1
|
Rannikko JH, Turpin R, Boström P, Virtakoivu R, Harth C, Takeda A, Tamminen A, Koskivuo I, Hollmén M. Macrophage sensitivity to bexmarilimab-induced reprogramming is shaped by the tumor microenvironment. J Immunother Cancer 2025; 13:e011292. [PMID: 40379271 PMCID: PMC12083384 DOI: 10.1136/jitc-2024-011292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/26/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) adapt to the tumor microenvironment (TME), either aiding cancer eradication or promoting tumor growth and immune evasion. To manipulate TAMs therapeutically, a deep understanding of their interaction with the TME is essential. This study explores the responsiveness of TMEs to bexmarilimab, a macrophage reprogramming therapy showing clinical benefit in various solid tumors. METHODS We exploited a breast cancer patient-derived explant culture (PDEC) model to characterize bexmarilimab responses in both tumor and adjacent cancer-free tissues by RNA sequencing and multiplex cytokine profiling. Using single-cell RNA sequencing, spatial transcriptomics, and conditioned media treatment, we further investigated the effects of Clever-1+ macrophages and TME features on bexmarilimab sensitivity. RESULTS The PDEC model captured key aspects of bexmarilimab's mode of action and validated a gene signature for determining treatment sensitivity. We identified three distinct responses to bexmarilimab in tumors and adjacent cancer-free tissues, shaped by the local microenvironment and macrophage phenotype, origin, and localization. The inflammatory state of the TME emerged as the primary determinant of response. Immune activation occurred in immunologically cold TMEs lacking late-stage activated TAMs, whereas interferon-regulated TMEs exhibited suppressed inflammation. In cancer-free breast tissue, bexmarilimab activated B cell responses independent of treatment sensitivity in the adjacent tumor. CONCLUSIONS These findings reveal the complexity of TAM targeting in cancer and emphasize the need for patient selection to maximize bexmarilimab's efficacy.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Rita Turpin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Pia Boström
- Department of Pathology, TYKS Turku University Hospital, Turku, Finland
| | - Reetta Virtakoivu
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Chantal Harth
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Anselm Tamminen
- Department of Plastic and General Surgery, TYKS Turku University Hospital, Turku, Finland
| | - Ilkka Koskivuo
- Department of Plastic and General Surgery, TYKS Turku University Hospital, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Marshall L, Raychaudhuri S, Viatte S. Understanding rheumatic disease through continuous cell state analysis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01253-6. [PMID: 40335652 DOI: 10.1038/s41584-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
Autoimmune rheumatic diseases are a heterogeneous group of conditions, including rheumatoid arthritis (RA) and systemic lupus erythematosus. With the increasing availability of large single-cell datasets, novel disease-associated cell types continue to be identified and characterized at multiple omics layers, for example, 'T peripheral helper' (TPH) (CXCR5- PD-1hi) cells in RA and systemic lupus erythematosus and MerTK+ myeloid cells in RA. Despite efforts to define disease-relevant cell atlases, the very definition of a 'cell type' or 'lineage' has proven controversial as higher resolution assays emerge. This Review explores the cell types and states involved in disease pathogenesis, with a focus on the shifting perspectives on immune and stromal cell taxonomy. These understandings of cell identity are closely related to the computational methods adopted for analysis, with implications for the interpretation of single-cell data. Understanding the underlying cellular architecture of disease is also crucial for therapeutic research as ambiguity hinders translation to the clinical setting. We discuss the implications of different frameworks for cell identity for disease treatment and the discovery of predictive biomarkers for stratified medicine - an unmet clinical need for autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Lysette Marshall
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Soumya Raychaudhuri
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology, Inflammation and Immunity and Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Malekan M, Dozandeh-Jouybari A, Sadeghian N, Soltanshahi M, Azadeh H, Ajami A, Asgarian-Omran H, Taghiloo S. SLAM receptors regulate immune checkpoints via SAP and EAT- 2 in rheumatoid arthritis: association with disease activity. Clin Rheumatol 2025:10.1007/s10067-025-07461-5. [PMID: 40287562 DOI: 10.1007/s10067-025-07461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and immune dysregulation. This study aimed to investigate the role of SLAM family receptors (SLAMF1 and SLAMF7), immune checkpoint molecules (PD- 1 and TIGIT), and SH2-containing adaptor proteins (SAP and EAT- 2) in rheumatoid arthritis (RA) and their association with disease activity. METHODS A total of 50 RA patients (30 inactive, 20 active) and 20 healthy controls were enrolled. Real-time polymerase chain reaction (PCR) was used to assess the expression of target genes in peripheral blood mononuclear cells (PBMCs). Gene expression profiling datasets (GSE77298, GSE206848, GSE236924, GSE15573) were analyzed to identify differentially expressed genes (DEGs). Correlation of gene expression with Disease Activity Score 28-joint count (DAS28) was evaluated. RESULTS SLAMF1, SLAMF7, SAP, and EAT- 2 expression levels were significantly elevated in RA patients compared to controls. SLAMF1 and SAP expression correlated positively with DAS28 (r = 0.319, p = 0.02; r = 0.460, p = 0.0008, respectively). PD- 1 expression was higher in RA patients but showed no correlation with DAS28, while TIGIT expression was not significantly different. Bioinformatics analysis revealed significant upregulation of SLAMF7 and TIGIT in synovial tissues from RA patients. CONCLUSION SLAMF1 and SLAMF7 appear to contribute to RA pathogenesis by modulating immune cell activity and cytokine production. Elevated PD- 1 levels suggest a role in immune dysregulation. The interplay between SLAM receptors, immune checkpoints, and adaptor proteins may exacerbate T cell overactivity and chronic inflammation, offering potential therapeutic targets. Key Points •RA patients showed significantly higher expression of SLAMF1, SLAMF7, PD- 1, SAP, and EAT- 2 compared to healthy controls. •SLAMF1 and SAP expression correlated with disease activity, with SLAMF1 levels higher in active RA cases. •PD- 1 overexpression suggested immune dysregulation, while TIGIT showed no significant difference in RA patients. •The interplay between SLAM receptors, immune checkpoints, and adaptor proteins may contribute to RA pathogenesis and serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Malekan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Armin Dozandeh-Jouybari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Najmeh Sadeghian
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Soltanshahi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Liu A, Bai P, You H, Zhuang Z, Tian F, Weng H, Wei X, Tang L, Wang L, Liu C, Zhang J, Sun M, Zhang S, Shu X, Ge J. SLAMF7 Restrains Pro-Inflammatory Macrophage Activation to Counteract Doxorubicin-Induced Cardiotoxicity. JACC Basic Transl Sci 2025:S2452-302X(25)00073-7. [PMID: 40372307 DOI: 10.1016/j.jacbts.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 05/16/2025]
Abstract
Doxorubicin-induced cardiotoxicity (DIC) poses a significant challenge in cancer treatment. This study investigated the role of SLAMF7 in DIC, particularly in macrophage-mediated inflammation. Using SLAMF7 knockout mice, we found that SLAMF7 deficiency exacerbates DIC and amplifies inflammatory responses. Mechanistically, SLAMF7 interacts with TNF receptor-associated factor 6 to attenuate nuclear factor κB signaling, reducing oxidative stress and proinflammatory cytokines. Notably, administering recombinant SLAMF7 protein effectively mitigated DIC. These findings underscore the critical role of SLAMF7 in protecting against DIC, positioning it as a promising therapeutic target.
Collapse
Affiliation(s)
- Ao Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hongmin You
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zehao Zhuang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Fangyan Tian
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haobo Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xuemei Wei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lu Tang
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Litao Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaobao Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinghong Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Minmin Sun
- Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xianhong Shu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Ischemic Heart Diseases, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China.
| |
Collapse
|
5
|
Xie K, Che Q, Chen J, Wang H, Ren B, Chen X, Wang F, Wang X, Wang J, Shu Q. SLAMF7-expressing B cells as crucial mediators in the pathogenesis of rheumatoid arthritis-interstitial lung disease. Int Immunopharmacol 2025; 152:114392. [PMID: 40056511 DOI: 10.1016/j.intimp.2025.114392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The regulatory factors involved in rheumatoid arthritis (RA) complicated with interstitial lung disease (ILD) (RA-ILD) remain unknown. Due to the cross-sectional nature of our study, our aim was to explore the role of the signalling lymphocytic activation molecule family (SLAMF) in RA-ILD by analysing synovial and lung samples from the Gene Expression Omnibus, animal models, and clinical samples.We collected peripheral blood mononuclear cells from patients for flow cytometry analysis of B cells, SLAMF1 protein, and SLAMF7 protein. The dataset analysis indicated a marked upregulation of SLAMF1 and SLAMF7 expression in RA synovial tissues and RA-ILD lung tissues. The same expression trend was further validated in a collagen-induced arthritis-ILD model. This suggests that B cells expressing SLAMF1 and SLAMF7 may contribute significantly to the development of lung fibrosis. Flow cytometry analysis demonstrated that SLAMF7 expression in B cells was substantially higher in RA-ILD patients than in those with RA alone. Similarly, SLAMF7 proteins were highly expressed in the plasma of patients with RA-ILD. These results suggest that SLAMF7 could be pivotal in the development and progression of RA-ILD.
Collapse
Affiliation(s)
- Keke Xie
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qincheng Che
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University,Fujian, China
| | - Jie Chen
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hongxing Wang
- Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Clinical Laboratory, Jinan, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Bingbing Ren
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaorong Chen
- Laboratory of Basic Medical Science, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fang Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Shandong Provincial Key Laboratory of Integrated Diagnosis, Prevention, and Treatment of Rheumatic Diseases, Jinan, China
| | - Xiao Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Shandong Provincial Key Laboratory of Integrated Diagnosis, Prevention, and Treatment of Rheumatic Diseases, Jinan, China
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Infection & Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiang Shu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Department of Rheumatology, Jinan, China; Shandong Key Laboratory of Medicine and Prevention Integration in Rheumatism and Immunity Disease, Jinan,China; Shandong Provincial Key Laboratory of Integrated Diagnosis, Prevention, and Treatment of Rheumatic Diseases, Jinan, China.
| |
Collapse
|
6
|
Pellegrini JM, Keriel A, Gorvel L, Hanniffy S, Arce-Gorvel V, Bosilkovski M, Solera J, Méresse S, Mémet S, Gorvel JP. SLAMF7 and SLAMF8 receptors shape human plasmacytoid dendritic cell responses to intracellular bacteria. J Clin Invest 2025; 135:e182467. [PMID: 40231463 PMCID: PMC11996910 DOI: 10.1172/jci182467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/19/2025] [Indexed: 04/16/2025] Open
Abstract
Plasmacytoid dendritic cells (pDCs), professional type I IFN-producing cells, have been implicated in host responses against bacterial infections. However, their role in host defense is debated, and the operating molecular mechanisms are unknown. Certain signaling lymphocyte activation molecule family (SLAMF) members act as microbial sensors and modulate immune functions in response to infection. Here, human blood transcriptomic analyses reveal the involvement of SLAMF7 and SLAMF8 in many infectious diseases, with elevated levels associated with type I IFN responses in salmonellosis and brucellosis patients. We further identify SLAMF7 and SLAMF8 as key regulators of human pDC function. They activate pDC maturation and cytokine production during infection with bacteria that induce acute (Salmonella) or chronic (Brucella) inflammation. SLAMF7 and SLAMF8 signal through NF-κB, IRF7, and STAT-1, and limit mitochondrial ROS accumulation upon Salmonella infection. Remarkably, this SLAMF7/8-dependent control of mitochondrial ROS levels favors bacterial persistence and NF-κB activation. Overall, our results unravel essential shared multifaceted roles of SLAMF7 and SLAMF8 in finely tuning human pDC responses to intracellular bacterial infections with potential for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Joaquín Miguel Pellegrini
- Aix Marseille Université, CNRS, Inserm, Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Anne Keriel
- Virulence Bactérienne et Infections Chroniques, U1047, Inserm, Université de Montpellier, Nîmes, France
- Centre National de Reference des Brucella, Service de Microbiologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Laurent Gorvel
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France
| | - Sean Hanniffy
- Aix Marseille Université, CNRS, Inserm, Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Vilma Arce-Gorvel
- Aix Marseille Université, CNRS, Inserm, Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Mile Bosilkovski
- University Clinic for Infectious Diseases and Febrile Conditions, Medical Faculty University “Ss Cyril and Methodius,” Skopje, North Macedonia
| | - Javier Solera
- Internal Medicine Department, Albacete General Hospital, Albacete, Spain
- University of Castilla–La Mancha at Albacete, Faculty of Medicine, Albacete, Spain
| | - Stéphane Méresse
- Aix Marseille Université, CNRS, Inserm, Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sylvie Mémet
- Aix Marseille Université, CNRS, Inserm, Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Jean-Pierre Gorvel
- Aix Marseille Université, CNRS, Inserm, Centre d’Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
7
|
Altalbawy FMA, Babamuradova Z, Baldaniya L, Singh A, Singh KU, Ballal S, Sabarivani A, Sead FF, Alam R, Alshahrani MY. The multifaceted role of CS1 (SLAMF7) in immunoregulation: Implications for cancer therapy and autoimmune disorders. Exp Cell Res 2025; 447:114516. [PMID: 40073958 DOI: 10.1016/j.yexcr.2025.114516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
CS1 (SLAMF7), a pivotal immune receptor, plays a dual role in modulating immune responses in autoimmune diseases and cancer. In autoimmunity, aberrant CS1 signaling contributes to the activation of autoreactive lymphocytes, driving pathologies such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Conversely, in oncology, CS1 serves as a promising immunotherapeutic target, exemplified by the efficacy of the monoclonal antibody Elotuzumab in multiple myeloma. CS1 mediates immune cell functions through intricate signaling pathways, including interactions with EAT-2 and SAP adaptors, which influence cytotoxicity, cytokine production, and immune homeostasis. Beyond cancer and autoimmune diseases, soluble and membrane-bound forms of CS1 are emerging as biomarkers and potential therapeutic targets. Despite significant progress, gaps remain in understanding CS1\u2019s mechanisms, variability in expression, and role in other diseases. This study explores the multifaceted functions of CS1, proposing innovative strategies to leverage its therapeutic potential across diverse pathologies.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia; National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt
| | - Zarrina Babamuradova
- Internal Diseases of Pediatric Faculty, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kamred Udham Singh
- School of Computing, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Fadhil Faez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Rubyat Alam
- Applied Chemistry & Chemical Engineering, University of Dhaka, Bangladesh
| | - Mohammad Y Alshahrani
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
8
|
He C, Pan Z, Liu Y, Zhou H, Li L. SLAMF7 is a key molecule that promotes M1 polarization in lung tissue macrophages of high-fat diet-fed asthma mice model. Int Immunopharmacol 2025; 149:114203. [PMID: 39904038 DOI: 10.1016/j.intimp.2025.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVE Investigating the regulatory role of Signaling lymphocyte activation molecule family 7 (SLAMF7) in the pathogenesis of asthma in a high fat-fed (HFD) mouse model, providing targets for treating obese asthma. METHODS We constructed a mouse model of obese asthma, and Quantitative real-time RT-PCR (qPCR) for the detection of mRNA levels of SLAMF7 and M1 polarization markers of macrophages. Lung tissue levels of SLAMF7 protein, macrophage M1 polarization markers, and neutrophil markers were measured by Western blotting. The proportions of SLAMF7+ macrophages and neutrophils in bronchoalveolar lavage fluid (BALF) were determined by flow cytometry. Neutrophil inflammatory cytokine levels were determined by Enzyme-linked immunosorbent assay (ELISA). Immunofluorescence performed the colocalization of SLAMF7 and inducible nitric oxide synthase (iNOS). The regulation of SLAMF7 on M1 polarization of macrophages was verified by cell experiments. RESULTS The group of HFD asthmatic mice had more severe airway inflammation and mucus secretion. They also had higher SLAMF7 levels, airway neutrophil inflammation and M1 polarization of macrophages in lung tissue. SLAMF7 overexpression increased M1 polarization, and SLAMF7 knockdown decreased M1 polarization. The expression change of SLAMF7 affects the expression of NR4A1 and RUNX3, inhibiting NR4A1 and promoting RUNX3. CONCLUSION SLAMF7 expression is increased in obese asthma mice, accompanied by neutrophil infiltration and enhanced M1 polarization. SLAMF7 promotes M1 polarization may be through the NR4A1-RUNX3 axis, suppressing NR4A1, and promoting RUNX3.
Collapse
Affiliation(s)
- Cengceng He
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University, Wuxi, 299-1 Qingyang Road, Wuxi 214023, China
| | - Zhenzhen Pan
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University, Wuxi, 299-1 Qingyang Road, Wuxi 214023, China
| | - Yanchen Liu
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University, Wuxi, 299-1 Qingyang Road, Wuxi 214023, China
| | - Huan Zhou
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University, Wuxi, 299-1 Qingyang Road, Wuxi 214023, China
| | - Ling Li
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University, Wuxi, 299-1 Qingyang Road, Wuxi 214023, China.
| |
Collapse
|
9
|
Choi, JP, Kim, YE, Kim, MK, Kang, MH, Hwang, YK, Yoon, JE, Chang, YS, Kim, SH. Repeated and alternate stimulations with dsRNA and SEB alter responses in macrophages and epithelial cells. World Allergy Organ J 2025; 18:101026. [PMID: 39925983 PMCID: PMC11804812 DOI: 10.1016/j.waojou.2025.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction The innate immune system is activated by foreign molecules via pattern recognition receptors and other surveillance systems, producing diverse cytokines that recruit and activate other immune cells. Recent studies have shown that once activated by foreign molecules, the innate immune system exhibits altered responses upon subsequent exposure to the same or different infectious agents, such as lipopolysaccharides (LPS) or bacteria. However, as these alterations in response to viral infection and staphylococcal enterotoxin B (SEB) in the airways have not been fully elucidated, we focused on the changes in immune responses induced by repeated stimulation of macrophages and epithelial cells with foreign molecules. Methods THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA (double-stranded RNA) or SEB and cultured in fresh complete medium for 4 days. Subsequently, the cells were re-stimulated with different doses of dsRNA or SEB, and the cytokine and signal phosphorylation levels were evaluated. Results Repeated stimulation with high dose of dsRNA or SEB, induced an increase in IL-10, CCL2, CCL22, CCL24, CXCL10, and CXCL11 in macrophages, while only repeated stimulation with dsRNA stimulation resulted in an increase in IL-6, CCL2, CCL5, CCL24, CXCL11, and TGF-β in epithelial cells. Cross-stimulation with SEB-dsRNA induced an increase in CCL5, CCL20, CCL22, CCL24, CXCL10, and CXCL11 levels in macrophages. However, in epithelial cells, SEB-dsRNA stimulation increased the levels of CCL5, CXCL11, and TGF-β, while dsRNA-SEB stimulation elevated CCL1, CCL20, CXCL10, and CXCL11. These cytokine changes were driven by distinct phosphorylation patterns in macrophages and epithelial cells, depending on the type and intensity of stimuli. Conclusion Repeated stimulation with the same or cross-over stimuli induced alterations in the immune response of macrophages and epithelial cells. These observations indicated that persistent airway stimulation can lead to changes in airway inflammation, potentially leading to asthma.
Collapse
Affiliation(s)
- Jun-Pyo Choi,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yae-Eun Kim,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min-Kyung Kim,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Mi-Hyun Kang,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yu-Kyoung Hwang,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jeong-Eun Yoon,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yoon-Seok Chang,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sae-Hoon Kim,
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Jiwrajka N, Tuluc F, Jaimes MC, Murray J, Anguera MC. 30-Color Longitudinal Full-Spectrum Immunophenotyping and Sorting of Human Circulating Immune Cell Subsets Implicated in Systemic Autoimmune Rheumatic Diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631766. [PMID: 39868326 PMCID: PMC11761511 DOI: 10.1101/2025.01.09.631766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This 30-color panel was developed to enable the enumeration and purification of distinct circulating immune cell subsets implicated in the pathogenesis of systemic autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc; scleroderma), Sjögren's disease (SjD), idiopathic inflammatory myopathy (IIM), and others. While designed for application to peripheral blood mononuclear cells, the inclusion of CD45 coupled with the ability to extract cellular autofluorescence spectral signatures enables the application of this panel to other tissue types. Of the 30 total markers, this panel employs 18 markers to profile T cell subsets consisting of different memory subsets and T helper polarities, > 10 markers to profile B cell subsets including double-negative B cells, and a total of 8 lineage markers to identify immune lineages including monocyte and natural killer cell subsets, conventional dendritic cells, plasmacytoid dendritic cells, and basophils. This panel reproducibly identifies target populations with excellent resolution over several months of data acquisition with minimal batch effects, offering investigators a practical approach to sort immune cell subsets of interest for downstream applications while simultaneously collecting high parameter immunophenotypic information using a limited sample quantity.
Collapse
|
11
|
Zhang Z, Zhang Y, Chen Z, Xia L. Emerging roles of SLAMF7 in immune cells and related diseases. Innate Immun 2025; 31:17534259251326700. [PMID: 40091370 PMCID: PMC11912174 DOI: 10.1177/17534259251326700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/21/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Immune cells are heterogeneous and perform different functions in different microenvironment, thus playing different roles in different stages of diseases. Studies have shown that immune cells are involved in the pathogenesis of many diseases, and there is a causal association of immune cells with disease states. Signaling Lymphocyte Activation Molecule family (SLAMF) members are a newly appreciated group of specific receptors that are mainly expressed in immune cells and whose role is to regulate the function of immune cells. SLAMF7, also known as CD319, has been widely reported in multiple myeloma, and in recent years, more and more studies have shown that SLAMF7 is widely involved in the function of immune cells and the progression of breast cancer, acquired immune deficiency syndrome, systemic lupus erythematosus and other immune cells-related diseases. However, the mechanisms underlying the regulatory role of SLAMF7 on immune cells, and the impact on the progression of immune cells-related diseases remain poorly elucidated. In this review, we summarize current knowledge about the role of SLAMF7 in immune cells and related diseases such as cancer, infectious disease, autoimmune disease and atherosclerosis, and the therapeutic strategy targeting SLAMF7 is also described. By better understanding the role and regulation of SLAMF7, we hope to provide new insights and directions for improving the diagnosis and treatment of inflammation.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zeyu Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Institute of Hematological Disease, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Lee HS, Lee Y, Baek J, Kim Y, Park S, Jung S, Lee JG, Baek IJ, Kim K, Hwang SW, Lee JL, Park SH, Yang SK, Han B, Song K, Yoon YS, Ye BD. Nonlesional ileal transcriptome in Crohn's disease reveals alterations in immune response and metabolic pathway. J Gastroenterol Hepatol 2025; 40:208-217. [PMID: 39604213 DOI: 10.1111/jgh.16816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIM We aimed to assess the gene expression profiles of nonlesional small bowels in patients with Crohn's disease (CD) to identify its accompanying molecular alterations. METHODS We performed RNA sequencing of the uninflamed small bowel tissues obtained from 70 patients with ileal CD and 9 patients with colon cancer (non-CD controls) during bowel resection. Differentially expressed gene (DEG) analyses were performed using DESeq2. Gene set enrichment, correlation, and cell deconvolution analyses were applied to identify modules and functionally enriched transcriptional signatures of CD. RESULTS A comparison of CD patients and non-CD controls revealed that of the 372 DEGs, 49 protein-coding genes and 5 long non-coding RNAs overlapped with the inflammatory bowel disease susceptibility loci. The pathways related to immune and inflammatory reactions were upregulated in CD, while metabolic pathways were downregulated in CD. Compared with non-CD controls, CD patients had significantly higher proportions of immune cells, including plasma cells (P = 1.15 × 10-4), and a lower proportion of epithelial cells (P = 1.12 × 10-4). Co-upregulated genes (M14 module) and co-downregulated genes (M9 module) were identified in CD patients. The M14 module was enriched in immune-related genes and significantly associated with the responses to anti-tumor necrosis factor (TNF) therapy. The core signature of the M14 module was comprised of six genes and was upregulated in nonresponders to anti-TNF therapy of five independent cohorts (n = 163), indicating acceptable discrimination ability (area under the receiver operating characteristic curve of 75-86%). CONCLUSIONS The differences in gene expression and cellular composition between CD patients and non-CD controls imply significant molecular alterations, which are associated with the response to anti-TNF treatment.
Collapse
Affiliation(s)
- Ho-Su Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoonho Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Sojung Park
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Seulgi Jung
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Geol Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyuwon Kim
- Department of Gastroenterology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sung Wook Hwang
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Lyul Lee
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Hyoung Park
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyun Yang
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, Asan Medical Center, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul, Korea
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Sik Yoon
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byong Duk Ye
- Inflammatory Bowel Disease Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Kared H, Tan C, Narang V, Tan SW, Xian CH, Wei ATS, Lum J, Ruiz-Mateos E, Rajasuriar R, Kamarulzaman A, Ng TP, Larbi A. SLAMF7 defines subsets of human effector CD8 T cells. Sci Rep 2024; 14:30779. [PMID: 39730488 DOI: 10.1038/s41598-024-80971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Long-term control of viral replication relies on the efficient differentiation of memory T cells into effector T cells during secondary immune responses. Recent findings have identified T cell precursors for both memory and exhausted T cells, suggesting the existence of progenitor-like effector T cells. These cells can persist without antigenic challenge but expand and acquire effector functions upon recall immune responses. In this study, we demonstrate that the combination of SLAMF7 with either CD27 or TCF-1 effectively identifies progenitor-like effector CD8 T cells, while SLAMF7 with GPR56 or TOX defines effector CD8 T cells. These markers allow for the clear segregation of these distinct cell subsets. SLAMF7+ CD8T cells are dynamically modulated during viral infections, including HIV, HCV, CMV, and SARS-CoV-2, as well as during aging. We further characterize the SLAMF7 signature at both phenotypic and transcriptional levels. Notably, during aging, the SLAMF7 pathway becomes dysregulated, resulting in persistent phosphorylation of STAT1. Additionally, SLAMF7 ligation in the presence of IL-15 induces TCF-1 expression, which promotes the homeostatic proliferation of progenitor-like effector CD8 T cells.
Collapse
Affiliation(s)
- Hassen Kared
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway.
| | - Crystal Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Vipin Narang
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Shu Wen Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Chin Hui Xian
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Alicia Tay Seok Wei
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tze Pin Ng
- Gerontology Research Programme and Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, 8A Biomedical Grove, Biopolis, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
14
|
Shi Z, Qin H, Wu H. Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation. J Inflamm Res 2024; 17:11375-11402. [PMID: 39735894 PMCID: PMC11675326 DOI: 10.2147/jir.s474211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes. Methods In this work, we employed single-cell transcriptome sequencing (scRNA-seq) involving 27704 cells from the brain and spleen tissues of MRL/lpr mice and 25355 healthy controls from BALB/c mice to explore the heterogeneity of T cells and their migration from the spleen to the brain. Results We identified a distinct group of double-negative T cells in systemic lupus erythematosus (SLE) mice that significantly expressed Eomes and other specific markers. We used the analysis of pseudotime trajectory and enrichment to show that double-negative T cells in SLE mice are strongly associated with cellular senescence and exhaustion. Additionally, we focused on the interactions among DNT, astrocytes, and microglia in the mice brain. We observed greater expression of MDK-related ligand‒receptor pairs between astrocytes and double-negative T cells, indicating that MDK may be a therapeutic target for treating neuroinflammation in SLE. Discussion This research sheds light on the intricate dynamics of immune responses in mice with SLE, specifically highlighting the role of double-negative T cells and their connection to cellular senescence. The exploration of interactions between T cells, astrocytes, and microglia in the mice brain unveils potential avenues for therapeutic intervention, particularly in addressing neuronal inflammation in SLE.
Collapse
Affiliation(s)
- Zhijie Shi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Haihong Qin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hao Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Liu C, Ge Y. Immune-Related Genes Associated with Interstitial Lung Disease in Dermatomyositis. Int J Gen Med 2024; 17:5261-5271. [PMID: 39563787 PMCID: PMC11573690 DOI: 10.2147/ijgm.s490294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Background Interstitial lung disease (ILD) is one of the significant complications of dermatomyositis (DM), but the mechanisms by which it occurs remain incompletely elucidated. This study aimed to explore further the possible genetic mechanisms by which this complication occurs. Methods Gene expression profiles for DM (GSE39454, GSE46239, GSE143323) and ILD (GSE32537, GSE110147, GSE150910) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying common differentially expressed genes (DEGs) to DM and ILD using the "limma" R package and the "VennDiagram" R package, functional annotation, relationship to immune cell infiltration, identification of transcription factors (TFs), we also collected clinical cases of DM-associated ILD (DM-ILD), including 3 cases of rapidly progressive ILD (RP-ILD) and 3 cases of none-RP-ILD, and explored whether there were differences in serum lymphocyte subpopulations. Results A total of 4 common DEGs (SLAMF7, SPP1, TDO2, and VCAM1) were screened and Gene Ontology (GO) enrichment analysis showed that these genes were mainly enriched in T cell activation, regulation of lymphocyte activation, lymphocyte differentiation, leukocyte proliferation and regulation of T cell activation. In terms of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the three significantly enriched pathways were the PI3K-Akt signaling pathway, MAPK signaling pathway, and Cytokine-cytokine receptor interaction. In lung and muscle tissues, 21 and 3 TFs may regulate the expression of these genes, respectively. Finally, by analysing the serum lymphocyte subpopulations, we also found a decrease in the absolute number of CD8+ T cells and an increase in the CD4+ /CD8+ T cell ratio in DM combined with RP-ILD. Conclusion These common pathways and key genes may provide new ideas for further research into DM-ILD.
Collapse
Affiliation(s)
- Changjian Liu
- Department of Rheumatology, the Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yongpeng Ge
- Department of Rheumatology, the Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
16
|
Figueiredo ML. Applications of single-cell RNA sequencing in rheumatoid arthritis. Front Immunol 2024; 15:1491318. [PMID: 39600707 PMCID: PMC11588722 DOI: 10.3389/fimmu.2024.1491318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Single cell RNA sequencing (scRNA-seq) is a relatively new technology that provides an unprecedented, detailed view of cellular heterogeneity and function by delineating the transcriptomic difference among individual cells. This will allow for mapping of cell-type-specific signaling during physiological and pathological processes, to build highly specific models of cellular signaling networks between the many discrete clusters that are present. This technology therefore provides a powerful approach to dissecting the cellular and molecular mechanisms that contribute to autoimmune diseases, including rheumatoid arthritis (RA). scRNA-seq can offer valuable insights into RA unique cellular states and transitions, potentially enabling development of novel drug targets. However, some challenges that still limit its mainstream utilization and include higher costs, a lower sensitivity for low-abundance transcripts, and a relatively complex data analysis workflow relative to bulk or traditional RNA-seq. This minireview explores the emerging application of scRNA-seq in RA research, highlighting its role in producing important insights that can help pave the way for innovative and more effective therapeutic strategies.
Collapse
Affiliation(s)
- Marxa L. Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue
University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Zhang L, Chen S, Zheng Z, Lin Y, Wang C, Gong Y, Qin A, Su J, Tang S. Artificial Neutrophil-Mediated CEBPA-saRNA Delivery to Ameliorate ALI/ARDS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51957-51969. [PMID: 39305228 DOI: 10.1021/acsami.4c09022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) still faces great challenges due to uncontrollable inflammation disorders, complicated causes of occurrence, and high mortality. Small-activating RNA (saRNA) has emerged as a novel and powerful gene-activating tool that may be useful in the treatment of ALI/ARDS. However, effective saRNA therapy is still challenged by the lack of effective and safe gene delivery vehicles. In this study, we develop a type of artificial neutrophil that is used to deliver saRNAs for ALI/ARDS treatment. The saRNA targeting CCAAT-enhancer binding protein α (CEBPA-saRNA) is complexed with H1 histone and further camouflaged with neutrophil membranes (NHR). Interestingly, we are the first to find that the H1 histone possesses the most effective binding capability to saRNA, compared to other subtypes. The prepared NHR shows excellent physicochemical properties, effective cellular uptake by the inflammatory M1 macrophages, and efficient activation of CEBPA, leading to significant M2 polarization. NHR shows an extended circulation lifetime and high-level accumulation in the inflamed lungs. The in vivo experiments indicate that NHR ameliorates ALI in a mouse model. This type of artificial neutrophil shows powerful inflammatory inhibition both in vitro and in vivo, which opens a new avenue for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Lingmin Zhang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng Chen
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - ZhouYikang Zheng
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinshan Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingjie Gong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianfen Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
| |
Collapse
|
18
|
Kikuchi J, Hori M, Osada N, Matsuoka S, Suzuki A, Kakugawa S, Yasui H, Harada T, Tenshin H, Abe M, Nakasone H, Furukawa Y. Soluble SLAMF7 is generated by alternative splicing in multiple myeloma cells. Haematologica 2024; 109:3414-3418. [PMID: 38867588 PMCID: PMC11443410 DOI: 10.3324/haematol.2024.285368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Jiro Kikuchi
- Division of Emerging Medicine for Integrated Therapeutics (EMIT), Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498.
| | - Mitsuo Hori
- Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki 309-1793
| | - Naoki Osada
- Division of Emerging Medicine for Integrated Therapeutics (EMIT), Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Sae Matsuoka
- Division of Emerging Medicine for Integrated Therapeutics (EMIT), Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Atsushi Suzuki
- Oncology Division, Bristol-Myers Squibb K.K., Shinjuku, Tokyo 163-1327
| | - Satoshi Kakugawa
- Oncology Division, Bristol-Myers Squibb K.K., Shinjuku, Tokyo 163-1327
| | - Hiroshi Yasui
- The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan; Division of Hematology and Oncology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511 Japan
| | - Takeshi Harada
- Department of Hematology, University of Tokushima, Tokushima 770-8503
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504
| | - Masahiro Abe
- Department of Hematology, Kawashima Hospital, Tokushima 770-0011
| | - Hideki Nakasone
- Division of Emerging Medicine for Integrated Therapeutics (EMIT), Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498
| | - Yusuke Furukawa
- Division of Emerging Medicine for Integrated Therapeutics (EMIT), Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; Center for Medical Education, Teikyo University of Science, Tokyo 120-0045
| |
Collapse
|
19
|
Lakshmikanth T, Consiglio C, Sardh F, Forlin R, Wang J, Tan Z, Barcenilla H, Rodriguez L, Sugrue J, Noori P, Ivanchenko M, Piñero Páez L, Gonzalez L, Habimana Mugabo C, Johnsson A, Ryberg H, Hallgren Å, Pou C, Chen Y, Mikeš J, James A, Dahlqvist P, Wahlberg J, Hagelin A, Holmberg M, Degerblad M, Isaksson M, Duffy D, Kämpe O, Landegren N, Brodin P. Immune system adaptation during gender-affirming testosterone treatment. Nature 2024; 633:155-164. [PMID: 39232147 PMCID: PMC11374716 DOI: 10.1038/s41586-024-07789-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/04/2024] [Indexed: 09/06/2024]
Abstract
Infectious, inflammatory and autoimmune conditions present differently in males and females. SARS-CoV-2 infection in naive males is associated with increased risk of death, whereas females are at increased risk of long COVID1, similar to observations in other infections2. Females respond more strongly to vaccines, and adverse reactions are more frequent3, like most autoimmune diseases4. Immunological sex differences stem from genetic, hormonal and behavioural factors5 but their relative importance is only partially understood6-8. In individuals assigned female sex at birth and undergoing gender-affirming testosterone therapy (trans men), hormone concentrations change markedly but the immunological consequences are poorly understood. Here we performed longitudinal systems-level analyses in 23 trans men and found that testosterone modulates a cross-regulated axis between type-I interferon and tumour necrosis factor. This is mediated by functional attenuation of type-I interferon responses in both plasmacytoid dendritic cells and monocytes. Conversely, testosterone potentiates monocyte responses leading to increased tumour necrosis factor, interleukin-6 and interleukin-15 production and downstream activation of nuclear factor kappa B-regulated genes and potentiation of interferon-γ responses, primarily in natural killer cells. These findings in trans men are corroborated by sex-divergent responses in public datasets and illustrate the dynamic regulation of human immunity by sex hormones, with implications for the health of individuals undergoing hormone therapy and our understanding of sex-divergent immune responses in cisgender individuals.
Collapse
Affiliation(s)
| | - Camila Consiglio
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Fabian Sardh
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Rikard Forlin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jun Wang
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ziyang Tan
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Hugo Barcenilla
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jamie Sugrue
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Peri Noori
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Margarita Ivanchenko
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Laura Piñero Páez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Laura Gonzalez
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | | | - Anette Johnsson
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Henrik Ryberg
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Hallgren
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
| | - Christian Pou
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yang Chen
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jaromír Mikeš
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Anna James
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Per Dahlqvist
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Anders Hagelin
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Holmberg
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Degerblad
- ANOVA, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden
| | - Magnus Isaksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Paris, France
| | - Olle Kämpe
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Nils Landegren
- Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Solna, Sweden.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
- Medical Research Council, Laboratory of Medical Sciences, London, UK.
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
20
|
King EM, McClendon J, Trinh T, Matsuda JL, Lyn-Kew KH, McCubbrey AL, Mould KJ, Henson PM, Janssen WJ. Slamf7 is dispensable in mouse models of acute lung injury. ERJ Open Res 2024; 10:00345-2024. [PMID: 39377087 PMCID: PMC11456964 DOI: 10.1183/23120541.00345-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 10/09/2024] Open
Abstract
Slamf7 is expressed by monocyte-derived macrophages recruited to the lungs during injury. Whole-body and macrophage-specific knockouts of Slamf7 had no effect on the degree of inflammation in three mouse models of acute lung injury. https://bit.ly/3KgTJg1.
Collapse
Affiliation(s)
- Emily M. King
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
| | | | | | | | | | - Alexandra L. McCubbrey
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Medicine, Denver, CO, USA
| | - Kara J. Mould
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Medicine, Denver, CO, USA
| | - Peter M. Henson
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Pediatrics, Denver, CO, USA
| | - William J. Janssen
- University of Colorado Anschutz Medical Campus, Department of Medicine, Aurora, CO, USA
- National Jewish Health, Department of Medicine, Denver, CO, USA
| |
Collapse
|
21
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
22
|
Lorestani P, Dashti M, Nejati N, Habibi MA, Askari M, Robat-Jazi B, Ahmadpour S, Tavakolpour S. The complex role of macrophages in pancreatic cancer tumor microenvironment: a review on cancer progression and potential therapeutic targets. Discov Oncol 2024; 15:369. [PMID: 39186144 PMCID: PMC11347554 DOI: 10.1007/s12672-024-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers worldwide with low survival rates and poor outcomes. The treatment landscape for PC is fraught with obstacles, including drug resistance, lack of effective targeted therapies and the immunosuppressive tumor microenvironment (TME). The resistance of PC to existing immunotherapies highlights the need for innovative approaches, with the TME emerging as a promising therapeutic target. The recent advancements in understanding the role of macrophages, this context highlight their significant impact on tumor development and progression. There are two important types of macrophages: M1 and M2, which play critical roles in the TME. Therapeutics strategies including, depletion of tumor-associated macrophages (TAMs), reprogramming TAMs to promote anti-tumor activity, and targeting macrophage recruitment can lead to promising outcomes. Targeting macrophage-related pathways may offer novel strategies for modulating immune responses, inhibiting angiogenesis, and overcoming resistance to chemotherapy in PC treatment.
Collapse
Affiliation(s)
- Parsa Lorestani
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Dashti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Nejati
- Pediatric Cell and Gene Therapy Research Centre, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Askari
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behruz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Soheil Tavakolpour
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Becker SH, Ronayne CE, Bold TD, Jenkins MK. CD4 + T cells recruit, then engage macrophages in cognate interactions to clear Mycobacterium tuberculosis from the lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609198. [PMID: 39229103 PMCID: PMC11370583 DOI: 10.1101/2024.08.22.609198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
IFN-γ-producing CD4 + T cells are required for protection against lethal Mycobacterium tuberculosis ( Mtb ) infections. However, the ability of CD4 + T cells to suppress Mtb growth cannot be fully explained by IFN-γ or other known T cell products. In this study, we show that CD4 + T cell-derived IFN-γ promoted the recruitment of monocyte-derived macrophages (MDMs) to the lungs of Mtb -infected mice. Although the recruited MDMs became quickly and preferentially infected with Mtb , CD4 + T cells rapidly disinfected the MDMs. Clearance of Mtb from MDMs was not explained by IFN-γ, but rather by MHCII-mediated cognate interactions with CD4 + T cells. These interactions promoted MDM expression of glycolysis genes essential for Mtb control. Thus, by recruiting MDMs, CD4 + T cells initiate a cycle of bacterial phagocytosis, Mtb antigen presentation and disinfection in an attempt to clear the bacteria from the lungs.
Collapse
|
24
|
Yao X, Redekar NR, Keeran KJ, Qu X, Jeffries KR, Soria-Florido M, Saxena A, Dagur PK, Lin WC, McCoy JP, Levine SJ. Neutrophil Heterogeneity Is Modified during Acute Lung Inflammation in Apoa1-/- Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:456-468. [PMID: 38912868 PMCID: PMC11300144 DOI: 10.4049/jimmunol.2300459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/01/2024] [Indexed: 06/25/2024]
Abstract
Neutrophils play important roles in inflammatory airway diseases. In this study, we assessed whether apolipoprotein A-I modifies neutrophil heterogeneity as part of the mechanism by which it attenuates acute airway inflammation. Neutrophilic airway inflammation was induced by daily intranasal administration of LPS plus house dust mite (LPS+HDM) to Apoa1-/- and Apoa1+/+ mice for 3 d. Single-cell RNA sequencing was performed on cells recovered from bronchoalveolar lavage fluid on day 4. Unsupervised profiling identified 10 clusters of neutrophils in bronchoalveolar lavage fluid from Apoa1-/- and Apoa1+/+ mice. LPS+HDM-challenged Apoa1-/- mice had an increased proportion of the Neu4 neutrophil cluster that expressed S100a8, S100a9, and Mmp8 and had high maturation, aggregation, and TLR4 binding scores. There was also an increase in the Neu6 cluster of immature neutrophils, whereas neutrophil clusters expressing IFN-stimulated genes were decreased. An unsupervised trajectory analysis showed that Neu4 represented a distinct lineage in Apoa1-/- mice. LPS+HDM-challenged Apoa1-/- mice also had an increased proportion of recruited airspace macrophages, which was associated with a reciprocal reduction in resident airspace macrophages. Increased expression of a common set of proinflammatory genes, S100a8, S100a9, and Lcn2, was present in all neutrophils and airspace macrophages from LPS+HDM-challenged Apoa1-/- mice. These findings show that Apoa1-/- mice have increases in specific neutrophil and macrophage clusters in the lung during acute inflammation mediated by LPS+HDM, as well as enhanced expression of a common set of proinflammatory genes. This suggests that modifications in neutrophil and macrophage heterogeneity contribute to the mechanism by which apolipoprotein A-I attenuates acute airway inflammation.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Neelam R. Redekar
- NIAID Collaborative Bioinformatics Resource, Integrated Data Sciences Section, Research Technologies Branch, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland
| | - Karen J. Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Kenneth R. Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - M.T. Soria-Florido
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Ankit Saxena
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Pradeep K. Dagur
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Wan-Chi Lin
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - J. Philip McCoy
- Flow Cytometry Core Facility, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| | - Stewart J. Levine
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Bethesda, Maryland
| |
Collapse
|
25
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
26
|
Zhu M, Wu Y, Zhu T, Chen J, Chen Z, Ding H, Tan S, He J, Zeng Q, Huang X. Multifunctional Bispecific Nanovesicles Targeting SLAMF7 Trigger Potent Antitumor Immunity. Cancer Immunol Res 2024; 12:1007-1021. [PMID: 38819238 DOI: 10.1158/2326-6066.cir-23-1102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
The effectiveness of immune checkpoint inhibitor (ICI) therapy is hindered by the ineffective infiltration and functioning of cytotoxic T cells and the immunosuppressive tumor microenvironment (TME). Signaling lymphocytic activation molecule family member 7 (SLAMF7) is a pivotal co-stimulatory receptor thought to simultaneously trigger NK-cell, T-cell, and macrophage antitumor cytotoxicity. However, the potential of this collaborative immune stimulation in antitumor immunity for solid tumors is underexplored due to the exclusive expression of SLAMF7 by hematopoietic cells. Here, we report the development and characterization of multifunctional bispecific nanovesicles (NVs) targeting SLAMF7 and glypican-3-a hepatocellular carcinoma (HCC)-specific tumor antigen. We found that by effectively "decorating" the surfaces of solid tumors with SLAMF7, these NVs directly induced potent and specific antitumor immunity and remodeled the immunosuppressive TME, sensitizing the tumors to programmed cell death protein 1 (PD1) blockade. Our findings highlight the potential of SLAMF7-targeted multifunctional bispecific NVs as an anticancer strategy with implications for designing next-generation targeted cancer therapies.
Collapse
Affiliation(s)
- Manman Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tianchuan Zhu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhenxing Chen
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Kingcell Regenerative Medicine (Guangdong) Co., Zhuhai, China
| | - Hanxi Ding
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Siyi Tan
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qi Zeng
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
27
|
Silveira-Freitas JEP, Campagnolo ML, dos Santos Cortez M, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. Long chikungunya? An overview to immunopathology of persistent arthralgia. World J Virol 2024; 13:89985. [PMID: 38984075 PMCID: PMC11229846 DOI: 10.5501/wjv.v13.i2.89985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 04/12/2024] [Indexed: 06/24/2024] Open
Abstract
Chikungunya fever (CF) is caused by an arbovirus whose manifestations are extremely diverse, and it has evolved with significant severity in recent years. The clinical signs triggered by the Chikungunya virus are similar to those of other arboviruses. Generally, fever starts abruptly and reaches high levels, followed by severe polyarthralgia and myalgia, as well as an erythematous or petechial maculopapular rash, varying in severity and extent. Around 40% to 60% of affected individuals report persistent arthralgia, which can last from months to years. The symptoms of CF mainly represent the tissue tropism of the virus rather than the immunopathogenesis triggered by the host's immune system. The main mechanisms associated with arthralgia have been linked to an increase in T helper type 17 cells and a consequent increase in receptor activator of nuclear factor kappa-Β ligand and bone resorption. This review suggests that persistent arthralgia results from the presence of viral antigens post-infection and the constant activation of signaling lymphocytic activation molecule family member 7 in synovial macrophages, leading to local infiltration of CD4+ T cells, which sustains the inflammatory process in the joints through the secretion of pro-inflammatory cytokines. The term "long chikungunya" was used in this review to refer to persistent arthralgia since, due to its manifestation over long periods after the end of the viral infection, this clinical condition seems to be characterized more as a sequel than as a symptom, given that there is no active infection involved.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa de Pós-graduação em Biotecnologia, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo, Paraná 85919-899, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular, Palotina, Universidade Federal do Paraná-Setor Palotina, Paraná 85950-000, Brazil
| |
Collapse
|
28
|
Feng J, Chen J, Li X, Ren X, Chen J, Li Z, Wu Y, Zhang Z, Yang R, Li J, Lu Y, Liu Y. Mendelian randomization and Bayesian model averaging of autoimmune diseases and Long COVID. Front Genet 2024; 15:1383162. [PMID: 39005628 PMCID: PMC11240141 DOI: 10.3389/fgene.2024.1383162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/27/2024] [Indexed: 07/16/2024] Open
Abstract
Background Following COVID-19, reports suggest Long COVID and autoimmune diseases (AIDs) in infected individuals. However, bidirectional causal effects between Long COVID and AIDs, which may help to prevent diseases, have not been fully investigated. Methods Summary-level data from genome-wide association studies (GWAS) of Long COVID (N = 52615) and AIDs including inflammatory bowel disease (IBD) (N = 377277), Crohn's disease (CD) (N = 361508), ulcerative colitis (UC) (N = 376564), etc. were employed. Bidirectional causal effects were gauged between AIDs and Long COVID by exploiting Mendelian randomization (MR) and Bayesian model averaging (BMA). Results The evidence of causal effects of IBD (OR = 1.06, 95% CI = 1.00-1.11, p = 3.13E-02), CD (OR = 1.10, 95% CI = 1.01-1.19, p = 2.21E-02) and UC (OR = 1.08, 95% CI = 1.03-1.13, p = 2.35E-03) on Long COVID was found. In MR-BMA, UC was estimated as the highest-ranked causal factor (MIP = 0.488, MACE = 0.035), followed by IBD and CD. Conclusion This MR study found that IBD, CD and UC had causal effects on Long COVID, which suggests a necessity to screen high-risk populations.
Collapse
Affiliation(s)
- Jieni Feng
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiankun Chen
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Xiaoya Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolei Ren
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junxu Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuming Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongde Zhang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongyuan Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiqiang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
| | - Yue Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuntao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
29
|
Trzebanski S, Kim JS, Larossi N, Raanan A, Kancheva D, Bastos J, Haddad M, Solomon A, Sivan E, Aizik D, Kralova JS, Gross-Vered M, Boura-Halfon S, Lapidot T, Alon R, Movahedi K, Jung S. Classical monocyte ontogeny dictates their functions and fates as tissue macrophages. Immunity 2024; 57:1225-1242.e6. [PMID: 38749446 DOI: 10.1016/j.immuni.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 06/14/2024]
Abstract
Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.
Collapse
Affiliation(s)
- Sébastien Trzebanski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jung-Seok Kim
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niss Larossi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ayala Raanan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Montaser Haddad
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aryeh Solomon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ehud Sivan
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan Aizik
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Mor Gross-Vered
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sigalit Boura-Halfon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsvee Lapidot
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steffen Jung
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
30
|
Song X, Yao Z, Zhang Z, Lyu S, Chen N, Qi X, Liu X, Ma W, Wang W, Lei C, Jiang Y, Wang E, Huang Y. Whole-genome sequencing reveals genomic diversity and selection signatures in Xia'nan cattle. BMC Genomics 2024; 25:559. [PMID: 38840048 PMCID: PMC11151506 DOI: 10.1186/s12864-024-10463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.
Collapse
Affiliation(s)
- Xingya Song
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Xingshan Qi
- Biyang County Xiananniu Technology Development Co., Ltd, Zhumadian, 463700, People's Republic of China
| | - Xian Liu
- Henan Provincial Livestock Technology Promotion Station, Zhengzhou, 450008, Henan, People's Republic of China
| | - Weidong Ma
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi Fufeng, 722203, People's Republic of China
| | - Wusheng Wang
- Shaanxi Agricultural and Animal Husbandry Seed Farm, Shaanxi Fufeng, 722203, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, Henan, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling Shaanxi, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
31
|
Kronzer VL, Sparks JA, Raychaudhuri S, Cerhan JR. Low-frequency and rare genetic variants associated with rheumatoid arthritis risk. Nat Rev Rheumatol 2024; 20:290-300. [PMID: 38538758 DOI: 10.1038/s41584-024-01096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) has an estimated heritability of nearly 50%, which is particularly high in seropositive RA. HLA alleles account for a large proportion of this heritability, in addition to many common single-nucleotide polymorphisms with smaller individual effects. Low-frequency and rare variants, such as those captured by next-generation sequencing, can also have a large role in heritability in some individuals. Rare variant discovery has informed the development of drugs such as inhibitors of PCSK9 and Janus kinases. Some 34 low-frequency and rare variants are currently associated with RA risk. One variant (19:10352442G>C in TYK2) was identified in five separate studies, and might therefore represent a promising therapeutic target. Following a set of best practices in future studies, including studying diverse populations, using large sample sizes, validating RA and serostatus, replicating findings, adjusting for other variants and performing functional assessment, could help to ensure the relevance of identified variants. Exciting opportunities are now on the horizon for genetics in RA, including larger datasets and consortia, whole-genome sequencing and direct applications of findings in the management, and especially treatment, of RA.
Collapse
Affiliation(s)
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Yuan F, Wei J, Cheng Y, Wang F, Gu M, Li Y, Zhao X, Sun H, Ban R, Zhou J, Xia Z. SLAMF7 Promotes Foam Cell Formation of Macrophage by Suppressing NR4A1 Expression During Carotid Atherosclerosis. Inflammation 2024; 47:530-542. [PMID: 37971565 DOI: 10.1007/s10753-023-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Macrophage-derived lipid-laden foam cells from the subendothelium play a crucial role in the initiation and progression of atherosclerosis. However, the molecule mechanism that regulates the formation of foam cells is not completely understood. Here, we found that SLAMF7 was upregulated in mice bone marrow-derived macrophages and RAW264.7 cells stimulated with oxidized low-density lipoprotein (ox-LDL). SLAMF7 promoted ox-LDL-mediated macrophage lipid accumulation and M1-type polarization. SLAMF7 deficiency reduced serum lipid levels and improved the lesions area of carotid plaque and aortic arch in high-fat diet-fed ApoE-/- mice. In response to ox-LDL, SLAMF7 downregulated NR4A1 and upregulated RUNX3 through transcriptome sequencing analysis. Overexpression NR4A1 reversed SLAMF7-induced lipid uptake and M1 polarization via inhibiting RUNX3 expression. Furthermore, RUNX3 enhanced foam cell formation and M1-type polarization. Taken together, the study suggested that SLAMF7 play contributing roles in the pro-atherogenic effects by regulating NR4A1-RUNX3.
Collapse
Affiliation(s)
- Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Jianmei Wei
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yan Cheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Feifei Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yanhui Li
- Department of Rehabilitation Medicine, Liaocheng Chinese Medicine Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China
| | - Hao Sun
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China
| | - Jing Zhou
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, People's Republic of China.
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252000, People's Republic of China.
| |
Collapse
|
33
|
Jonsson AH. Synovial Tissue Insights into Heterogeneity of Rheumatoid Arthritis. Curr Rheumatol Rep 2024; 26:81-88. [PMID: 38157158 PMCID: PMC11245950 DOI: 10.1007/s11926-023-01129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis is one of the most common rheumatic and autoimmune diseases. While it can affect many different organ systems, RA primarily involves inflammation in the synovium, the tissue that lines joints. Patients with RA exhibit significant clinical heterogeneity in terms of presence or absence of autoantibodies, degree of permanent deformities, and most importantly, treatment response. These clinical characteristics point to heterogeneity in the cellular and molecular pathogenesis of RA, an area that several recent studies have begun to address. RECENT FINDINGS Single-cell RNA-sequencing initiatives and deeper focused studies have revealed several RA-associated cell populations in synovial tissues, including peripheral helper T cells, autoimmunity-associated B cells (ABCs), and NOTCH3+ sublining fibroblasts. Recent large transcriptional studies and translational clinical trials present frameworks to capture cellular and molecular heterogeneity in RA synovium. Technological developments, such as spatial transcriptomics and machine learning, promise to further elucidate the different types of RA synovitis and the biological mechanisms that characterize them, key elements of precision medicine to optimize patient care and outcomes in RA. This review recaps the findings of those recent studies and puts our current knowledge and future challenges into scientific and clinical perspective.
Collapse
Affiliation(s)
- Anna Helena Jonsson
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
34
|
Liang B, Yan T, Wei H, Zhang D, Li L, Liu Z, Li W, Zhang Y, Jiang N, Meng Q, Jiang G, Hu Y, Leng J. HERVK-mediated regulation of neighboring genes: implications for breast cancer prognosis. Retrovirology 2024; 21:4. [PMID: 38388382 PMCID: PMC10885364 DOI: 10.1186/s12977-024-00636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Human endogenous retroviruses (HERVs) are the remnants of ancient retroviral infections integrated into the human genome. Although most HERVs are silenced or rendered inactive by various regulatory mechanisms, they retain the potential to influence the nearby genes. We analyzed the regulatory map of 91 HERV-Ks on neighboring genes in human breast cancer and investigated the impact of HERV-Ks on the tumor microenvironment (TME) and prognosis of breast cancer. Nine RNA-seq datasets were obtained from GEO and NCBI SRA. Differentially expressed genes and HERV-Ks were analyzed using DESeq2. Validation of high-risk prognostic candidate genes using TCGA data. These included Overall survival (multivariate Cox regression model), immune infiltration analysis (TIMER), tumor mutation burden (maftools), and drug sensitivity analysis (GSCA). A total of 88 candidate genes related to breast cancer prognosis were screened, of which CD48, SLAMF7, SLAMF1, IGLL1, IGHA1, and LRRC8A were key genes. Functionally, these six key genes were significantly enriched in some immune function-related pathways, which may be associated with poor prognosis for breast cancer (p = 0.00016), and the expression levels of these genes were significantly correlated with the sensitivity of breast cancer treatment-related drugs. Mechanistically, they may influence breast cancer development by modulating the infiltration of various immune cells into the TME. We further experimentally validated these genes to confirm the results obtained from bioinformatics analysis. This study represents the first report on the regulatory potential of HERV-K in the neighboring breast cancer genome. We identified three key HERV-Ks and five neighboring genes that hold promise as novel targets for future interventions and treatments for breast cancer.
Collapse
Affiliation(s)
- Boying Liang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Tengyue Yan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Huilin Wei
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Die Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lanxiang Li
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengjing Liu
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Wen Li
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Yuluan Zhang
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Nili Jiang
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China
| | - Qiuxia Meng
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Guiyang Jiang
- Genomic Experimental Center, Guangxi Medical University, Nanning, China
| | - Yanling Hu
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China.
- School of Institute of Life Sciences, Guangxi Medical University, Nanning, China.
- Genomic Experimental Center, Guangxi Medical University, Nanning, China.
| | - Jing Leng
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China.
| |
Collapse
|
35
|
Shah R, Zhong J, Massier L, Tanriverdi K, Hwang SJ, Haessler J, Nayor M, Zhao S, Perry AS, Wilkins JT, Shadyab AH, Manson JE, Martin L, Levy D, Kooperberg C, Freedman JE, Rydén M, Murthy VL. Targeted Proteomics Reveals Functional Targets for Early Diabetes Susceptibility in Young Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004192. [PMID: 38323454 PMCID: PMC10940209 DOI: 10.1161/circgen.123.004192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/05/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The circulating proteome may encode early pathways of diabetes susceptibility in young adults for surveillance and intervention. Here, we define proteomic correlates of tissue phenotypes and diabetes in young adults. METHODS We used penalized models and principal components analysis to generate parsimonious proteomic signatures of diabetes susceptibility based on phenotypes and on diabetes diagnosis across 184 proteins in >2000 young adults in the CARDIA (Coronary Artery Risk Development in Young Adults study; mean age, 32 years; 44% women; 43% Black; mean body mass index, 25.6±4.9 kg/m2), with validation against diabetes in >1800 individuals in the FHS (Framingham Heart Study) and WHI (Women's Health Initiative). RESULTS In 184 proteins in >2000 young adults in CARDIA, we identified 2 proteotypes of diabetes susceptibility-a proinflammatory fat proteotype (visceral fat, liver fat, inflammatory biomarkers) and a muscularity proteotype (muscle mass), linked to diabetes in CARDIA and WHI/FHS. These proteotypes specified broad mechanisms of early diabetes pathogenesis, including transorgan communication, hepatic and skeletal muscle stress responses, vascular inflammation and hemostasis, fibrosis, and renal injury. Using human adipose tissue single cell/nuclear RNA-seq, we demonstrate expression at transcriptional level for implicated proteins across adipocytes and nonadipocyte cell types (eg, fibroadipogenic precursors, immune and vascular cells). Using functional assays in human adipose tissue, we demonstrate the association of expression of genes encoding these implicated proteins with adipose tissue metabolism, inflammation, and insulin resistance. CONCLUSIONS A multifaceted discovery effort uniting proteomics, underlying clinical susceptibility phenotypes, and tissue expression patterns may uncover potentially novel functional biomarkers of early diabetes susceptibility in young adults for future mechanistic evaluation.
Collapse
Affiliation(s)
- Ravi Shah
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Jiawei Zhong
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Lucas Massier
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Kahraman Tanriverdi
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Nayor
- Sections of Preventive Medicine & Epidemiology & Cardiovascular Medicine, Dept of Medicine, Dept of Epidemiology, Boston University Schools of Medicine & Public Health, Boston, MA & Framingham Heart Study, Framingham, MA
| | | | - Andrew S. Perry
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | | | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health & Human Longevity Science, Univ of California, San Diego, La Jolla, CA
| | - JoAnn E. Manson
- Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Lisa Martin
- George Washington Univ School of Medicine & Health Sciences
| | - Daniel Levy
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Jane E. Freedman
- Vanderbilt Translational & Clinical Cardiovascular Research Center, Vanderbilt Univ, Nashville, TN
| | - Mikael Rydén
- Dept of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
36
|
Zhang J, Feng S, Chen M, Zhang W, Zhang X, Wang S, Gan X, Zheng Y, Wang G. Identification of potential crucial genes shared in psoriasis and ulcerative colitis by machine learning and integrated bioinformatics. Skin Res Technol 2024; 30:e13574. [PMID: 38303405 PMCID: PMC10835022 DOI: 10.1111/srt.13574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Mounting evidence suggest that there are an association between psoriasis and ulcerative colitis (UC), although the common pathogeneses are not fully understood. Our study aimed to find potential crucial genes in psoriasis and UC through machine learning and integrated bioinformatics. METHODS The overlapping differentially expressed genes (DEGs) of the datasets GSE13355 and GSE87466 were identified. Then the functional enrichment analysis was performed. The overlapping genes in LASSO, SVM-RFE and key module in WGCNA were considered as potential crucial genes. The receiver operator characteristic (ROC) curve was used to estimate their diagnostic confidence. The CIBERSORT was conducted to evaluate immune cell infiltration. Finally, the datasets GSE30999 and GSE107499 were retrieved to validate. RESULTS 112 overlapping DEGs were identified in psoriasis and UC and the functional enrichment analysis revealed they were closely related to the inflammatory and immune response. Eight genes, including S100A9, PI3, KYNU, WNT5A, SERPINB3, CHI3L2, ARNTL2, and SLAMF7, were ultimately identified as potential crucial genes. ROC curves showed they all had high confidence in the test and validation datasets. CIBERSORT analysis indicated there was a correlation between infiltrating immune cells and potential crucial genes. CONCLUSION In our study, we focused on the comprehensive understanding of pathogeneses in psoriasis and UC. The identification of eight potential crucial genes may contribute to not only understanding the common mechanism, but also identifying occult UC in psoriasis patients, even serving as therapeutic targets in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Shuo Feng
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Minfei Chen
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Wen Zhang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xiu Zhang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Shengbang Wang
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Xinyi Gan
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Yan Zheng
- Department of Dermatologythe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Guorong Wang
- The First Department of General Surgerythe Third Affiliated Hospital and Shaanxi Provincial People's HospitalXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| |
Collapse
|
37
|
Yin H, Gu P, Xie Y, You X, Zhang Y, Yao Y, Yang S, Wang D, Chen W, Ma J. ALKBH5 mediates silica particles-induced pulmonary inflammation through increased m 6A modification of Slamf7 and autophagy dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132736. [PMID: 37827106 DOI: 10.1016/j.jhazmat.2023.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Silica particles are commonly encountered in natural and industrial activities. Long-term environmental exposure to silica can result in silicosis, which is characterized by chronic inflammation and abnormal tissue repair in lung. To uncover the role of m6A modification in silica-induced pulmonary inflammation, we conducted this study using established mouse and macrophage models. In this study, the aerodynamic diameter of silica particles was approximately 1-2 µm. We demonstrated that silica exposure in mice caused pulmonary inflammation and increased global m6A modification levels, the downregulation of alkB homolog 5 (ALKBH5) might contribute to this alteration. Besides, we found that F4/80, a macrophage-specific biomarker, was co-expressed with ALKBH5 through dual immunofluorescent staining. In vitro studies using MeRIP assays suggested that Slamf7 was a target gene regulated by m6A modification, and specific inhibition of ALKBH5 increased Slamf7 expression. Mechanistically, ALKBH5 promoted m6A modification of Slamf7, which decreased Slamf7 mRNA stability in an m6A-dependent manner, ultimately regulating Slamf7 expression. In addition, silica exposure activated PI3K/AKT and induced macrophage autophagy. Inhibition of Slamf7 promoted autophagy, reduced the secretion of pro-inflammatory cytokines, and improved silica-induced pulmonary inflammation. In summary, ALKBH5 can regulate silica-induced pulmonary inflammation by modulating Slamf7 m6A modification and affecting the function of macrophage autophagy.
Collapse
Affiliation(s)
- Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
38
|
Braß SM, Mazrekaj A, Mulorz J, Ibing W, Krott KJ, Takeuchi K, Cappallo M, Liu HH, Elvers M, Schelzig H, Wagenhäuser MU. Nicotine Potentially Alters Endothelial Inflammation and Cell Adhesion via LGALS9. J Cardiovasc Dev Dis 2023; 11:6. [PMID: 38248876 PMCID: PMC10816207 DOI: 10.3390/jcdd11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The endothelial cell layer is essential for the maintenance of various blood vessel functions. Major risk factors for endothelial dysfunction that contribute to aortic pathologies such as abdominal aortic aneurysm (AAA) and aortic dissection (AD) include smoking tobacco cigarettes and hypertension. This study explores the effects of nicotine (Nic) and angiotensin II (Ang II) on human aortic endothelial cells (HAoECs) at a transcriptional level. METHODS HAoECs were exposed to 100 nM Nic and/or 100 nM Ang II. RNA sequencing (RNA-Seq) was performed to identify regulated genes following exposure. Results were validated applying RT-qPCR. GeneMANIA was used to perform in silico analysis aiming to identify potential downstream interacting genes in inflammatory, cell-adhesion, endothelial cell proliferation, and coagulation pathways. RESULTS RNA-Seq identified LGALS9 (Galectin-9) as being potentially regulated following Nic exposure, while subsequent RT-qPCR experiments confirmed the transcriptional regulation (p < 0.05). Subsequent in silico analysis identified potential candidate genes for interacting with LGALS9 in different gene sets. Of the top 100 genes potentially interacting with LGALS9, 18 were inflammatory response genes, 28 were involved in cell adhesion, 2 in cell proliferation, and 6 in coagulation. CONCLUSION Nic exposure of HAoECs causes a significant increase in LGALS9 at a transcriptional level. LGALS9 itself may serve as key regulator for essential endothelial cell processes via interfering with various signaling pathways and may thus represent a potentially novel target in the pathogenesis of aortic pathologies.
Collapse
Affiliation(s)
- Sönke Maximilian Braß
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Agnesa Mazrekaj
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Wiebke Ibing
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Kim-Jürgen Krott
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Kiku Takeuchi
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Melanie Cappallo
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
- Clinic for Cardiac Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
- CURE 3D Lab, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Hsiang-Han Liu
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Margitta Elvers
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| |
Collapse
|
39
|
Rannikko JH, Verlingue L, de Miguel M, Pasanen A, Robbrecht D, Skytta T, Iivanainen S, Shetty S, Ma YT, Graham DM, Arora SP, Jaakkola P, Yap C, Xiang Y, Mandelin J, Karvonen MK, Jalkanen J, Karaman S, Koivunen JP, Minchom A, Hollmén M, Bono P. Bexmarilimab-induced macrophage activation leads to treatment benefit in solid tumors: The phase I/II first-in-human MATINS trial. Cell Rep Med 2023; 4:101307. [PMID: 38056464 PMCID: PMC10772343 DOI: 10.1016/j.xcrm.2023.101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Macrophage Clever-1 contributes to impaired antigen presentation and suppression of anti-tumor immunity. This first-in-human trial investigates the safety and tolerability of Clever-1 blockade with bexmarilimab in patients with treatment-refractory solid tumors and assesses preliminary anti-tumor efficacy, pharmacodynamics, and immunologic correlates. Bexmarilimab shows no dose-limiting toxicities in part I (n = 30) and no additional safety signals in part II (n = 108). Disease control (DC) rates of 25%-40% are observed in cutaneous melanoma, gastric, hepatocellular, estrogen receptor-positive breast, and biliary tract cancers. DC associates with improved survival in a landmark analysis and correlates with high pre-treatment intratumoral Clever-1 positivity and increasing on-treatment serum interferon γ (IFNγ) levels. Spatial transcriptomics profiling of DC and non-DC tumors demonstrates bexmarilimab-induced macrophage activation and stimulation of IFNγ and T cell receptor signaling selectively in DC patients. These data suggest that bexmarilimab therapy is well tolerated and show that macrophage targeting can promote immune activation and tumor control in late-stage cancer.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland; Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Loic Verlingue
- Institut Gustave Roussy, Paris and Centre Leon Berard in Lyon, Lyon, France
| | | | - Annika Pasanen
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Debbie Robbrecht
- Erasmus Medical Center/Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Shishir Shetty
- University of Birmingham/University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Yuk Ting Ma
- University of Birmingham/University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | - Panu Jaakkola
- Department of Oncology, Turku University Hospital and University of Turku, Turku, Finland
| | - Christina Yap
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - Yujuan Xiang
- INDIVIDRUG Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Sinem Karaman
- INDIVIDRUG Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Wihuri Research Institute, Helsinki, Finland
| | - Jussi P Koivunen
- Oulu University Hospital, University of Oulu, Oulu, Finland; Faron Pharmaceuticals Ltd, Turku, Finland
| | - Anna Minchom
- Drug Development Unit, Royal Marsden Hospital/Institute of Cancer Research, Sutton, UK
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland; Faron Pharmaceuticals Ltd, Turku, Finland.
| | - Petri Bono
- Terveystalo Finland and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
40
|
Zheng Y, Zhao J, Zhou M, Wei K, Jiang P, Xu L, Chang C, Shan Y, Xu L, Shi Y, Schrodi SJ, Guo S, He D. Role of signaling lymphocytic activation molecule family of receptors in the pathogenesis of rheumatoid arthritis: insights and application. Front Pharmacol 2023; 14:1306584. [PMID: 38027031 PMCID: PMC10657885 DOI: 10.3389/fphar.2023.1306584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.
Collapse
Affiliation(s)
- Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Steven J. Schrodi
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Shicheng Guo
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
41
|
Zhang F, Jonsson AH, Nathan A, Millard N, Curtis M, Xiao Q, Gutierrez-Arcelus M, Apruzzese W, Watts GFM, Weisenfeld D, Nayar S, Rangel-Moreno J, Meednu N, Marks KE, Mantel I, Kang JB, Rumker L, Mears J, Slowikowski K, Weinand K, Orange DE, Geraldino-Pardilla L, Deane KD, Tabechian D, Ceponis A, Firestein GS, Maybury M, Sahbudin I, Ben-Artzi A, Mandelin AM, Nerviani A, Lewis MJ, Rivellese F, Pitzalis C, Hughes LB, Horowitz D, DiCarlo E, Gravallese EM, Boyce BF, Moreland LW, Goodman SM, Perlman H, Holers VM, Liao KP, Filer A, Bykerk VP, Wei K, Rao DA, Donlin LT, Anolik JH, Brenner MB, Raychaudhuri S. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 2023; 623:616-624. [PMID: 37938773 PMCID: PMC10651487 DOI: 10.1038/s41586-023-06708-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nghia Millard
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Curtis
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qian Xiao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - William Apruzzese
- Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Bethesda, MD, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dana Weisenfeld
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saba Nayar
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathryne E Marks
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Mantel
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Joyce B Kang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laurie Rumker
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Mears
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kamil Slowikowski
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Kathryn Weinand
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dana E Orange
- Hospital for Special Surgery, New York, NY, USA
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY, USA
| | - Laura Geraldino-Pardilla
- Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Arnoldas Ceponis
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Maybury
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Ilfita Sahbudin
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Ami Ben-Artzi
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arthur M Mandelin
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Laura B Hughes
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diane Horowitz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA
| | - Edward DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan M Goodman
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katherine P Liao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Vivian P Bykerk
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Fitzsimons S, Muñoz-San Martín M, Nally F, Dillon E, Fashina IA, Strowitzki MJ, Ramió-Torrentà L, Dowling JK, De Santi C, McCoy CE. Inhibition of pro-inflammatory signaling in human primary macrophages by enhancing arginase-2 via target site blockers. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:941-959. [PMID: 37701067 PMCID: PMC10494319 DOI: 10.1016/j.omtn.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
The modulation of macrophage phenotype from a pro-inflammatory to an anti-inflammatory state holds therapeutic potential in the treatment of inflammatory disease. We have previously shown that arginase-2 (Arg2), a mitochondrial enzyme, is a key regulator of the macrophage anti-inflammatory response. Here, we investigate the therapeutic potential of Arg2 enhancement via target site blockers (TSBs) in human macrophages. TSBs are locked nucleic acid antisense oligonucleotides that were specifically designed to protect specific microRNA recognition elements (MREs) in human ARG2 3' UTR mRNA. TSBs targeting miR-155 (TSB-155) and miR-3202 (TSB-3202) MREs increased ARG2 expression in human monocyte-derived macrophages. This resulted in decreased gene expression and cytokine production of TNF-α and CCL2 and, for TSB-3202, in an increase in the anti-inflammatory macrophage marker, CD206. Proteomic analysis demonstrated that a network of pro-inflammatory responsive proteins was modulated by TSBs. In silico bioinformatic analysis predicted that TSB-3202 suppressed upstream pro-inflammatory regulators including STAT-1 while enhancing anti-inflammatory associated proteins. Proteomic data were validated by confirming increased levels of sequestosome-1 and decreased levels of phosphorylated STAT-1 and STAT-1 upon TSB treatment. In conclusion, upregulation of Arg2 by TSBs inhibits pro-inflammatory signaling and is a promising novel therapeutic strategy to modulate inflammatory signaling in human macrophages.
Collapse
Affiliation(s)
- Stephen Fitzsimons
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - María Muñoz-San Martín
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Frances Nally
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Eugene Dillon
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ifeolutembi A. Fashina
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Moritz J. Strowitzki
- Department of General, Visceral & Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Lluís Ramió-Torrentà
- Neuroinflammation and Neurodegeneration Group, Girona Biomedical Research Institute (IDIBGI), CERCA Programme/Generalitat de Catalunya, Salt, Girona, Spain
| | - Jennifer K. Dowling
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
| | - Claire E. McCoy
- School of Pharmacy and Biomolecular Science, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin 2, Ireland
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, 123 St. Stephen’s Green, Dublin 2, Ireland
| |
Collapse
|
43
|
Chu E, Wu J, Kang SS, Kang Y. SLAMF7 as a Promising Immunotherapeutic Target in Multiple Myeloma Treatments. Curr Oncol 2023; 30:7891-7903. [PMID: 37754488 PMCID: PMC10529721 DOI: 10.3390/curroncol30090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Multiple myeloma (MM) is a common hematological malignancy that has fostered several new therapeutic approaches to combat newly diagnosed or relapsed MM. While the field has advanced over the past 2 decades, the majority of patients will develop resistance to these treatments, causing the need for new therapeutic targets. SLAMF7 is an attractive therapeutic target in multiple myeloma, and a monoclonal antibody that targets SLAMF7 has shown consistent beneficial outcomes in clinical trials to date. In this review, we will focus on the structure and regulation of SLAMF7 and its mechanism of action. The most recent clinical trials will be reviewed to further understand the clinical implications and improve the prognosis of MM. Furthermore, the efficacy of anti-SLAMF7 monoclonal antibodies combined with standard therapies and possible resistance mechanisms will be discussed. This review aimed to provide a detailed summary of the role of SLAMF7 in the pathogenesis of patients with MM and the rationale for further investigation into SLAMF7-mediated molecular pathways associated with MM development.
Collapse
Affiliation(s)
- Emily Chu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA
| | - Jian Wu
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
| | - Stacey S. Kang
- College of Arts and Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; (E.C.); (J.W.)
| |
Collapse
|
44
|
Choe U, Pham Q, Kim YS, Yu L, Wang TTY. Identification and elucidation of cross talk between SLAM Family Member 7 (SLAMF7) and Toll-like receptor (TLR) pathways in monocytes and macrophages. Sci Rep 2023; 13:11007. [PMID: 37420084 PMCID: PMC10329007 DOI: 10.1038/s41598-023-37040-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
To further elucidate the expression, regulation and function of Signaling Lymphocytic Activation Molecule Family (SLAMF) protein members in human monocytes and macrophages. Un-differentiated monocytic THP-1 cell (u-THP-1) and differentiated THP-1 macrophage (d-THP-1) were used as culture models in the study. Responses of cells to the differentiation agents phorbol ester (25 ng/ml) and TLR (Toll-like receptor) ligands were assessed. RT-PCR and Western blot analysis were used to determine mRNA and protein level. Pro-inflammatory cytokine mRNA expression levels and phagocytosis were used as functional markers. Data analyzed using t-test, one-way or two-way ANOVA followed by post hoc test. SLAMFs were differentially expressed in THP-1 cells. Differentiation of u-THP-1 to d-THP-1 led to significantly higher SLAMF7 mRNA and protein levels than other SLAMF. In addition, TLR stimuli increased SLAMF7 mRNA expression but not protein expression. Importantly, SLAMF7 agonist antibody and TLR ligands synergistically increased the mRNA expression levels of IL-1β, IL-6 and TNF-α, but had no effect on phagocytosis. SLAMF7 knocked-down in d-THP-1 significantly lowered TLR-induced mRNA expressions of pro-inflammatory markers. SLAM family proteins are differentially regulated by differentiation and TLRs. SLAMF7 enhanced TLR-mediated induction of pro-inflammatory cytokines in monocytes and macrophages but not phagocytosis.
Collapse
Affiliation(s)
- Uyory Choe
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Quynhchi Pham
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Young S Kim
- Cancer Prevention Science Branch, Division of Cancer Prevention, NCI, Rockville, MD, 20850, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Thomas T Y Wang
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
45
|
Mantel I, Fein MR, Donlin LT. Emerging synovial cell states in rheumatoid arthritis as potential therapeutic targets. Curr Opin Rheumatol 2023; 35:249-254. [PMID: 37040654 PMCID: PMC10219846 DOI: 10.1097/bor.0000000000000940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
PURPOSE OF REVIEW To summarize recently discovered novel cell states in rheumatoid arthritis (RA) synovium that could have important implications for disease treatment. RECENT FINDINGS The use of multiomic technologies, including single-cell and spatial transcriptomics and mass cytometry, has led to the discovery of several novel cell states, which could have important implications for the treatment of RA. These cells can be found in patient blood, synovial fluid, or synovial tissue and span several immune cell subsets as well as stromal cell types. These diverse cell states may represent the targets of current or future therapeutics, while their fluctuations may inform the ideal timing for therapy. Future efforts are needed to implicate how each cell state functions in the pathophysiologic network within affected joints and how medications perturb each cell state and ultimately the tissue. SUMMARY Multiomic molecular technologies have afforded the discovery of numerous novel cellular states in RA synovium; the next challenge will be to link these states to pathophysiology and treatment response.
Collapse
Affiliation(s)
- Ian Mantel
- Weill Cornell Medicine Graduate School
- Hospital for Special Surgery Research Institute, New York, New York, USA
| | - Miriam R Fein
- Hospital for Special Surgery Research Institute, New York, New York, USA
| | - Laura T Donlin
- Weill Cornell Medicine Graduate School
- Hospital for Special Surgery Research Institute, New York, New York, USA
| |
Collapse
|
46
|
Fenton KA, Pedersen HL. Advanced methods and novel biomarkers in autoimmune diseases ‑ a review of the recent years progress in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1183535. [PMID: 37425332 PMCID: PMC10326284 DOI: 10.3389/fmed.2023.1183535] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
There are several autoimmune and rheumatic diseases affecting different organs of the human body. Multiple sclerosis (MS) mainly affects brain, rheumatoid arthritis (RA) mainly affects joints, Type 1 diabetes (T1D) mainly affects pancreas, Sjogren's syndrome (SS) mainly affects salivary glands, while systemic lupus erythematosus (SLE) affects almost every organ of the body. Autoimmune diseases are characterized by production of autoantibodies, activation of immune cells, increased expression of pro-inflammatory cytokines, and activation of type I interferons. Despite improvements in treatments and diagnostic tools, the time it takes for the patients to be diagnosed is too long, and the main treatment for these diseases is still non-specific anti-inflammatory drugs. Thus, there is an urgent need for better biomarkers, as well as tailored, personalized treatment. This review focus on SLE and the organs affected in this disease. We have used the results from various rheumatic and autoimmune diseases and the organs involved with an aim to identify advanced methods and possible biomarkers to be utilized in the diagnosis of SLE, disease monitoring, and response to treatment.
Collapse
Affiliation(s)
- Kristin Andreassen Fenton
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
47
|
Gao Z, Feng SR, Chen JF, Li XG, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Zeng HY, Gao Q, Shi GM, Ke AW, Zhou J, Fan J, Fu XT, Ding ZB. Inhibition of autophagy in macrophage promotes IL-1β-mediated hepatocellular carcinoma progression via inflammasome accumulation and self-recruitment. Biomed Pharmacother 2023; 161:114560. [PMID: 36940618 DOI: 10.1016/j.biopha.2023.114560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has a complex and changeable tumor microenvironment. Despite emerging evidence focusing on autophagy process within immune cells, the function and regulatory mechanism of macrophage autophagy in tumor progression remains unclear. Our results of multiplex-immunohistochemistry and RNA-sequencing identified the reduced levels of autophagy in tumor macrophages in the HCC microenvironment, associated with a poor prognosis and increased microvascular metastasis in HCC patients. Specifically, HCC suppressed the macrophage autophagy initiation through the up-regulation of mTOR and ULK1 phosphorylation at Ser757. Knockdown of autophagy-related proteins to further inhibit autophagy significantly boosted the metastatic potential of HCC. Mechanistically, the accumulation of NLRP3 inflammasome mediated by autophagy inhibition promoted the cleavage, maturation, and release of IL-1β, which facilitated the HCC progression, eventually accelerating HCC metastasis via the epithelial-mesenchymal transition. Autophagy inhibition provoked macrophage self-recruitment through the CCL20-CCR6 signaling was also a crucial account of HCC progression. Recruited macrophages mediated the cascade amplification of IL-1β and CCL20 to form a novel pro-metastatic positive feedback loop through promoting HCC metastasis and increased macrophage recruitment, respectively. Notably, targeting IL-1β/IL-1 receptor signaling impaired lung metastasis induced by macrophage autophagy inhibition in a mice HCC lung metastasis model. In summary, this study highlighted that inhibition of tumor macrophage autophagy facilitated HCC progression by increasing IL-1β secretion via NLRP3 inflammasome accumulation and by macrophage self-recruitment through the CCL20 signaling pathway. Interruption of this metastasis-promoting loop by IL-1β blockade may provide a promising therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan-Ru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
48
|
Zhang Y, Zhang Q, Han X, Han L, Wang T, Hu J, Li L, Ding Z, Shi X, Qian X. SLAMF8, a potential new immune checkpoint molecule, is associated with the prognosis of colorectal cancer. Transl Oncol 2023; 31:101654. [PMID: 36931016 PMCID: PMC10036734 DOI: 10.1016/j.tranon.2023.101654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs), such as programmed cell death 1 (PD-1) monoclonal antibodies (mAbs), have revolutionized the treatment of malignant tumors. Therefore, the number of studies aiming to screen and identify new immune checkpoint molecules for antitumor immunotherapy is increasing. Signaling lymphocytic activation molecule (SLAM) family members are mainly expressed by and regulate the functions of immune cells. Recent studies have shown that several SLAM family members are involved in the regulation of the tumor immune microenvironment and are promising targets for antitumor immunotherapy. Signaling lymphocytic activation molecule family member 8 (SLAMF8) is a type I cell surface glycoprotein and is encoded on chromosome 1q21. To further illustrate the clinical value of SLAMF8 in colorectal cancer (CRC), we retrospectively analyzed the relationship between SLAMF8 expression and the prognosis of CRC patients and the associations between SLAMF8 expression and the expression levels of other SLAM family members and other classic immune checkpoint molecules using The Cancer Genome Atlas (TCGA) data, RNA sequencing data, tissue immunohistochemistry staining, and systematic follow-up analysis. Here, high SLAMF8 expression was associated with poor overall survival (OS) in CRC. The mRNA expression level of SLAMF8 was positively correlated with the expression levels of multiple classic immune checkpoints and other SLAM family members. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that the pathways enriched in CRC tissues with high SLAMF8 expression were associated with the regulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yaping Zhang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China; Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Qun Zhang
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xingzhi Han
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Lu Han
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Wang
- Department of Pathology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Jing Hu
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Li Li
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Zhou Ding
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiao Shi
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing 210008, China; Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing 210008, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
49
|
Abstract
Maintaining the correct number of healthy red blood cells (RBCs) is critical for proper oxygenation of tissues throughout the body. Therefore, RBC homeostasis is a tightly controlled balance between RBC production and RBC clearance, through the processes of erythropoiesis and macrophage hemophagocytosis, respectively. However, during the inflammation associated with infectious, autoimmune, or inflammatory diseases this homeostatic process is often dysregulated, leading to acute or chronic anemia. In each disease setting, multiple mechanisms typically contribute to the development of inflammatory anemia, impinging on both sides of the RBC production and RBC clearance equation. These mechanisms include both direct and indirect effects of inflammatory cytokines and innate sensing. Here, we focus on common innate and adaptive immune mechanisms that contribute to inflammatory anemias using examples from several diseases, including hemophagocytic lymphohistiocytosis/macrophage activation syndrome, severe malarial anemia during Plasmodium infection, and systemic lupus erythematosus, among others.
Collapse
Affiliation(s)
- Susan P Canny
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Susana L Orozco
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
| | - Natalie K Thulin
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Jessica A Hamerman
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; , , ,
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
50
|
Wu P, Liao T, Ma Z, Wei Y, Yin S, Huang Z, Mao J. Macrophage pyroptosis promotes synovial fibrosis through the HMGB1/TGF- β1 axis: an in vivo and in vitro study. In Vitro Cell Dev Biol Anim 2023; 59:289-299. [PMID: 37195554 DOI: 10.1007/s11626-023-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/28/2023] [Indexed: 05/18/2023]
Abstract
Macrophages and fibroblasts are the main effector cells in synovial tissue in the knee joint. Our previous studies showed that there was synovial macrophage pyroptosis in knee osteoarthritis (KOA) and that inhibiting this pyroptosis could alleviate synovial fibrosis. In the present study, we aimed to elucidate the mechanism by which macrophage pyroptosis affects synovial fibrosis. We established an LPS/ATP-induced model in macrophages that mimicked the inflammatory environment of KOA and induced macrophage pyroptosis. The TGF-β1, SMAD3, and P-SMAD3, and the synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) were significantly decreased after fibroblasts were cultured with RAGE inhibitors and SMAD3 inhibitors. Moreover, ELISA and immunofluorescence analysis showed that macrophage pyroptosis induced the release of IL-1β, IL-18, and HMGB1 and caused the translocation of HMGB1 from the fibroblast nucleus to the cell membrane, where it could bind with RAGE. Subsequently, in the synovial tissue of KOA model rats, we observed that inhibiting HMGB1, RAGE, and SMAD3 could alleviate the expression of synovial fibrosis markers (Collagen I, TIMP1, Vimentin, and TGF-β1) at both the mRNA and protein levels. Besides, HE and Sirius Red staining were used to observe the transverse diameter of the right knee. In conclusion, macrophage pyroptosis induced IL-1β, IL-18, and HMGB1, which could be caused HMGB1 to translocate from the fibroblast nucleus and bind with RAGE, activating the TGF-β1/SMAD3 signaling pathway and affecting synovial fibrosis.
Collapse
Affiliation(s)
- Peng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Taiyang Liao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenyuan Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yibao Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Songjiang Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Zhengquan Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Jun Mao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|