial resistance genes since the advent and widespread use of antibiotics in the modern era. Nevertheless, a lack of research into the prevalence and evolution of antimicrobial resistance within the oral microbiome throughout history hinders our ability to combat antimicrobial resistance in the modern era.
Collapse
Affiliation(s)
- Gwyn Dahlquist-Axe
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | | | - Camilla F. Speller
- Department of Anthropology, University of British Columbia, Vancouver, Canada
| | - Andrew Tedder
- School of Chemistry and Biosciences, University of Bradford, Bradford, UK
| | - Conor J. Meehan
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
15
|
Putrino A, Marinelli E, Galeotti A, Ferrazzano GF, Ciribè M, Zaami S. A Journey into the Evolution of Human Host-Oral Microbiome Relationship through Ancient Dental Calculus: A Scoping Review. Microorganisms 2024; 12:902. [PMID: 38792733 PMCID: PMC11123932 DOI: 10.3390/microorganisms12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
One of the most promising areas of research in palaeomicrobiology is the study of the human microbiome. In particular, ancient dental calculus helps to reconstruct a substantial share of oral microbiome composition by mapping together human evolution with its state of health/oral disease. This review aims to trace microbial characteristics in ancient dental calculus to describe the evolution of the human host-oral microbiome relationship in oral health or disease in children and adults. Following the PRISMA-Extension for Scoping Reviews guidelines, the main scientific databases (PubMed, Scopus, Lilacs, Cochrane Library) have been drawn upon. Eligibility criteria were established, and all the data collected on a purpose-oriented collection form were analysed descriptively. From the initial 340 records, only 19 studies were deemed comprehensive enough for the purpose of this review. The knowledge of the composition of ancient oral microbiomes has broadened over the past few years thanks to increasingly well-performing decontamination protocols and additional analytical avenues. Above all, metagenomic sequencing, also implemented by state-of-the-art bioinformatics tools, allows for the determination of the qualitative-quantitative composition of microbial species associated with health status and caries/periodontal disease. Some microbial species, especially periodontal pathogens, do not appear to have changed in history, while others that support caries disease or oral health could be connected to human evolution through lifestyle and environmental contributing factors.
Collapse
Affiliation(s)
- Alessandra Putrino
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| | - Angela Galeotti
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
| | - Gianmaria Fabrizio Ferrazzano
- U.N.-E.U. INTERNATIONAL RESEARCH PROJECT ON HUMAN HEALTH-ORAL HEALTH SECTION, 1200 Géneve, Switzerland;
- UNESCO Chair in Health Education and Sustainable Development, Dentistry Section, University of Naples “Federico II”, 80138 Naples, Italy
- East-Asian-Pacific International Academic Consortium
| | - Massimiliano Ciribè
- Dentistry Unit, Management Innovations, Diagnostics and Clinical Pathways, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.G.); (M.C.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
16
|
Eisenhofer R, Wright S, Weyrich L. Benchmarking a targeted 16S ribosomal RNA gene enrichment approach to reconstruct ancient microbial communities. PeerJ 2024; 12:e16770. [PMID: 38440408 PMCID: PMC10911074 DOI: 10.7717/peerj.16770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/16/2023] [Indexed: 03/06/2024] Open
Abstract
The taxonomic characterization of ancient microbiomes is a key step in the rapidly growing field of paleomicrobiology. While PCR amplification of the 16S ribosomal RNA (rRNA) gene is a widely used technique in modern microbiota studies, this method has systematic biases when applied to ancient microbial DNA. Shotgun metagenomic sequencing has proven to be the most effective method in reconstructing taxonomic profiles of ancient dental calculus samples. Nevertheless, shotgun sequencing approaches come with inherent limitations that could be addressed through hybridization enrichment capture. When employed together, shotgun sequencing and hybridization capture have the potential to enhance the characterization of ancient microbial communities. Here, we develop, test, and apply a hybridization enrichment capture technique to selectively target 16S rRNA gene fragments from the libraries of ancient dental calculus samples generated with shotgun techniques. We simulated data sets generated from hybridization enrichment capture, indicating that taxonomic identification of fragmented and damaged 16S rRNA gene sequences was feasible. Applying this enrichment approach to 15 previously published ancient calculus samples, we observed a 334-fold increase of ancient 16S rRNA gene fragments in the enriched samples when compared to unenriched libraries. Our results suggest that 16S hybridization capture is less prone to the effects of background contamination than 16S rRNA amplification, yielding a higher percentage of on-target recovery. While our enrichment technique detected low abundant and rare taxa within a given sample, these assignments may not achieve the same level of specificity as those achieved by unenriched methods.
Collapse
Affiliation(s)
| | - Sterling Wright
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
| | - Laura Weyrich
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
17
|
Sahoo SS, Kataria P, Kontham R. Concise and collective total syntheses of 2,4-disubstituted furan-derived natural products from hydroxyoxetanyl ketones. Org Biomol Chem 2024; 22:1475-1483. [PMID: 38284832 DOI: 10.1039/d3ob01924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The furan moiety, prevalent in bioactive natural products and essential drugs, presents intriguing structural features that have spurred our exploration into streamlined chemical synthesis routes for related natural products. In this study, we demonstrate the concise total synthesis of eight 2,4-disubstituted furan-derived natural products (including methylfuroic acid, rabdoketones A and B, paleofurans A and B, tournefolin C, and shikonofurans A and B). Our methodology revolves around the utilization of hydroxyoxetanyl ketones as pivotal intermediates. The approach encompasses transformations such as selective organo-catalyzed cross-ketol addition, synthesis of hydroxymethyl-tethered furans through Bi(OTf)3 catalyzed dehydrative cycloisomerization of α-hydroxyoxetanyl ketones, and a hydrogen atom transfer (HAT)-mediated oxidation of primary alcohols into the corresponding acids. This comprehensive synthetic strategy highlights the versatility of hydroxyoxetanyl ketones as invaluable building blocks in the synthesis of furan-containing natural products.
Collapse
Affiliation(s)
- Shubhranshu Shekhar Sahoo
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Priyanka Kataria
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
18
|
Grasso G, Bianciotto V, Marmeisse R. Paleomicrobiology: Tracking the past microbial life from single species to entire microbial communities. Microb Biotechnol 2024; 17:e14390. [PMID: 38227345 PMCID: PMC10832523 DOI: 10.1111/1751-7915.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
By deciphering information encoded in degraded ancient DNA extracted from up to million-years-old samples, molecular paleomicrobiology enables to objectively retrace the temporal evolution of microbial species and communities. Assembly of full-length genomes of ancient pathogen lineages allows not only to follow historical epidemics in space and time but also to identify the acquisition of genetic features that represent landmarks in the evolution of the host-microbe interaction. Analysis of microbial community DNA extracted from essentially human paleo-artefacts (paleofeces, dental calculi) evaluates the relative contribution of diet, lifestyle and geography on the taxonomic and functional diversity of these guilds in which have been identified species that may have gone extinct in today's human microbiome. As for non-host-associated environmental samples, such as stratified sediment cores, analysis of their DNA illustrates how and at which pace microbial communities are affected by local or widespread environmental disturbance. Description of pre-disturbance microbial diversity patterns can aid in evaluating the relevance and effectiveness of remediation policies. We finally discuss how recent achievements in paleomicrobiology could contribute to microbial biotechnology in the fields of medical microbiology and food science to trace the domestication of microorganisms used in food processing or to illustrate the historic evolution of food processing microbial consortia.
Collapse
Affiliation(s)
- Gianluca Grasso
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi of TurinTurinItaly
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Roland Marmeisse
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| |
Collapse
|
19
|
Liu S, Zhang Z, Wang X, Ma Y, Ruan H, Wu X, Li B, Mou X, Chen T, Lu Z, Zhao W. Biosynthetic potential of the gut microbiome in longevous populations. Gut Microbes 2024; 16:2426623. [PMID: 39529240 PMCID: PMC11559365 DOI: 10.1080/19490976.2024.2426623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/26/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Gut microbiome plays a pivotal role in combating diseases and facilitating healthy aging, and natural products derived from biosynthetic gene clusters (BGCs) of the human microbiome exhibit significant biological activities. However, the natural products of the gut microbiome in long-lived populations remain poorly understood. Here, we integrated six cohorts of long-lived populations, encompassing a total of 1029 fecal metagenomic samples, and employed the metagenomic single sample assembled BGCs (MSSA-BGCs) analysis pipeline to investigate the natural products and their associated species. Our findings reveal that the BGC composition of the extremely long-lived group differed significantly from that of younger elderly and young individuals across five cohorts. Terpene and Type I PKS BGCs were enriched in the extremely long-lived, whereas cyclic-lactone-autoinducer BGCs were more prevalent in the young. Association analysis indicated that terpene BGCs were strongly associated with the abundance of Akkermansia muciniphila, which was also more abundant in the long-lived elderly across at least three cohorts. We assembled 18 A. muciniphila draft genomes using metagenomic data from the extremely long-lived group across six cohorts and discovered that they all harbor two classes of terpene BGCs, which aligns with the 97 complete genomes of A. muciniphila strains retrieved from the NCBI database. The core domains of these two BGC classes are squalene/phytoene synthases involved in the biosynthesis of tri- and tetraterpenes. Furthermore, the abundance of fecal A. muciniphila was significantly associated with eight types of triterpenoids. Targeted terpenoid metabolomic analysis revealed that two triterpenoids, Holstinone C and colubrinic acid, were enriched in the A. muciniphila culture solution compared to the medium, thereby confirming the production of triterpenoids by A. muciniphila. The natural products derived from the gut of long-lived populations provide intriguing indications of their potential beneficial roles in regulating health.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhao Zhang
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xudong Wang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yan Ma
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Wu
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Baoxia Li
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Tao Chen
- Research and Development Center, Center of Human Microecology Engineering and Technology of Guangdong Province, Guangzhou, Guangdong, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjing Zhao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Hansen MH, Adamek M, Iftime D, Petras D, Schuseil F, Grond S, Stegmann E, Cryle MJ, Ziemert N. Resurrecting ancestral antibiotics: unveiling the origins of modern lipid II targeting glycopeptides. Nat Commun 2023; 14:7842. [PMID: 38030603 PMCID: PMC10687080 DOI: 10.1038/s41467-023-43451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotics are central to modern medicine, and yet they are mainly the products of intra and inter-kingdom evolutionary warfare. To understand how nature evolves antibiotics around a common mechanism of action, we investigated the origins of an extremely valuable class of compounds, lipid II targeting glycopeptide antibiotics (GPAs, exemplified by teicoplanin and vancomycin), which are used as last resort for the treatment of antibiotic resistant bacterial infections. Using a molecule-centred approach and computational techniques, we first predicted the nonribosomal peptide synthetase assembly line of paleomycin, the ancestral parent of lipid II targeting GPAs. Subsequently, we employed synthetic biology techniques to produce the predicted peptide and validated its antibiotic activity. We revealed the structure of paleomycin, which enabled us to address how nature morphs a peptide antibiotic scaffold through evolution. In doing so, we obtained temporal snapshots of key selection domains in nonribosomal peptide synthesis during the biosynthetic journey from ancestral, teicoplanin-like GPAs to modern GPAs such as vancomycin. Our study demonstrates the synergy of computational techniques and synthetic biology approaches enabling us to journey back in time, trace the temporal evolution of antibiotics, and revive these ancestral molecules. It also reveals the optimisation strategies nature has applied to evolve modern GPAs, laying the foundation for future efforts to engineer this important class of antimicrobial agents.
Collapse
Affiliation(s)
- Mathias H Hansen
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC, 3800, Australia
| | - Martina Adamek
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Dumitrita Iftime
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Frauke Schuseil
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Evi Stegmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC, 3800, Australia.
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Pochon Z, Bergfeldt N, Kırdök E, Vicente M, Naidoo T, van der Valk T, Altınışık NE, Krzewińska M, Dalén L, Götherström A, Mirabello C, Unneberg P, Oskolkov N. aMeta: an accurate and memory-efficient ancient metagenomic profiling workflow. Genome Biol 2023; 24:242. [PMID: 37872569 PMCID: PMC10591440 DOI: 10.1186/s13059-023-03083-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Analysis of microbial data from archaeological samples is a growing field with great potential for understanding ancient environments, lifestyles, and diseases. However, high error rates have been a challenge in ancient metagenomics, and the availability of computational frameworks that meet the demands of the field is limited. Here, we propose aMeta, an accurate metagenomic profiling workflow for ancient DNA designed to minimize the amount of false discoveries and computer memory requirements. Using simulated data, we benchmark aMeta against a current state-of-the-art workflow and demonstrate its superiority in microbial detection and authentication, as well as substantially lower usage of computer memory.
Collapse
Affiliation(s)
- Zoé Pochon
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Nora Bergfeldt
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Emrah Kırdök
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin, Turkey
| | - Mário Vicente
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Uppsala, Sweden
| | - Tom van der Valk
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - N Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | - Maja Krzewińska
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Claudio Mirabello
- Department of Physics, Chemistry and Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Linköping University, Linköping, Sweden
| | - Per Unneberg
- Department of Cell and Molecular Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Uppsala University, Uppsala, Sweden
| | - Nikolay Oskolkov
- Department of Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
23
|
Dalén L, Heintzman PD, Kapp JD, Shapiro B. Deep-time paleogenomics and the limits of DNA survival. Science 2023; 382:48-53. [PMID: 37797036 PMCID: PMC10586222 DOI: 10.1126/science.adh7943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Although most ancient DNA studies have focused on the last 50,000 years, paleogenomic approaches can now reach into the early Pleistocene, an epoch of repeated environmental changes that shaped present-day biodiversity. Emerging deep-time genomic transects, including from DNA preserved in sediments, will enable inference of adaptive evolution, discovery of unrecognized species, and exploration of how glaciations, volcanism, and paleomagnetic reversals shaped demography and community composition. In this Review, we explore the state-of-the-art in paleogenomics and discuss key challenges, including technical limitations, evolutionary divergence and associated biases, and the need for more precise dating of remains and sediments. We conclude that with improvements in laboratory and computational methods, the emerging field of deep-time paleogenomics will expand the range of questions addressable using ancient DNA.
Collapse
Affiliation(s)
- Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE- 10405 Stockholm, Sweden
| | - Peter D. Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Joshua D. Kapp
- Department of Biomolecular Engineering, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| |
Collapse
|
24
|
Maasch JRMA, Torres MDT, Melo MCR, de la Fuente-Nunez C. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Cell Host Microbe 2023; 31:1260-1274.e6. [PMID: 37516110 PMCID: PMC11625410 DOI: 10.1016/j.chom.2023.07.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
Molecular de-extinction could offer avenues for drug discovery by reintroducing bioactive molecules that are no longer encoded by extant organisms. To prospect for antimicrobial peptides encrypted within extinct and extant human proteins, we introduce the panCleave random forest model for proteome-wide cleavage site prediction. Our model outperformed multiple protease-specific cleavage site classifiers for three modern human caspases, despite its pan-protease design. Antimicrobial activity was observed in vitro for modern and archaic protein fragments identified with panCleave. Lead peptides showed resistance to proteolysis and exhibited variable membrane permeabilization. Additionally, representative modern and archaic protein fragments showed anti-infective efficacy against A. baumannii in both a skin abscess infection model and a preclinical murine thigh infection model. These results suggest that machine-learning-based encrypted peptide prospection can identify stable, nontoxic peptide antibiotics. Moreover, we establish molecular de-extinction through paleoproteome mining as a framework for antibacterial drug discovery.
Collapse
Affiliation(s)
- Jacqueline R M A Maasch
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo C R Melo
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
|