1
|
Zhang W, Kim S, Sarazen ML, He M, Chen JG, Lercher JA. Advances and Challenges in Low-Temperature Upcycling of Waste Polyolefins via Tandem Catalysis. Angew Chem Int Ed Engl 2025; 64:e202500559. [PMID: 40082210 DOI: 10.1002/anie.202500559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Polyolefin waste is the largest polymer waste stream that could potentially serve as an advantageous hydrocarbon feedstock. Upcycling polyolefins poses significant challenges due to their inherent kinetic and thermodynamic stability. Traditional methods, such as thermal and catalytic cracking, are straightforward but require temperatures exceeding 400 °C for complete conversion because of thermodynamic constraints. We summarize and critically compare recent advances in upgrading spent polyolefins and model reactants via kinetic (and thermodynamic) coupling of the endothermic C─C bond cleavage of polyolefins with exothermic reactions including hydrogenation, hydrogenolysis, metathesis, cyclization, oxidation, and alkylation. These approaches enable complete conversion to desired products at low temperatures (<300 °C). The goal is to identify challenges and possible pathways for catalytic conversions that minimize energy and carbon footprints.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Mingyuan He
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, China
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, Garching, 85747, Germany
| |
Collapse
|
2
|
Gao R, Mao S, Lu B, Liu W, Wang Y. Efficient Upcycling of Polyolefin Waste to Light Aromatics via Coupling C─C Scission and Carbonylation. Angew Chem Int Ed Engl 2025; 64:e202424334. [PMID: 40104979 DOI: 10.1002/anie.202424334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
The upcycling of waste polyolefins into light aromatics has great potential to generate hundreds of millions of tons of valuable aromatic carbon feedstock. However, the conventional high-temperature radical cracking method for aromatizing polyolefins on zeolites faces challenges in aromaticity control and rapid deactivation due to coke. Here, we present a unique strategy that integrates the traditional cracking-aromatization process of PE with CO insertion, a key step of Fischer-Tropsch synthesis, achieving a rise of yield of light aromatics by four times, with an absolute value up to 67% by weight at only 280 °C. The insertion of CO into the Ru-alkyl intermediates formed during polyolefin cracking facilitates the generation of active oxygenate species, guarantees an ideal C─C chain length range, and smooths the way for subsequent efficient aromatization on Hol-ZSM-5@S1 with a short b axis. According to the technical economic analysis, this low-carbon-footprint and economic approach can reduce approximately 1/3 of carbon emissions compared to traditional naphtha cracking technologies and holds promise for reshaping the global aromatic hydrocarbon cycle of the petrochemical industry through polyolefin degradation.
Collapse
Affiliation(s)
- Ruiliang Gao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Wencong Liu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
3
|
Serafim LF, de Azambuja F, Rathee P, Wang L, Parac-Vogt TN, Prabhakar R. Hydrolytic Degradation of Key Plastic Pollutant Model Systems by a Discrete Metal-Oxo Cluster: A Combined Theoretical and Experimental Study. J Phys Chem B 2025. [PMID: 40390291 DOI: 10.1021/acs.jpcb.5c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Degradation of plastic materials represents one of the major challenges faced by the modern world. In this study, computational and experimental techniques have been employed to investigate the hydrolysis of most commonly used plastic materials poly(ether urethane) (PEU) and polyethylene terephthalate (PET) and their commercially available models ethyl N-phenylcarbamate (ENP) and ethylene glycol dibenzoate (EGD), respectively, by a discrete metal-oxo cluster, Zr-substituted Keggin-type polyoxometalate, (Et2NH2)8[Zr(μ-O)(H2O)(PW11O39)] (ZrK), in which the Zr(IV) catalytic site is stabilized by coordination to a robust metal-oxo core. The all-atom molecular dynamics simulations predicted that all substrates interact with ZrK through water-mediated interactions. The quantum mechanics/molecular mechanics (QM/MM) calculations showed that the lengths of scissile ester and amide bonds of PEU/ENP and the ester bond of PET/EGD are quite similar, and the hydrolysis of PEU and ENP and PET and EGD occurs with similar energetics. According to the most plausible mechanisms, the cleavage of the ester and amide bonds of PEU/ENP takes place with a barrier of 16.5/16.6 and 19.0/20.4 kcal/mol, respectively. However, the scissile ester bond of PET/EGD is hydrolyzed with a barrier of 16.7/16.5 kcal/mol. This computed difference in the rate-limiting barrier of 3.9 kcal/mol between the amide bond of ENP and the ester bond of EGD is supported by the experimentally observed sluggish hydrolysis of ENP in comparison to EGD. While both ENP and EGD were successfully hydrolyzed by ZrK in DMSO solvent at 100 °C, EGD hydrolysis has proven to be much more efficient, with 99% yield obtained within 18 h compared to 48% of ENP hydrolysis observed after 162 h. The combined theoretical and experimental results presented here contribute to the development of potent and robust all-inorganic cluster-based catalysts for the degradation of PEU and PET and suggest that ENP and EGD can be used as excellent model substrates in this endeavor.
Collapse
Affiliation(s)
- Leonardo F Serafim
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Parth Rathee
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Lukun Wang
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
4
|
Zeng G, Wang D, Gong H, Wu B, Yu G, Fang J, Ma J, Dong Z. Catalytic Hydroformylation of Alkenes to Branched Aldehydes by Triphenylphosphine-Based Porous Organic Polymer-Anchored Rhodium Cluster Catalysts. Inorg Chem 2025; 64:7029-7041. [PMID: 40163893 DOI: 10.1021/acs.inorgchem.5c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Hydroformylation of alkenes to high-value-added aldehydes is one of the most important processes in the chemical industry. The use of heterogeneous hydroformylation catalysts encounters substantial challenges including low catalyst activity and stability as well as difficulties in achieving high selectivity for branched aldehydes. In this work, a porous organic polymer (POP) system with embedded triphenylphosphine ligands was prepared, and through impregnation, reduction, and anchoring, rhodium was immobilized on the PPh3-p-Ph4 material as rhodium clusters. Triphenylphosphine exerts significant steric hindrance toward selective alkene hydroformylation, and using water as a solvent also demonstrated pronounced electronic effects, resulting in a high selectivity toward branched aldehydes with a branched-to-linear ratio of more than ten. Mechanistic studies confirmed that the reaction to the branched aldehydes follows pathways with lower reaction energy, thus achieving a high selectivity and yield (95.4%) of branched products. Importantly, the catalyst can be easily recovered and reused while maintaining its activity and selectivity over five cycles without significant losses. The utilization of triphenylphosphine ligands for the preparation of POP supports for rhodium catalysts not only enables the heterogenization of homogeneous complex catalysts but also presents novel ideas and methodologies for future research on alkene hydroformylation to produce branched aldehydes.
Collapse
Affiliation(s)
- Gong Zeng
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Dongrun Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hairu Gong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Baocheng Wu
- College of Chemistry and Chemical Engineering, Qinghai Mingzu University, Xining 810007, PR China
| | - Guiqin Yu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jian Fang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zhengping Dong
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
5
|
Yuan Y, Mou T, Hwang S, Porter WN, Liu P, Chen JG. Controlling Reaction Pathways of Ethylene Hydroformylation Using Isolated Bimetallic Rhodium-Cobalt Sites. J Am Chem Soc 2025; 147:12185-12196. [PMID: 40156538 DOI: 10.1021/jacs.5c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Designing efficient ligand-free heterogeneous catalysts for ethylene hydroformylation to produce C3 oxygenates is of importance for both fundamental research and practical applications, but it is often hindered by insufficient catalytic activity and selectivity. This work designs isolated rhodium-cobalt (Rh-Co) sites confined within a ZSM-5 zeolite to enhance ethylene hydroformylation rates and selectivity while maintaining catalyst stability. By adjusting the Co/Al ratio in Co-ZSM-5, different sizes of Co are formed; subsequent Rh introduction produces isolated Rh1Cox clusters with different Rh-Co coordination numbers (CNs). In-situ characterizations and density functional theory calculations reveal that a Rh-Co CN of 3, corresponding to an isolated Rh1Co3 site, provides optimal bindings to reaction intermediates and thus achieves the highest hydroformylation rates among supported Rh-based catalysts. This study demonstrates the role of coordination-tuning via a secondary metal in effectively controlling the reaction pathway over single Rh atom catalysts.
Collapse
Affiliation(s)
- Yong Yuan
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianyou Mou
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Yan J, Li G, Lei Z, Yuan X, Li J, Wang X, Wang B, Tian F, Hu T, Huang L, Ding Y, Xi X, Zhu F, Zhang S, Li J, Chen Y, Cao R, Wang X. Upcycling polyolefins to methane-free liquid fuel by a Ru 1-ZrO 2 catalyst. Nat Commun 2025; 16:2800. [PMID: 40118830 PMCID: PMC11928669 DOI: 10.1038/s41467-025-57998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
Upcycling waste plastics into liquid fuels presents significant potential for advancing the circular economy but is hindered by poor selectivity and low-value methane byproduct formation. In this work, we report that atomic Ru-doped ZrO2 can selectively convert 100 grams of post-consumer polyethylene and polypropylene, yielding 85 mL of liquid in a solvent-free hydrocracking. The liquid (C5-C20) comprises ~70% jet-fuel-ranged branched hydrocarbons (C8-C16), while the gas product is liquefied-petroleum-gas (C3-C6) without methane and ethane. We found that the atomic Ru dopant in the Ru-O-Zr moiety functionalizes its neighboring O atom, originally inert, to create a Brønsted acid site. This Brønsted acid site, rather than the atomic Ru dopant itself, selectively governs the internal C-C bond cleavage in polyolefins through a carbonium ion mechanism, thereby enhancing the yield of jet-fuel-ranged hydrocarbons and suppressing methane formation. This oxide modulation strategy provides a paradigm shift in catalyst design for hydrocracking waste plastics and holds potential for a broad spectrum of applications.
Collapse
Affiliation(s)
- Jicong Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Guanna Li
- Biobased Chemistry and Technology, Wageningen University, WG, Wageningen, the Netherlands
| | - Zhanwu Lei
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolu Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Junting Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaoru Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Fuping Tian
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Tao Hu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Lei Huang
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Yujia Ding
- Department of Physics and CSRRI, Illinois Institute of Technology, Chicago, IL, USA
| | - Xiaoke Xi
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Zhu
- TRACE EM Unit and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ruiguo Cao
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
7
|
Li C, Yan G, Dong Z, Zhang G, Zhang F. Upcycling waste commodity polymers into high-performance polyarylate materials with direct utilization of capping agent impurities. Nat Commun 2025; 16:2482. [PMID: 40074773 PMCID: PMC11903651 DOI: 10.1038/s41467-025-57821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Commodity polymers are ubiquitous in our society, having replaced many inorganic and metal-based materials due to their versatile properties. However, their functionality heavily relies on the addition of various components known as additives, making it challenging to recycle the polymer fraction of plastic materials effectively. Thus, it is crucial to develop efficient chemical recovery strategies for commodity polymers and additives to facilitate the direct utilization of recovered monomers and additives without additional purification. Here, we develop a strategy for co-upcycling two types of waste commodity polymers, polycarbonate, and polyethylene terephthalate into polyarylate, a high-performance transparent engineering plastic. By incorporating a highly active metal-free ionic liquids catalyst for methanolysis and a two-stage interface polymerization technique with variable temperature control, we successfully prepare polyacrylate film materials from real end-of-life plastics with direct utilization of capping agent impurities in recovered monomers. These materials exhibit excellent thermal performance (Tg = 192.8 °C), transmittance (reach up to 86.73%), and flame-retardant properties (V-0, UL-94), equivalent to those of commercial polyarylate (U-100, about $10000/ton), and could be further easily close-loop recycled. Demonstrated in kilogram-scale experiments and life cycle assessments, this approach offers a low-carbon, environmentally friendly, and economically feasible pathway for upcycling waste commodity polymers.
Collapse
Affiliation(s)
- Cheng Li
- National Engineering Laboratory of EcoFriendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, Sichuan, PR China
| | - Guangming Yan
- Institute of Materials Science and Technology, Analysis and Testing Center, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhongwen Dong
- National Engineering Laboratory of EcoFriendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, Sichuan, PR China
| | - Gang Zhang
- Institute of Materials Science and Technology, Analysis and Testing Center, Sichuan University, Chengdu, Sichuan, PR China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Fan Zhang
- National Engineering Laboratory of EcoFriendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
8
|
He Y, Bi Z, Zhang Q, Lu S, Huang Z, Zhang X, Li X, Dong J. Synthesis and Properties of Isononyl-Extended Multibranched Alcohol Polyether Nonionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5255-5267. [PMID: 39968958 DOI: 10.1021/acs.langmuir.4c04608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Isononanol, a branched aliphatic alcohol, is derived from isobutylene upgradation, encompassing dimerization and hydroformylation. Branched surfactants exhibit lower surface tension, superior wettability, and rapid defoaming compared to linear surfactants. Isononanol (C9-OH) with abundant methyl branching can serve as a hydrophobic tail of branched surfactants, suffering from insufficient lipophilicity due to its short effective chain length. This paper proposes a strategy to extend the hydrophobic tail by grafting one propylene oxide (P1) or butylene oxide (B1) to increase chain length and branching degree with the aim of synthesizing extended multibranched alcohols C9P1-OH and C9B1-OH with purities of 95.3 and 97.2%, respectively. Subsequently, a series of extended multibranched alcohol polyether nonionic surfactants (C9P1En and C9B1En) were synthesized by ethoxylation, with their structures confirmed by Fourier-transform infrared (FT-IR) and 1H NMR and their surfactant properties systematically investigated. The findings indicate that C9P1En and C9B1En exhibited lower γCMC values compared to the isononanol polyether surfactant (C9En), which allows for rapid wetting on a hydrophobic surface, especially C9B1E6 with an initial contact angle of only 54° compared to 80° for C9E6. Also remarkable is the rapid defoaming performance, with C9B1E6 having less than 0.1% of the initial foam volume but C9E6 having up to 50.1% foam volume after 30 s. These surfactant performances provide significant benefits for the potential application of branched nonionic surfactants in the industrial cleaning field.
Collapse
Affiliation(s)
- Yao He
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Zexiang Bi
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Qiang Zhang
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shuang Lu
- Guangdong HuaJinDa New Material Technology Co., LTD., Maoming 525000, Guangdong, China
| | - Zhijian Huang
- Guangdong HuaJinDa New Material Technology Co., LTD., Maoming 525000, Guangdong, China
| | - Xiaochao Zhang
- Guangdong HuaJinDa New Material Technology Co., LTD., Maoming 525000, Guangdong, China
| | - Xu Li
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jinxiang Dong
- College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
9
|
Zhao J, Liu B, Xiong L, Liu W, Wang D, Ma W, Jiang L, Yang J, Wang P, Xiao T, Zhao S, Edwards PP, Tang J. Highly selective upcycling of plastic mixture waste by microwave-assisted catalysis over Zn/b-ZnO. Nat Commun 2025; 16:1726. [PMID: 39966353 PMCID: PMC11836401 DOI: 10.1038/s41467-024-55584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
7 billion of 9.2 billion tons of plastic produced becomes waste while conventional catalytic plastic recycling methods are vulnerable with degraded performance and intensive energy input. Here, a hybrid Zn/b-ZnO catalyst, together with the specially-designed microwave reaction system, has achieved fast plastic waste upgrading under atmospheric pressure without using H2. Bifunctional ZnO acts as a microwave absorber and substrate catalyst, and in-situ formed Zn clusters promote C-C bond cleavage and nearly 100% upcycle landfilled plastic mixtures into lubricant base oil precursors and monomers. Unprecedented turnover number (250 gplastic g-1catalyst) of plastic depolymerisation and long-time stability over 50 successive cycles have been demonstrated, together with 8-time higher energy efficiency compared with conventional catalysis, indicating this strategy is an economical approach to efficient upcycling of plastics towards valuable products. Moreover, the catalyst can tolerate high contaminates, even the landfilled plastics can still be converted to lubricant base oil precursors, which has never been reported before.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bonan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lunqiao Xiong
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenchao Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Duanda Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangjing Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Litong Jiang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianlong Yang
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| | - Sui Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Peter P Edwards
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK
| | - Junwang Tang
- Industrial Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Gao J, Zhao J, Xing Z, Guo M, Xie H, Ma W, Liu J. Microwave-Powered Liquid Metal Degradation of Polyolefins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412539. [PMID: 39696906 DOI: 10.1002/adma.202412539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Upcycling waste plastics is highly promising to tackle global white pollution while achieving sustainable development. However, prevailing approaches often encounter challenges in scalable engineering practices due to either insufficient plastic upcycling capability or arduousness in the separation, recovery, and purification of catalysts, which inevitably augments the cost of plastic upcycling. Here, the microwave-powered liquid metal synergetic depolymerization is presented to facilitate low-cost plastic upcycling. By leveraging the fluidity of liquid metals and their exceptional chemical-bond activation ability under microwave field, this method efficiently converts various polyolefins into narrowband hydrocarbon oil (Oil yield: 81 wt.% for polypropylene (PP), 85.9 wt.% for polyethylene (PE)) and high-value olefin monomers (C2-4 selectivity: 50% for PE, 65.3% for PP) over 30 successive cycles, resulting in a high turnover frequency of 2.83 kgPlastic mLLiquid metal -1. These captivating advantages offered by electromagnetically-powered liquid metals are also supported by their self-separation features, thereby paving the way for large-scale engineering solutions in waste plastic upcycling.
Collapse
Affiliation(s)
- Jianye Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zerong Xing
- Key Lab of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Minghui Guo
- Key Lab of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Wangjing Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- Key Lab of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Dudás Á, Gyömöre Á, Mészáros BB, Gondár S, Adamik R, Fegyverneki D, Papp D, Otte KB, Ayala S, Daru J, Répási J, Soós T. Selective Reduction of Esters to Access Aldehydes Using Fiddler Crab-Type Boranes. J Am Chem Soc 2025; 147:1112-1122. [PMID: 39723648 PMCID: PMC11726553 DOI: 10.1021/jacs.4c14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The partial reduction of esters to aldehydes is a fundamentally important transformation for the synthesis of numerous fine chemicals and consumer goods. However, despite the many efforts, limitations have persisted, such as competing overreduction, low reproducibility, use of exigent reaction conditions and hazardous chemicals. Here, we report a novel catalyst family with a unique steric design which promotes the catalytic partial reduction of esters with unprecedented, near-perfect selectivity and efficiency. This metal-free catalytic method is ready to be placed at the disposal of chemists to provide valuable aldehyde intermediates and products and shows promise for streamlining synthetic methods in academic and industrial settings.
Collapse
Affiliation(s)
- Ádám Dudás
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - Ádám Gyömöre
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
| | - Bence Balázs Mészáros
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | - Stefánia Gondár
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
| | - Renáta Adamik
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
| | - Dániel Fegyverneki
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
| | - Dávid Papp
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
- MTA-ELTE
Lendület Ion Mobility Mass Spectrometry Research Group, Eötvös Loránd University, Pázmány Péter
sétány 1/A, Budapest H-1117, Hungary
| | | | - Sergio Ayala
- Provivi,
Inc., Santa Monica, California 90404, United States
| | - János Daru
- Department
of Organic Chemistry, Eötvös
Loránd University, Pázmány Péter sétány
1/A, Budapest H-1117, Hungary
| | | | - Tibor Soós
- Organocatalysis
Research Group, Institute of Organic Chemistry,
HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja
2, Budapest H-1117, Hungary
| |
Collapse
|
12
|
Sun B, Zou J, Qiu W, Tian S, Wang M, Tang H, Wang B, Luan S, Tang X, Wang M, Ma D. Chemical transformation of polyurethane into valuable polymers. Natl Sci Rev 2025; 12:nwae393. [PMID: 39758124 PMCID: PMC11697979 DOI: 10.1093/nsr/nwae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 01/07/2025] Open
Abstract
Polyurethanes are an important class of synthetic polymers, widely used in a variety of applications ranging from everyday items to advanced tools in societal infrastructure. Their inherent cross-linked structure imparts exceptional durability and flexibility, yet this also complicates their degradation and recycling. Here we report a heterogeneous catalytic process that combines methanolysis and hydrogenation with a CO2/H2 reaction medium, effectively breaking down PU waste consisting of urethane and ester bonds into valuable intermediates like aromatic diamines and lactones. These intermediates are then converted into functional polymers: polyimide (PI), noted for its exceptional thermal and electrical insulation, and polylactone (P(BL-co-CL)), a biodegradable alternative to traditional plastics. Both polymers exhibit enhanced performance compared to existing commercial products. This approach not only contributes to the valorization of plastic waste but also opens new avenues for the creation of high-performance materials.
Collapse
Affiliation(s)
- Bo Sun
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiawei Zou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weijie Qiu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Beijing 100871, China
| | - Shuheng Tian
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Haoyi Tang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baotieliang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyan Tang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
de Souza AS, Ferreira PG, de Jesus IS, de Oliveira RPRF, de Carvalho AS, Futuro DO, Ferreira VF. Recent Progress in Polyolefin Plastic: Polyethylene and Polypropylene Transformation and Depolymerization Techniques. Molecules 2024; 30:87. [PMID: 39795145 PMCID: PMC11721993 DOI: 10.3390/molecules30010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand. However, their versatility has also contributed to a massive global waste problem as plastics pervade virtually every ecosystem, from the depths of oceans to the most remote terrestrial landscapes. Plastic pollution manifests not just as visible waste-such as fishing nets, bottles, and garbage bags-but also as microplastics, infiltrating food chains and freshwater sources. This crisis is exacerbated by the unsustainable linear model of plastic production and consumption, which prioritizes convenience over long-term environmental health. The mismanagement of plastic waste not only pollutes ecosystems but also releases greenhouse gases like carbon dioxide during degradation and incineration, thereby complicating efforts to achieve global climate and sustainability goals. Given that mechanical recycling only addresses a fraction of macroplastics, innovative approaches are needed to improve this process. Methods like pyrolysis and hydrogenolysis offer promising solutions by enabling the chemical transformation and depolymerization of plastics into reusable materials or valuable chemical feedstocks. These advanced recycling methods can support a circular economy by reducing waste and creating high-value products. In this article, the focus on pyrolysis and hydrogenolysis underscores the need to move beyond traditional recycling. These methods exemplify the potential for science and technology to mitigate plastic pollution while aligning with sustainability objectives. Recent advances in the pyrolysis and hydrogenolysis of polyolefins focus on their potential for advanced recycling, breaking down plastics at a molecular level to create feedstocks for new products or fuels. Pyrolysis produces pyrolysis oil and syngas, with applications in renewable energy and chemicals. However, some challenges of this process include scalability, feedstock variety, and standardization, as well as environmental concerns about emissions. Companies like Shell and ExxonMobil are investing heavily to overcome these barriers and improve recycling efficiencies. By leveraging these transformative strategies, we can reimagine the lifecycle of plastics and address one of the most pressing environmental challenges of our time. This review updates the knowledge of the fields of pyrolysis and hydrogenolysis of plastics derived from polyolefins based on the most recent works available in the literature, highlighting the techniques used, the types of products obtained, and the highest yields.
Collapse
Affiliation(s)
- Acácio Silva de Souza
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil; (P.G.F.); (I.S.d.J.); (R.P.R.F.d.O.); (A.S.d.C.); (D.O.F.)
| | | | | | | | | | | | - Vitor Francisco Ferreira
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil; (P.G.F.); (I.S.d.J.); (R.P.R.F.d.O.); (A.S.d.C.); (D.O.F.)
| |
Collapse
|
14
|
Jin H, Wu Z, Lin W, Cai Y, He L, Cao C, Wang X, Qian Q, Chen Q, Yan Y. A Highly Sustainable Supramolecular Bioplastic Film with Superior Hydroplasticity and Biodegradability. CHEMSUSCHEM 2024; 17:e202400512. [PMID: 38878218 DOI: 10.1002/cssc.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Indexed: 08/07/2024]
Abstract
Massive accumulation of postconsumer plastic waste in eco-system has raised growing environmental concerns. Sustainable end-of-life managements of the indispensable plastic are highly demanding and challenging in modern society. To relieve the plastic menace, herein we present a full life cycle sustainable supramolecular bioplastic made from biomass-derived polyelectrolyte (chitosan quaternary ammonium salt, QCS) and natural sodium fatty acid (sodium laurate, SL) through solid-phase molecular self-assembly (SPMSA), by which the QCS-SL complexes, precipitated from mixing the aqueous solutions, self-assemble to form bioplastic film by mildly pressing at room temperature. The QCS-SL bioplastic films display superior hydroplasticity owing to the water-activated molecular rearrangement and electrostatic bond reconstruction, which allows facile self-healing and reprocessing at room temperature to significantly extend the service lifetime of both products and raw materials. With higher water content, the dynamic electrostatic interactions and precipitation-dissolution equilibrium endow the QCS-SL bioplastic films with considerable solubility in water, which is promising to mitigate the plastic accumulation in aquatic environment. Because both QCS and SL are biocompatible and biodegradable, the dissolved QCS-SL films are nontoxic and environmentally friendly. Thus, this novel supramolecular bioplastic is highly sustainable throughout the whole life cycle, which is expected to open a new vista in sustainable plastic materials.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yiteng Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lianbo He
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Changlin Cao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xuejiao Wang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Seo J, Kim D, Lee YK. Exploring the Morphological Effect of Zeolite Beta on Catalytic Cracking of Polyethylene. ACS OMEGA 2024; 9:44760-44769. [PMID: 39524630 PMCID: PMC11541447 DOI: 10.1021/acsomega.4c07723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Two types of zeolite catalysts, namely, nanosized Beta-N and micrometer-sized Beta-M, were used to crack low-density polyethylene (LDPE) with three different molecular weights: 4000, 200,000, and 3,000,000. The structural and acidic properties were analyzed by N2 physisorption, transmission electron microscopy, X-ray diffraction, temperature-programmed desorption of isopropylamine (IPA-TPD), and pyridine-adsorbed FTIR. The catalytic activity was tested at 623 K and 3.5 N2 MPa in an autoclave batch reactor for PE cracking. High Mw PE required higher decomposition activation energy due to transfer limitation. Beta-N showed better activity in PE cracking than Beta-M, with PE conversion of 82.7 and 62.0% for Beta-N and Beta-M, respectively. In addition, the nanosized Beta-N exhibited quite lower activation energy of catalytic PE decomposition than Beta-M, obtained by the Kissinger method in TGA measurement. The characterization results demonstrated that the Beta-N has abundant interparticulate mesopores to provide better dispersion for the catalysts into PE melt and the proximity of the cracking active sites. These results revealed that the Beta-N catalyst shows superior activity for the cracking of polyolefins.
Collapse
Affiliation(s)
- Jeonghwan Seo
- Laboratory of Advanced Catalysis
for Energy and Environment, Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea
| | - Daeun Kim
- Laboratory of Advanced Catalysis
for Energy and Environment, Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea
| | - Yong-Kul Lee
- Laboratory of Advanced Catalysis
for Energy and Environment, Department of Chemical Engineering, Dankook University, 152 Jukjeonro, Yongin 16890, South Korea
| |
Collapse
|
16
|
Heng JZX, Tan TTY, Li X, Loh WW, Chen Y, Xing Z, Lim Z, Ong JLY, Lin KS, Nishiyama Y, Yoshida T, Zhang L, Otake KI, Kitagawa S, Loh XJ, Ye E, Lim JYC. Pyrolytic Depolymerization of Polyolefins Catalysed by Zirconium-based UiO-66 Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202408718. [PMID: 39088314 DOI: 10.1002/anie.202408718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Polyolefins such as polyethylenes and polypropylenes are the most-produced plastic waste globally, yet are difficult to convert into useful products due to their unreactivity. Pyrolysis is a practical method for large-scale treatment of mixed, contaminated plastic, allowing for their conversion into industrially-relevant petrochemicals. Metal-organic frameworks (MOFs), despite their tremendous utility in heterogeneous catalysis, have been overlooked for polyolefin depolymerization due to their perceived thermal instabilities and inability of polyethylenes and polypropylenes to penetrate their pores. Herein, we demonstrate the viability of UiO-66 MOFs containing coordinatively-unsaturated zirconium nodes, as effective catalysts for pyrolysis that significantly enhances the yields of valuable liquid and gas hydrocarbons, whilst halving the amounts of residual solids produced. Reactions occur on the Lewis-acidic UiO-66 nodes, without the need for noble metals, and yield aliphatic product distributions distinctly different from the aromatic-rich hydrocarbons that can be obtained from zeolite catalysis. We also demonstrate the first unambiguous characterization of polyolefin penetration into UiO-66 pores at pyrolytic temperatures, allowing access to the abundant Zr-oxo nodes within the MOF interior for efficient C-C cleavage. Our work highlights the potential of MOFs as highly-designable heterogeneous catalysts for depolymerisation of plastics, which can complement conventional catalysts in reactivity.
Collapse
Affiliation(s)
- Jerry Zhi Xiong Heng
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Tristan Tsai Yuan Tan
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Xin Li
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Wei Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yuting Chen
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhenxiang Xing
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Zhiyan Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jennet Li Ying Ong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Katherine Shiyun Lin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | | | - Takefumi Yoshida
- Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama, 640-8510, Japan
- Physical and Chemical Research Infrastructure Group, RIKEN SPring-8 Center, RIKEN, Hyogo, 679-5148, Japan
| | - Lili Zhang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute for Integrated Cell-Material Sciences, Kyoto University, Institute for Advanced Study, Kyoto University Yoshida, Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Enyi Ye
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore, 117576, Republic of Singapore
| |
Collapse
|
17
|
Zhao B, Hu Z, Sun Y, Hajiayi R, Wang T, Jiao N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J Am Chem Soc 2024; 146:28605-28611. [PMID: 39241040 DOI: 10.1021/jacs.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The selective upcycling of polyolefins to create products of increased value has emerged as an innovative approach to carbon resource stewardship, drawing significant scientific and industrial interest. Although recent advancements in recycling technology have facilitated the direct conversion of polyolefins to hydrocarbons or oxygenated compounds, the synthesis of nitrogenated compounds from such waste polyolefins has not yet been disclosed. Herein, we demonstrate a novel approach for the upcycling of waste polyolefins by efficiently transforming a range of postconsumer plastic products into nitriles and amides. This process leverages the catalytic properties of manganese dioxide in combination with an inexpensive nitrogen source, urea, to make it both practical and economically viable. Our approach not only opens new avenues for the creation of nitrogenated chemicals from polyolefin waste but also underscores the critical importance of recycling and valorizing carbon resources originally derived from fossil fuels. This study provides a new upcycling strategy for the sustainable conversion of waste polyolefins.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yichen Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rehemuhali Hajiayi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Teng Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Chen S, Hu YH. Complete Degradation of Polyolefin Plastic Wastes to High-Value Products. CHEMSUSCHEM 2024; 17:e202301449. [PMID: 38647354 DOI: 10.1002/cssc.202301449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Plastic wastes continuously accumulate, causing critical environmental issues. It is urgent to develop efficient strategies to convert them to valuable products. Very recently, two novel approaches for plastic recycling were reported by Huber et al. (Science, 2023, 381, 660-666) and Liu et al. (Science, 2023, 381, 666-671), where polyethylene (PE) and polypropylene (PP) plastics were converted into potentially valuable products, such as alcohols, aldehydes, surfactants, and detergents. The two processes achieved complete degradation, high selectivity of target products, as well as high values of products, showing economic feasibility for industrial scale-up. These breakthroughs for plastic recycling are highlighted in this article.
Collapse
Affiliation(s)
- Shaoqin Chen
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA
| |
Collapse
|
19
|
Ma Q, Gao Y, Sun B, Du J, Zhang H, Ma D. Grave-to-cradle dry reforming of plastics via Joule heating. Nat Commun 2024; 15:8243. [PMID: 39304651 DOI: 10.1038/s41467-024-52515-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both plastics and CO2 are waste carbon resources, and their accumulation in nature has led to severe environmental pollution. However, simultaneously converting plastic waste and CO2 into value-added chemicals remains a challenge. Here we demonstrate a catalytic reforming process that converts plastics and CO2 into syngas over an electrified FeCrAl heating wire. The temperature of the electrified heating wire can quickly exceed 800 °C, facilitating the decomposition of polyethylene into gaseous hydrocarbons. The high-temperature heating wire promote the CO2 deoxygenation, resulting in the generation of CO, as well as the dehydrogenation of gaseous hydrocarbons. Significantly, the additional O species from CO2 and the carbon species from hydrocarbons can react to form CO, maintaining the high catalytic activity of the electrified heating wire. This novel approach is of paramount to achieving a circular economy in addressing the ongoing environmental crisis caused by the accumulation of plastic waste and excessive CO2 emissions.
Collapse
Affiliation(s)
- Qing Ma
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Yongjun Gao
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding, China.
| | - Bo Sun
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jianlong Du
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Hong Zhang
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
20
|
Liu Y, Dai W, Zheng J, Du Y, Wang Q, Hedin N, Qin B, Li R. Selective and Controllable Cracking of Polyethylene Waste by Beta Zeolites with Different Mesoporosity and Crystallinity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404426. [PMID: 38976554 PMCID: PMC11425912 DOI: 10.1002/advs.202404426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Indexed: 07/10/2024]
Abstract
Waste plastics bring about increasingly serious environmental challenges, which can be partly addressed by their interconversion into valuable compounds. It is hypothesized that the porosity and acidity of a zeolite-based catalyst will affect the selectivity and effectiveness, enabling a controllable and selective conversion of polyethylene (PE) into gas-diesel or lubricating base oil. A series of embryonic, partial- and well-crystalline zeolites beta with adjustable porosity and acidity are prepared from mesoporous SBA-15. The catalysts and catalytic systems are studied with nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and adsorption kinetics and catalytic reactions. The adjustable porosity and acidity of zeolite-beta-based catalysts achieve a controllable selectivity toward gas-diesel or lubricating base oil for PE cracking. With a catalyst with mesopores and appropriate acid sites, a fast escape and reduced production of cracking of intermediates are observed, leading to a significant fraction (88.7%) of lubricating base oil. With more micropores, a high acid density, and strong acid strength, PE is multiply cracked into low carbon number hydrocarbons. The strong acid center of the zeolite is confirmed to facilitate significantly the activation of hydrogen (H2), and, an in situ ammonia poisoning strategy can significantly inhibit hydrogen transfer and effectively regulate the product distribution.
Collapse
Affiliation(s)
- Yanchao Liu
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Weijiong Dai
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Jiajun Zheng
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Yanze Du
- SINOPEC Dalian Research Institute of Petroleum & Petrochemicals Co., LtdDalian116045China
| | - Quanhua Wang
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| | - Niklas Hedin
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
- Department of Materials and Environmental ChemistryStockholm UniversityStockholmSE‐10691Sweden
| | - Bo Qin
- SINOPEC Dalian Research Institute of Petroleum & Petrochemicals Co., LtdDalian116045China
| | - Ruifeng Li
- Research Centre of Energy Chemical & Catalytic TechnologyTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
21
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
22
|
Kwon T, Jeong H, Kim M, Jung S, Ro I. Catalytic Approaches to Tackle Mixed Plastic Waste Challenges: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17212-17238. [PMID: 39109437 DOI: 10.1021/acs.langmuir.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Plastics are widely used materials in our daily lives and various industries due to their affordability and versatility. The massive production of plastic waste, however, has recently emerged as a pressing environmental concern across all media. To address this, emerging technologies are being explored for the sustainable valorization of postconsumer plastic wastes including thermochemical, physical, and catalytic processes aimed at transforming them into higher value-added products. However, the chemical recycling of mixed plastic wastes poses a formidable challenge due to the diverse array of monomers and catalyst systems involved, each employing distinct mechanisms. Complicating matters further is that contaminants reduce catalytic efficacy, requiring rigorous and labor-intensive separation and purification processes to extract individual plastic streams from practical plastic waste mixtures. Consequently, the majority of such mixtures often end up in incineration and landfills, perpetuating environmental and societal challenges, such as leachate, carbon dioxide emissions, and other air pollutants. This review will introduce current technical developments available for recycling practical plastic waste mixtures through catalytic processes. The current challenges in process performance, low selectivity of the desired products, and catalyst deactivation from the catalysis of plastic waste mixtures are also discussed. Promising approaches to overcome the problems are suggested in future research directions.
Collapse
Affiliation(s)
- Taeeun Kwon
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology,Daegu 01811, Republic of Korea
| | - Huijeong Jeong
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mireu Kim
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology,Daegu 01811, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Insoo Ro
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology,Daegu 01811, Republic of Korea
| |
Collapse
|
23
|
Zhang Q, He J, Wei X, Shen C, Ye P, An W, Liu X, Li H, Xu S, Su Z, Wang YZ. Oxidative Upcycling of Polyethylene to Long Chain Diacid over Co-MCM-41 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202407510. [PMID: 38774971 DOI: 10.1002/anie.202407510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 07/11/2024]
Abstract
Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume saturated dicarboxylic acids in high carbon yield of 85.9 % in which the carbon yield of long chain dicarboxylic (C10-C20) acids can reach 58.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.
Collapse
Affiliation(s)
- Qiang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jiajia He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenli An
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Haoze Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
24
|
Lu L, Luo J, Montag M, Diskin-Posner Y, Milstein D. Polyoxymethylene Upcycling into Methanol and Methyl Groups Catalyzed by a Manganese Pincer Complex. J Am Chem Soc 2024; 146:22017-22026. [PMID: 39046806 PMCID: PMC11311220 DOI: 10.1021/jacs.4c07468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Polyoxymethylene (POM) is a commonly used engineering thermoplastic, but its recycling by conventional means, i.e., mechanical recycling, is not practiced to any meaningful extent, due to technical limitations. Instead, waste POM is typically incinerated or disposed in landfills, where it becomes a persistent environmental pollutant. An attractive alternative to mechanical recycling is upcycling, namely, the conversion of waste POM into value-added chemicals, but this has received very little attention. Herein, we report the upcycling of POM into useful chemicals through three different reactions, all of which are efficiently catalyzed by a single pincer complex of earth-abundant manganese. One method involves hydrogenation of POM into methanol using H2 gas as the only reagent, whereas another method converts POM into methanol and CO2 through a one-pot process comprising acidolysis followed by Mn-catalyzed disproportionation. The third method utilizes POM as a reagent for the methylation of ketones and amines.
Collapse
Affiliation(s)
- Lijun Lu
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Montag
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
25
|
Fang DX, Chen MJ, Zeng FR, Guo SQ, He L, Liu BW, Huang SC, Zhao HB, Wang YZ. Self-evolutionary recycling of flame-retardant polyurethane foam enabled by controllable catalytic cleavage. MATERIALS HORIZONS 2024; 11:3585-3594. [PMID: 38742392 DOI: 10.1039/d4mh00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Polyurethane (PU) foams, pivotal in modern life, face challenges suh as fire hazards and environmental waste burdens. The current reliance of PU on potentially ecotoxic halogen-/phosphorus-based flame retardants impedes large-scale material recycling. Here, our demonstrated controllable catalytic cracking strategy, using cesium salts, enables self-evolving recycling of flame-retardant PU. The incorporation of cesium citrates facilitates efficient urethane bond cleavage at low temperatures (160 °C), promoting effective recycling, while encouraging pyrolytic rearrangement of isocyanates into char at high temperatures (300 °C) for enhanced PU fire safety. Even in the absence of halogen/phosphorus components, this foam exhibits a substantial increase in ignition time (+258.8%) and a significant reduction in total smoke release (-79%). This flame-retardant foam can be easily recycled into high-quality polyol under mild conditions, 60 °C lower than that for the pure foam. Notably, the trace amounts of cesium gathered in recycled polyols stimulate the regenerated PU to undergo self-evolution, improving both flame-retardancy and mechanical properties. Our controllable catalytic cracking strategy paves the way for the self-evolutionary recycling of high-performance firefighting materials.
Collapse
Affiliation(s)
- Dan-Xuan Fang
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Ming-Jun Chen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Fu-Rong Zeng
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Shuai-Qi Guo
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Lei He
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Bo-Wen Liu
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | - Hai-Bo Zhao
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Yu-Zhong Wang
- College of Architecture and Environment, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
26
|
Zou C, Chen J, Khan MA, Si G, Chen C. Stapler Strategies for Upcycling Mixed Plastics. J Am Chem Soc 2024; 146:19449-19459. [PMID: 38953865 DOI: 10.1021/jacs.4c05828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mechanical recycling is one of the simplest and most economical strategies to address ever-increasing plastic pollution, but it cannot be applied to immiscible mixed plastics and suffers from property deterioration after each cycle. By combining the amphiphilic block copolymer strategy and reactive compatibilization strategy, we designed a series of stapler strategies for compatibilizing/upcycling mixed plastics. First, various functionalized graft copolymers were accessed via different synthetic routes. Subsequently, the addition of a very small amount of stapler molecules induced a synergistic effect with the graft copolymers that improved the compatibility and mechanical properties of mixed plastics. These strategies were highly effective for various binary/ternary plastic systems and can be directly applied to postconsumer waste plastics, which can increase the toughness of mixed postconsumer waste plastics by 162 times. Most importantly, it also effectively improved the impact resistance, adhesion performance, and three-dimensional (3D) printing performance of mixed plastics, and permitted the recycling of plastic blends 20 times with minimal degradation in their mechanical properties.
Collapse
Affiliation(s)
- Chen Zou
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiawei Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Muhammad Asadullah Khan
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guifu Si
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Oh S, Stache EE. Recent advances in oxidative degradation of plastics. Chem Soc Rev 2024; 53:7309-7327. [PMID: 38884337 DOI: 10.1039/d4cs00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Oxidative degradation is a powerful method to degrade plastics into oligomers and small oxidized products. While thermal energy has been conventionally employed as an external stimulus, recent advances in photochemistry have enabled photocatalytic oxidative degradation of polymers under mild conditions. This tutorial review presents an overview of oxidative degradation, from its earliest examples to emerging strategies. This review briefly discusses the motivation and the development of thermal oxidative degradation of polymers with a focus on underlying mechanisms. Then, we will examine modern studies primarily relevant to catalytic thermal oxidative degradation and photocatalytic oxidative degradation. Lastly, we highlight some unique studies using unconventional approaches for oxidative polymer degradation, such as electrochemistry.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
28
|
Shaker M, Hamdani SS, Muzata TS, Rabnawaz M. Driving selective upcycling of mixed polyethylene waste with table salt. Sci Rep 2024; 14:14371. [PMID: 38909060 PMCID: PMC11193746 DOI: 10.1038/s41598-024-63482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
Advanced recycling offers a unique opportunity for the circular economy, especially for mixed and contaminated plastics that are difficult to recycle mechanically. However, advanced recycling has barriers such as poor selectivity, contaminant sensitivity, and the need for expensive catalysts. Reported herein is a simple yet scalable methodology for converting mixed polyethylene (high-density and low-density polyethylene recycled polyethylene) into upcycled waxes with up to 94% yield. This high yield was possible by performing the reaction at a mild temperature and was enabled by using inexpensive and reusable table salt. Without table salt, in otherwise identical conditions, the plastic remained essentially undegraded. These upcycled waxes were used as prototypes for applications such as water- and oil-resistant paper, as well as rheology modifiers for plastics. Their performance is similar to that of commercial wax as well as rheology modifiers. A preliminary economic analysis shows that the upcycled waxes obtained by this table salt-catalyzed approach offer three times more revenue than those reported in the literature. This pioneering discovery opens the door for a circular economy of plastics in general and polyolefins in particular.
Collapse
Affiliation(s)
- Mohamed Shaker
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI, 48824-1223, USA
| | - Syeda Shamila Hamdani
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI, 48824-1223, USA
| | - Tanyaradzwa S Muzata
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI, 48824-1223, USA
| | - Muhammad Rabnawaz
- School of Packaging, Michigan State University, 448 Wilson Road, East Lansing, MI, 48824-1223, USA.
| |
Collapse
|
29
|
Li M, Sun G, Wang Z, Zhang X, Peng J, Jiang F, Li J, Tao S, Liu Y, Pan Y. Structural Design of Single-Atom Catalysts for Enhancing Petrochemical Catalytic Reaction Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313661. [PMID: 38499342 DOI: 10.1002/adma.202313661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Petroleum, as the "lifeblood" of industrial development, is the important energy source and raw material. The selective transformation of petroleum into high-end chemicals is of great significance, but still exists enormous challenges. Single-atom catalysts (SACs) with 100% atom utilization and homogeneous active sites, promise a broad application in petrochemical processes. Herein, the research systematically summarizes the recent research progress of SACs in petrochemical catalytic reaction, proposes the role of structural design of SACs in enhancing catalytic performance, elucidates the catalytic reaction mechanisms of SACs in the conversion of petrochemical processes, and reveals the high activity origins of SACs at the atomic scale. Finally, the key challenges are summarized and an outlook on the design, identification of active sites, and the appropriate application of artificial intelligence technology is provided for achieving scale-up application of SACs in petrochemical process.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Guangxun Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhidong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xin Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiatian Peng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Fei Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Junxi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shu Tao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
30
|
Marhoon A, Hernandez MLH, Billy RG, Müller DB, Verones F. Mapping Plastic and Plastic Additive Cycles in Coastal Countries: A Norwegian Case Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8336-8348. [PMID: 38703133 PMCID: PMC11097394 DOI: 10.1021/acs.est.3c09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
The growing environmental consequences caused by plastic pollution highlight the need for a better understanding of plastic polymer cycles and their associated additives. We present a novel, comprehensive top-down method using inflow-driven dynamic probabilistic material flow analysis (DPMFA) to map the plastic cycle in coastal countries. For the first time, we covered the progressive leaching of microplastics to the environment during the use phase of products and modeled the presence of 232 plastic additives. We applied this methodology to Norway and proposed initial release pathways to different environmental compartments. 758 kt of plastics distributed among 13 different polymers was introduced to the Norwegian economy in 2020, 4.4 Mt was present in in-use stocks, and 632 kt was wasted, of which 15.2 kt (2.4%) was released to the environment with a similar share of macro- and microplastics and 4.8 kt ended up in the ocean. Our study shows tire wear rubber as a highly pollutive microplastic source, while most macroplastics originated from consumer packaging with LDPE, PP, and PET as dominant polymers. Additionally, 75 kt of plastic additives was potentially released to the environment alongside these polymers. We emphasize that upstream measures, such as consumption reduction and changes in product design, would result in the most positive impact for limiting plastic pollution.
Collapse
Affiliation(s)
- Ahmed Marhoon
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| | | | - Romain Guillaume Billy
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| | - Daniel Beat Müller
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| | - Francesca Verones
- Industrial
Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim NO-7034, Norway
| |
Collapse
|
31
|
Lv H, Huang F, Zhang F. Upcycling Waste Plastics with a C-C Backbone by Heterogeneous Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5077-5089. [PMID: 38358312 DOI: 10.1021/acs.langmuir.3c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plastics with an inert carbon-carbon (C-C) backbone, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), are the most widely used types of plastic in human activities. However, many of these polymers were directly discarded in nature after use, and few were appropriately recycled. This not only threatens the natural environment but also leads to the waste of carbon resources. Conventional chemical recycling of these plastics, including pyrolysis and catalytic cracking, requires a high energy input due to the chemical inertness of C-C bonds and C-H bonds and leads to complex product distribution. In recent years, significant progress has been made in the development of catalysts and the introduction of small molecules as additional coreactants, which could potentially overcome these challenges. In this Review, we summarize and highlight catalytic strategies that address these issues in upcycling C-C backbone plastics with small molecules, particularly in heterogeneous catalysis. We believe that this review will inspire the development of upcycling methods for C-C backbone plastics using small molecules and heterogeneous catalysis.
Collapse
Affiliation(s)
- Huidong Lv
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fei Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| |
Collapse
|
32
|
Zhao B, Tan H, Yang J, Zhang X, Yu Z, Sun H, Wei J, Zhao X, Zhang Y, Chen L, Yang D, Deng J, Fu Y, Huang Z, Jiao N. Catalytic conversion of mixed polyolefins under mild atmospheric pressure. Innovation (N Y) 2024; 5:100586. [PMID: 38414518 PMCID: PMC10897897 DOI: 10.1016/j.xinn.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
The chemical recycling of polyolefin presents a considerable challenge, especially as upcycling methods struggle with the reality that plastic wastes typically consist of mixtures of polyethylene (PE), polystyrene (PS), and polypropylene (PP). We report a catalytic aerobic oxidative approach for polyolefins upcycling with the corresponding carboxylic acids as the product. This method encompasses three key innovations. First, it operates under atmospheric pressure and mild conditions, using O2 or air as the oxidant. Second, it is compatible with high-density polyethylene, low-density polyethylene, PS, PP, and their blends. Third, it uses an economical and recoverable metal catalyst. It has been demonstrated that this approach can efficiently degrade mixed wastes of plastic bags, bottles, masks, and foam boxes.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hui Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jie Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Xiaohui Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zidi Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanli Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yufeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lili Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dali Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
33
|
He C, Liu C, Pan S, Tan Y, Guan J, Xu H. Polyurethane with β-Selenocarbonyl Structure Enabling the Combination of Plastic Degradation and Waste Upcycling. Angew Chem Int Ed Engl 2024; 63:e202317558. [PMID: 38156718 DOI: 10.1002/anie.202317558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/16/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Degradable polymers offer a promising solution to mitigate global plastic pollution, but the degraded products often suffer from diminished value. Upcycling is a more sustainable approach to upgrade polymer waste into value-added products. Herein, we report a β-selenocarbonyl-containing polyurethane (SePU), which can be directly degraded under mild conditions into valuable selenium fertilizers for selenium-rich vegetable cultivation globally, enabling both plastic degradation and waste upcycling. Under oxidation condition, this polymer can be easily and selectively degraded via selenoxide elimination reaction from mixed plastic waste. The degraded product can serve as effective selenium fertilizers to increase selenium content in radish and pak choi. The SePU exhibits excellent mechanical properties. Additionally, we observed the formation of spherulites-like selenium particles within the materials during degradation for the first time. Our research offers a successful application of selenoxide elimination reaction in the field of plastic degradation for the first time, endowing plastics with both degradability and high reusable value. This strategy provides a promising solution to reduce pollution and improve economy and sustainability of plastics.
Collapse
Affiliation(s)
- Chaowei He
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Cheng Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jun Guan
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering and Laboratory of Flexible Electronics Technology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
34
|
Vialon T, Sun H, Formon GJM, Galanopoulo P, Guibert C, Averseng F, Rager MN, Percot A, Guillaneuf Y, Van Zee NJ, Nicolaÿ R. Upcycling Polyolefin Blends into High-Performance Materials by Exploiting Azidotriazine Chemistry Using Reactive Extrusion. J Am Chem Soc 2024; 146:2673-2684. [PMID: 38238037 DOI: 10.1021/jacs.3c12303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The revalorization of incompatible polymer blends is a key obstacle in realizing a circular economy in the plastics industry. Polyolefin waste is particularly challenging because it is difficult to sort into its constituent components. Untreated blends of polyethylene and polypropylene typically exhibit poor mechanical properties that are suitable only for low-value applications. Herein, we disclose a simple azidotriazine-based grafting agent that enables polyolefin blends to be directly upcycled into high-performance materials by using reactive extrusion at industrially relevant processing temperatures. Based on a series of model experiments, the azidotriazine thermally decomposes to form a triplet nitrene species, which subsequently undergoes a complex mixture of grafting, oligomerization, and cross-linking reactions; strikingly, the oligomerization and cross-linking reactions proceed through the formation of nitrogen-nitrogen bonds. When applied to polyolefin blends during reactive extrusion, this combination of reactions leads to the generation of amorphous, phase-separated nanostructures that tend to exist at polymer-polymer interfaces. These nanostructures act as multivalent cross-linkers that reinforce the resulting material, leading to dramatically improved ductility compared with the untreated blends, along with high dimensional stability at high temperatures and excellent mechanical recyclability. We propose that this unique behavior is derived from the thermomechanically activated reversibility of the nitrogen-nitrogen bonds that make up the cross-linking structures. Finally, the scope of this chemistry is demonstrated by applying it to ternary polyolefin blends as well as postconsumer polyolefin feedstocks.
Collapse
Affiliation(s)
- Thomas Vialon
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Huidi Sun
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Georges J M Formon
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Paul Galanopoulo
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Clément Guibert
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Averseng
- Laboratoire de Réactivité de Surface, UMR 7197, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marie-Noelle Rager
- NMR Facility, Chimie ParisTech, Université PSL, CNRS, 75005Paris ,France
| | - Aline Percot
- MONARIS, UMR 8233, Sorbonne Université, CNRS, 75005Paris ,France
| | - Yohann Guillaneuf
- Institut de Chimie Radicalaire UMR 7273,Aix-Marseille Université, CNRS, 13397Marseille ,France
| | - Nathan J Van Zee
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| | - Renaud Nicolaÿ
- Chimie Moléculaire, Macromoléculaire, Matériaux, ESPCI Paris, Université PSL, CNRS, 75005Paris ,France
| |
Collapse
|
35
|
Ran H, Zhang S, Ni W, Jing Y. Precise activation of C-C bonds for recycling and upcycling of plastics. Chem Sci 2024; 15:795-831. [PMID: 38239692 PMCID: PMC10793209 DOI: 10.1039/d3sc05701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
The rapid accumulation of plastic waste has led to a severe environmental crisis and a noticeable imbalance between manufacturing and recycling. Fortunately, chemical upgradation of plastic waste holds substantial promise for addressing these challenges posed by white pollution. During plastic upcycling and recycling, the key challenge is to activate and cleave the inert C-C bonds in plastic waste. Therefore, this perspective delves deeper into the upcycling and recycling of polyolefins from the angle of C-C activation-cleavage. We illustrate the importance of C-C bond activation in polyolefin depolymerization and integrate molecular-level catalysis, active site modulation, reaction networks and mechanisms to achieve precise activation-cleavage of C-C bonds. Notably, we draw potential inspiration from the accumulated wisdom of related fields, such as C-C bond activation in lignin chemistry, alkane dehydrogenation chemistry, C-Cl bond activation in CVOC removal, and C-H bond activation, to influence the landscape of plastic degradation through cross-disciplinary perspectives. Consequently, this perspective offers better insights into existing catalytic technologies and unveils new prospects for future advancements in recycling and upcycling of plastic.
Collapse
Affiliation(s)
- Hongshun Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Wenyi Ni
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Yaxuan Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| |
Collapse
|
36
|
Johnson AM, Johnson JA. Thermally Robust yet Deconstructable and Chemically Recyclable High-Density Polyethylene (HDPE)-Like Materials Based on Si-O Bonds. Angew Chem Int Ed Engl 2023:e202315085. [PMID: 37903133 DOI: 10.1002/anie.202315085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl- and olefin-related functional groups. Bifunctional silyl ethers (BSEs; SiR2 (OR'2 )) could expand the functional scope of PE mimics as they possess strong Si-O bonds and facile chemical tunability. Here, we report BSE-containing high-density polyethylene (HDPE)-like materials synthesized through a one-pot catalytic ring-opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si-substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid-catalyzed Si-O bond exchange with 1-propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain-growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step-growth Si-O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE.
Collapse
Affiliation(s)
- Alayna M Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|