1
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2025; 25:141-152. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Riller Q, Schmutz M, Fourgeaud J, Fischer A, Neven B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol Rev 2024; 328:243-264. [PMID: 39340232 PMCID: PMC11659928 DOI: 10.1111/imr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
| | - Jacques Fourgeaud
- Université Paris Cité, FETUSParisFrance
- Microbiology DepartmentAP‐HP, Hôpital NeckerParisFrance
| | - Alain Fischer
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
- INSERM UMRS 1163, Institut ImagineParisFrance
- Collège de FranceParisFrance
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine InstituteUniversité Paris Cité, INSERM UMR 1163ParisFrance
- IHU‐ImagineParisFrance
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker‐Children's Hospital, Assistance Publique‐Hôpitaux de ParisParisFrance
| |
Collapse
|
3
|
Ciszek-Lenda M, Nowak B, Majka G, Suski M, Walczewska M, Fedor A, Golińska E, Górska S, Gamian A, Olszanecki R, Strus M, Marcinkiewicz J. Saccharomyces cerevisiae β-glucan improves the response of trained macrophages to severe P. aeruginosa infections. Inflamm Res 2024; 73:1283-1297. [PMID: 38850343 PMCID: PMC11282130 DOI: 10.1007/s00011-024-01898-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
OBJECTIVE P. AERUGINOSA: (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with β-glucan might improve their response to P. aeruginosa infections. METHODS To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae β-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo β-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared. RESULTS Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced. CONCLUSIONS Training of murine macrophages with S. cerevisiae β-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such β-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.
Collapse
Affiliation(s)
- Marta Ciszek-Lenda
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Bernadeta Nowak
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Grzegorz Majka
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland.
| | - Maciej Suski
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, Krakow, 31-53, Poland
| | - Maria Walczewska
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Angelika Fedor
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Edyta Golińska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental Therapy, Department of Microbiology, Laboratory of Microbiome Immunobiology, Polish Academy of Sciences, Weigla 12, Wroclaw, 53-114, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Department of Immunology of Infectious Diseases, Laboratory of Medical Microbiology, Polish Academy of Sciences, Weigla 12, Wroclaw, 53-114, Poland
| | - Rafał Olszanecki
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, Krakow, 31-53, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, Krakow, 31-121, Poland
| | - Janusz Marcinkiewicz
- University of Agriculture, University Centre of Veterinary Medicine, Mickiewicza 24/28, Krakow, 30- 059, Poland
| |
Collapse
|
4
|
Lucas CL. Human genetic errors of immunity illuminate an adaptive arsenal model of rapid defenses. Trends Immunol 2024; 45:113-126. [PMID: 38302340 DOI: 10.1016/j.it.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
New discoveries in the field of human monogenic immune diseases highlight critical genes and pathways governing immune responses. Here, I describe how the ~500 currently defined human inborn errors of immunity help shape what I propose is an 'adaptive arsenal model of rapid defenses', emphasizing the set of immunological defenses poised for rapid responses in the natural environment. This arsenal blurs the lines between innate and adaptive immunity and is established through molecular relays between cell types, often traversing from sensors (pathogen detection) to intermediates to executioners (pathogen clearance) via soluble factors. Predictions and missing information based on the adaptive arsenal model are discussed, as are emergent and outstanding questions fundamental to advances in the field.
Collapse
Affiliation(s)
- Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Sadri A. Is Target-Based Drug Discovery Efficient? Discovery and "Off-Target" Mechanisms of All Drugs. J Med Chem 2023; 66:12651-12677. [PMID: 37672650 DOI: 10.1021/acs.jmedchem.2c01737] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Target-based drug discovery is the dominant paradigm of drug discovery; however, a comprehensive evaluation of its real-world efficiency is lacking. Here, a manual systematic review of about 32000 articles and patents dating back to 150 years ago demonstrates its apparent inefficiency. Analyzing the origins of all approved drugs reveals that, despite several decades of dominance, only 9.4% of small-molecule drugs have been discovered through "target-based" assays. Moreover, the therapeutic effects of even this minimal share cannot be solely attributed and reduced to their purported targets, as they depend on numerous off-target mechanisms unconsciously incorporated by phenotypic observations. The data suggest that reductionist target-based drug discovery may be a cause of the productivity crisis in drug discovery. An evidence-based approach to enhance efficiency seems to be prioritizing, in selecting and optimizing molecules, higher-level phenotypic observations that are closer to the sought-after therapeutic effects using tools like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Arash Sadri
- Lyceum Scientific Charity, Tehran, Iran, 1415893697
- Interdisciplinary Neuroscience Research Program (INRP), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran, 1417755331
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran, 1417614411
| |
Collapse
|
6
|
Goncalves P, Doisne JM, Eri T, Charbit B, Bondet V, Posseme C, Llibre A, Casrouge A, Lenoir C, Neven B, Duffy D, Fischer A, Di Santo JP. Defects in mucosal immunity and nasopharyngeal dysbiosis in HSC-transplanted SCID patients with IL2RG/JAK3 deficiency. Blood 2022; 139:2585-2600. [PMID: 35157765 PMCID: PMC11022929 DOI: 10.1182/blood.2021014654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.
Collapse
Affiliation(s)
- Pedro Goncalves
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Toshiki Eri
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Bruno Charbit
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
| | - Vincent Bondet
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Celine Posseme
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alba Llibre
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Armanda Casrouge
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Christelle Lenoir
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Bénédicte Neven
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alain Fischer
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Collège de France, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - The Milieu Intérieur Consortium
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| |
Collapse
|
7
|
Caron B, Patin E, Rotival M, Charbit B, Albert ML, Quintana-Murci L, Duffy D, Rausell A. Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes. Genome Med 2022; 14:28. [PMID: 35264221 PMCID: PMC8905727 DOI: 10.1186/s13073-022-01032-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Blood plasma proteins play an important role in immune defense against pathogens, including cytokine signaling, the complement system, and the acute-phase response. Recent large-scale studies have reported genetic (i.e., protein quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major determinants to inter-individual variability in immune response variation. However, the contribution of blood-cell composition to plasma protein heterogeneity has not been fully characterized and may act as a mediating factor in association studies. METHODS Here, we evaluated plasma protein levels from 400 unrelated healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20-29 and 60-69 years), from the Milieu Intérieur cohort. We quantified 229 proteins by Luminex in a clinically certified laboratory and their levels of variation were analyzed together with 5.2 million single-nucleotide polymorphisms. With respect to non-genetic variables, we included 254 lifestyle and biochemical factors, as well as counts of seven circulating immune cell populations measured by hemogram and standardized flow cytometry. RESULTS Collectively, we found 152 significant associations involving 49 proteins and 20 non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on plasma protein heterogeneity, while body mass index and other health status variables were among the non-genetic factors with the highest number of associations. After controlling for these covariates, we identified 100 and 12 pQTLs acting in cis and trans, respectively, collectively associated with 87 plasma proteins and including 19 novel genetic associations. Genetic factors explained the largest fraction of the variability of plasma protein levels, as compared to non-genetic factors. In addition, blood-cell fractions, including leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, basophils, and platelets, had a larger contribution to inter-individual variability than age and sex and appeared as confounders of specific genetic associations. Finally, we identified new genetic associations with plasma protein levels of five monogenic Mendelian disease genes including two primary immunodeficiency genes (Ficolin-3 and FAS). CONCLUSIONS Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may inform health status and disease management.
Collapse
Affiliation(s)
- Barthelemy Caron
- Université de Paris, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory, F-75006, Paris, France
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Université de Paris, F-75015, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Université de Paris, F-75015, Paris, France
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université de Paris, F-75015, Paris, France
| | | | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR2000, CNRS, Université de Paris, F-75015, Paris, France
- Human Genomics and Evolution, Collège de France, F-75005, Paris, France
| | - Darragh Duffy
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, Université de Paris, F-75015, Paris, France.
- Translational Immunology Unit, Institut Pasteur, Université de Paris, F-75015, Paris, France.
| | - Antonio Rausell
- Université de Paris, INSERM UMR1163, Imagine Institute, Clinical Bioinformatics Laboratory, F-75006, Paris, France.
- Service de Médecine Génomique des Maladies Rares, AP-HP, Necker Hospital for Sick Children, F-75015, Paris, France.
| |
Collapse
|
8
|
He X, Yu J, Shi H. Pan-Cancer Analysis Reveals Alternative Splicing Characteristics Associated With Immune-Related Adverse Events Elicited by Checkpoint Immunotherapy. Front Pharmacol 2021; 12:797852. [PMID: 34899357 PMCID: PMC8652050 DOI: 10.3389/fphar.2021.797852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Immune-related adverse events (irAEs) can impair the effectiveness and safety of immune checkpoint inhibitors (ICIs) and restrict the clinical applications of ICIs in oncology. The predictive biomarkers of irAE are urgently required for early diagnosis and subsequent management. The exact mechanism underlying irAEs remains to be fully elucidated, and the availability of predictive biomarkers is limited. Herein, we performed data mining by combining pharmacovigilance data and pan-cancer transcriptomic information to illustrate the relationships between alternative splicing characteristics and irAE risk of ICIs. Four distinct classes of splicing characteristics considered were associated with splicing factors, neoantigens, splicing isoforms, and splicing levels. Correlation analysis confirmed that expression levels of splicing factors were predictive of irAE risk. Adding DHX16 expression to the bivariate PD-L1 protein expression-fPD1 model markedly enhanced the prediction for irAE. Furthermore, we identified 668 and 1,131 potential predictors based on the correlation of the incidence of irAEs with splicing frequency and isoform expression, respectively. The functional analysis revealed that alternative splicing might contribute to irAE pathogenesis via coordinating innate and adaptive immunity. Remarkably, autoimmune-related genes and autoantigens were preferentially over-represented in these predictors for irAE, suggesting a close link between autoimmunity and irAE occurrence. In addition, we established a trivariate model composed of CDC42EP3-206, TMEM138-211, and IRX3-202, that could better predict the risk of irAE across various cancer types, indicating a potential application as promising biomarkers for irAE. Our study not only highlights the clinical relevance of alternative splicing for irAE development during checkpoint immunotherapy but also sheds new light on the mechanisms underlying irAEs.
Collapse
Affiliation(s)
| | | | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
9
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
10
|
Ku C, Chen I, Lai M. Infection-induced inflammation from specific inborn errors of immunity to COVID-19. FEBS J 2021; 288:5021-5041. [PMID: 33971084 PMCID: PMC8236961 DOI: 10.1111/febs.15961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/10/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Inborn errors of immunity (IEIs) are a group of genetically defined disorders leading to defective immunity. Some IEIs have been linked to mutations of immune receptors or signaling molecules, resulting in defective signaling of respective cascades essential for combating specific pathogens. However, it remains incompletely understood why in selected IEIs, such as X-linked lymphoproliferative syndrome type 2 (XLP-2), hypo-immune response to specific pathogens results in persistent inflammation. Moreover, mechanisms underlying the generation of anticytokine autoantibodies are mostly unknown. Recently, IEIs have been associated with coronavirus disease 2019 (COVID-19), with a small proportion of patients that contract severe COVID-19 displaying loss-of-function mutations in genes associated with type I interferons (IFNs). Moreover, approximately 10% of patients with severe COVID-19 possess anti-type I IFN-neutralizing autoantibodies. Apart from IEIs that impair immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV-2 encodes several proteins that suppress early type I IFN production. One primary consequence of the lack of type I IFNs during early SARS-CoV-2 infection is the increased inflammation associated with COVID-19. In XLP-2, resolution of inflammation rescued experimental subjects from infection-induced mortality. Recent studies also indicate that targeting inflammation could alleviate COVID-19. In this review, we discuss infection-induced inflammation in IEIs, using XLP-2 and COVID-19 as examples. We suggest that resolving inflammation may represent an effective therapeutic approach to these diseases.
Collapse
Affiliation(s)
- Cheng‐Lung Ku
- Laboratory of Human Immunology and Infectious DiseasesGraduate Institute of Clinical Medical SciencesChang Gung UniversityTaoyuanTaiwan
- Department of NephrologyLinkou Chang Gung Memorial HospitalTaoyuanTaiwan
| | - I‐Ting Chen
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| | - Ming‐Zong Lai
- Institute of Molecular BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
11
|
Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Cancers (Basel) 2021; 13:cancers13143578. [PMID: 34298791 PMCID: PMC8304984 DOI: 10.3390/cancers13143578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
Collapse
|
12
|
Audebert C, Laubreton D, Arpin C, Gandrillon O, Marvel J, Crauste F. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. In Silico Biol 2021; 14:13-39. [PMID: 33554899 PMCID: PMC8203221 DOI: 10.3233/isb-200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To develop vaccines it is mandatory yet challenging to account for inter-individual variability during immune responses. Even in laboratory mice, T cell responses of single individuals exhibit a high heterogeneity that may come from genetic backgrounds, intra-specific processes (e.g. antigen-processing and presentation) and immunization protocols. To account for inter-individual variability in CD8 T cell responses in mice, we propose a dynamical model coupled to a statistical, nonlinear mixed effects model. Average and individual dynamics during a CD8 T cell response are characterized in different immunization contexts (vaccinia virus and tumor). On one hand, we identify biological processes that generate inter-individual variability (activation rate of naive cells, the mortality rate of effector cells, and dynamics of the immunogen). On the other hand, introducing categorical covariates to analyze two different immunization regimens, we highlight the steps of the response impacted by immunogens (priming, differentiation of naive cells, expansion of effector cells and generation of memory cells). The robustness of the model is assessed by confrontation to new experimental data. Our approach allows to investigate immune responses in various immunization contexts, when measurements are scarce or missing, and contributes to a better understanding of inter-individual variability in CD8 T cell immune responses.
Collapse
Affiliation(s)
- Chloe Audebert
- Inria Dracula, Villeurbanne, France.,Sorbonne Université, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions UMR 7598, F-75005 Paris, France.,Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), Laboratoire de Biologie Computationnelle et Quantitative UMR 7238, F-75005 Paris, France
| | - Daphné Laubreton
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Christophe Arpin
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Olivier Gandrillon
- Inria Dracula, Villeurbanne, France.,Laboratory of Biology and Modelling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, 69007 Lyon, France
| | - Jacqueline Marvel
- Centre International de recherche en Infectiologie, Université de Lyon, INSERM U1111, CNRS UMR 5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69007 Lyon, France
| | - Fabien Crauste
- Inria Dracula, Villeurbanne, France.,Université de Paris, MAP5, CNRS, F-75006, France
| |
Collapse
|
13
|
Giorgetti OB, Shingate P, O'Meara CP, Ravi V, Pillai NE, Tay BH, Prasad A, Iwanami N, Tan HH, Schorpp M, Venkatesh B, Boehm T. Antigen receptor repertoires of one of the smallest known vertebrates. SCIENCE ADVANCES 2021; 7:7/1/eabd8180. [PMID: 33523858 PMCID: PMC7775753 DOI: 10.1126/sciadv.abd8180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 05/06/2023]
Abstract
The rules underlying the structure of antigen receptor repertoires are not yet fully defined, despite their enormous importance for the understanding of adaptive immunity. With current technology, the large antigen receptor repertoires of mice and humans cannot be comprehensively studied. To circumvent the problems associated with incomplete sampling, we have studied the immunogenetic features of one of the smallest known vertebrates, the cyprinid fish Paedocypris sp. "Singkep" ("minifish"). Despite its small size, minifish has the key genetic facilities characterizing the principal vertebrate lymphocyte lineages. As described for mammals, the frequency distributions of immunoglobulin and T cell receptor clonotypes exhibit the features of fractal systems, demonstrating that self-similarity is a fundamental property of antigen receptor repertoires of vertebrates, irrespective of body size. Hence, minifish achieve immunocompetence via a few thousand lymphocytes organized in robust scale-free networks, thereby ensuring immune reactivity even when cells are lost or clone sizes fluctuate during immune responses.
Collapse
Affiliation(s)
- Orlando B Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Prashant Shingate
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Nisha E Pillai
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Aravind Prasad
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore.
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
14
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Miles AM, Huson HJ. Time- and population-dependent genetic patterns underlie bovine milk somatic cell count. J Dairy Sci 2020; 103:8292-8304. [PMID: 32622601 DOI: 10.3168/jds.2020-18322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to determine whether genetic regulation of bovine milk somatic cell count (SCC) varied throughout the course of an individual lactation and to identify quantitative trait loci (QTL) that may differentiate populations of chronically mastitic and robustly healthy cows. Milk SCC has long been a proxy for clinical mastitis diagnosis in management and genetic improvement strategies to control the disease. Cows (n = 471) were genotyped on the Illumina BovineHD 777K BeadChip (Illumina Inc., San Diego, CA), and composite milk samples were collected for SCC at 0-1 d in milk (DIM), 3-5 DIM, 10-14 DIM, 90-110 DIM, and 210-230 DIM, with each time span representing key physiological transitions for the cow. Median lactation somatic cell score (SCS) and area under the SCS curve were calculated from farm test data. A total of 8 genome-wide associations were performed and 167 SNP spanning the genome were significantly associated (false discovery rate <0.05). Of these associated regions, 27 of 48 associated QTL were novel for clinical mastitis or SCC. The linkage disequilibrium block surrounding the associated QTL or a 1-Mb window in the absence of linkage disequilibrium was interrogated for candidate genes, and many of those identified were related to multiple arms of the immune system, including toll-like receptor signaling, macrophage activation, B-cell maturation, T-cell recruitment, and the complement pathway. These genes included EXOC4, BAMBI, ITSN2, IL34, FCN3, CD8A, and CD8B. In addition, we identified populations of robustly healthy (SCS ≤4 from 10-14 DIM until study end), chronically mastitic (SCS >4 from 10-14 DIM until study end), and average cows with fluctuating SCS, and calculated fixation indices to identify regions of the genome differentiating these 3 populations. A total of 12 SNP were identified that showed moderate allelic differentiation (Wright's F statistic, FST ≥ 0.4) between the "chronic," "healthy," and "average" populations of cows. Candidate genes in the region surrounding differentiated QTL were related to cell signaling and immune response, such as JAKMIP1 and MADCAM1. The wide range of significantly associated QTL spanning the genome and the diversity of gene functions reinforces that mastitis is a complex trait and suggests that selection based on lactation stage-specific SCS rather than a generalized score may lead to greater success in breeding mastitis-resistant cows.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
16
|
Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2020; 40:24-64. [PMID: 31953710 PMCID: PMC7082301 DOI: 10.1007/s10875-019-00737-x] [Citation(s) in RCA: 739] [Impact Index Per Article: 147.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
We report the updated classification of Inborn Errors of Immunity/Primary Immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 430 inborn errors of immunity, including 64 gene defects that have either been discovered in the past 2 years since the previous update (published January 2018) or were characterized earlier but have since been confirmed or expanded upon in subsequent studies. The application of next-generation sequencing continues to expedite the rapid identification of novel gene defects, rare or common; broaden the immunological and clinical phenotypes of conditions arising from known gene defects and even known variants; and implement gene-specific therapies. These advances are contributing to greater understanding of the molecular, cellular, and immunological mechanisms of disease, thereby enhancing immunological knowledge while improving the management of patients and their families. This report serves as a valuable resource for the molecular diagnosis of individuals with heritable immunological disorders and also for the scientific dissection of cellular and molecular mechanisms underlying inborn errors of immunity and related human diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- Faculty of Medicine, St Vincent's Clinical School, UNSW, Sydney, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- King Hassan II University, Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA at Faculty of Medicine and Pharmacy, Clinical Immunology Unit, Pediatric Infectiouse Disease Department, Children's Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Talal Chatila
- Division of Immunology, Children's Hospital Boston, Boston, MA, USA
| | | | - Amos Etzioni
- Ruth's Children's Hospital-Technion, Haifa, Israel
| | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hans D Ochs
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Paris University, Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Troy R Torgerson
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Paris University, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Regulatory genome variants in human susceptibility to infection. Hum Genet 2019; 139:759-768. [PMID: 31807864 DOI: 10.1007/s00439-019-02091-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Genome studies have accelerated the discovery of common and rare genetic variants associated with susceptibility to infection and with disease severity. Genome-wide association studies identified many common genetic variants associated with modest risk for infection. Over 80% of these common variants map to the non-coding genome and are thought to modulate the regulatory networks. Exome sequencing has rapidly expanded the number of recognized primary immunodeficiencies through the identification of rare coding variants. In contrast, less than 29 primary immunodeficiencies have causative rare variation mapped outside protein-coding regions. In the future, whole genome sequencing will accelerate the identification of rare variants of substantial phenotypic impact that disrupt essential regulatory elements and the three-dimensional structure of chromatin.
Collapse
|
18
|
Human PI3Kγ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nat Commun 2019; 10:4364. [PMID: 31554793 PMCID: PMC6761123 DOI: 10.1038/s41467-019-12311-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Phosphatidylinositol 3-kinase-gamma (PI3Kγ) is highly expressed in leukocytes and is an attractive drug target for immune modulation. Different experimental systems have led to conflicting conclusions regarding inflammatory and anti-inflammatory functions of PI3Kγ. Here, we report a human patient with bi-allelic, loss-of-function mutations in PIK3CG resulting in absence of the p110γ catalytic subunit of PI3Kγ. She has a history of childhood-onset antibody defects, cytopenias, and T lymphocytic pneumonitis and colitis, with reduced peripheral blood memory B, memory CD8+ T, and regulatory T cells and increased CXCR3+ tissue-homing CD4 T cells. PI3Kγ-deficient macrophages and monocytes produce elevated inflammatory IL-12 and IL-23 in a GSK3α/β-dependent manner upon TLR stimulation. Pik3cg-deficient mice recapitulate major features of human disease after exposure to natural microbiota through co-housing with pet-store mice. Together, our results emphasize the physiological importance of PI3Kγ in restraining inflammation and promoting appropriate adaptive immune responses in both humans and mice.
Collapse
|
19
|
Affiliation(s)
- Erika Della Mina
- Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, Institut Imagine, Paris, France
| | - Mathieu P Rodero
- Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, Institut Imagine, Paris, France
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, INSERM UMR1163, Institut Imagine, Paris, France and Sorbonne-Paris-Cité, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris Descartes University, Paris, France, and Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
20
|
|
21
|
Ji X, Rajpal DK, Freudenberg JM. The essentiality of drug targets: an analysis of current literature and genomic databases. Drug Discov Today 2019; 24:544-550. [DOI: 10.1016/j.drudis.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022]
|
22
|
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2019; 143:507-527. [PMID: 30075154 PMCID: PMC6358521 DOI: 10.1016/j.jaci.2018.07.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xavier Bossuyt
- Experimental Laboratory Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, INSERM U1163, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Isabelle Meyts
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
MAIT cells protect against pulmonary Legionella longbeachae infection. Nat Commun 2018; 9:3350. [PMID: 30135490 PMCID: PMC6105587 DOI: 10.1038/s41467-018-05202-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionella longbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2-/-γC-/- mice from lethal Legionella infection. Protection is dependent on MR1, IFN-γ and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.
Collapse
|
24
|
Caldirola MS, Rodríguez Broggi MG, Gaillard MI, Bezrodnik L, Zwirner NW. Primary Immunodeficiencies Unravel the Role of IL-2/CD25/STAT5b in Human Natural Killer Cell Maturation. Front Immunol 2018; 9:1429. [PMID: 29988287 PMCID: PMC6023967 DOI: 10.3389/fimmu.2018.01429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role during immunity against viruses and circumstantial evidence also indicates that they can protect the host against developing tumors. Peripheral blood NK cells comprise CD56brightCD16lo/− cells that constitutively express CD25 (IL-2Rα) and CD56dimCD16hi cells that express CD25 upon activation. Using NK cells from two patients, one with a primary immunodeficiency characterized by a homozygous mutation in CD25 (born in year 2007 and studied since she was 3 years old) and one with a homozygous mutation in STAT5b (born in year 1992 and studied since she was 10 years old), we observed that the absence of IL-2 signaling through CD25 promotes the accumulation of CD56brightCD16high NK cells, and that CD56brightCD16lo, CD56brightCD16high, and CD56dimCD16high NK cells of this patient exhibited higher content of perforin and granzyme B, and proliferation capacity, compared to healthy donors. Also, CD56bright and CD56dim NK cells of this patient exhibited a reduced IFN-γ production in response to cytokine stimulation and increased degranulation against K562 cells. Also, the CD25-deficient patient presented a lower frequency of terminally differentiated NK cells in the CD56dimCD16hi NK subpopulation compared to the HD (assessed by CD57 and CD94 expression). Remarkably, CD56dimCD16high NK cells from both patients exhibited notoriously higher expression of CD62L compared to HD, suggesting that in the absence of IL-2 signaling through CD25 and STAT5b, NK cells fail to properly downregulate CD62L during their transition from CD56brightCD16lo/− to CD56dimCD16hi cells. Thus, we provide the first demonstration about the in vivo requirement of the integrity of the IL-2/CD25/STAT5b axis for proper human NK cell maturation.
Collapse
Affiliation(s)
| | | | - María Isabel Gaillard
- Servicio de Inmunología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Servicio de Inmunología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Centro de Inmunología Clínica "Dra. Bezrodnik", Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Casanova JL, Abel L. Human genetics of infectious diseases: Unique insights into immunological redundancy. Semin Immunol 2018; 36:1-12. [PMID: 29254755 PMCID: PMC5910248 DOI: 10.1016/j.smim.2017.12.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/13/2017] [Indexed: 01/18/2023]
Abstract
For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious conditions.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU; Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, Paris, France, EU.
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France, EU; Paris Descartes University, Imagine Institute, Paris, France, EU.
| |
Collapse
|
26
|
Fischer A, Rausell A. What do primary immunodeficiencies tell us about the essentiality/redundancy of immune responses? Semin Immunol 2017; 36:13-16. [PMID: 29229549 DOI: 10.1016/j.smim.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Abstract
Advances in genomics and medicine have enabled the identification of (currently) 346 primary immunodeficiencies (PIDs) caused by mutations in 336 different genes. Most of these PIDs are monogenic conditions with Mendelian inheritance. Given this large number, it is possible to analyze the distribution of PIDs associated with infections and/or immunopathology according to the nature of the defect - even though this exercise can be challenging and arguable because of the pleiotropic nature of some gene products. The results of this analysis nevertheless strongly suggests that innate immune responses (mediated by pattern recognition receptor (PRR) engagement) are largely redundant, whereas adaptive immune responses are essential. Conversely, gain of function is more frequent in PRR-mediated immune responses than in adaptive immune responses - suggesting that robust innate immune pathways are less stringently regulated than energetically costly and potentially harmful adaptive immune responses.
Collapse
Affiliation(s)
- Alain Fischer
- Collège de France, Paris, France; Unité d'Immunologie, Hématologie et Rhumatologie Pédiatrique, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR 1163, Institut Imagine, Paris, France.
| | | |
Collapse
|
27
|
Abstract
Recent years have seen a marked increase in our understanding of innate lymphoid cells (ILCs). ILCs can be classified into different groups based on their similarity to T cell subsets in terms of their expression of key transcription factors and cytokine production. Various immunological functions of ILCs have been described, and increasing numbers of studies have implicated these cells in inflammatory disorders. Here, we detail the roles of ILCs in inflammatory diseases; we cover type 2 inflammatory diseases (such as asthma, chronic rhinosinusitis and atopic dermatitis), as well as inflammatory bowel diseases, psoriasis and other systemic or organ-specific inflammatory and autoimmune diseases. Future directions in the field are discussed, together with potential avenues of treatment.
Collapse
|