1
|
Khan MI, Polturak G. Biotechnological production and emerging applications of betalains: A review. Biotechnol Adv 2025; 81:108576. [PMID: 40204005 DOI: 10.1016/j.biotechadv.2025.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Betalains are food-grade hydrophilic pigments with antioxidant and biological activities, predominantly found in plants. Betanin is a red-violet betalain synthesized from tyrosine through L-DOPA formation, its subsequent aromatic ring-opening, spontaneous cyclization to betalamic acid, and then pH-dependent condensation with i) cyclo-DOPA-5-O-glucoside or ii) cyclo-DOPA followed by 5-O-glucosylation. This short pathway in plants for betanin biosynthesis has been heterologously expressed in other organisms (e.g. non-betalainic plants, yeasts, and fungi) using CYP76AD1, DOD1, and cDOPA5GT or B5GT, corresponding to the enzymatic steps mentioned above. For the red-violet color formation through heterologous expression of the pathway genes in non-betalainic plants, a simplified reporter gene called RUBY has been developed recently. Without any systems engineering, expression of RUBY in non-betalainic plants resulted in accumulation of up to 203 mg betalains/100 g fresh weight of peanut leaves. In yeasts, Saccharomyces cerevisiae and Yarrowia lipolytica, and fungus Fusarium venenatum, betanin production has been achieved through overexpression of the pathway genes, with productivity reaching up to 0.62 mg/L/h, 26 mg/L/h, and 26.4 mg/L/h from d-glucose as carbon source, respectively, after considerable systems engineering and gene copy number augmentation. This review critically analyzes recent biotechnological production of betalains to highlight the advancements and strategies for improvement in the technology. Also, emerging applications of betalain biosynthetic gene products or betalains as biosensors, fluorescent probes, meat analog colors, and others are discussed to strengthen the need for systems engineering and process optimization for large-scale industrial production of these pigments.
Collapse
Affiliation(s)
- Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, India.
| | - Guy Polturak
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Matano T, Naitou K, Ferdous J, Shiina T, Shiraishi M. Proposal for a simple and easy-to-implement protocol for three-dimensional tissue imaging that is compatible with observation using a confocal microscope. Acta Histochem 2025; 127:152257. [PMID: 40273593 DOI: 10.1016/j.acthis.2025.152257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Tissue observation has traditionally been limited to obtaining two-dimensional information from thinly sliced tissues due to issues with light transmission and antibody penetration. In recent years, three-dimensional tissue observation methods combining tissue clearing and deep immunostaining methods have been reported. However, due to the significantly different procedures in these methods from conventional immunostaining methods and the requirement for an expensive and specialized light-sheet microscope for tissue observation, the widespread adoption of these methods has been limited. To promote the shift from the current two-dimensional tissue observation to three-dimensional tissue observation using a combination of tissue clearing and immunostaining, it is essential to establish a simple and easy-to-implement protocol that is compatible with observation using a confocal microscope, which is available in many facilities. In this study, we first examined the effects of tissue clearing and staining conditions of immunostaining with thin tissue slices. We showed that CUBIC-L enhances immunolabeling without diminishing the immunoreactivity of antigens. We also showed that high detergent concentrations enhance the intensity of immunoreactivity and that a two-step staining procedure is suitable for our proposed protocol. Based on the results, we propose a simple protocol that can be easily adapted from conventional methods and is compatible with confocal microscopes. The results of this study are expected to facilitate a shift from traditional methods to three-dimensional tissue observation techniques that combine tissue clearing and immunostaining, contributing to the broader adoption of three-dimensional tissue observation.
Collapse
Affiliation(s)
- Takuto Matano
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
| | - Jannatul Ferdous
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Mitsuya Shiraishi
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
3
|
Crosby CO, Dhand AP, Taasan JT, Burdick JA. Fabrication of Microgel-Reinforced Hydrogels via Vat Photopolymerization. ACS Macro Lett 2025; 14:603-609. [PMID: 40298865 DOI: 10.1021/acsmacrolett.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We report a facile method for the vat photopolymerization (i.e., digital light processing, DLP) of microgel-reinforced hydrogels that leverages both light and dark polymerization for curing. As an example, norbornene modified hyaluronic acid (NorHA) microgels at varying volume fractions swollen in acrylamide monomer are implemented as resins. When processed with DLP, acrylamide polymerization and cross-linking results in the formation of a secondary, continuous network that percolates through the microgels. At even low volume fractions (e.g., 30% v/v), the addition of microgels results in up to 4-fold increases in the stress at failure and work of fracture and a reduction in hydrogel swelling. The microgel-reinforced hydrogels are 3D printed into intricate shapes (e.g., metamaterial lattices) while maintaining uniform microgel distributions, and microgels with varied cross-link densities, cross-linkers, and fabrication methods are also investigated. This work expands the potential of microgel-reinforced hydrogels across applications where geometric freedom is essential.
Collapse
Affiliation(s)
- Cody O Crosby
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Department of Physics, Southwestern University, Georgetown, Texas 78626, United States
| | - Abhishek P Dhand
- Department of Bioengineering, University of Pennsylvania; Philadelphia, Pennsylvania 19104, United States
| | - Jonathan T Taasan
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Department of Bioengineering, University of Pennsylvania; Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Pang KKL, Mondal R, Sahasrabudhe A, Anikeeva P. Accessing the viscera: Technologies for interoception research. Curr Opin Neurobiol 2025; 93:103050. [PMID: 40383048 DOI: 10.1016/j.conb.2025.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Interoception, or the perception and regulation of body signals by the central nervous system, is critical for maintaining homeostasis and coordination of behaviors. Deciphering the mechanisms of interoception requires identifying pathways and decoding of diverse signals across the brain-body axis. These studies are enabled by tools to modulate and record physiological processes in the brain and visceral organs. While numerous advanced neurotechnologies are well-established in the brain, these techniques often offer limited utility for other organs, such as the gastrointestinal tract, heart, liver, or bladder. In this review, we highlight recent advances in technologies for recording and modulation of visceral organ physiology in small animals in vivo, with a focus on implantable bioelectronic organ interfaces that can be deployed in behaving animals. We discuss how such interfaces are made possible through innovations in materials and electronics and outline unmet technological challenges in interoception research.
Collapse
Affiliation(s)
- Karen K L Pang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States; K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States
| | - Rajib Mondal
- K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States; MIT-Harvard Graduate Program in Health Sciences and Technology, United States
| | - Atharva Sahasrabudhe
- K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States
| | - Polina Anikeeva
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, United States; K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, United States; Research Laboratory of Electronics, Massachusetts Institute of Technology, United States; Department of Materials Science and Engineering, Massachusetts Institute of Technology, United States.
| |
Collapse
|
5
|
Keck CHC, Schmidt EL, Zhao S, Liu Z, Zhang LY, Cui M, Chen X, Wang C, Cui H, Brongersma ML, Hong G. Achieving transient and reversible optical transparency in live mice with tartrazine. Nat Protoc 2025:10.1038/s41596-025-01187-z. [PMID: 40360854 DOI: 10.1038/s41596-025-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Optical imaging provides real-time visualization of tissues and cells at high spatial and temporal resolutions through techniques such as fluorescence microscopy, optical coherence tomography and photoacoustic imaging. However, overcoming light scattering, caused by mismatches in the refractive indices of tissue components such as water and lipids, still represents a major challenge, particularly when imaging through the thicker biological tissues of living animals. Despite advances in deep-tissue imaging, many optical methods struggle to achieve diffraction-limited resolution at depth or are unsuitable for use in live animals. Here we introduce a noninvasive approach to achieving transient and reversible optical transparency in live mice using absorbing dye molecules, using tartrazine as a representative example. Rooted in the fundamental physics of light-matter interactions, this approach enables reversible optical transparency in live animals and can be further applied ex vivo in freshly dissected tissues. In this Protocol, we detail the procedures for visualizing in vivo internal organs and muscle sarcomeres in the mouse abdomen and hindlimb through their respective transparency windows, showcasing a versatile approach for a variety of optical imaging applications in live animals. The entire protocol for an in vivo application can be implemented in just over 2 weeks by users with expertise in optical imaging and animal handling.
Collapse
Affiliation(s)
- Carl H C Keck
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Elizabeth Lea Schmidt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Su Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Zhongyu Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Ling-Yi Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Miao Cui
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Mark L Brongersma
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Cao R, Li Y, Zhou Y, Li M, Lin F, Wang W, Zhang G, Wang G, Jin B, Ren W, Sun Y, Zhao Z, Zhang W, Sun J, Hou Y, Xu X, Hu J, Shi W, Fu S, Liang Q, Lu Y, Li C, Zhao Y, Li Y, Kuang D, Wu J, Fei P, Qu J, Xi P. Dark-based optical sectioning assists background removal in fluorescence microscopy. Nat Methods 2025:10.1038/s41592-025-02667-6. [PMID: 40355726 DOI: 10.1038/s41592-025-02667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
In fluorescence microscopy, a persistent challenge is the defocused background that obscures cellular details and introduces artifacts. Here, we introduce Dark sectioning, a method inspired by natural image dehazing for removing backgrounds that leverages dark channel prior and dual frequency separation to provide single-frame optical sectioning. Unlike denoising or deconvolution, Dark sectioning specifically targets and removes out-of-focus backgrounds, stably improving the signal-to-background ratio by nearly 10 dB and structural similarity index measure of images by approximately tenfold. Dark sectioning was validated using wide-field, confocal, two/three-dimensional structured illumination and one/two-photon microscopy with high-fidelity reconstruction. We further demonstrate its potential to improve the segmentation accuracy in deep tissues, resulting in better recognition of neurons in the mouse brain and accurate assessment of nuclei in prostate lesions or mouse brain sections. Dark sectioning is compatible with many other microscopy modalities, including light-sheet and light-field microscopy, as well as processing algorithms, including deconvolution and super-resolution optical fluctuation imaging.
Collapse
Affiliation(s)
- Ruijie Cao
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yaning Li
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yao Zhou
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Meiqi Li
- School of Life Sciences, Peking University, Beijing, China
| | - Fangrui Lin
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Wenyi Wang
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
- Airy Technologies Co., Beijing, China
| | - Guoxun Zhang
- Department of Automation, Institute for Brain and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Gang Wang
- Airy Technologies Co., Beijing, China
| | - Boya Jin
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Wei Ren
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yu Sun
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Zhifeng Zhao
- Department of Automation, Institute for Brain and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Department of Computer Technology and Science, Anhui University of Finance and Economics, Bengbu, China
| | - Jing Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Hebei, China
| | - Yiwei Hou
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Xinzhu Xu
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Jiakui Hu
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
- Institution of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Wei Shi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuang Fu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qianxi Liang
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yanye Lu
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
- Institution of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Changhui Li
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China
| | - Yuxuan Zhao
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dong Kuang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiamin Wu
- Department of Automation, Institute for Brain and Cognitive Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China.
| | - Peng Xi
- Department of Biomedical Engineering, National Biomedical Imaging Center, Peking University, College of Future Technology, Beijing, China.
| |
Collapse
|
7
|
Smith LC, Hill TM. Ultrafiltration and Fluid Excretion in Echinoids Involves the Axial Organ with Elimination via the Intestine. Life (Basel) 2025; 15:767. [PMID: 40430194 PMCID: PMC12113024 DOI: 10.3390/life15050767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Many animals display nephridial structures for the ultrafiltration of metabolic waste. However, a nephridial equivalent and an excretory system are not generally recognized for echinoderms. Podocytes are nephridial cells that function in ultrafiltration of body fluids. Limited ultrastructural analyses of echinoderms identify cells with podocyte morphology in the axial organ and in the left coelom of larval sea urchins. Echinoid internal anatomy suggests that the excretory system functions by ultrafiltration in the axial organ, as well as filtrate flow via the water vascular system for excretion through the madreporite; however, these reports are based on morphology. To verify podocytes in the axial organ, orthologues of podocyte-specific genes were evaluated in the sea urchin genome and RNAseq data sets. To verify excretion from the madreporite, fluorescein was used as a tracer for nephridial clearance, and was injected into the main body cavity of sea urchins. Results showed that genes encoding proteins that function in podocytes of vertebrates are expressed specifically in the axial organ of sea urchins, in agreement with orthologue expression in the nurse shark kidney. However, fluorescein clearance from the body cavity shows elimination from the anus rather than the madreporite. This leads to the hypothesis that fluorescein and metabolic waste clearance occur through ultrafiltration by podocytes in the axial organ, but that the filtrate flows into the haemal system and the haemal capillaries in the intestinal walls, from which fluid is transferred to the intestinal lumen for elimination through the anus. Future testing is proposed to evaluate fluorescein filtration from the blastocoel of larvae into the left coelom, and for excretion by small or juvenile echinoids that have undergone tissue clearance to visualize the route of fluorescein flow within the internal anatomy of cleared, intact sea urchins.
Collapse
Affiliation(s)
- L. Courtney Smith
- Department of Biological Sciences, George Washington University, Suite 6000, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Thomas M. Hill
- Department of Microbiology and Immunology, University of Maryland, Suite 380 Health Science Research Facility-I, 685 West Baltimore Street, Baltimore, MD 21201, USA;
| |
Collapse
|
8
|
Sun J, Fang T, Zhang Y, Wang J, Han H, Chou T, Liang J, Kalyon DM, Wang H, Wang S. Imaging-Guided Microscale Photothermal Stereolithography Bioprinting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500640. [PMID: 40112208 PMCID: PMC12079345 DOI: 10.1002/advs.202500640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Stereolithography bioprinting relies heavily on costly photoinitiators for polymerization, limiting its potential for further technical advancement to meet growing needs in tissue engineering and regenerative medicine. Thermal initiators, in contrast, are low cost, and rapid growth of the photothermal conversion field offers a wide range of materials and tools to convert light into heat. However, high-resolution photothermal stereolithography bioprinting remains unattainable due to the difficulty of confining heat in an aqueous environment. Here, this challenge has been fully addressed by establishing imaging-guided microscale photothermal stereolithography bioprinting (ImPSB). This technique is achieved through building a novel imaging-guided stereolithography system that provides depth-resolved visualization of the printing dynamics, creating a unique photothermal initiator in the second near-infrared window, and developing a new bioink by seeing and controlling the photothermal gelation process. ImPSB achieves a printing resolution of ≈47 µm and generates smooth lines of arbitrarily designed shapes with a cross-sectional diameter as small as ≈104 µm, representing an unprecedented scale from photothermal aqueous stereolithography. Its cellular biocompatibility in printing both bioscaffold and cell-laden hydrogel is demonstrated, and its feasibility of transdermal printing is also shown. This work sets a new path for high-resolution stereolithography bioprinting where the vast photothermal resources can be utilized.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Biomedical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Tianqi Fang
- Department of Biomedical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Yuze Zhang
- Department of Chemical Engineering and Materials ScienceStevens Institute of TechnologyHobokenNJ07030USA
| | - Jue Wang
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNJ07030USA
| | - Huan Han
- Department of Biomedical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Tsengming Chou
- Department of Chemical Engineering and Materials ScienceStevens Institute of TechnologyHobokenNJ07030USA
| | - Junfeng Liang
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNJ07030USA
| | - Dilhan M. Kalyon
- Department of Chemical Engineering and Materials ScienceStevens Institute of TechnologyHobokenNJ07030USA
| | - Hongjun Wang
- Department of Biomedical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| | - Shang Wang
- Department of Biomedical EngineeringStevens Institute of TechnologyHobokenNJ07030USA
| |
Collapse
|
9
|
Garbelli M, Chen Z. Food dye for optical clearing and in vivo imaging. Kidney Int 2025; 107:776-778. [PMID: 39929251 DOI: 10.1016/j.kint.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/21/2025] [Indexed: 03/10/2025]
Affiliation(s)
- Marco Garbelli
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland; Brain Research Institute (HIFO), University of Zurich, Zurich, Switzerland; Center for Microscopy and Data Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Zhiyong Chen
- Department of Physiology, Mechanisms of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Liu R, Zhang Y, Liu W, Yu Z, Yu R, Yan H. Hyperbranched Polyborophosphate towards Transparent Epoxy Resin with Ultrahigh Toughness and Fire Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502839. [PMID: 40285585 DOI: 10.1002/smll.202502839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Inherent transparency makes epoxy resins ideal for aircraft windows, yet their brittleness and flammability remain challenges. Existing strategies for these issues often compromise transparency, with limited research on the mechanisms involved. Herein, a novel strategy is proposed for fabricating transparent epoxy resin by tuning the electrostatic potential distribution via hyperbranched polyborophosphate. Electron-deficient boron and relatively electron-rich phosphorus atoms work synergistically to increase the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap, preventing visible light absorption. Meanwhile, the hyperbranched structure facilitates polymer network interpenetration to reduce porosity for decreased light scattering. This synergy results in a nearly colorless material with over 80% transmittance at 550 nm even at 4 mm thickness, along with full-band UV shielding. Notably, the material demonstrates a 114.7% increase in impact toughness (45.2 kJ m-2) due to dual dynamic B─O and P─O linkages. Besides, it yields a limiting oxygen index of 33% and a V0 rating in the underwriter laboratories vertical burning test, along with significant reductions in heat, smoke, and toxic gas release. The outstanding performance makes it stand out compared to reported advanced transparent epoxy resins, highlighting the significance of this work.
Collapse
Affiliation(s)
- Rui Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yifeng Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wenyan Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Zhiyu Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Ruizhi Yu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
11
|
Khalin I, Adarsh N, Schifferer M, Wehn A, Boide-Trujillo VJ, Mamrak U, Shrouder J, Misgeld T, Filser S, Klymchenko AS, Plesnila N. Nanocarrier Drug Release and Blood-Brain Barrier Penetration at Post-Stroke Microthrombi Monitored by Real-Time Förster Resonance Energy Transfer. ACS NANO 2025; 19:14780-14794. [PMID: 40180319 PMCID: PMC12020413 DOI: 10.1021/acsnano.4c17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Nanotechnology holds great promise for improving the delivery of therapeutics to the brain. However, current approaches often operate at the organ or tissue level and are limited by the lack of tools to dynamically monitor cargo delivery in vivo. We have developed highly fluorescent lipid nanodroplets (LNDs) that enable tracking of nanocarrier behavior at the subcellular level while also carrying a Förster resonance energy transfer (FRET)-based drug delivery detection system (FedEcs) capable of monitoring cargo release in vivo. Using two-photon microscopy, we demonstrate that circulating LNDs in naïve mouse brain vasculature exhibit 3D real-time FRET changes, showing size-dependent stability over 2 h in blood circulation. Further, in the Nanostroke model, dynamic intravital two-photon imaging revealed that LNDs accumulated within cerebral postischemic microthrombi, where they released their cargo significantly faster than in normal blood circulation. Furthermore, the blood-brain barrier (BBB) became permeable at the microclot sites thereby allowing accumulated FedEcs-LNDs to cross the BBB and deliver their cargo to the brain parenchyma. This microthrombi-associated translocation was confirmed at the ultrastructural level via volume-correlative light-electron microscopy. Consequently, FedEcs represents an advanced tool to quantitatively study the biodistribution and cargo release of nanocarriers at high resolution in real-time. By enabling us to resolve passive targeting mechanisms poststroke, specifically, accumulation, degradation, and extravasation via poststroke microthrombi, this system could significantly enhance the translational validation of nanocarriers for future treatments of brain diseases.
Collapse
Affiliation(s)
- Igor Khalin
- Institute
for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich 81377, Germany
- Normandie
University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging
of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and
Brain @ Caen-Normandie (BB@C), Caen 14000, France
| | - Nagappanpillai Adarsh
- Laboratory
de Biophotonique et Pharmacologie, University
of Strasbourg, Strasbourg 60024, France
- Department
of Polymer Chemistry, Government College
Attingal, Thiruvananthapuram 695101, Kerala, India
| | - Martina Schifferer
- German
Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
- Munich Cluster
of Systems Neurology (SyNergy), Munich 81377, Germany
| | - Antonia Wehn
- Institute
for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich 81377, Germany
- Department
of Neurosurgery, LMU University Hospital, Munich 81377, Germany
| | | | - Uta Mamrak
- Institute
for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich 81377, Germany
| | - Joshua Shrouder
- Institute
for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich 81377, Germany
| | - Thomas Misgeld
- German
Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany
- Munich Cluster
of Systems Neurology (SyNergy), Munich 81377, Germany
- Institute
of Neuronal Cell Biology, Technical University of Munich, Munich 80802, Germany
| | - Severin Filser
- Institute
for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich 81377, Germany
- Core
Research Facilities and Services-Light Microscope Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Andrey S. Klymchenko
- Laboratory
de Biophotonique et Pharmacologie, University
of Strasbourg, Strasbourg 60024, France
| | - Nikolaus Plesnila
- Institute
for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich 81377, Germany
- Munich Cluster
of Systems Neurology (SyNergy), Munich 81377, Germany
| |
Collapse
|
12
|
Yusoh NA, Gill MR, Tian X. Advancing super-resolution microscopy with metal complexes: functional imaging agents for nanoscale visualization. Chem Soc Rev 2025; 54:3616-3646. [PMID: 39981712 DOI: 10.1039/d4cs01193g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by overcoming the diffraction limit, offering nanoscale visualization of cellular structures and processes. However, the widespread use of organic fluorescent probes is often hindered by limitations such as photobleaching, short photostability, and inadequate performance in deep-tissue imaging. Metal complexes, with their superior photophysical properties, including exceptional photostability, tuneable luminescence, and extended excited-state lifetimes, address these challenges, enabling precise subcellular targeting and long-term imaging. Beyond imaging, their theranostic potential unlocks real-time diagnostics and treatments for diseases such as cancer and bacterial infections. This review explores recent advancements in applying metal complexes for SRM, focusing on their utility in visualizing intricate subcellular structures, capturing temporal dynamics in live cells and elucidating in vivo spatial organization. We emphasize how rational design strategies optimize biocompatibility, organelle specificity, and deep-tissue penetration, expanding their applicability in multiplexed imaging. Furthermore, we discuss the design of various metal nanoparticles (NPs) for SRM, along with emerging hybrid nanoscale probes that integrate metal complexes with gold (Au) scaffolds, offering promising avenues for overcoming current limitations. By highlighting both established successes and potential frontiers, this review provides a roadmap for leveraging metal complexes as versatile tools in advancing SRM applications.
Collapse
Affiliation(s)
- Nur Aininie Yusoh
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China.
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Xiaohe Tian
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Zuo T, Tao C, Liu X. Absorbing molecules as optical clearing agents improve the resolution and sensitivity of photoacoustic microscopy. OPTICS LETTERS 2025; 50:2282-2285. [PMID: 40167701 DOI: 10.1364/ol.555723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Photoacoustic microscopy (PAM) offers high resolution and 100% sensitivity to optical absorption, making it promising for biomedicine. However, strong light scattering in tissues limits its imaging depth, intensity, and resolution. Optical clearing agents (OCA) can reduce light scattering. However, traditional methods often use toxic substances or damage tissue components, restricting their application in living tissues. Recently, tartrazine, a common food pigment, has been shown to significantly improve tissue optical transparency while maintaining good biosafety. However, it is unclear whether tartrazine as an absorbing molecule is suitable for use in PAM. In this study, we show that tartrazine, despite its strong light absorption, can significantly enhance the performance of PAM, when used at an appropriate concentration. Our ex vivo experiments demonstrate tartrazine solution enables PAM to achieve an optical resolution of 21 μm even through the skin. A 0.6 M tartrazine solution improves resolution by 3.5 times and the imaging intensity by 4.5 times. Finally, in vivo brain imaging of a mouse with an intact scalp reveals that tartrazine not only increases the imaging intensity by about 4 times but also allows PAM to achieve an optical resolution of brain through the scalp and skull, revealing much more details of the microvasculature in the brain.
Collapse
|
14
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
15
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
16
|
Nagano S, Song C, Rohr V, Mackintosh MJ, Hoang OT, Kraskov A, Yang Y, Hughes J, Heyne K, Mroginski MA, Schapiro I, Hildebrandt P. Integrated Study of Fluorescence Enhancement in the Y176H Variant of Cyanobacterial Phytochrome Cph1. Biochemistry 2025; 64:1348-1358. [PMID: 40015976 PMCID: PMC11924222 DOI: 10.1021/acs.biochem.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Phytochromes are red-light-sensitive biliprotein photoreceptors that control a variety of physiological processes in plants, fungi, and bacteria. Lately, greater attention has been paid to these photoreceptors due to their potential as fluorescent probes for deep-tissue microscopy. Such fluorescing phytochromes have been generated by multiple amino acid substitutions in weakly fluorescent wild-type (WT) proteins. Remarkably, the single substitution of conserved Tyr176 by His in cyanobacterial phytochrome Cph1 increases the fluorescence quantum yield from 2.4 to 14.5%. In this work, we studied this Y176H variant by crystallography, MAS NMR, resonance Raman spectroscopy, and ultrafast absorption spectroscopy complemented by theoretical methods. Two factors were identified to account for the strong fluorescence increase. First, the equilibrium between the photoactive and fluorescent substates of WT Cph1 was shown to shift entirely to the fluorescent substate in Y176H. Second, structural flexibility of the chromophore is drastically reduced and the photoisomerization barrier is raised, thereby increasing the excited-state lifetime. The most striking finding, however, is that Y176H includes the structural properties of both the dark-adapted Pr and the light-activated Pfr state. While the chromophore adopts the Pr-typical ZZZssa configuration, the tongue segment of the protein adopts a Pfr-typical α-helical structure. This implies that Tyr176 plays a key role in coupling chromophore photoisomerization to the sheet-to-helix transition of the tongue and the final Pfr structure. This conclusion extends to plant phytochromes, where the homologous substitution causes light-independent signaling activity akin to that of Pfr.
Collapse
Affiliation(s)
- Soshichiro Nagano
- Institute
for Plant Physiology, Justus Liebig University, Senckenbergstr. 3, Giessen D-35390, Germany
| | - Chen Song
- Institute
for Analytical Chemistry, University of
Leipzig, Johannisallee 29, Leipzig D-04103, Germany
| | - Valentin Rohr
- Institute
for Analytical Chemistry, University of
Leipzig, Johannisallee 29, Leipzig D-04103, Germany
| | - Megan J. Mackintosh
- Fritz Haber
Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oanh Tu Hoang
- Institute
for Chemistry, Technical University of Berlin, Str. des 17. Juni 135, Berlin D-10623, Germany
| | - Anastasia Kraskov
- Institute
for Chemistry, Technical University of Berlin, Str. des 17. Juni 135, Berlin D-10623, Germany
| | - Yang Yang
- Department
of Physics, Free University of Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Jon Hughes
- Institute
for Plant Physiology, Justus Liebig University, Senckenbergstr. 3, Giessen D-35390, Germany
- Department
of Physics, Free University of Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Karsten Heyne
- Department
of Physics, Free University of Berlin, Arnimallee 14, Berlin D-14195, Germany
| | - Maria-Andrea Mroginski
- Institute
for Chemistry, Technical University of Berlin, Str. des 17. Juni 135, Berlin D-10623, Germany
| | - Igor Schapiro
- Fritz Haber
Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Peter Hildebrandt
- Institute
for Chemistry, Technical University of Berlin, Str. des 17. Juni 135, Berlin D-10623, Germany
| |
Collapse
|
17
|
Qin J, Wu X, Krueger A, Hecht B. Light-driven plasmonic microrobot for nanoparticle manipulation. Nat Commun 2025; 16:2570. [PMID: 40089456 PMCID: PMC11910605 DOI: 10.1038/s41467-025-57871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Recently light-driven microdrones have been demonstrated, making use of plasmonic nanomotors based on directional resonant chiral light scattering. These nanomotors can be addressed individually, without requiring the tracking of a focused laser, leading to exceptional 2D maneuverability which renders microdrones a versatile robotic platform in aqueous environments. Here, we incorporate a light-operated manipulator, a plasmonic nano-tweezer, into the microdrone platform, rendering it a microrobot by enabling precise, all-optical transport and delivery of single nanoparticles suspended in solution. The plasmonic nano-tweezer consists of a resonant cross-antenna nanostructure exhibiting a central near-field hot spot, extending the ability of traditional optical tweezers based on focused laser beams to the trapping of nanoparticles. However, most of plasmonic nano-tweezers are fixed to the substrates and lack mobility. Our plasmonic microrobot utilizes circularly polarized light to control both motors and for stable trapping of a 70-nanometer fluorescent nanodiamond in the cross-antenna center. Complex sequences of microrobot operations, including trap-transport-release-trap-transport actions, demonstrate the microrobot's versatility and precision in picking up and releasing nanoparticles. Our microrobot design opens potential avenues in advancing nanotechnology and life sciences, with applications in targeted drug delivery, single-cell manipulation, and by providing an advanced quantum sensing platform, facilitating interdisciplinary research at the nanoscale.
Collapse
Affiliation(s)
- Jin Qin
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, Germany
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
18
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
19
|
Franceschini A, Jin M, Chen CW, Silvestri L, Mastrodonato A, Denny CA. Brain-wide immunolabeling and tissue clearing applications for engram research. Neurobiol Learn Mem 2025; 218:108032. [PMID: 39922482 DOI: 10.1016/j.nlm.2025.108032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In recent years, there has been significant progress in memory research, driven by genetic and imaging technological advances that have given unprecedented access to individual memory traces or engrams. Although Karl Lashley argued since the 1930s that an engram is not confined to a particular area but rather distributed across the entire brain, most current studies have focused exclusively on a single or few brain regions. However, this compartmentalized approach overlooks the interactions between multiple brain regions, limiting our understanding of engram mechanisms. More recently, several studies have begun to investigate engrams across the brain, but research is still limited by a lack of standardized techniques capable of reconstructing multiple ensembles at single-cell resolution across the entire brain. In this review, we guide researchers through the latest technological advancements and discoveries in immediate early gene (IEG) techniques, tissue clearing methods, microscope modalities, and automated large-scale analysis. These innovations could propel the field forward in building brain-wide engram maps of normal and disease states, thus, providing unprecedented new insights. Ultimately, this review aims to bridge the gap between research focused on single brain regions and the need for a comprehensive understanding of whole-brain engrams, revealing new approaches for exploring the neuronal mechanisms underlying engrams.
Collapse
Affiliation(s)
- Alessandra Franceschini
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY 10032, USA; European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, 50019 Italy
| | - Michelle Jin
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY 10032, USA; Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY 10027, USA
| | - Claire W Chen
- Cellular, Molecular, and Biomedical Sciences Graduate Program, Columbia University, New York, NY 10027, USA
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, 50019 Italy; Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
| | - Alessia Mastrodonato
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY 10032, USA; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY 10032, USA.
| | - Christine Ann Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY 10032, USA; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY 10032, USA.
| |
Collapse
|
20
|
Yip RKH, Hawkins ED, Bowden R, Rogers KL. Towards deciphering the bone marrow microenvironment with spatial multi-omics. Semin Cell Dev Biol 2025; 167:10-21. [PMID: 39889539 DOI: 10.1016/j.semcdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
Collapse
Affiliation(s)
- Raymond K H Yip
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | - Edwin D Hawkins
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rory Bowden
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
21
|
Keck CH, Schmidt EL, Roth RH, Floyd BM, Tsai AP, Garcia HB, Cui M, Chen X, Wang C, Park A, Zhao S, Liao PA, Casey KM, Reineking W, Cai S, Zhang LY, Yang Q, Yuan L, Baghdasaryan A, Lopez ER, Cooper L, Cui H, Esquivel D, Brinson K, Chen X, Wyss-Coray T, Coleman TP, Brongersma ML, Bertozzi CR, Wang GX, Ding JB, Hong G. Color-neutral and reversible tissue transparency enables longitudinal deep-tissue imaging in live mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639185. [PMID: 40060493 PMCID: PMC11888160 DOI: 10.1101/2025.02.20.639185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Light scattering in biological tissue presents a significant challenge for deep in vivo imaging. Our previous work demonstrated the ability to achieve optical transparency in live mice using intensely absorbing dye molecules, which created transparency in the red spectrum while blocking shorter-wavelength photons. In this paper, we extend this capability to achieve optical transparency across the entire visible spectrum by employing molecules with strong absorption in the ultraviolet spectrum and sharp absorption edges that rapidly decline upon entering the visible spectrum. This new color-neutral and reversible tissue transparency method enables optical transparency for imaging commonly used fluorophores in the green and yellow spectra. Notably, this approach facilitates tissue transparency for structural and functional imaging of the live mouse brain labeled with yellow fluorescent protein and GCaMP through the scalp and skull. We show that this method enables longitudinal imaging of the same brain regions in awake mice over multiple days during development. Histological analyses of the skin and systemic toxicology studies indicate minimal acute or chronic damage to the skin or body using this approach. This color-neutral and reversible tissue transparency technique opens new opportunities for noninvasive deep-tissue optical imaging, enabling long-term visualization of cellular structures and dynamic activity with high spatiotemporal resolution and chronic tracking capabilities.
Collapse
Affiliation(s)
- Carl H.C. Keck
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Elizabeth L. Schmidt
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Chemistry, Stanford University; Stanford, CA, USA
| | - Richard H. Roth
- Department of Neurosurgery, Stanford University; Stanford, CA, USA
| | | | - Andy P. Tsai
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Hassler B. Garcia
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Bioengineering, Stanford University; Stanford, CA, USA
| | - Miao Cui
- Department of Genetics, Stanford University; Stanford, CA, USA
| | | | | | - Andrew Park
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Su Zhao
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Pinyu A. Liao
- Department of Chemistry, Stanford University; Stanford, CA, USA
- Department of Computer Science, Stanford University; Stanford, CA, USA
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University; Stanford, CA, USA
| | - Wencke Reineking
- Department of Comparative Medicine, Stanford University; Stanford, CA, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Ling-Yi Zhang
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Qianru Yang
- Department of Neurosurgery, Stanford University; Stanford, CA, USA
| | - Lei Yuan
- Department of Biology, Stanford University; Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Eduardo R. Lopez
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Lauren Cooper
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Daniel Esquivel
- Department of Chemistry, Stanford University; Stanford, CA, USA
| | - Kenneth Brinson
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University; Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University; Stanford, CA, USA
| | - Todd P. Coleman
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
- Department of Bioengineering, Stanford University; Stanford, CA, USA
| | - Mark L. Brongersma
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
| | | | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University; Stanford, CA, USA
| | - Jun B. Ding
- Department of Neurosurgery, Stanford University; Stanford, CA, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University; Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA, USA
| |
Collapse
|
22
|
Visualizing drug effects over time in live animals using optical pharmacodynamics. Nat Chem Biol 2025:10.1038/s41589-025-01847-x. [PMID: 39953218 DOI: 10.1038/s41589-025-01847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
|
23
|
Wu Y, Hao C, Gao C, Hageman M, Lee S, Kirkland TA, Gray NS, Su Y, Lin MZ. Pharmacodynamics of Akt drugs revealed by a kinase-modulated bioluminescent indicator. Nat Chem Biol 2025:10.1038/s41589-025-01846-y. [PMID: 39934397 DOI: 10.1038/s41589-025-01846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Measuring pharmacodynamics (PD)-the biochemical effects of drug dosing-and correlating them with therapeutic efficacy in animal models is crucial for the development of effective drugs but traditional PD studies are labor and resource intensive. Here we developed a kinase-modulated bioluminescent indicator (KiMBI) for rapid, noninvasive PD assessment of Akt-targeted drugs, minimizing drug and animal use. Using KiMBI, we performed a structure-PD relationship analysis on the brain-active Akt inhibitor ipatasertib by generating and characterizing two novel analogs. One analog, ML-B01, successfully inhibited Akt in both the brain and the body. Interestingly, capivasertib, ipatasertib and ML-B01 all exhibited PD durations beyond their pharmacokinetic profiles. Furthermore, KiMBI revealed that the PD effects of an Akt-targeted proteolysis-targeting chimera degrader endured for over 3 days. Thus, bioluminescence imaging with Akt KiMBI provides a noninvasive and efficient method for in vivo visualization of the PD of Akt inhibitors and degraders.
Collapse
Affiliation(s)
- Yan Wu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Chao Gao
- Promega Corporation, San Luis Obispo, CA, USA
| | | | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Yichi Su
- Department of Nuclear Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Binner P, Starshynov I, Tejeda G, McFall A, Molloy C, Ciccone G, Walker M, Vassalli M, Tobin AB, Faccio D. Optical, contact-free assessment of brain tissue stiffness and neurodegeneration. BIOMEDICAL OPTICS EXPRESS 2025; 16:447-459. [PMID: 39958854 PMCID: PMC11828460 DOI: 10.1364/boe.545580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 02/18/2025]
Abstract
Dementia affects a large proportion of the world's population. Approaches that allow for early disease detection and non-invasive monitoring of disease progression are desperately needed. Current approaches are centred on costly imaging technologies such as positron emission tomography and magnetic resonance imaging. We propose an alternative approach to assess neurodegeneration based on diffuse correlation spectroscopy (DCS), a remote and optical sensing technique. We employ this approach to assess neurodegeneration in mouse brains from healthy animals and those with prion disease. We find a statistically significant difference in the optical speckle decorrelation times between prion-diseased and healthy animals. We directly calibrated our DCS technique using hydrogel samples of varying Young's modulus, indicating that we can optically measure changes in the brain tissue stiffness in the order of 60 Pa (corresponding to a 1 s change in speckle decorrelation time). DCS holds promise for contact-free assessment of tissue stiffness alteration due to neurodegeneration, with a similar sensitivity to contact-based (e.g. nanoindentation) approaches.
Collapse
Affiliation(s)
- Philip Binner
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Ilya Starshynov
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| | - Gonzalo Tejeda
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Aisling McFall
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Colin Molloy
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Giuseppe Ciccone
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology (BIST) Barcelona, Spain
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Walker
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Vassalli
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew B. Tobin
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniele Faccio
- School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
25
|
Ershad F, Rao Z, Maharajan S, Mesquita FCP, Ha J, Gonzalez L, Haideri T, Curty da Costa E, Moctezuma-Ramirez A, Wang Y, Jang S, Lu Y, Patel S, Wang X, Tao Y, Weygant J, Garciamendez-Mijares CE, Orrantia Clark LC, Zubair M, Lian XL, Elgalad A, Yang J, Hochman-Mendez C, Zhang YS, Yu C. Bioprinted optoelectronically active cardiac tissues. SCIENCE ADVANCES 2025; 11:eadt7210. [PMID: 39854455 PMCID: PMC11759005 DOI: 10.1126/sciadv.adt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light. Pulsed light stimulation of human cardiomyocytes showed that the optoelectronically active scaffold could increase their beating rates (>40%), maintain high cell viability under light stimulation (>96%), and negligibly affect the electrocardiogram morphology. The seeded scaffolds, termed optoelectronically active tissues, were able to successfully accelerate heart beating in vivo in rats. Our work demonstrates a viable wireless, printable, and optically controllable tissue, suggesting a transformative step in future therapy of electrically active tissues/organs.
Collapse
Affiliation(s)
- Faheem Ershad
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhoulyu Rao
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Sushila Maharajan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Junkyu Ha
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Angel Moctezuma-Ramirez
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Yuqi Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Seonmin Jang
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuntao Lu
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shubham Patel
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoyang Wang
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifan Tao
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Weygant
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Luis Carlos Orrantia Clark
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Muhammad Zubair
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdelmotagaly Elgalad
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Jian Yang
- Department of Materials Science and Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, P.R. China
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Cunjiang Yu
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
26
|
Niimi T, Miyazaki N, Oiki H, Uemura M, Zeng S, Promsut W, Ota N, Nonaka S, Takei H, Nittono H, Narushima S, Yanagida A, Hiramatsu R, Kanai-Azuma M, Takami S, Fujishiro J, Kanai Y. Versatile application of fast green FCF as a visible cholangiogram in adult mice to medium-sized mammals. Sci Rep 2025; 15:1960. [PMID: 39821095 PMCID: PMC11739563 DOI: 10.1038/s41598-024-84355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
An aqueous solution of a common food dye, Fast Green FCF (FG), mimics cholyl-lysyl-fluorescein to visualize embryonic bile flow via single peritoneal injection into intrauterine mouse embryos. Despite its efficacy in embryos, its suitability for adult mice and small to medium-sized mammals remained uncertain. In this study, we investigated FG cholangiography in adult mice, dogs, and goats. The results demonstrate that FG injection enables progressive cholangiography in these species, highlighting its versatility across different animal models without necessitating specialized equipment. To further evaluate diagnostic utility, FG cholangiography was performed in various mouse models of bile flow disorders. FG successfully visualized dilated lumina in the extrahepatic bile duct of BDL mice and revealed aberrant luminal structures in the gallbladder walls of Sox17+/- or Shh-cre; Sox17flox/- mice. In Mab21l1-/- mice with contracted gallbladders, FG influx was limited to the gallbladder neck. Moreover, stereomicroscopic video analysis of FG influx into the gallbladder post-fasting revealed differences in gallbladder wall state and its bile composition between Sox17+/- and wild-type mice, suggesting the potential for detecting variations in gallbladder stored bile properties. These findings underscore the efficacy of FG in facilitating progressive cholangiography across mammalian species.
Collapse
Affiliation(s)
- Tomoyuki Niimi
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nanae Miyazaki
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hironobu Oiki
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Pediatric Surgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mami Uemura
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shihan Zeng
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Watcharapon Promsut
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Noriaki Ota
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shunji Nonaka
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | | | - Seiko Narushima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryuji Hiramatsu
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animals, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shohei Takami
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
- Department of Pediatric Surgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
27
|
Herath HDW, Hu YS. Unveiling nanoparticle-immune interactions: how super-resolution imaging illuminates the invisible. NANOSCALE 2025; 17:1213-1224. [PMID: 39618290 PMCID: PMC12042815 DOI: 10.1039/d4nr03838j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nanoparticles (NPs) have attracted considerable attention in nanomedicine, particularly in harnessing and manipulating immune cells. However, the current understanding of the interactions between NPs and immune cells at the nanoscale remains limited. Advancing this knowledge guides the design principles of NPs. This review offers a historical perspective on the synergistic evolution of immunology and optical microscopy, examines the current landscape of NP applications in immunology, and explores the advancements in super-resolution imaging techniques, which provide new insights into nanoparticle-immune cell interactions. Key findings from recent studies are discussed, along with challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Herath D W Herath
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL, 60607-7061, USA.
| |
Collapse
|
28
|
Yu T, Zhu D. Strongly absorbing molecules make tissue transparent: a new insight for understanding tissue optical clearing. LIGHT, SCIENCE & APPLICATIONS 2025; 14:10. [PMID: 39741136 DOI: 10.1038/s41377-024-01675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Optical imaging plays a central role in the field of biomedicine, but it suffers from the light scattering of tissues. The research group from Stanford University has reported a counterintuitive observation that strongly absorbing molecules could achieve optical transparency in live animals, providing a new insight for understanding tissue optical clearing. It empowers scientists to leverage optical imaging techniques for in vivo observation of a wide range of deep-seated structures and activities.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
29
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
30
|
Gómez-Gaviro MV, Llorente V. In vivo optical tissue clearing using light-absorbing dyes. Lab Anim (NY) 2024; 53:361-362. [PMID: 39548347 DOI: 10.1038/s41684-024-01472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Affiliation(s)
- Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, Spain.
| | - Vicente Llorente
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
31
|
Khanal N, Padawer-Curry JA, Voss T, Schulte KA, Bice AR, Bauer AQ. Concurrent optogenetic motor mapping of multiple limbs in awake mice reveals cortical organization of coordinated movements. Brain Stimul 2024; 17:1229-1240. [PMID: 39476952 DOI: 10.1016/j.brs.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Motor mapping allows for determining the macroscopic organization of motor circuits and corresponding motor movement representations on the cortex. Techniques such as intracortical microstimulation (ICMS) are robust, but can be time consuming and invasive, making them non-ideal for cortex-wide mapping or longitudinal studies. In contrast, optogenetic motor mapping offers a rapid and minimally invasive technique, enabling mapping with high spatiotemporal resolution. However, motor mapping has seen limited use in tracking 3-dimensonal, multi-limb movements in awake animals. This gap has left open questions regarding the underlying organizational principles of motor control of coordinated, ethologically-relevant movements involving multiple limbs. OBJECTIVE Our first objective was to develop Multi-limb Optogenetic Motor Mapping (MOMM) to concurrently map motor movement representations of multiple limbs with high fidelity in awake mice. Having established MOMM, our next objective was determine whether maps of coordinated and ethologically-relevant motor output were topographically organized on the cortex. METHODS We combine optogenetic stimulation with a deep learning driven pose-estimation toolbox, DeepLabCut (DLC), and 3-dimensional triangulation to concurrently map motor movements of multiple limbs in awake mice. RESULTS MOMM consistently revealed cortical topographies for all mapped features within and across mice. Many motor maps overlapped and were topographically similar. Several motor movement representations extended beyond cytoarchitecturally defined somatomotor cortex. Finer articulations of the forepaw resided within gross motor movement representations of the forelimb. Moreover, many cortical sites exhibited concurrent limb coactivation when photostimulated, prompting the identification of several cortical regions harboring coordinated and ethologically-relevant movements. CONCLUSIONS The cortex appears to be topographically organized by motor programs, which are responsible for coordinated, multi-limbed, and behavior-like movements.
Collapse
Affiliation(s)
- Nischal Khanal
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Jonah A Padawer-Curry
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Trevor Voss
- Biophotonics Center, School of Engineering, Vanderbilt University, Keck FEL Center, Suite 200, 410 24th Ave. South, Nashville, TN 37232, United States.
| | - Kevin A Schulte
- University of Missouri School of Medicine, 1 Hospital Dr, Columbia, MO 65212, United States.
| | - Annie R Bice
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States.
| | - Adam Q Bauer
- Imaging Science Program, Washington University in St. Louis, St. Louis, Missouri, United States; Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States.
| |
Collapse
|
32
|
Zhou K, Yu Y, Xu L, Wang S, Li Z, Liu Y, Kwok RTK, Sun J, Lam JWY, He G, Zhao Z, Tang BZ. Aggregation-Induced Emission Luminogen Based Wearable Visible-Light Penetrator for Deep Photodynamic Therapy. ACS NANO 2024; 18:29930-29941. [PMID: 39423317 DOI: 10.1021/acsnano.4c10452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a preferred nonsurgical treatment in clinical applications due to its capacity to selectively eradicate diseased tissues while minimizing damage to normal tissue. Nevertheless, its clinical efficacy is constrained by the limited penetration of visible light. Although near-infrared (NIR) lasers offer enhanced tissue penetration, the dearth of suitable photosensitizers and a pronounced imaging-treatment disparity pose challenges. Additionally, clinical implementation via optical fiber implantation carries infection risks and necessitates minimally invasive surgery, contradicting PDT's noninvasive advantage. In this study, we introduce a brilliant approach utilizing aggregation-induced emission luminogens (AIEgen) to develop a visible-light penetrator (VLP), coupled with wireless light emitting diodes (LEDs), enabling deep photodynamic therapy. We validate the therapeutic efficacy of this visible-light penetrator in tissues inaccessible to conventional PDT, demonstrating significant suppression of inflammatory diffusion in vivo using AIEgen TBPPM loaded within the VLP, which exhibits a transmittance of 86% in tissues with a thickness of 3 mm. This innovative visible-light penetrator effectively overcomes the substantial limitations of PDT in clinical settings and holds promise for advancing phototherapy.
Collapse
Affiliation(s)
- Kun Zhou
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Ying Yu
- Hohai University (Changzhou Campus), Changzhou, Jiangsu 213200, China
| | - Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640 Guangzhou, China
| | - Siyuan Wang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Zhuojian Li
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Yong Liu
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, Guangdong 510530, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Zheng Zhao
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, China
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Biological and Chemical Engineering The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, Guangdong 510530, China
| |
Collapse
|
33
|
Narawane A, Trout R, Viehland C, Kuo AN, Vajzovic L, Dhalla AH, Toth CA. Optical Clearing with Tartrazine Enables Deep Transscleral Imaging with Optical Coherence Tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620343. [PMID: 39554080 PMCID: PMC11565854 DOI: 10.1101/2024.10.25.620343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Suprachoroidal injections are a relatively new method of drug delivery to treat retinal disease. At present, it is difficult to visualize the distribution of injection-delivered product beneath the sclera into the suprachoroidal space. Imaging the suprachoroidal space with OCT is hindered by scattering of light from densely packed collagen fibers of the sclera, limiting depth penetration of the OCT light. In this Letter, we demonstrate the first use of tartrazine (Yellow 5) as an optical clearing agent for suprachoroidal research imaging with OCT in an ex vivo eye model. Our results show that this clearing agent dramatically improves visualization of the choroid and suprachoroidal space with transscleral OCT and allows for improved imaging of the location and extent of delivered suprachoroidal fluid. We believe these methods will enable use of optical techniques such as OCT to image through a variety of previously optically inaccessible, highly scattering tissue samples.
Collapse
|
34
|
Wang F, Zhou C. 'Transparent mice': deep-tissue live imaging using food dyes. Commun Biol 2024; 7:1307. [PMID: 39394420 PMCID: PMC11470001 DOI: 10.1038/s42003-024-07012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Affiliation(s)
- Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
35
|
Yam AO, Jakovija A, Gatt C, Chtanova T. Neutrophils under the microscope: neutrophil dynamics in infection, inflammation, and cancer revealed using intravital imaging. Front Immunol 2024; 15:1458035. [PMID: 39439807 PMCID: PMC11493610 DOI: 10.3389/fimmu.2024.1458035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Neutrophils rapidly respond to inflammation resulting from infection, injury, and cancer. Intravital microscopy (IVM) has significantly advanced our understanding of neutrophil behavior, enabling real-time visualization of their migration, interactions with pathogens, and coordination of immune responses. This review delves into the insights provided by IVM studies on neutrophil dynamics in various inflammatory contexts. We also examine the dual role of neutrophils in tumor microenvironments, where they can either facilitate or hinder cancer progression. Finally, we highlight how computational modeling techniques, especially agent-based modeling, complement experimental data by elucidating neutrophil kinetics at the level of individual cells as well as their collective behavior. Understanding the role of neutrophils in health and disease is essential for developing new strategies for combating infection, inflammation and cancer.
Collapse
Affiliation(s)
- Andrew O. Yam
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Immune Biotherapeutics Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Arnolda Jakovija
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Gatt
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Tatyana Chtanova
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s School of Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
36
|
Myung J. Enhancing Bioluminescence Imaging of Cultured Tissue Explants Using Optical Telecompression. SENSORS (BASEL, SWITZERLAND) 2024; 24:6041. [PMID: 39338785 PMCID: PMC11436007 DOI: 10.3390/s24186041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Long-term observation of single-cell oscillations within tissue networks is now possible by combining bioluminescence reporters with stable tissue explant culture techniques. This method is particularly effective in revealing the network dynamics in systems with slow oscillations, such as circadian clocks. However, the low intensity of luciferase-based bioluminescence requires signal amplification using specialized cameras (e.g., I-CCDs and EM-CCDs) and prolonged exposure times, increasing baseline noise and reducing temporal resolution. To address this limitation, we implemented a cost-effective optical enhancement technique called telecompression, first used in astrophotography and now commonly used in digital photography. By combining a high numerical aperture objective lens with a magnification-reducing relay lens, we significantly increased the collection efficiency of the bioluminescence signal without raising the baseline CCD noise. This method allows for shorter exposure times in time-lapse imaging, enhancing temporal resolution and enabling more precise period estimations. Our implementation demonstrates the feasibility of telecompression for enhancing bioluminescence imaging for the tissue-level network observation of circadian clocks.
Collapse
Affiliation(s)
- Jihwan Myung
- Braintime Laboratory, Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, New Taipei City 235, Taiwan;
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
37
|
Coleman J. Transparent mice made with light-absorbing dye reveal organs at work. Nature 2024:10.1038/d41586-024-02887-4. [PMID: 39237784 DOI: 10.1038/d41586-024-02887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
|