1
|
Tan L, Xie XS, Lomvardas S. Genomic snowflakes: how the uniqueness of DNA folding allows us to smell the chemical universe. Curr Opin Genet Dev 2025; 92:102329. [PMID: 40107115 PMCID: PMC12068986 DOI: 10.1016/j.gde.2025.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Olfactory receptor (OR) gene choice, the stable expression of one out of >2000 OR alleles by olfactory sensory neurons, constitutes a gene regulatory process that is driven by three-dimensional nuclear architecture. Moreover, the differentiation-dependent process that culminates in monogenic and monoallelic OR transcription represents a powerful demonstration of the rich mechanistic insight that single-cell genomics and multiomics can provide toward the understanding of a biological process. At this review, we describe the latest advances in the understanding of OR gene regulation and highlight important standing questions regarding the emerging specificity of ultra-long-range genomic interaction and the contribution of transcription and noncoding RNAs.
Collapse
Affiliation(s)
- Longzhi Tan
- Department of Neurobiology, Stanford University, Stanford, CA, USA. https://twitter.com/@tanlongzhi
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. https://twitter.com/@XieSunney
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
2
|
Logeman BL, Grieco SF, Holmes TC, Xu X. Unfolding neural diversity: how dynamic three-dimensional genome architecture regulates brain function and disease. Mol Psychiatry 2025:10.1038/s41380-025-03056-3. [PMID: 40410418 DOI: 10.1038/s41380-025-03056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
The advent of single cell multi-omic technologies has ushered in a revolution in how we study the impact of three-dimensional genome organization on brain cellular composition and function. Transcriptomic and epigenomic studies reveal enormous cellular diversity that is present in mammalian nervous systems, raising the question, "how does this diversity arise and for what is its use?" Advances in the field of three-dimensional nuclear architecture have illuminated our understanding of how genome folding gives rise to dynamic gene expression programs important in healthy brain function and in disease. In this review we highlight recent work defining how neuronal identity, maturation, and plasticity are shaped by genome architecture. We discuss how newly identified genetic variations influence genome architecture and contribute to the evolution of species-unique neuronal and behavioral functional traits. We include examples for both humans and model organisms in which maladaptive genomic architecture is a causal agent in disease. Finally, we make conclusions and address future perspectives of dynamic three-dimensional genome (4D nucelome) research.
Collapse
Affiliation(s)
- Brandon L Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA.
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Computer Science, University of California, Irvine, CA, USA.
| |
Collapse
|
3
|
Sun Y, Li M, Ning C, Gao L, Liu Z, Zhong S, Lv J, Ke Y, Wang X, Ma Q, Liu Z, Wu S, Yu H, Zhao F, Zhang J, Gong Q, Liu J, Wu Q, Wang X, Chen X. Spatiotemporal 3D chromatin organization across multiple brain regions during human fetal development. Cell Discov 2025; 11:50. [PMID: 40374600 DOI: 10.1038/s41421-025-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/21/2025] [Indexed: 05/17/2025] Open
Abstract
Elucidating the regulatory mechanisms underlying the development of different brain regions in humans is essential for understanding advanced cognition and neuropsychiatric disorders. However, the spatiotemporal organization of three-dimensional (3D) chromatin structure and its regulatory functions across different brain regions remain poorly understood. Here, we generated an atlas of high-resolution 3D chromatin structure across six developing human brain regions, including the prefrontal cortex (PFC), primary visual cortex (V1), cerebellum (CB), subcortical corpus striatum (CS), thalamus (TL), and hippocampus (HP), spanning gestational weeks 11-26. We found that the spatial and temporal dynamics of 3D chromatin organization play a key role in regulating brain region development. We also identified H3K27ac-marked super-enhancers as key contributors to shaping brain region-specific 3D chromatin structures and gene expression patterns. Finally, we uncovered hundreds of neuropsychiatric GWAS SNP-linked genes, shedding light on critical molecules in various neuropsychiatric disorders. In summary, our findings provide important insights into the 3D chromatin regulatory mechanisms governing brain region-specific development and can serve as a valuable resource for advancing our understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yaoyu Sun
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangdong, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Li
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Chao Ning
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Lei Gao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Zhenbo Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, China
| | - Junjie Lv
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangdong, China
- College of Biological Science, China Agricultural University, Beijing, China
| | - Yuwen Ke
- College of Biological Science, China Agricultural University, Beijing, China
| | - Xinxin Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangdong, China
| | - Qiang Ma
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | | | - Shuaishuai Wu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Hao Yu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Fangqi Zhao
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jun Zhang
- Obstetrics and Gynecology Medical Center of Severe Cardiovascular of Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qian Gong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangdong, China
| | - Jiang Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing, China.
- IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing, China.
- Changping Laboratory, Beijing, China.
| | - Xuepeng Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China.
| |
Collapse
|
4
|
Scrutton Alvarado NJ, Zhao Z, Yamada T, Yang Y. Reorganization of the heterochromatin-associated gene-dense subcompartment in early neuronal development. Biol Open 2025; 14:bio062005. [PMID: 40353744 PMCID: PMC12091228 DOI: 10.1242/bio.062005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
The 3D organization of the genome has emerged as an important regulator of cellular development. Post-mitotic neurons undergo conserved changes in genome organization, such as the inward radial repositioning of heterochromatin-rich chromosomes as they differentiate. Additionally, transcriptionally active but heterochromatin-associated gene-dense (hGD) regions significantly strengthen their long-distance interactions during cerebellar development. However, the specific developmental stages during which these nuclear changes take place have remained poorly defined. Here, we report that hGD regions relocalize toward the nuclear interior and strengthen their chromosomal interactions as immature granule neurons transition from active cell migration to subsequent stages of neuronal differentiation. During this period, hGD genomic regions are coordinately repositioned in the nucleus alongside their physically tethered heterochromatic chromocenters. Despite these major changes in nuclear organization, the hGD subcompartment remains distinct from other transcriptionally active or repressive nuclear bodies, including heterochromatic chromocenters, throughout development. Notably, these nuclear changes appear to be independent of transcriptional changes that occur during granule neuron differentiation. Together, our results provide insights into the developmental timing of structural changes in the chromosomes of post-mitotic neurons.
Collapse
Affiliation(s)
- Nicolas J. Scrutton Alvarado
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Program in Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Ziyu Zhao
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Program in Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Tomoko Yamada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Yue Yang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Pulupa J, McArthur NG, Stathi O, Wang M, Zazhytska M, Pirozzolo ID, Nayar A, Shapiro L, Lomvardas S. Solid phase transitions as a solution to the genome folding paradox. Nature 2025:10.1038/s41586-025-09043-6. [PMID: 40369073 DOI: 10.1038/s41586-025-09043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Ultra-long-range genomic contacts, which are key components of neuronal genome architecture1-3, constitute a biochemical enigma. This is because regulatory DNA elements make selective and stable contacts with DNA sequences located hundreds of kilobases away, instead of interacting with proximal sequences occupied by the exact same transcription factors1,4. This is exemplified in olfactory sensory neurons (OSNs), in which only a fraction of LHX2-, EBF1- and LDB1-bound sites interact with each other, converging into highly selective multi-chromosomal enhancer hubs5. To obtain biochemical insight into this process, here we assembled olfactory receptor (OR) enhancer hubs in vitro with recombinant proteins and enhancer DNA. Cell-free reconstitution of enhancer hubs revealed that OR enhancers form nucleoprotein condensates with unusual, solid-like characteristics. Assembly of these solid condensates is orchestrated by specific DNA motifs enriched in OR enhancers, which are likely to confer distinct homotypic properties on their resident LHX2-EBF1-LDB1 complexes. Single-molecule tracking and pulse-chase experiments in vivo confirmed that LHX2 and EBF1 assemble OR-transcription-competent condensates with solid properties in OSN nuclei, under physiological concentrations of protein. Thus, homophilic nucleoprotein interactions that are influenced by DNA sequence generate new types of biomolecular condensate, which might provide a generalizable explanation for the stability and specificity of long-range genomic contacts across cell types.
Collapse
Affiliation(s)
- Joan Pulupa
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Natalie G McArthur
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Olga Stathi
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Miao Wang
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Marianna Zazhytska
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Isabella D Pirozzolo
- Medical Scientist Training Program, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Chai H, Huang X, Xiong G, Huang J, Pels KK, Meng L, Han J, Tang D, Pan G, Deng L, Xiao Q, Wang X, Zhang M, Banecki K, Plewczynski D, Wei CL, Ruan Y. Tri-omic single-cell mapping of the 3D epigenome and transcriptome in whole mouse brains throughout the lifespan. Nat Methods 2025; 22:994-1007. [PMID: 40301621 DOI: 10.1038/s41592-025-02658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/13/2025] [Indexed: 05/01/2025]
Abstract
Exploring the genomic basis of transcriptional programs has been a long-standing research focus. Here we report a single-cell method, ChAIR, to map chromatin accessibility, chromatin interactions and RNA expression simultaneously. After validating in cultured cells, we applied ChAIR to whole mouse brains and delineated the concerted dynamics of epigenome, three-dimensional (3D) genome and transcriptome during maturation and aging. In particular, gene-centric chromatin interactions and open chromatin states provided 3D epigenomic mechanism underlying cell-type-specific transcription and revealed spatially resolved specificity. Importantly, the composition of short-range and ultralong chromatin contacts in individual cells is remarkably correlated with transcriptional activity, open chromatin state and genome folding density. This genomic property, along with associated cellular properties, differs in neurons and non-neuronal cells across different anatomic regions throughout the lifespan, implying divergent nuclear mechano-genomic mechanisms at play in brain cells. Our results demonstrate ChAIR's robustness in revealing single-cell 3D epigenomic states of cell-type-specific transcription in complex tissues.
Collapse
Affiliation(s)
- Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xingyu Huang
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guangzhou Xiong
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiaxiang Huang
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Katarzyna Karolina Pels
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lingyun Meng
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jin Han
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dongmei Tang
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Guanjing Pan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liang Deng
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qin Xiao
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotao Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Shanghai Key Laboratory of Reproduction and Development, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Krzysztof Banecki
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Chia-Lin Wei
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Takei Y, Yang Y, White J, Goronzy IN, Yun J, Prasad M, Ombelets LJ, Schindler S, Bhat P, Guttman M, Cai L. Spatial multi-omics reveals cell-type-specific nuclear compartments. Nature 2025; 641:1037-1047. [PMID: 40205045 DOI: 10.1038/s41586-025-08838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding their relationships rests on identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci and transcriptional levels in individual cells, all in complex tissues. Here, we introduce two-layer DNA seqFISH+, which enables simultaneous mapping of 100,049 genomic loci, together with the nascent transcriptome for 17,856 genes and subnuclear structures in single cells. These data enable imaging-based chromatin profiling of diverse subnuclear markers and can capture their changes at genomic scales ranging from 100-200 kilobases to approximately 1 megabase, depending on the marker and DNA locus. By using multi-omics datasets in the adult mouse cerebellum, we showed that repressive chromatin regions are more variable by cell type than are active regions across the genome. We also discovered that RNA polymerase II-enriched foci were locally associated with long, cell-type-specific genes (bigger than 200 kilobases) in a manner distinct from that of nuclear speckles. Furthermore, our analysis revealed that cell-type-specific regions of heterochromatin marked by histone H3 trimethylated at lysine 27 (H3K27me3) and histone H4 trimethylated at lysine 20 (H4K20me3) are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear structures, associated genomic loci and their effects on gene regulation, directly within complex tissues.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Yujing Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Meera Prasad
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Wang F, Lin J, Alinejad-Rokny H, Ma W, Meng L, Huang L, Yu J, Chen N, Wang Y, Yao Z, Xie W, Wong KC, Li X. Unveiling Multi-Scale Architectural Features in Single-Cell Hi-C Data Using scCAFE. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416432. [PMID: 40270467 DOI: 10.1002/advs.202416432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/12/2025] [Indexed: 04/25/2025]
Abstract
Single-cell Hi-C (scHi-C) has provided unprecedented insights into the heterogeneity of 3D genome organization. However, its sparse and noisy nature poses challenges for computational analyses, such as chromatin architectural feature identification. Here, scCAFE is introduced, which is a deep learning model for the multi-scale detection of architectural features at the single-cell level. scCAFE provides a unified framework for annotating chromatin loops, TAD-like domains (TLDs), and compartments across individual cells. This model outperforms previous scHi-C loop calling methods and delivers accurate predictions of TLDs and compartments that are biologically consistent with previous studies. The resulting single-cell annotations also offer a measure to characterize the heterogeneity of different levels of architectural features across cell types. This heterogeneity is then leveraged to identify a series of marker loop anchors, demontrating the potential of the 3D genome data to annotate cell identities without the aid of simultaneously sequenced omics data. Overall, scCAFE not only serves as a useful tool for analyzing single-cell genomic architecture, but also paves the way for precise cell-type annotations solely based on 3D genome features.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Jiecong Lin
- Department of Computer Science, The University of Hong Kong, Pok Fu Lam, 000000, Hong Kong SAR
- Molecular Pathology Unit, Center for Cancer Research, Massachusetts General Hospital, Department of Pathology, Harvard Medical School, Boston, MA, 02129, USA
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Wenjing Ma
- School of Artificial Intelligence, Jilin University, Changchun, 132000, China
| | - Lingkuan Meng
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Lei Huang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Jixiang Yu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Yuchen Wang
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Zhongyu Yao
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Weidun Xie
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, 000000, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Changchun, 132000, China
| |
Collapse
|
9
|
Liang H, Berger B, Singh R. Tracing the Shared Foundations of Gene Expression and Chromatin Structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646349. [PMID: 40235997 PMCID: PMC11996408 DOI: 10.1101/2025.03.31.646349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The three-dimensional organization of chromatin into topologically associating domains (TADs) may impact gene regulation by bringing distant genes into contact. However, many questions about TADs' function and their influence on transcription remain unresolved due to technical limitations in defining TAD boundaries and measuring the direct effect that TADs have on gene expression. Here, we develop consensus TAD maps for human and mouse with a novel "bag-of-genes" approach for defining the gene composition within TADs. This approach enables new functional interpretations of TADs by providing a way to capture species-level differences in chromatin organization. We also leverage a generative AI foundation model computed from 33 million transcriptomes to define contextual similarity, an embedding-based metric that is more powerful than co-expression at representing functional gene relationships. Our analytical framework directly leads to testable hypotheses about chromatin organization across cellular states. We find that TADs play an active role in facilitating gene co-regulation, possibly through a mechanism involving transcriptional condensates. We also discover that the TAD-linked enhancement of transcriptional context is strongest in early developmental stages and systematically declines with aging. Investigation of cancer cells show distinct patterns of TAD usage that shift with chemotherapy treatment, suggesting specific roles for TAD-mediated regulation in cellular development and plasticity. Finally, we develop "TAD signatures" to improve statistical analysis of single-cell transcriptomic data sets in predicting cancer cell-line drug response. These findings reshape our understanding of cellular plasticity in development and disease, indicating that chromatin organization acts through probabilistic mechanisms rather than deterministic rules. Software availability https://singhlab.net/tadmap.
Collapse
|
10
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
11
|
Lee J, Chen LF, Gaudin S, Gupta K, Spakowitz A, Boettiger AN. Kinetic organization of the genome revealed by ultra-resolution, multiscale live imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645817. [PMID: 40236138 PMCID: PMC11996339 DOI: 10.1101/2025.03.27.645817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the last decade, sequencing methods like Hi-C have made it clear the genome is intricately folded, and that this organization contributes significantly to the control of gene expression and thence cell fate and behavior. Single-cell DNA tracing microscopy and polymer physics-based simulations of genome folding have proposed these population-scale patterns arise from motor- driven, heterogeneous movement, rather than stable 3D genomic architecture, implying that motion, rather than structure, is key to understanding genome function. However, tools to directly observe this motion in vivo have been limited in coverage and resolution. Here we describe TRansposon Assisted Chromatin Kinetic Imaging Technology (TRACK-IT), which combines a suite of imaging and labeling improvements to achieve ultra-resolution in space and time, with self-mapping transposons to distribute labels across the chromosome, uncovering dynamic behaviors across four orders of magnitude of genomic separation. We find that sequences separated by sub-megabase distances, typically 200-500 nm of nanometers apart, can transition to close proximity in tens of seconds - faster than previously hypothesized. This rapid motion is dependent upon cohesin and is exhibited only within certain genomic domains. Domain borders act as kinetic impediments to this search process, substantially slowing the rate and frequency of the transition to proximity. The genomic separation-dependent scaling of the search time for cis-interactions within a domain violates predictions of diffusion, suggesting motor driven folding. This distinctive scaling is lost following cohesin depletion, replaced with a behavior consistent with diffusion. Finally, we found cohesin containing cells exhibited rare, processive movements, not seen in cohesin depleted cells. These processive trajectories exhibit extrusion rates of ∼2.7 kb/s across three distinct genomic intervals, faster than recent in vitro measurements and prior estimates from in vivo data. Taken together, these results reveal a genome in motion across multiple genomic and temporal scales, where motor-dependent extrusion divides the sequence, not into spatially separate domains, but into kinetically separated domains that experience accelerated local search.
Collapse
|
12
|
Zhou J, Wu Y, Liu H, Tian W, Castanon RG, Bartlett A, Zhang Z, Yao G, Shi D, Clock B, Marcotte S, Nery JR, Liem M, Claffey N, Boggeman L, Barragan C, Drigo RAE, Weimer AK, Shi M, Cooper-Knock J, Zhang S, Snyder MP, Preissl S, Ren B, O’Connor C, Chen S, Luo C, Dixon JR, Ecker JR. Human Body Single-Cell Atlas of 3D Genome Organization and DNA Methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644697. [PMID: 40196612 PMCID: PMC11974725 DOI: 10.1101/2025.03.23.644697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Higher-order chromatin structure and DNA methylation are critical for gene regulation, but how these vary across the human body remains unclear. We performed multi-omic profiling of 3D genome structure and DNA methylation for 86,689 single nuclei across 16 human tissues, identifying 35 major and 206 cell subtypes. We revealed extensive changes in CG and non-CG methylation across almost all cell types and characterized 3D chromatin structure at an unprecedented cellular resolution. Intriguingly, extensive discrepancies exist between cell types delineated by DNA methylation and genome structure, indicating that the role of distinct epigenomic features in maintaining cell identity may vary by lineage. This study expands our understanding of the diversity of DNA methylation and chromatin structure and offers an extensive reference for exploring gene regulation in human health and disease.
Collapse
Affiliation(s)
- Jingtian Zhou
- Arc Institute, Palo Alto, CA, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Yue Wu
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zuolong Zhang
- School of Software, Henan University, Kaifeng, Henan, China
| | - Guocong Yao
- School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China
| | - Dengxiaoyu Shi
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ben Clock
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samantha Marcotte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Nery
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michelle Liem
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Naomi Claffey
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cesar Barragan
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rafael Arrojo e Drigo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Center for Computational Systems Biology, Vanderbilt University, Nashville, TN
- Diabetes Research and Training Center (DRTC), Vanderbilt University Medical Center, Nashville, TN, 37235
| | - Annika K. Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyi Shi
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Departments of Biostatistics & Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Bing Ren
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carolyn O’Connor
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Shengbo Chen
- School of Software, Nanchang University, Nanchang, Jiangxi, China
| | - Chongyuan Luo
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R. Ecker
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
13
|
Liu S, Wang CY, Zheng P, Jia BB, Zemke NR, Ren P, Park HL, Ren B, Zhuang X. Cell type-specific 3D-genome organization and transcription regulation in the brain. SCIENCE ADVANCES 2025; 11:eadv2067. [PMID: 40009678 PMCID: PMC11864200 DOI: 10.1126/sciadv.adv2067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
3D organization of the genome plays a critical role in regulating gene expression. How 3D-genome organization differs among different cell types and relates to cell type-dependent transcriptional regulation remains unclear. Here, we used genome-scale DNA and RNA imaging to investigate 3D-genome organization in transcriptionally distinct cell types in the mouse cerebral cortex. We uncovered a wide spectrum of differences in the nuclear architecture and 3D-genome organization among different cell types, ranging from the size of the cell nucleus to higher-order chromosome structures and radial positioning of chromatin loci within the nucleus. These cell type-dependent variations in nuclear architecture and chromatin organization exhibit strong correlations with both the total transcriptional activity of the cell and transcriptional regulation of cell type-specific marker genes. Moreover, we found that the methylated DNA binding protein MeCP2 promotes active-inactive chromatin segregation and regulates transcription in a nuclear radial position-dependent manner that is highly correlated with its function in modulating active-inactive chromatin compartmentalization.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Cosmos Yuqi Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Bojing Blair Jia
- Bioinformatics and Systems Biology Graduate Program, Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Peter Ren
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Graduate Program in Biophysics, Harvard University, Cambridge, MA, USA
| | - Hannah L. Park
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Wu H, Wang M, Zheng Y, Xie XS. Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics. Cell Discov 2025; 11:8. [PMID: 39837831 PMCID: PMC11751028 DOI: 10.1038/s41421-025-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts. Our results show that genes with significant structural changes are enriched in pathways related to metabolic process and morphology change in neurons, and innate immune response in glial cells, highlighting the role of 3D genome organization in physiological brain aging. Furthermore, our multi-omics joint assay, dscHi-C-multiome, enables precise cell type identification in the adult mouse brain and uncovers the intricate relationship between genome architecture and gene expression. Collectively, we developed the sensitive, high-throughput dscHi-C and its multi-omics derivative, dscHi-C-multiome, demonstrating their potential for large-scale cell atlas studies in development and disease.
Collapse
Affiliation(s)
- Honggui Wu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maoxu Wang
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yinghui Zheng
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
15
|
Sun ED, Nagvekar R, Pogson AN, Brunet A. Brain aging and rejuvenation at single-cell resolution. Neuron 2025; 113:82-108. [PMID: 39788089 PMCID: PMC11842159 DOI: 10.1016/j.neuron.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Brain aging leads to a decline in cognitive function and a concomitant increase in the susceptibility to neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. A key question is how changes within individual cells of the brain give rise to age-related dysfunction. Developments in single-cell "omics" technologies, such as single-cell transcriptomics, have facilitated high-dimensional profiling of individual cells. These technologies have led to new and comprehensive characterizations of brain aging at single-cell resolution. Here, we review insights gleaned from single-cell omics studies of brain aging, starting with a cell-type-centric overview of age-associated changes and followed by a discussion of cell-cell interactions during aging. We highlight how single-cell omics studies provide an unbiased view of different rejuvenation interventions and comment on the promise of combinatorial rejuvenation approaches for the brain. Finally, we propose new directions, including models of brain aging and neural stem cells as a focal point for rejuvenation.
Collapse
Affiliation(s)
- Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA; Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | - Rahul Nagvekar
- Department of Genetics, Stanford University, Stanford, CA, USA; Genetics Graduate Program, Stanford University, Stanford, CA, USA
| | - Angela N Pogson
- Department of Genetics, Stanford University, Stanford, CA, USA; Developmental Biology Graduate Program, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
16
|
Aldridge AI, West AE. Epigenetics and the timing of neuronal differentiation. Curr Opin Neurobiol 2024; 89:102915. [PMID: 39277975 PMCID: PMC11611672 DOI: 10.1016/j.conb.2024.102915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024]
Abstract
Epigenetic regulation of the genome is required for cell-type differentiation during organismal development and is especially important to generate the panoply of specialized cell types that comprise the brain. Here, we review how progressive changes in the chromatin landscape, both in neural progenitors and in postmitotic neurons, orchestrate the timing of gene expression programs that underlie first neurogenesis and then functional neuronal maturation. We discuss how disease-associated mutations in chromatin regulators can change brain composition by impairing the timing of neurogenesis. Further, we highlight studies that are beginning to show how chromatin modifications are integrated at the level of chromatin architecture to coordinate changing transcriptional programs across developmental including in postmitotic neurons.
Collapse
Affiliation(s)
- Andrew I Aldridge
- Duke University School of Medicine, Department of Neurobiology, Durham, NC 27710, USA
| | - Anne E West
- Duke University School of Medicine, Department of Neurobiology, Durham, NC 27710, USA.
| |
Collapse
|
17
|
Chen ZJ, Das SS, Kar A, Lee SHT, Abuhanna KD, Alvarez M, Sukhatme MG, Gelev KZ, Heffel MG, Zhang Y, Avram O, Rahmani E, Sankararaman S, Heinonen S, Peltoniemi H, Halperin E, Pietiläinen KH, Luo C, Pajukanta P. Single-cell DNA methylome and 3D genome atlas of the human subcutaneous adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621694. [PMID: 39554055 PMCID: PMC11566006 DOI: 10.1101/2024.11.02.621694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Human subcutaneous adipose tissue (SAT) contains a diverse array of cell-types; however, the epigenomic landscape among the SAT cell-types has remained elusive. Our integrative analysis of single-cell resolution DNA methylation and chromatin conformation profiles (snm3C-seq), coupled with matching RNA expression (snRNA-seq), systematically cataloged the epigenomic, 3D topology, and transcriptomic dynamics across the SAT cell-types. We discovered that the SAT CG methylation (mCG) landscape is characterized by pronounced hyper-methylation in myeloid cells and hypo-methylation in adipocytes and adipose stem and progenitor cells (ASPCs), driving nearly half of the 705,063 detected differentially methylated regions (DMRs). In addition to the enriched cell-type-specific transcription factor binding motifs, we identified TET1 and DNMT3A as plausible candidates for regulating cell-type level mCG profiles. Furthermore, we observed that global mCG profiles closely correspond to SAT lineage, which is also reflected in cell-type-specific chromosome compartmentalization. Adipocytes, in particular, display significantly more short-range chromosomal interactions, facilitating the formation of complex local 3D genomic structures that regulate downstream transcriptomic activity, including those associated with adipogenesis. Finally, we discovered that variants in cell-type level DMRs and A compartments significantly predict and are enriched for variance explained in abdominal obesity. Together, our multimodal study characterizes human SAT epigenomic landscape at the cell-type resolution and links partitioned polygenic risk of abdominal obesity to SAT epigenome.
Collapse
|
18
|
Heffel MG, Zhou J, Zhang Y, Lee DS, Hou K, Pastor-Alonso O, Abuhanna KD, Galasso J, Kern C, Tai CY, Garcia-Padilla C, Nafisi M, Zhou Y, Schmitt AD, Li T, Haeussler M, Wick B, Zhang MJ, Xie F, Ziffra RS, Mukamel EA, Eskin E, Nowakowski TJ, Dixon JR, Pasaniuc B, Ecker JR, Zhu Q, Bintu B, Paredes MF, Luo C. Temporally distinct 3D multi-omic dynamics in the developing human brain. Nature 2024; 635:481-489. [PMID: 39385032 PMCID: PMC11560841 DOI: 10.1038/s41586-024-08030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
The human hippocampus and prefrontal cortex play critical roles in learning and cognition1,2, yet the dynamic molecular characteristics of their development remain enigmatic. Here we investigated the epigenomic and three-dimensional chromatin conformational reorganization during the development of the hippocampus and prefrontal cortex, using more than 53,000 joint single-nucleus profiles of chromatin conformation and DNA methylation generated by single-nucleus methyl-3C sequencing (snm3C-seq3)3. The remodelling of DNA methylation is temporally separated from chromatin conformation dynamics. Using single-cell profiling and multimodal single-molecule imaging approaches, we have found that short-range chromatin interactions are enriched in neurons, whereas long-range interactions are enriched in glial cells and non-brain tissues. We reconstructed the regulatory programs of cell-type development and differentiation, finding putatively causal common variants for schizophrenia strongly overlapping with chromatin loop-connected, cell-type-specific regulatory regions. Our data provide multimodal resources for studying gene regulatory dynamics in brain development and demonstrate that single-cell three-dimensional multi-omics is a powerful approach for dissecting neuropsychiatric risk loci.
Collapse
Affiliation(s)
- Matthew G Heffel
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - Yi Zhang
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dong-Sung Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oier Pastor-Alonso
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin D Abuhanna
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Galasso
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin Kern
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chu-Yi Tai
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Carlos Garcia-Padilla
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mahsa Nafisi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Yi Zhou
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Terence Li
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Brittney Wick
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fangming Xie
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Ryan S Ziffra
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Eleazar Eskin
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Quan Zhu
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bogdan Bintu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Mercedes F Paredes
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Developmental Stem Cell Biology, University of California, San Francisco, San Francisco, CA, USA.
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Fan S, Dang D, Gao L, Zhang S. ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single-Cell Hi-C and RNA FISH Data. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406364. [PMID: 39264290 PMCID: PMC11558076 DOI: 10.1002/advs.202406364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/03/2024] [Indexed: 09/13/2024]
Abstract
Although multiplexed DNA fluorescence in situ hybridization (FISH) enables tracking the spatial localization of thousands of genomic loci using probes within individual cells, the high rates of undetected probes impede the depiction of 3D chromosome structures. Current data imputation methods neither utilize single-cell Hi-C data, which elucidate 3D genome architectures using sequencing nor leverage multimodal RNA FISH data that reflect cell-type information, limiting the effectiveness of these methods in complex tissues such as the mouse brain. To this end, a novel multiplexed DNA FISH imputation method named ImputeHiFI is proposed, which fully utilizes the complementary structural information from single-cell Hi-C data and the cell type signature from RNA FISH data to obtain a high-fidelity and complete spatial location of chromatin loci. ImputeHiFI enhances cell clustering, compartment identification, and cell subtype detection at the single-cell level in the mouse brain. ImputeHiFI improves the recognition of cell-type-specific loops in three high-resolution datasets. In short, ImputeHiFI is a powerful tool capable of imputing multiplexed DNA FISH data from various resolutions and imaging protocols, facilitating studies of 3D genome structures and functions.
Collapse
Affiliation(s)
- Shichen Fan
- School of Computer Science and TechnologyXidian UniversityXi'an710071China
| | - Dachang Dang
- School of AutomationNorthwestern Polytechnical UniversityXi'an710072China
| | - Lin Gao
- School of Computer Science and TechnologyXidian UniversityXi'an710071China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDSAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of Systems BiologyHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesChinese Academy of SciencesHangzhou310024China
| |
Collapse
|
20
|
Zemke NR, Lee S, Mamde S, Yang B, Berchtold N, Maximiliano Garduño B, Indralingam HS, Bartosik WM, Lau PK, Dong K, Yang A, Tani Y, Chen C, Zeng Q, Ajith V, Tong L, Seng C, Li D, Wang T, Xu X, Ren B. Epigenetic and 3D genome reprogramming during the aging of human hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618338. [PMID: 39463924 PMCID: PMC11507755 DOI: 10.1101/2024.10.14.618338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Age-related cognitive decline is associated with altered physiology of the hippocampus. While changes in gene expression have been observed in aging brain, the regulatory mechanisms underlying these changes remain underexplored. We generated single-nucleus gene expression, chromatin accessibility, DNA methylation, and 3D genome data from 40 human hippocampal tissues spanning adult lifespan. We observed a striking loss of astrocytes, OPC, and endothelial cells during aging, including astrocytes that play a role in regulating synapses. Microglia undergo a dramatic switch from a homeostatic state to a primed inflammatory state through DNA methylome and 3D genome reprogramming. Aged cells experience erosion of their 3D genome architecture. Our study identifies age-associated changes in cell types/states and gene regulatory features that provide insight into cognitive decline during human aging.
Collapse
Affiliation(s)
- Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Sainath Mamde
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nicole Berchtold
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
- Immunis Inc, 18301 Von Karman Ave; Irvine, CA, USA
| | - B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Hannah S. Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Amanda Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Yasmine Tani
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Chumo Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Qiurui Zeng
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Varun Ajith
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Liqi Tong
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Chanrung Seng
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine; St. Louis, MO, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
- The Center for Neural Circuit Mapping, University of California; Irvine, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| |
Collapse
|
21
|
Labade AS, Chiang ZD, Comenho C, Reginato PL, Payne AC, Earl AS, Shrestha R, Duarte FM, Habibi E, Zhang R, Church GM, Boyden ES, Chen F, Buenrostro JD. Expansion in situ genome sequencing links nuclear abnormalities to hotspots of aberrant euchromatin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614614. [PMID: 39386718 PMCID: PMC11463693 DOI: 10.1101/2024.09.24.614614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microscopy and genomics are both used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. While emerging multiplexed imaging methods can simultaneously localize genomic regions and nuclear proteins, their ability to accurately measure DNA-protein interactions is constrained by the diffraction limit of optical microscopy. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. We applied ExIGS to fibroblast cells derived from an individual with Hutchinson-Gilford progeria syndrome to characterize how variation in nuclear morphology affects spatial chromatin organization. Using this data, we discovered that lamin abnormalities are linked to hotspots of aberrant euchromatin repression that may erode cell identity. Further, we show that lamin abnormalities heterogeneously increase the repressive environment of the nucleus in tissues and aged cells. These results demonstrate that ExIGS may serve as a generalizable platform for connecting nuclear abnormalities to changes in gene regulation across disease contexts.
Collapse
|
22
|
Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci 2024; 25:611-624. [PMID: 39030273 DOI: 10.1038/s41583-024-00837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Taylor CA, Maor-Nof M, Metzl-Raz E, Hidalgo A, Yee C, Gitler AD, Shen K. Histone deacetylase inhibition expands cellular proteostasis repertoires to enhance neuronal stress resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608176. [PMID: 39229034 PMCID: PMC11370365 DOI: 10.1101/2024.08.21.608176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Neurons are long-lived, terminally differentiated cells with limited regenerative capacity. Cellular stressors such as endoplasmic reticulum (ER) protein folding stress and membrane trafficking stress accumulate as neurons age and accompany age-dependent neurodegeneration. Current strategies to improve neuronal resilience are focused on using factors to reprogram neurons or targeting specific proteostasis pathways. We discovered a different approach. In an unbiased screen for modifiers of neuronal membrane trafficking defects, we unexpectedly identified a role for histone deacetylases (HDACs) in limiting cellular flexibility in choosing cellular pathways to respond to diverse types of stress. Genetic or pharmacological inactivation of HDACs resulted in improved neuronal health in response to ER protein folding stress and endosomal membrane trafficking stress in C. elegans and mammalian neurons. Surprisingly, HDAC inhibition enabled neurons to activate latent proteostasis pathways tailored to the nature of the individual stress, instead of generalized transcriptional upregulation. These findings shape our understanding of neuronal stress responses and suggest new therapeutic strategies to enhance neuronal resilience.
Collapse
Affiliation(s)
- Caitlin A. Taylor
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| | - Maya Maor-Nof
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| | - Eyal Metzl-Raz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aaron Hidalgo
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Callista Yee
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Aaron D. Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, 94158, USA
| | - Kang Shen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, 94305 USA
| |
Collapse
|
24
|
Bing X, Ke W, Fujioka M, Kurbidaeva A, Levitt S, Levine M, Schedl P, Jaynes JB. Chromosome structure in Drosophila is determined by boundary pairing not loop extrusion. eLife 2024; 13:RP94070. [PMID: 39110499 PMCID: PMC11305675 DOI: 10.7554/elife.94070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the 'loop-extrusion' and the 'boundary-pairing' models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.
Collapse
Affiliation(s)
- Xinyang Bing
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Wenfan Ke
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Amina Kurbidaeva
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Sarah Levitt
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Mike Levine
- Lewis Sigler Institute, Princeton UniversityPrincetonUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
25
|
Zocher S. Targeting neuronal epigenomes for brain rejuvenation. EMBO J 2024; 43:3312-3326. [PMID: 39009672 PMCID: PMC11329789 DOI: 10.1038/s44318-024-00148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, 01307, Dresden, Germany.
| |
Collapse
|
26
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
27
|
Ma F, Cao Y, Du H, Braikia FZ, Zong L, Ollikainen N, Bayer M, Qiu X, Park B, Roy R, Nandi S, Sarantopoulou D, Ziman A, Bianchi AH, Beerman I, Zhao K, Grosschedl R, Sen R. Three-dimensional chromatin reorganization regulates B cell development during ageing. Nat Cell Biol 2024; 26:991-1002. [PMID: 38866970 PMCID: PMC11178499 DOI: 10.1038/s41556-024-01424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
The contribution of three-dimensional genome organization to physiological ageing is not well known. Here we show that large-scale chromatin reorganization distinguishes young and old bone marrow progenitor (pro-) B cells. These changes result in increased interactions at the compartment level and reduced interactions within topologically associated domains (TADs). The gene encoding Ebf1, a key B cell regulator, switches from compartment A to B with age. Genetically reducing Ebf1 recapitulates some features of old pro-B cells. TADs that are most reduced with age contain genes important for B cell development, including the immunoglobulin heavy chain (Igh) locus. Weaker intra-TAD interactions at Igh correlate with altered variable (V), diversity (D) and joining (J) gene recombination. Our observations implicate three-dimensional chromatin reorganization as a major driver of pro-B cell phenotypes that impair B lymphopoiesis with age.
Collapse
Affiliation(s)
- Fei Ma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Hansen Du
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Fatima Zohra Braikia
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Le Zong
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Noah Ollikainen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Marc Bayer
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Xiang Qiu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Bongsoo Park
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Satabdi Nandi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Dimitra Sarantopoulou
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | | | - Aisha Haley Bianchi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Init, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
28
|
Wen X, Luo Z, Zhao W, Calandrelli R, Nguyen TC, Wan X, Charles Richard JL, Zhong S. Single-cell multiplex chromatin and RNA interactions in ageing human brain. Nature 2024; 628:648-656. [PMID: 38538789 PMCID: PMC11023937 DOI: 10.1038/s41586-024-07239-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Dynamically organized chromatin complexes often involve multiplex chromatin interactions and sometimes chromatin-associated RNA1-3. Chromatin complex compositions change during cellular differentiation and ageing, and are expected to be highly heterogeneous among terminally differentiated single cells4-7. Here we introduce the multinucleic acid interaction mapping in single cells (MUSIC) technique for concurrent profiling of multiplex chromatin interactions, gene expression and RNA-chromatin associations within individual nuclei. When applied to 14 human frontal cortex samples from older donors, MUSIC delineated diverse cortical cell types and states. We observed that nuclei exhibiting fewer short-range chromatin interactions were correlated with both an 'older' transcriptomic signature and Alzheimer's disease pathology. Furthermore, the cell type exhibiting chromatin contacts between cis expression quantitative trait loci and a promoter tends to be that in which these cis expression quantitative trait loci specifically affect the expression of their target gene. In addition, female cortical cells exhibit highly heterogeneous interactions between XIST non-coding RNA and chromosome X, along with diverse spatial organizations of the X chromosomes. MUSIC presents a potent tool for exploration of chromatin architecture and transcription at cellular resolution in complex tissues.
Collapse
Affiliation(s)
- Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Zhifei Luo
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Wenxin Zhao
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Riccardo Calandrelli
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tri C Nguyen
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Genetics, School of Medicine, Stanford, CA, USA
| | - Xueyi Wan
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Liu S, Zheng P, Wang CY, Jia BB, Zemke NR, Ren B, Zhuang X. Cell-type-specific 3D-genome organization and transcription regulation in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.570024. [PMID: 38105994 PMCID: PMC10723369 DOI: 10.1101/2023.12.04.570024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
3D organization of the genome plays a critical role in regulating gene expression. However, it remains unclear how chromatin organization differs among different cell types in the brain. Here we used genome-scale DNA and RNA imaging to investigate 3D-genome organization in transcriptionally distinct cell types in the primary motor cortex of the mouse brain. We uncovered a wide spectrum of differences in the nuclear architecture and 3D-genome organization among different cell types, ranging from the physical size of the cell nucleus to the active-inactive chromatin compartmentalization and radial positioning of chromatin loci within the nucleus. These cell-type-dependent variations in nuclear architecture and chromatin organization exhibited strong correlation with both total transcriptional activity of the cell and transcriptional regulation of cell-type-specific marker genes. Moreover, we found that the methylated-DNA-binding protein MeCP2 regulates transcription in a divergent manner, depending on the nuclear radial positions of chromatin loci, through modulating active-inactive chromatin compartmentalization.
Collapse
Affiliation(s)
- Shiwei Liu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Pu Zheng
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Cosmos Yuqi Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| | - Bojing Blair Jia
- Bioinformatics and Systems Biology Graduate Program, Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine and Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
30
|
Liu H, Zeng Q, Zhou J, Bartlett A, Wang BA, Berube P, Tian W, Kenworthy M, Altshul J, Nery JR, Chen H, Castanon RG, Zu S, Li YE, Lucero J, Osteen JK, Pinto-Duarte A, Lee J, Rink J, Cho S, Emerson N, Nunn M, O'Connor C, Wu Z, Stoica I, Yao Z, Smith KA, Tasic B, Luo C, Dixon JR, Zeng H, Ren B, Behrens MM, Ecker JR. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature 2023; 624:366-377. [PMID: 38092913 PMCID: PMC10719113 DOI: 10.1038/s41586-023-06805-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.
Collapse
Affiliation(s)
- Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Qiurui Zeng
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bang-An Wang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Peter Berube
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wei Tian
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mia Kenworthy
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jordan Altshul
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Huaming Chen
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Songpeng Zu
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Jacinta Lucero
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia K Osteen
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Antonio Pinto-Duarte
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasper Lee
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jon Rink
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Silvia Cho
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nora Emerson
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Nunn
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhanghao Wu
- Sky Computing Lab, University of California, Berkeley, Berkeley, CA, USA
| | - Ion Stoica
- Sky Computing Lab, University of California, Berkeley, Berkeley, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse R Dixon
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|