1
|
Merold V, Bekere I, Kretschmer S, Schnell AF, Kmiec D, Sivarajan R, Lammens K, Liu R, Mergner J, Teppert J, Hirschenberger M, Henrici A, Hammes S, Buder K, Weitz M, Hackmann K, Koenig LM, Pichlmair A, Schwierz N, Sparrer KMJ, Lee-Kirsch MA, de Oliveira Mann CC. Structural basis for OAS2 regulation and its antiviral function. Mol Cell 2025:S1097-2765(25)00406-X. [PMID: 40412389 DOI: 10.1016/j.molcel.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/01/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
Oligoadenylate synthetase (OAS) proteins are immune sensors for double-stranded RNA and are critical for restricting viruses. OAS2 comprises two OAS domains, only one of which can synthesize 2'-5'-oligoadenylates for RNase L activation. Existing structures of OAS1 provide a model for enzyme activation, but they do not explain how multiple OAS domains discriminate RNA length. Here, we discover that human OAS2 exists in an auto-inhibited state as a zinc-mediated dimer and present a mechanism for RNA length discrimination: the catalytically deficient domain acts as a molecular ruler that prevents autoreactivity to short RNAs. We demonstrate that dimerization and myristoylation localize OAS2 to Golgi membranes and that this is required for OAS2 activation and the restriction of viruses that exploit the endomembrane system for replication, e.g., coronaviruses. Finally, our results highlight the non-redundant role of OAS proteins and emphasize the clinical relevance of OAS2 by identifying a patient with a loss-of-function mutation associated with autoimmune disease.
Collapse
Affiliation(s)
- Veronika Merold
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Indra Bekere
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Adrian F Schnell
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Katja Lammens
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Rou Liu
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Julia Teppert
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | | | - Alexander Henrici
- School of Medicine, Institute of Virology, Technical University of Munich, Munich 81675, Germany
| | - Sarah Hammes
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany
| | - Kathrin Buder
- University Hospital Tuebingen, University Children's Hospital, Department of General Pediatrics and Hematology/Oncology, Tuebingen 72076, Germany
| | - Marcus Weitz
- University Hospital Tuebingen, University Children's Hospital, Department of General Pediatrics and Hematology/Oncology, Tuebingen 72076, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden 01307, Germany
| | - Lars M Koenig
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Andreas Pichlmair
- School of Medicine, Institute of Virology, Technical University of Munich, Munich 81675, Germany; Helmholtz Center Munich, Systems Virology, Neuherberg 85764, Germany; German Center for Infection Research, Partner site Munich, Munich 81675, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; German Center for Neurodegenerative Diseases, Ulm 89081, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; University Center for Rare Diseases, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; German Center for Child and Adolescent Health, partner site Leipzig/Dresden, Dresden 01307, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching 85748, Germany.
| |
Collapse
|
2
|
Herkner M, Rapp C, Graeber SY, Marx C, Rambuscheck C, Reu‐Hofer S, Emiralioglu N, Kiper N, Gilea AI, Notaroberto I, Baruffini E, Temmesfeld‐Wollbrück B, Klein C, Wen H, Stahl M, Griese M, Gothe F. Multicystic Interstitial Lung Disease Due to a Novel Biallelic C-C Chemokine Receptor Type 2 Variant. Pediatr Pulmonol 2025; 60:e71135. [PMID: 40432300 PMCID: PMC12117283 DOI: 10.1002/ppul.71135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025]
Abstract
OBJECTIVE We are presenting two individuals with biallelic C-C chemokine receptor type 2 (CCR2) deficiency carrying the novel c.644C>T p.L215P variant, who presented with chronic respiratory symptoms during infancy and developed multiple diffuse cystic lesions during childhood. METHODS The patients were diagnosed by means of whole exome sequencing and functional validation of the variant was performed in primary patient cells. RESULTS While size and extent of the cysts were stable over years, progressive lung function decline was noted in adolescence and adulthood respectively. The CCR2 p.L215P variant was found to be loss-of-expression and patient monocytes displayed a migration defect upon stimulation with the CCR2 ligand C-C motif ligand 2 (CCL2). CONCLUSION With a follow-up of up to 25 years, this report expands our understanding of lung disease in CCR2 deficiency and offers another monogenic cause of cystic lung disease. Early genetic diagnosis of affected individuals might allow potentially curative treatment by haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Moritz Herkner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University HospitalLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Christina Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University HospitalLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care MedicineCharité ‐ Universitätsmedizin BerlinBerlinGermany
- German Center for Lung Research (DZL) Associated Partner SiteBerlinGermany
| | - Charlotte Marx
- Division of Clinical PharmacologyUniversity Hospital, LMU MunichMunichGermany
| | | | | | - Nagehan Emiralioglu
- Department of Pediatrics, Division of PulmonologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Nural Kiper
- Department of Pediatrics, Division of PulmonologyHacettepe University Faculty of MedicineAnkaraTurkey
| | - Alexandru I. Gilea
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Bettina Temmesfeld‐Wollbrück
- Department of Infectious Diseases and Pulmonary MedicineCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University HospitalLudwig‐Maximilians‐Universität MunichMunichGermany
| | - Han Wen
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care MedicineCharité ‐ Universitätsmedizin BerlinBerlinGermany
- German Center for Lung Research (DZL) Associated Partner SiteBerlinGermany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin BerlinBerlinGermany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University HospitalLudwig‐Maximilians‐Universität MunichMunichGermany
- German Center for Lung Research (DZL)Comprehensive Pneumology Center MunichMunichGermany
| | - Florian Gothe
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University HospitalLudwig‐Maximilians‐Universität MunichMunichGermany
- German Center for Lung Research (DZL)Comprehensive Pneumology Center MunichMunichGermany
| |
Collapse
|
3
|
Han D, Zhang B, Wang Z, Mi Y. Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense. Int J Mol Sci 2025; 26:4025. [PMID: 40362284 PMCID: PMC12071787 DOI: 10.3390/ijms26094025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the defense mechanisms employed by non-immune cells in response to intracellular pathogen invasion. We provide a detailed analysis of the cytosolic sensors that recognize aberrant nucleic acids, lipopolysaccharide (LPS), and other pathogen-associated molecular patterns (PAMPs). Specifically, we elucidate the molecular mechanisms underlying key signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mitochondrial antiviral signaling (MAVS) axis, and the guanylate-binding proteins (GBPs)-mediated pathway. Furthermore, we critically evaluate the involvement of these pathways in the pathogenesis of various diseases, including autoimmune disorders, inflammatory conditions, and malignancies, while highlighting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Danlin Han
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Bozheng Zhang
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Zhe Wang
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Yang Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Huai W, Yang K, Xing C, Song K, Lyu H, Williams NS, Wu J, Yan N. OAS cross-activates RNase L intercellularly through cell-to-cell transfer of 2-5A to spread innate immunity. Immunity 2025; 58:797-810.e6. [PMID: 40010341 PMCID: PMC11981853 DOI: 10.1016/j.immuni.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/23/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
The 2',5'-oligoadenylate synthetase (OAS)-RNase L pathway is a classical antiviral innate immune pathway. Upon sensing dsRNA, OAS produces 2',5'-oligoadenylate (2-5A) as a second messenger to activate RNase L. Whether 2-5A can be transported to extend the reach of innate immune signaling has not been established. Here, we showed that 2-5A was transferred from cell to cell through connexin (CX43/CX45) gap junctions. 2-5A was also transferred through importers and exporters, allowing OAS to remotely activate RNase L and protect neighboring cells from viral infection. We identified ABCC10 as a 2-5A exporter. Loss of ABCC10 had no effect on 2-5A production but reduced 2-5A export and protection of neighboring cells. Furthermore, OAShi tumors such as MC38 naturally produced 2-5A in vivo, which was secreted via ABCC10 to activate host-not tumor-RNase L-mediated antitumor response. Therefore, 2-5A is an immunotransmitter that mediates short-range communication between cells in infection and cancer.
Collapse
Affiliation(s)
- Wanwan Huai
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kun Song
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heng Lyu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianjun Wu
- Center for Immunotherapy & Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Wang S, Li L. 2-5A is an immunotransmitter that fuels RNase L immunity. Immunity 2025; 58:770-772. [PMID: 40203803 DOI: 10.1016/j.immuni.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025]
Abstract
cGAS-cGAMP-STING and OAS-2-5A-RNase L are evolutionarily convergent innate immune pathways. cGAMP acts as an immunotransmitter; what about 2-5A? In this issue of Immunity, Huai et al. map the transfer of 2-5A between cells, establishing it as a bona fide immunotransmitter.
Collapse
Affiliation(s)
- Songnan Wang
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA
| | - Lingyin Li
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Arc Institute, Palo Alto, CA 94304, USA.
| |
Collapse
|
6
|
Marczak H, Krenke K, Griese M, Carlens J, Seidl E, Gilbert C, Emiralioglu N, Torrent-Vernetta A, Willemse B, Epaud R, Delestrain C, Louvrier C, Koucký V, Nathan N. An update on diagnosis and treatments of childhood interstitial lung diseases. Breathe (Sheff) 2025; 21:250004. [PMID: 40365093 PMCID: PMC12070201 DOI: 10.1183/20734735.0004-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/05/2025] [Indexed: 05/15/2025] Open
Abstract
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous disorders associated with significant morbidity and mortality. The clinical presentation of chILD typically includes chronic or recurrent respiratory signs and symptoms with diffuse radiographic abnormalities on chest imaging. Diagnosis requires a structured, multi-step approach. Treatment options are limited, with disease-specific therapies available only in selected cases and management relying primarily on supportive care. Awareness of chILDs has been steadily increasing. New diagnoses, advanced diagnostic tests, and novel treatments are emerging each year, highlighting the importance of collaborative, multidisciplinary teams in providing comprehensive care for children and families affected by these complex conditions. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review provides an updated overview of the diagnostic approach and management strategies for chILDs.
Collapse
Affiliation(s)
- Honorata Marczak
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Matthias Griese
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Elias Seidl
- Division of Respiratory Medicine, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carlee Gilbert
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alba Torrent-Vernetta
- Pediatric Allergy and Pulmonology Section, Department of Pediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brigitte Willemse
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de référence des maladies respiratoires rares, Créteil, France
- University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Celine Delestrain
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de référence des maladies respiratoires rares, Créteil, France
- University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Camille Louvrier
- Department of Molecular Genetics, Armand Trousseau Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Childhood Genetic Diseases, Inserm UMR_S933, Sorbonne University, Armand Trousseau Hospital, Paris, France
| | - Václav Koucký
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Nadia Nathan
- Laboratory of Childhood Genetic Diseases, Inserm UMR_S933, Sorbonne University, Armand Trousseau Hospital, Paris, France
- Pediatric Pulmonology Department and Reference centre for rare lung diseases RespiRare, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
7
|
Wang F, Wang J, Chen T, Wang S, Meng X, Shen Y, Xu X. Systematic Identification of Mitochondrial Signatures in Alzheimer's Disease and Inflammatory Bowel Disease. Mol Neurobiol 2025:10.1007/s12035-025-04826-4. [PMID: 40085351 DOI: 10.1007/s12035-025-04826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Mitochondrial dysfunction is increasingly recognized as a shared feature of Alzheimer's disease (AD) and inflammatory bowel disease (IBD), linked through overlapping pathways of hypoxia and immune dysregulation. Our study integrated transcriptomic and genetic analyses to uncover mitochondria-related mechanisms underlying these diseases. By analyzing multiple AD and IBD datasets through differential expression gene (DEG) analyses, biological pathway enrichment, and co-expression module construction, we identified hypoxia-induced mitochondrial dysfunction as a central risk factor for both conditions. Key findings revealed several mitochondrial-related genes shared between AD and IBD, including BCL6, PFKFB3, NDUFS3, and COX5B, which serve as critical regulators bridging mitochondrial and immune pathways. Drug enrichment analyses using Drug Signatures Database (DsigDB) and the Connectivity Map (cMAP) identified promising therapeutic candidates, including decitabine, DMOG, and estradiol, targeting shared regulators such as BCL6, PFKFB3, MAFF, and TGFBI. These drugs demonstrated potential to modulate mitochondrial autophagy and oxidative phosphorylation (OXPHOS), pathways enriched in the constructed interaction network with BCL6 and PFKFB3 as central nodes. Mendelian randomization (MR) analysis further identified MAP1LC3A as significantly associated with increased risk for both AD and IBD, while NME1 emerged as strongly protective, suggesting their roles as therapeutic targets. Our findings underscore hypoxia-induced mitochondrial dysfunction as a unifying mechanism in AD and IBD, mediated by hypoxia-inducible factor-1α (HIF-1α). By identifying key mitochondria-associated genes and pathways, this study highlights innovative therapeutic targets and contributes to a deeper understanding of the gut-brain interplay in neurodegeneration and chronic inflammation. These insights pave the way for precision medicine strategies targeting mitochondrial dysfunction in AD and IBD.
Collapse
Affiliation(s)
- Fei Wang
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiaqi Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Tong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuaibin Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, Anhui, China
| | - XiangYu Meng
- School of Basic Medical Sciences, Medical School, Hubei Minzu University, Enshi, 445000, Hubei, China
| | - Yin Shen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Xuan Xu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Yamamoto Y, Shirai Y, Edahiro R, Kumanogoh A, Okada Y. Large-scale cross-trait genetic analysis highlights shared genetic backgrounds of autoimmune diseases. Immunol Med 2025; 48:1-10. [PMID: 39171621 DOI: 10.1080/25785826.2024.2394258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
Disorders associated with the immune system burden multiple organs, although the shared biology exists across the diseases. Preceding family-based studies reveal that immune diseases are heritable to varying degrees, providing the basis for immunogenomics. The recent cost reduction in genetic analysis intensively promotes biobank-scale studies and the development of frameworks for statistical genetics. The accumulating multi-layer omics data, including genome-wide association studies (GWAS) and RNA-sequencing at single-cell resolution, enable us to dissect the genetic backgrounds of immune-related disorders. Although autoimmune and allergic diseases are generally categorized into different disease categories, epidemiological studies reveal the high incidence of autoimmune and allergic disease complications, suggesting the shared genetics and biology between the disease categories. Biobank resources and consortia cover multiple immune-related disorders to accumulate phenome-wide associations of genetic variants and enhance researchers to analyze the shared and heterogeneous genetic backgrounds. The emerging post-GWAS and integrative multi-omics analyses provide genetic and biological insights into the multicategorical disease associations.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Systems Genetics, Yokohama, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Systems Genetics, Yokohama, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Systems Genetics, Yokohama, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| |
Collapse
|
9
|
Karasik A, Guydosh NR. The Unusual Role of Ribonuclease L in Innate Immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1878. [PMID: 39727035 PMCID: PMC11672174 DOI: 10.1002/wrna.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/18/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Ribonuclease L is an endonuclease that is activated as part of the dsRNA-driven innate immune response. Active RNase L cleaves pathogenic RNAs as a way to eliminate infections. However, there are additional and unexpected ways that RNase L causes changes in the host that promote an immune response and contribute to its role in host defense. Central to these unconventional mechanisms is the observation that RNase L also degrades the mRNA of the host. In turn, mRNA fragments that RNase L generates can be translated. This causes activation of a ribosome collision sensor that leads to downstream signaling and cell death. Additionally, the liberation of RNA binding proteins after RNA decay appears to affect gene expression. In this review, we discuss these and other recent advances that focus on novel and unusual ways RNase L contributes to innate immunity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Nicholas R. Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Wang L, Gao L, Ding F, Gao K, Liu Q, Yin X. Prognostic value and molecular mechanisms of OAS1 in lung adenocarcinoma. BMC Pulm Med 2024; 24:473. [PMID: 39334033 PMCID: PMC11437775 DOI: 10.1186/s12890-024-03206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The expression of 2'-5'-oligoadenylate synthetase 1 (OAS1) in lung cancer has been validated in numerous studies. However, the prognostic value of OAS1 expression in lung adenocarcinoma (LUAD) still remains unclear. This study aimed to reveal the prognostic value and associated molecular mechanisms of OAS1 expression in LUAD. METHODS Gene expression data of LUAD were extracted from online databases. Gene and protein expression levels of OAS1 in LUAD and normal samples were revealed, followed by prognostic analysis of OAS1. Next, we conducted a thorough bioinformatics analysis to examine the enrichment of key functional and biological signaling pathways and their correlation with the abundance of immune cells. The independent prognoses, drug responses, and PPI networks associated with OAS1 were analyzed. OAS1 expression was evaluated in LUAD tissues and cell lines. OAS1 was knocked down by siRNA transfection, followed by CCK8, colony formation, and wound-healing assays. RESULTS Gene and protein expression levels of OAS1 in LUAD samples were significantly higher than those in normal samples (all P < 0.05). OAS1 stimulation were correlated with poor prognosis, lymph node metastasis, advanced tumor stage, immune cells, and immunomodulators. The prognostic value of OAS1 in LUAD was determined via univariate regression analysis. In total, 10 OAS1-associated genes were revealed via PPI analysis of OAS1, which were primarily enriched in functions, such as the negative regulation of viral genome replication. Transcriptional analysis revealed several OAS1-related interactions, including STAT3-miR-21-OAS1. STAT3 was overexpressed and miR-21 was expressed in LUAD cells. Upregulation of OAS1 protein was determined in LUAD tissues and cell lines. OAS1 knockdown significantly reduced proliferation and migration of LUAD cells. CONCLUSIONS OAS1 overexpression influenced survival and immune cell infiltration in patients with LUAD, which might be a potential prognostic gene for LUAD. Moreover, OAS1 contributed to LUAD progression by participating in STAT3-miR-21-OAS1 axis.
Collapse
Affiliation(s)
- Lei Wang
- Oncology Department, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo City, 255022, Shandong Province, China
| | - Linlu Gao
- Oncology Department, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo City, 255022, Shandong Province, China
| | - Fei Ding
- Oncology Department, Zibo First Hospital, Zibo City, 255022, Shandong Province, China
| | - Kun Gao
- Oncology Department, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, Zibo City, 255022, Shandong Province, China
| | - Qian Liu
- Oncology Department, Zibo City Hospital of Integrated Chinese and Western Medicine, Zibo City, 255000, Shandong Province, China
| | - Xiaoling Yin
- Respiratory Department, Zibo Hospital of Integrated Traditional Chinese and Western Medicine, No. 8, Jinjing Avenue, Zhangdian District, Zibo City, 255022, Shandong Province, China.
| |
Collapse
|
11
|
Yang K, Dong B, Asthana A, Silverman RH, Yan N. RNA helicase SKIV2L limits antiviral defense and autoinflammation elicited by the OAS-RNase L pathway. EMBO J 2024; 43:3876-3894. [PMID: 39112803 PMCID: PMC11405415 DOI: 10.1038/s44318-024-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024] Open
Abstract
The OAS-RNase L pathway is one of the oldest innate RNA sensing pathways that leads to interferon (IFN) signaling and cell death. OAS recognizes viral RNA and then activates RNase L, which subsequently cleaves both cellular and viral RNA, creating "processed RNA" as an endogenous ligand that further triggers RIG-I-like receptor signaling. However, the IFN response and antiviral activity of the OAS-RNase L pathway are weak compared to other RNA-sensing pathways. Here, we discover that the SKIV2L RNA exosome limits the antiviral capacity of the OAS-RNase L pathway. SKIV2L-deficient cells exhibit remarkably increased interferon responses to RNase L-processed RNA, resulting in heightened antiviral activity. The helicase activity of SKIV2L is indispensable for this function, acting downstream of RNase L. SKIV2L depletion increases the antiviral capacity of OAS-RNase L against RNA virus infection. Furthermore, SKIV2L loss exacerbates autoinflammation caused by human OAS1 gain-of-function mutations. Taken together, our results identify SKIV2L as a critical barrier to OAS-RNase L-mediated antiviral immunity that could be therapeutically targeted to enhance the activity of a basic antiviral pathway.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Beihua Dong
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Nan Yan
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Correia Marques M, Ombrello MJ, Schulert GS. New discoveries in the genetics and genomics of systemic juvenile idiopathic arthritis. Expert Rev Clin Immunol 2024; 20:1053-1064. [PMID: 38641907 PMCID: PMC11303111 DOI: 10.1080/1744666x.2024.2345868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION Systemic juvenile idiopathic arthritis (sJIA) is a severe inflammatory condition with onset in childhood. It is sporadic, but elements of its stereotypical innate immune responses are likely genetically encoded by both common variants with small effect sizes and rare variants with larger effects. AREAS COVERED Genomic investigations have defined the unique genetic architecture of sJIA. Identification of the class II HLA locus as the strongest sJIA risk factor for the first time brought attention to T lymphocytes and adaptive immune mechanisms in sJIA. The importance of the human leukocyte antigen (HLA) locus was reinforced by recognition that HLA-DRB1*15 alleles are strongly associated with development of drug reactions and sJIA-associated lung disease (sJIA-LD). At the IL1RN locus, genetic variation relates to both risk of sJIA and may also predict non-response to anakinra. Finally, rare genetic variants may have critical roles in disease complications, such as homozygous LACC1 mutations in families with an sJIA-like illness, and hemophagocytic lymphohistiocytosis (HLH) gene variants in some children with macrophage activation syndrome (MAS). EXPERT OPINION Genetic and genomic analysis of sJIA holds great promise for both basic discovery of the course and complications of sJIA, and may help guide personalized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Mariana Correia Marques
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Grant S Schulert
- Division of Rheumatology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Wambach JA, Vece TJ. Clinical and research innovations in childhood interstitial lung disease (chILD). Pediatr Pulmonol 2024; 59:2233-2235. [PMID: 38651871 PMCID: PMC11324416 DOI: 10.1002/ppul.27025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, Saint Louis, Missouri, USA
| | - Timothy J Vece
- Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| |
Collapse
|
14
|
Schmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, et alSchmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, Kaufmann L, Hinderhofer K, Okun PM, Kotzaeridou U, Hoffmann GF, Choukair D, Bettendorf M, Spielmann M, Ripke A, Pauly M, Münchau A, Lohmann K, Hüning I, Hanker B, Bäumer T, Herzog R, Hellenbroich Y, Westphal DS, Strom T, Kovacs R, Riedhammer KM, Mayerhanser K, Graf E, Brugger M, Hoefele J, Oexle K, Mirza-Schreiber N, Berutti R, Schatz U, Krenn M, Makowski C, Weigand H, Schröder S, Rohlfs M, Vill K, Hauck F, Borggraefe I, Müller-Felber W, Kurth I, Elbracht M, Knopp C, Begemann M, Kraft F, Lemke JR, Hentschel J, Platzer K, Strehlow V, Abou Jamra R, Kehrer M, Demidov G, Beck-Wödl S, Graessner H, Sturm M, Zeltner L, Schöls LJ, Magg J, Bevot A, Kehrer C, Kaiser N, Turro E, Horn D, Grüters-Kieslich A, Klein C, Mundlos S, Nöthen M, Riess O, Meitinger T, Krude H, Krawitz PM, Haack T, Ehmke N, Wagner M. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings. Nat Genet 2024; 56:1644-1653. [PMID: 39039281 PMCID: PMC11319204 DOI: 10.1038/s41588-024-01836-1] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Magdalena Danyel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Grundmann
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- Institut für Medizinische Biometrie, Informatik und Epidemiologie, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Shahida Moosa
- Institute for Medical Genetics, Stellenbosch University, Cape Town, South Africa
| | - Luisa Averdunk
- Department of Pediatrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrike Lisa Sczakiel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina Schwartzmann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Atta Mensah
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Tori Pantel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Manuel Holtgrewe
- Core Uni Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annemarie Bösch
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Weiß
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Weinhold
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aude-Annick Suter
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Neugebauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tillmann Kallinich
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Holzhauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schülke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Corinna Grasemann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Tobias Rothoeft
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Nora Matar
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martina Kreiss
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Lorenz Grigull
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tim Bender
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Fabian Brand
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Christiane Stieber
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexandra Marzena Morawiec
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pantelis Karakostas
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Valentin S Schäfer
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sarah Bernsen
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Patrick Weydt
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ahmad Aziz
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Marcus Grobe-Einsler
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Okka Kimmich
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Xenia Kobeleva
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Demet Önder
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pawel Tacik
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Meghna Ahuja Basin
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pietro Incardona
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Min Ae Lee-Kirsch
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Reinhard Berner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia Körholz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tanita Kretschmer
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nataliya Di Donato
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Evelin Schröck
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - André Heinen
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ulrike Reuner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Amalia-Mihaela Hanßke
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Eva Manka
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Martin Munteanu
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Kiewert Cordula
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Raphael Hirtz
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Elena Schlapakow
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina Weiler-Normann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Rudolph
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Rillig
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Groffmann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ania Muntau
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Michal Zawada
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Pamela M Okun
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annekatrin Ripke
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martje Pauly
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Neurogenetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Münchau
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Rebecca Herzog
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Yorck Hellenbroich
- Department of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Tim Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Reka Kovacs
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | | | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | - Ulrich Schatz
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Martin Krenn
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Neurology, Medical University of Vienna, Wien, Austria
| | - Christine Makowski
- Department of Paediatrics, Adolescent Medicine and Neonatology, München, Germany
| | - Heike Weigand
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Sebastian Schröder
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Katharina Vill
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Ingo Borggraefe
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | | | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Kehrer
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holm Graessner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lena Zeltner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ludger J Schöls
- Department of Neurology, University of Tübingen, Tübingen, Germany
| | - Janine Magg
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Kehrer
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Nadja Kaiser
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christoph Klein
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Heiko Krude
- Berlin Centre for Rare Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany.
| | - Tobias Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| |
Collapse
|
15
|
Crow YJ, Casanova JL. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci Immunol 2024; 9:eadm8185. [PMID: 38968338 DOI: 10.1126/sciimmunol.adm8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
The past 20 years have seen the definition of human monogenic disorders and their autoimmune phenocopies underlying either defective or enhanced type I interferon (IFN) activity. These disorders delineate the impact of type I IFNs in natural conditions and demonstrate that only a narrow window of type I IFN activity is beneficial. Insufficient type I IFN predisposes humans to life-threatening viral diseases (albeit unexpectedly few) with a central role in immunity to respiratory and cerebral viral infection. Excessive type I IFN, perhaps counterintuitively, appears to underlie a greater number of autoinflammatory and/or autoimmune conditions known as type I interferonopathies, whose study has revealed multiple molecular programs involved in the induction of type I IFN signaling. These observations suggest that the manipulation of type I IFN activity to within a physiological range may be clinically relevant for the prevention and treatment of viral and inflammatory diseases.
Collapse
Affiliation(s)
- Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR 1163, Paris, France
- University Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- University Paris Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Imagine Institute, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
16
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Hurley K, Ozaki M, Philippot Q, Galvin L, Crosby D, Kirwan M, Gill DR, Alysandratos KD, Jenkins G, Griese M, Nathan N, Borie R. A roadmap to precision treatments for familial pulmonary fibrosis. EBioMedicine 2024; 104:105135. [PMID: 38718684 PMCID: PMC11096859 DOI: 10.1016/j.ebiom.2024.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024] Open
Abstract
Interstitial lung diseases (ILDs) in adults and children (chILD) are a heterogeneous group of lung disorders leading to inflammation, abnormal tissue repair and scarring of the lung parenchyma often resulting in respiratory failure and death. Inherited factors directly cause, or contribute significantly to the risk of developing ILD, so called familial pulmonary fibrosis (FPF), and monogenic forms may have a poor prognosis and respond poorly to current treatments. Specific, variant-targeted or precision treatments are lacking. Clinical trials of repurposed drugs, anti-fibrotic medications and specific treatments are emerging but for many patients no interventions exist. We convened an expert working group to develop an overarching framework to address the existing research gaps in basic, translational, and clinical research and identified areas for future development of preclinical models, candidate medications and innovative clinical trials. In this Position Paper, we summarise working group discussions, recommendations, and unresolved questions concerning precision treatments for FPF.
Collapse
Affiliation(s)
- Killian Hurley
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| | - Mari Ozaki
- Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland; Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Quentin Philippot
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France; Physiopathology and Epidemiology of Respiratory Diseases, Inserm U1152, UFR de Médecine, Université Paris Cité, 75018, Paris, France
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Overijse, Belgium
| | | | - Mary Kirwan
- Department of General Practice, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Deborah R Gill
- UK Respiratory Gene Therapy Consortium, London, United Kingdom; Gene Medicine Research Group, Radcliffe Department of Medicine (NDCLS), University of Oxford, Oxford, United Kingdom
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, 02118, USA; The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Gisli Jenkins
- Imperial College London, 4615, National Heart & Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Matthias Griese
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Nadia Nathan
- Sorbonne Université, Pediatric Pulmonology and Reference Center for Rare Lung Diseases RespiRare, Inserm U933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, APHP, Paris, France
| | - Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| |
Collapse
|
18
|
Watanabe T, Nagaoka K. An RNA-degrading enzyme emerges as a biomarker in a study of human hepatitis virus B. Hepatol Res 2024; 54:220-221. [PMID: 38146795 DOI: 10.1111/hepr.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Affiliation(s)
- Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Papa R, Caorsi R, Volpi S, Gattorno M. Expert Perspective: Diagnostic Approach to the Autoinflammatory Diseases. Arthritis Rheumatol 2024; 76:166-177. [PMID: 37661352 DOI: 10.1002/art.42690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
|
20
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Şen B, Balcı‐Peynircioğlu B. Cellular models in autoinflammatory disease research. Clin Transl Immunology 2024; 13:e1481. [PMID: 38213819 PMCID: PMC10784111 DOI: 10.1002/cti2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous group of rare genetic disorders caused by dysregulation of the innate immune system. Understanding the complex mechanisms underlying these conditions is critical for developing effective treatments. Cellular models are essential for identifying new conditions and studying their pathogenesis. Traditionally, these studies have used primary cells and cell lines of disease-relevant cell types, although newer induced pluripotent stem cell (iPSC)-based models might have unique advantages. In this review, we discuss the three cellular models used in autoinflammatory disease research, their strengths and weaknesses, and their applications to inform future research in the field.
Collapse
Affiliation(s)
- Başak Şen
- Department of Medical BiologyHacettepe University Faculty of Medicine, SıhhiyeAnkaraTurkey
| | | |
Collapse
|
22
|
Frémond ML, Berteloot L, Hadchouel A. [Lung involvement in autoinflammatory diseases]. Rev Mal Respir 2024; 41:18-28. [PMID: 38040588 DOI: 10.1016/j.rmr.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
Genetic autoinflammatory diseases are now a recognized and rapidly expanding group. The lung involvement historically associated with autoinflammatory diseases is inflammatory seritis, primarily seen in familial Mediterranean fever and other interleukin-1 mediated diseases. Over the last ten years, pulmonary involvement has been the core presentation of two autoinflammatory diseases associated with constitutive type I interferon activation, i.e. SAVI and COPA syndrome. Most patients with these diseases usually develop early progression to pulmonary fibrosis, which is responsible for high rates of morbidity and mortality. Other rare autoinflammatory diseases are associated with alveolar proteinosis, particularly when related to MARS mutations. Additionally, in adults, VEXAS is frequently associated with pulmonary involvement, albeit without prognosis effect. A molecular approach to autoinflammatory diseases enables not only the definition of biomarkers for diagnosis, but also the identification of targeted treatments. Examples include JAK inhibitors in SAVI and COPA syndrome, even though this therapy does not prevent progression to pulmonary fibrosis. Another illustrative example is the efficacy of methionine supplementation in alveolar proteinosis linked to MARS mutations. Overall, in autoinflammatory diseases the lung is now emerging as a possible affected organ. Continuing discovery of new autoinflammatory diseases is likely to uncover further pathologies involving the lung. Such advances are expected to lead to the development of novel therapeutic perspectives.
Collapse
Affiliation(s)
- M-L Frémond
- Unité d'immuno-hématologie et rhumatologie pédiatriques, hôpital Necker-Enfants-Malades, AP-HP, centre université de Paris-Cité, 149, rue de Sèvres, 75015 Paris, France; Institut imagine, laboratoire de neurogénétique et neuroinflammation, université de Paris-Cité, 24, boulevard du Montparnasse, 75015 Paris, France.
| | - L Berteloot
- Service de radiologie pédiatrique, hôpital Necker-Enfants-Malades, AP-HP, centre université de Paris-Cité, 75015 Paris, France
| | - A Hadchouel
- Institut Necker-Enfants-Malades (INEM), Inserm, université Paris-Cité, 75015 Paris, France; Service de pneumologie et allergologie pédiatriques, hôpital Necker-Enfants-Malades, AP-HP, centre université de Paris-Cité, 75015 Paris, France
| |
Collapse
|
23
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
24
|
Kapp FG, Kretschmer S, Beckmann CCA, Wäsch L, Molitor A, Carapito R, Schubert M, Lucas N, Conrad S, Poignant S, Isidor B, Rohlfs M, Kisaarslan AP, Schanze D, Zenker M, Schmitt-Graeff A, Strahm B, Peters A, Yoshimi A, Driever W, Zillinger T, Günther C, Maharana S, Guan K, Klein C, Ehl S, Niemeyer CM, Unal E, Bahram S, Hauck F, Lee-Kirsch MA, Speckmann C. C-terminal variants in CDC42 drive type I interferon-dependent autoinflammation in NOCARH syndrome reversible by ruxolitinib. Clin Immunol 2023; 256:109777. [PMID: 37741518 DOI: 10.1016/j.clim.2023.109777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.
Collapse
Affiliation(s)
- Friedrich G Kapp
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany.
| | - Stefanie Kretschmer
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cora C A Beckmann
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Lena Wäsch
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Raphaël Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Lucas
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Solène Conrad
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | | | | | - Meino Rohlfs
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ayşenur Paç Kisaarslan
- Erciyes University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Rheumatology, 38039 Melikgazi, Kayseri, Türkiye
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | | | - Brigitte Strahm
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Anke Peters
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute of Biology 1, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Claudia Günther
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Shovamayee Maharana
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ekrem Unal
- Erciyes University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Hematology-Oncology, 38039 Melikgazi, Kayseri, Turkey
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France; Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Carsten Speckmann
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany; Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Shoda H, Natsumoto B, Fujio K. Investigation of immune-related diseases using patient-derived induced pluripotent stem cells. Inflamm Regen 2023; 43:51. [PMID: 37876023 PMCID: PMC10594759 DOI: 10.1186/s41232-023-00303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
The precise pathogenesis of immune-related diseases remains unclear, and new effective therapeutic choices are required for the induction of remission or cure in these diseases. Basic research utilizing immune-related disease patient-derived induced pluripotent stem (iPS) cells is expected to be a promising platform for elucidating the pathogenesis of the diseases and for drug discovery. Since autoinflammatory diseases are usually monogenic, genetic mutations affect the cell function and patient-derived iPS cells tend to exhibit disease-specific phenotypes. In particular, iPS cell-derived monocytic cells and macrophages can be used for functional experiments, such as inflammatory cytokine production, and are often employed in research on patients with autoinflammatory diseases.On the other hand, the utilization of disease-specific iPS cells is less successful for research on autoimmune diseases. One reason for this is that autoimmune diseases are usually polygenic, which makes it challenging to determine which factors cause the phenotypes of patient-derived iPS cells are caused by. Another reason is that protocols for differentiating some lymphocytes associated with autoimmunity, such as CD4+T cells or B cells, from iPS cells have not been well established. Nevertheless, several groups have reported studies utilizing autoimmune disease patient-derived iPS cells, including patients with rheumatoid arthritis, systemic lupus erythematosus (SLE), and systemic sclerosis. Particularly, non-hematopoietic cells, such as fibroblasts and cardiomyocytes, differentiated from autoimmune patient-derived iPS cells have shown promising results for further research into the pathogenesis. Recently, our groups established a method for differentiating dendritic cells that produce interferon-alpha, which can be applied as an SLE pathological model. In summary, patient-derived iPS cells can provide a promising platform for pathological research and new drug discovery in the field of immune-related diseases.
Collapse
Affiliation(s)
- Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Bunki Natsumoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehirocho, Tsurumi-Ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
26
|
Yang R, Du Y, Zhang M, Liu Y, Feng H, Liu R, Yang B, Xiao J, He P, Niu F. Multi-omics analysis reveals interferon-stimulated gene OAS1 as a prognostic and immunological biomarker in pan-cancer. Front Immunol 2023; 14:1249731. [PMID: 37928544 PMCID: PMC10623006 DOI: 10.3389/fimmu.2023.1249731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction OAS1(2'-5'-oligoadenylate synthetase 1) is a member of the Interferon-Stimulated Genes which plays an important role in the antiviral process. In recent years, the role of OAS1 in tumors has attracted attention, and it was found to be associated with prognosis in several tumors. However, the mechanism by which OAS1 affects tumors is unclear and pan-cancer study of OAS1 is necessary to better understand its implication in cancers. Methods The expression, prognostic value, genetic alteration, alternative splicing events of OAS1 in pan-cancers were analyzed using TCGA, GTEx, HPA, GEPIA and OncoSplicing databases. OAS1 associated immune cell infiltration was evaluated using the ESTIMATE, xCell, CIBERSORT and QUANTISEQ algorithm. Single cell transcriptome data download using TISH database. Finally, the roles of the OAS1 on apoptosis, migration and invasion were investigated in two pancreatic cancer cells. Results Our results revealed significant differences in OAS1 expression among various tumors, which had prognostic implications. In addition, we investigated the impact of OAS1 on genomic stability, methylation status, and other factors across different types of cancer, and the effects of these factors on prognosis. Notably, our study also demonstrated that OAS1 overexpression can contribute to CTL dysfunction and macrophage M2 polarization. In addition, cell experiments showed that the knockdown of OAS1 could reduce the invasive ability and increased the apoptosis rate of PAAD cells. Discussion These results confirmed that OAS1 could be a prognostic biomarker and therapeutic target for its potential role in CTL dysfunction and macrophage M2 polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pengcheng He
- Department of Hematology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fan Niu
- Department of Hematology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
27
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555507. [PMID: 37693516 PMCID: PMC10491309 DOI: 10.1101/2023.09.01.555507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Jiang S, Deng X, Luo M, Zhou L, Chai J, Tian C, Yan Y, Luo Z. Pan-cancer analysis identified OAS1 as a potential prognostic biomarker for multiple tumor types. Front Oncol 2023; 13:1207081. [PMID: 37746262 PMCID: PMC10511872 DOI: 10.3389/fonc.2023.1207081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background 2',5'-oligoadenylate synthetase 1 (OAS1), has been reported as a tumor driver gene in breast carcinoma and pancreatic carcinoma. However, the role of OAS1 in most tumors has not been reported. Methods The original data of 35 tumor types were down load from the TCGA (The Cancer Genome Atlas) database and Human Protein Atlas (HPA) database. TIMER2, Kmplot, UALCAN, and TISIDB tools were used to investigate the expression and function of OAS1, and the role of OAS1 in prognosis, diagnostic value, and immune characteristics of pan-cancer. LUAD and PRAD cell lines, A549, H1975, PC-3 and C4-2 were utilized to perform cell function tests. Results OAS1 expression was up-regulated in 12 tumor types and down-regulated in 2 tumor types. High OAS1 expression was correlated with poor prognosis in 6 tumor types, while high OAS1 expression was correlated with good prognosis in 2 tumor types. OAS1 was correlated with molecular subtypes in 8 tumor types and immune subtypes in 12 tumor types. OAS1 was positively associated with the expression of numerous immune checkpoint genes and tumor mutational burden (TMB). OAS1 had potential diagnostic value in 15 tumor types. Silence of OAS1 significantly inhibited the cell proliferation ability, and promoted G2/M cell cycle arrest of LUAD and PRAD cells. Meanwhile, silence of OAS1 enhanced cisplatin-induced apoptosis of LUAD and PRAD cells, but weakened cell migration. Conclusion This pan-cancer study suggests that OAS1can be used as a molecular biomarker for prognosis in pan-cancer and may play an important role in tumor immune response.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinzhou Deng
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ming Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Le Zhou
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jingjing Chai
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Chao Tian
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yutao Yan
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
29
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
30
|
Takemoto Y, Tanimine N, Yoshinaka H, Tanaka Y, Takafuta T, Sugiyama A, Tanaka J, Ohdan H. Multi-phasic gene profiling using candidate gene approach predict the capacity of specific antibody production and maintenance following COVID-19 vaccination in Japanese population. Front Immunol 2023; 14:1217206. [PMID: 37564647 PMCID: PMC10411726 DOI: 10.3389/fimmu.2023.1217206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Background Vaccination against severe acute respiratory syndrome coronavirus type 2 is highly effective in preventing infection and reducing the severity of coronavirus disease (COVID-19). However, acquired humoral immunity wanes within six months. Focusing on the different tempo of acquisition and attenuation of specific antibody titers in individuals, we investigated the impact of genetic polymorphisms on antibody production after COVID-19 vaccination. Methods In total 236 healthcare workers from a Japanese municipal hospital, who received two doses of the vaccine were recruited. We employed a candidate gene approach to identify the target genetic polymorphisms affecting antibody production after vaccination. DNA samples from the study populations were genotyped for 33 polymorphisms in 15 distinct candidate genes encoding proteins involved in antigen-presenting cell activation, T cell activation, T-B interaction, and B cell survival. We measured total anti-SARS-Cov2 spike IgG antibody titers and analyzed the association with genetic polymorphisms at several time points after vaccination using an unbiased statistical method, and stepwise logistic regression following multivariate regression. Results Significant associations were observed between seven SNPs in NLRP3, OAS1, IL12B, CTLA4, and IL4, and antibody titers at 3 weeks after the first vaccination as an initial response. Six SNPs in NLRP3, TNF, OAS1, IL12B, and CTLA4 were associated with high responders with serum antibody titer > 4000 BAU/ml as boosting effect at 3 weeks after the second vaccination. Analysis of long-term maintenance showed the significance of the three SNPs in IL12B, IL7R, and MIF for the maintenance of antibody titers and that in BAFF for attenuation of neutralizing antibodies. Finally, we proposed a predictive model composed of gene profiles to identify the individuals with rapid antibody attenuation by receiver operating characteristic (ROC) analysis (area under the curve (AUC)= 0.76, sensitivity = 82.5%, specificity=67.8%). Conclusions The candidate gene approach successfully showed shifting responsible gene profiles and initial and boosting effect mainly related to the priming phase into antibody maintenance including B cell survival, which traces the phase of immune reactions. These gene profiles provide valuable information for further investigation of humoral immunity against COVID-19 and for building a strategy for personalized vaccine schedules.
Collapse
Affiliation(s)
- Yuki Takemoto
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hisaaki Yoshinaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshiro Takafuta
- Department of Internal Medicine, Hiroshima City Funairi Citizens Hospital, Hiroshima, Japan
| | - Aya Sugiyama
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
31
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
32
|
Straub S, Sampaio NG. Activation of cytosolic RNA sensors by endogenous ligands: roles in disease pathogenesis. Front Immunol 2023; 14:1092790. [PMID: 37292201 PMCID: PMC10244536 DOI: 10.3389/fimmu.2023.1092790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Early detection of infection is a central and critical component of our innate immune system. Mammalian cells have developed specialized receptors that detect RNA with unusual structures or of foreign origin - a hallmark of many virus infections. Activation of these receptors induces inflammatory responses and an antiviral state. However, it is increasingly appreciated that these RNA sensors can also be activated in the absence of infection, and that this 'self-activation' can be pathogenic and promote disease. Here, we review recent discoveries in sterile activation of the cytosolic innate immune receptors that bind RNA. We focus on new aspects of endogenous ligand recognition uncovered in these studies, and their roles in disease pathogenesis.
Collapse
Affiliation(s)
- Sarah Straub
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Natalia G. Sampaio
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
33
|
García-García A, Pérez de Diego R, Flores C, Rinchai D, Solé-Violán J, Deyà-Martínez À, García-Solis B, Lorenzo-Salazar JM, Hernández-Brito E, Lanz AL, Moens L, Bucciol G, Almuqamam M, Domachowske JB, Colino E, Santos-Perez JL, Marco FM, Pignata C, Bousfiha A, Turvey SE, Bauer S, Haerynck F, Ocejo-Vinyals JG, Lendinez F, Prader S, Naumann-Bartsch N, Pachlopnik Schmid J, Biggs CM, Hildebrand K, Dreesman A, Cárdenes MÁ, Ailal F, Benhsaien I, Giardino G, Molina-Fuentes A, Fortuny C, Madhavarapu S, Conway DH, Prando C, Schidlowski L, Martínez de Saavedra Álvarez MT, Alfaro R, Rodríguez de Castro F, Meyts I, Hauck F, Puel A, Bastard P, Boisson B, Jouanguy E, Abel L, Cobat A, Zhang Q, Casanova JL, Alsina L, Rodríguez-Gallego C. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J Exp Med 2023; 220:e20220170. [PMID: 36880831 PMCID: PMC9998661 DOI: 10.1084/jem.20220170] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P < 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.
Collapse
Affiliation(s)
- Ana García-García
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jordi Solé-Violán
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Intensive Care Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Blanca García-Solis
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández-Brito
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Mohamed Almuqamam
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | | | - Elena Colino
- Unidad de Enfermedades Infecciosas, Complejo Hospitalario Universitario Insular-Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Santos-Perez
- Unidad de Gestión Clínica de Pediatría y Cirugía Pediátrica, Hospital Virgen de las Nieves-IBS, Granada, Spain
| | - Francisco M. Marco
- Dept. of Immunology, Alicante University General Hospital Doctor Balmis, Alicante, Spain
- Alicante Institute for Health and Biomedical Research, Alicante, Spain
| | - Claudio Pignata
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Aziz Bousfiha
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Stuart E. Turvey
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Stefanie Bauer
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immune Deficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Dept. of Internal Medicine and Pediatrics, PID Research Laboratory, Ghent University, Ghent, Belgium
| | | | - Francisco Lendinez
- Dept. of Pediatric Oncohematology, Hospital Materno Infantil Torrecárdenas, Almería, Spain
| | - Seraina Prader
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Nora Naumann-Bartsch
- Clinic for Children and Adolescents. Dept. of Hematology and Oncology. University Clinic Erlangen, Erlangen, Germany
| | - Jana Pachlopnik Schmid
- Division of Immunology and Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Catherine M. Biggs
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | - Kyla Hildebrand
- Dept. of Paediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, Canada
| | | | - Miguel Ángel Cárdenes
- Dept. of Internal Medicine, Unit of Infectious Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Fatima Ailal
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Dept. of Pediatric Infectious Diseases and Clinical Immunology, Ibn Rushd University Hospital, Casablanca, Morocco
- Clinical Immunology, Autoimmunity and Inflammation Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Giuliana Giardino
- Dept. of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | | | - Claudia Fortuny
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain; Translational Research Network in Pediatric Infectious Diseases, Madrid, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Swetha Madhavarapu
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Daniel H. Conway
- Dept. of Pediatrics, Drexel University College of Medicine, St Christopher’s Hospital for Children, Philadelphia, PA, USA
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | - Rafael Alfaro
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation KU Leuven, Leuven, Belgium
- Dept. of Pediatrics, Childhood Immunology, UZ Leuven, Leuven, Belgium
| | - Fabian Hauck
- Dept. of Pediatrics, Division of Pediatric Immunology and Rheumatology, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Dept., Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children, Institut de Recerca Sant Joan de Déu, Barcelona, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Dept. of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, University of Barcelona, Barcelona, Spain
| | - Carlos Rodríguez-Gallego
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
34
|
Koh JY, Ko JH, Lim SY, Bae S, Huh K, Cho SY, Kang CI, Chung DR, Chung CR, Kim SH, Peck KR, Lee JS. Triple immune modulator therapy for aberrant hyperinflammatory responses in severe COVID-19. Clin Immunol 2023; 251:109628. [PMID: 37119951 PMCID: PMC10139747 DOI: 10.1016/j.clim.2023.109628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
A dysregulated hyperinflammatory response is a key pathogenesis of severe COVID-19, but optimal immune modulator treatment has not been established. To evaluate the clinical effectiveness of double (glucocorticoids and tocilizumab) and triple (plus baricitinib) immune modulator therapy for severe COVID-19, a retrospective cohort study was conducted. For the immunologic investigation, a single-cell RNA sequencing analysis was performed in serially collected PBMCs and neutrophil specimens. Triple immune modulator therapy was a significant factor in a multivariable analysis for 30-day recovery. In the scRNA-seq analysis, type I and II IFN response-related pathways were suppressed by GC, and the IL-6-associated signature was additionally downregulated by TOC. Adding BAR to GC and TOC distinctly downregulated the ISGF3 cluster. Adding BAR also regulated the pathologically activated monocyte and neutrophil subpopulation induced by aberrant IFN signals. Triple immune modulator therapy in severe COVID-19 improved 30-day recovery through additional regulation of the aberrant hyperinflammatory immune response.
Collapse
Affiliation(s)
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sun Young Cho
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Cheol-In Kang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Doo Ryeon Chung
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chi Ryang Chung
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Jeong Seok Lee
- Genome Insight, Inc., San Diego, La Jolla, CA, USA; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Nathan N, Griese M, Michel K, Carlens J, Gilbert C, Emiralioglu N, Torrent-Vernetta A, Marczak H, Willemse B, Delestrain C, Epaud R. Diagnostic workup of childhood interstitial lung disease. Eur Respir Rev 2023; 32:32/167/220188. [PMID: 36813289 PMCID: PMC9945877 DOI: 10.1183/16000617.0188-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/18/2022] [Indexed: 02/24/2023] Open
Abstract
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous diseases with significant morbidity and mortality. An accurate and quick aetiological diagnosis may contribute to better management and personalised treatment. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review summarises the roles of the general paediatrician, paediatric pulmonologists and expert centres in the complex diagnostic workup. Each patient's aetiological chILD diagnosis must be reached without prolonged delays in a stepwise approach from medical history, signs, symptoms, clinical tests and imaging, to advanced genetic analysis and specialised procedures including bronchoalveolar lavage and biopsy, if necessary. Finally, as medical progress is fast, the need to revisit a diagnosis of "undefined chILD" is stressed.
Collapse
Affiliation(s)
- Nadia Nathan
- AP-HP, Sorbonne Université, Pediatric Pulmonology Department and Reference Center for Rare Lung Disease RespiRare, Armand Trousseau Hospital, Paris, France .,Sorbonne Université, Inserm UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Paris, France
| | - Matthias Griese
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Katarzyna Michel
- Department of Paediatric Pneumology, Dr von Hauner Children's Hospital, German Centre for Lung Research, University of Munich, Munich, Germany
| | - Julia Carlens
- Clinic for Pediatric Pneumology, Hannover Medical School, Hannover, Germany
| | - Carlee Gilbert
- Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nagehan Emiralioglu
- Department of Pediatric Pulmonology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alba Torrent-Vernetta
- Pediatric Allergy and Pulmonology Section, Department of Pediatrics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Honorata Marczak
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Brigitte Willemse
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Céline Delestrain
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands,Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Créteil, France,Centre des Maladies Respiratoires Rares (RESPIRARE®), CRCM, Créteil, France,University Paris Est Créteil, INSERM, IMRB, Créteil, France
| |
Collapse
|
36
|
Lee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, et alLee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, CoV-Contact Cohort§, COVID Human Genetic Effort¶, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, Rice CM, Silverman RH, Zhang SY, Casanova JL. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science 2023; 379:eabo3627. [PMID: 36538032 PMCID: PMC10451000 DOI: 10.1126/science.abo3627] [Show More Authors] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.
Collapse
Affiliation(s)
- Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Magali Perret
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Iolanda Jordan
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | - Camille Beaufils
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
| | - Weite Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Milena Hasan
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valentina Libri
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Fabrice Jaffré
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Marion Moreews
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Kaya Bilguvar
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Flores
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrés A. Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
| | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romain Levy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Marie-Paule Morin
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Lazaro Lorenzo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jordi Anton
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Julie Toubiana
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
| | - Fanny Bajolle
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Victoria Fumadó
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Nadhira Fidouh
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
| | - Jordi Pérez-Tur
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Lebon
- Medical School, Paris City University, Paris, France
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien Bonnet
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Xavier Duval
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
| | - CoV-Contact Cohort§
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - COVID Human Genetic Effort¶
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Clifford L. Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | | | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Carlos Rodriguez-Gallego
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laia Alsina
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Alexandre Belot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
37
|
Lévy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, Raedler J, Philippot Q, Rack-Hoch AL, Langlais D, Bourgey M, Lanz AL, Ogishi M, Rosain J, Martin E, Latour S, Vladikine N, Distefano M, Khan T, Rapaport F, Schulz MS, Holzer U, Fasth A, Sogkas G, Speckmann C, Troilo A, Bigley V, Roppelt A, Dinur-Schejter Y, Toker O, Bronken Martinsen KH, Sherkat R, Somekh I, Somech R, Shouval DS, Kühl JS, Ip W, McDermott EM, Cliffe L, Ozen A, Baris S, Rangarajan HG, Jouanguy E, Puel A, Bustamante J, Alyanakian MA, Fusaro M, Wang Y, Kong XF, Cobat A, Boutboul D, Castelle M, Aguilar C, Hermine O, Cheminant M, Suarez F, Yildiran A, Bousfiha A, Al-Mousa H, Alsohime F, Cagdas D, Abraham RS, Knutsen AP, Fevang B, Bhattad S, Kiykim A, Erman B, Arikoglu T, Unal E, Kumar A, Geier CB, Baumann U, Neven B, Rohlfs M, Walz C, Abel L, Malissen B, Marr N, Klein C, Casanova JL, Hauck F, Béziat V. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 2023; 220:e20220275. [PMID: 36515678 PMCID: PMC9754768 DOI: 10.1084/jem.20220275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Florian Gothe
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Thomas Magg
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Philipp Peters
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Raedler
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anita Lena Rack-Hoch
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - David Langlais
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mathieu Bourgey
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Emmanuel Martin
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Marco Distefano
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | | | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Marian S. Schulz
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Ursula Holzer
- Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Anders Fasth
- Dept. of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Georgios Sogkas
- Dept. of Immunology and Rheumatology, Medical School Hannover, Hanover, Germany
| | - Carsten Speckmann
- Dept. of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology and Center for Chronic Immunodeficiency (CCI), Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Venetia Bigley
- Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Roppelt
- Dept. of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yael Dinur-Schejter
- Dept. of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ori Toker
- Faculty of Medicine, Hebrew University of Jerusalem, The Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ido Somekh
- Dept. of Pediatric Hematology/Oncology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Raz Somech
- The Institute of Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S. Shouval
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv Israel; The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Hospital, Petach-Tikva, Israel; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jörn-Sven Kühl
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Winnie Ip
- Dept. of Immunology, Great Ormond Street Hospital, London, UK
| | | | - Lucy Cliffe
- Dept. of Pediatrics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ahmet Ozen
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Hemalatha G. Rangarajan
- Division of Hematology, Oncology and Bone Marrow Transplant, Dept. of Pediatrics, Nationwide Children’s Hospital, Columbus, OH
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | | | - Mathieu Fusaro
- Imagine Institute, University of Paris-Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Boutboul
- Dept. of Clinical Immunology, AP-HP, Saint-Louis Hospital, Paris, France
| | - Martin Castelle
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Claire Aguilar
- Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Olivier Hermine
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Morgane Cheminant
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Felipe Suarez
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alisan Yildiran
- Dept. of Pediatric Immunology and Allergy, Ondokuz Mayis University Medical School, Samsun, Turkey
| | - Aziz Bousfiha
- Clinical Immunology, Inflammation and Auto-immunity Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Hamoud Al-Mousa
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Intensive Care Unit, Dept. of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Immunology Research Laboratory, Dept. of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children’s Hospital, Ankara, Turkey
| | - Roshini S. Abraham
- Dept. of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Alan P. Knutsen
- Pediatric Allergy and Immunology, Cardinal Glennon Children’s Hospital, St. Louis, MO
| | - Borre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Sagar Bhattad
- Dept. of Pediatrics, Aster CMI Hospital, Bangalore, India
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Tugba Arikoglu
- Dept. of Pediatrics, Division of Pediatric Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ekrem Unal
- Division of Pediatric Hematology Oncology, Dept. of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Dept. of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Christoph B. Geier
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Dept. of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Christoph Klein
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Dept. of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Fabian Hauck
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| |
Collapse
|
38
|
Zhang H, Zhang D, Zhang S, Liu H, Wang H, Wang C, Zou D, Hu B, Lian S, Lu S, Bai X. Isolation and characterization of the mink interferon-epsilon gene and its antiviral activity. Front Vet Sci 2023; 9:972433. [PMID: 36776547 PMCID: PMC9915148 DOI: 10.3389/fvets.2022.972433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/09/2022] [Indexed: 01/28/2023] Open
Abstract
The interferon (IFN) response is the first line of defense against viral invasion and thus plays a central role in the regulation of the immune response. IFN-epsilon (IFN-ε) is a newly discovered type I IFN that does not require viral induction, unlike other type I IFNs. IFN-ε is constitutively expressed in epithelial cells and plays an important role in mucosal immunity. In this study, we evaluated the biological activity of the mink-IFN (MiIFN)-ε gene in prokaryotic cells. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to evaluate IFN-ε expression in different mink tissues. MiIFN-ε was highly expressed in brain, lung, tracheal, kidney, intestinal, bladder, ovarian, and testis tissues. There was no significant difference in MiIFN-ε expression between female and male minks, except in the reproductive system. Expression of the small ubiquitin-like modifier (SUMO3)-MiIFN-ε fusion gene was induced by isopropylβ-d-thiogalactoside, and MiIFN-ε was collected after SUMO-specific protease digestion. We tested the antiviral activity of MiIFN-ε against vesicular stomatitis virus (VSV) in epithelial cells of feline kidney 81 (F81). We used qRT-PCR to analyze the expression of several IFN-stimulated genes (ISGs), including ISG15, 2'-5' oligoadenylate synthetase (2'-5'OAS1), and myxovirus resistance protein 1 (Mx1). Recombinant IFN-ε induced high ISG expression in F81 cells. Compared with those in the cell control group, expressions of ISG15, Mx1, and 2'-5' OAS1 in the VSV-GFP control, IFN-ε, and MiIFN-ε-inhibited VSV-GFP groups were significantly increased. Compared with those in the VSV-GFP control group, expressions of ISG15 and 2'-5' OAS1 in the IFN-ε and MiIFN-ε-inhibited VSV-GFP groups were significantly increased, and the differences were highly significant (p < 0.0001). IFN-ε played an indirect antiviral role. These findings lay the foundation for detailed investigation of IFN-ε in the future.
Collapse
Affiliation(s)
- Hailing Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China,Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Dongliang Zhang
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shasha Zhang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Liu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Han Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Cong Wang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Deying Zou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Hu
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shizhen Lian
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Shiying Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China,*Correspondence: Xue Bai
| |
Collapse
|
39
|
Vergneault H, Picard C, Georgin-Lavialle S. Break down the barriers of auto-inflammation: How to deal with a monogenic auto-inflammatory disease and immuno-haematological features in 2022? Immunol Suppl 2023; 168:1-17. [PMID: 36151885 DOI: 10.1111/imm.13579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/13/2022] [Indexed: 12/27/2022]
Abstract
In the past few years, the spectrum of monogenic systemic auto-inflammatory diseases (MSAID) has widely expanded beyond the typical recurrent fever. Immuno-haematological features, as cytopenias, hypogammaglobulinemia, hypereosinophilia, lymphoproliferation and immunodeficiency, have been described in association of several MSAID. The objective of this review was to describe these particular MSAID. MSAID must be suspected in front of immuno-haematological features associated with non-infectious recurrent fever, chronic systemic inflammation, inflammatory cutaneous manifestations, arthritis or inflammatory bowel disease. Genes and cellular mechanisms involved are various but some of them are of special interest. Defects in actine regulation pathway are notably associated with cytopenia and immune deficiency. Because of their frequency, ADA2 deficiency and Vacuoles, E1-Enzyme, X-linked, auto-inflammatory, Somatic (VEXAS) syndrome deserve to be noticed. ADA2 deficiency results in polyarteritis nodosa-like presentation with a wide panel of manifestations including cytopenia(s), lymphoproliferation and immune deficiency. Neutrophilic dermatosis or chondritis associated with macrocytic anaemia or myelodysplasia should lead to screen for VEXAS. Of note, most of MSAID are associated with inflammatory anaemia. We proposed here a clinical and pragmatic approach of MSAID associated with immuno-haematological features.
Collapse
Affiliation(s)
- Hélène Vergneault
- Internal Medicine Department, APHP, Tenon Hospital, National Reference Center for Autoinflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Sorbonne University, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Université de Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université de Paris, Paris, France
| | - Sophie Georgin-Lavialle
- Internal Medicine Department, APHP, Tenon Hospital, National Reference Center for Autoinflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), Sorbonne University, Paris, France
| |
Collapse
|
40
|
Gao X, Michel K, Griese M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics (Basel) 2022; 13:diagnostics13010064. [PMID: 36611354 PMCID: PMC9818431 DOI: 10.3390/diagnostics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The range of pulmonary complications beyond infections in pediatric immunocompromised patients is broad but not well characterized. Our goal was to assess the spectrum of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. METHODS We reviewed 217 immunocompromised children attending a specialized pneumology service during a period of 23 years. We assigned molecular diagnoses where possible and categorized the underlying immunological conditions into inborn errors of immunity or secondary immunodeficiencies according to the IUIS and the pulmonary conditions according to the chILD-EU classification system. RESULTS Among a wide array of conditions, opportunistic and chronic infections were the most frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease (GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated with ILD. CONCLUSIONS Specialized pneumological expertise is necessary to manage the full spectrum of respiratory complications in pediatric immunocompromised patients.
Collapse
Affiliation(s)
| | | | - Matthias Griese
- Correspondence: ; Tel.: +49-89-4400-57870; Fax: +49-89-4400-57872
| |
Collapse
|
41
|
Wang Y, Huang Z, Xiao Y, Wan W, Yang X. The shared biomarkers and pathways of systemic lupus erythematosus and metabolic syndrome analyzed by bioinformatics combining machine learning algorithm and single-cell sequencing analysis. Front Immunol 2022; 13:1015882. [PMID: 36341378 PMCID: PMC9627509 DOI: 10.3389/fimmu.2022.1015882] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is one of the most prevalent systemic autoimmune diseases, and metabolic syndrome (MetS) is the most common metabolic disorder that contains hypertension, dyslipidemia, and obesity. Despite clinical evidence suggested potential associations between SLE and MetS, the underlying pathogenesis is yet unclear. Methods The microarray data sets of SLE and MetS were obtained from the Gene Expression Omnibus (GEO) database. To identify the shared genes between SLE and MetS, the Differentially Expressed Genes (DEGs) analysis and the weighted gene co-expression network analysis (WGCNA) were conducted. Then, the GO and KEGG analyses were performed, and the protein-protein interaction (PPI) network was constructed. Next, Random Forest and LASSO algorithms were used to screen shared hub genes, and a diagnostic model was built using the machine learning technique XG-Boost. Subsequently, CIBERSORT and GSVA were used to estimate the correlation between shared hub genes and immune infiltration as well as metabolic pathways. Finally, the significant hub genes were verified using single-cell RNA sequencing (scRNA-seq) data. Results Using limma and WGCNA, we identified 153 shared feature genes, which were enriched in immune- and metabolic-related pathways. Further, 20 shared hub genes were screened and successfully used to build a prognostic model. Those shared hub genes were associated with immunological and metabolic processes in peripheral blood. The scRNA-seq results verified that TNFSF13B and OAS1, possessing the highest diagnostic efficacy, were mainly expressed by monocytes. Additionally, they showed positive correlations with the pathways for the metabolism of xenobiotics and cholesterol, both of which were proven to be active in this comorbidity, and shown to be concentrated in monocytes. Conclusion This study identified shared hub genes and constructed an effective diagnostic model in SLE and MetS. TNFSF13B and OAS1 had a positive correlation with cholesterol and xenobiotic metabolism. Both of these two biomarkers and metabolic pathways were potentially linked to monocytes, which provides novel insights into the pathogenesis and combined therapy of SLE comorbidity with MetS.
Collapse
Affiliation(s)
- Yingyu Wang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Zhongzhou Huang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xiao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- *Correspondence: Weiguo Wan, ; Xue Yang,
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
- *Correspondence: Weiguo Wan, ; Xue Yang,
| |
Collapse
|
42
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
43
|
Papa R, Caorsi R, Volpi S, Gattorno M. New monogenic autoinflammatory diseases: 2021 year in review. Immunol Lett 2022; 248:96-98. [PMID: 35810990 DOI: 10.1016/j.imlet.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/19/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Riccardo Papa
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
44
|
Pahl MC, Le Coz C, Su C, Sharma P, Thomas RM, Pippin JA, Cruz Cabrera E, Johnson ME, Leonard ME, Lu S, Chesi A, Sullivan KE, Romberg N, Grant SFA, Wells AD. Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biol 2022; 23:125. [PMID: 35659055 PMCID: PMC9164584 DOI: 10.1186/s13059-022-02691-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease, from mild or no symptoms to hospitalization and death. COVID-19 disease severity has been associated with some pre-existing conditions and the magnitude of the adaptive immune response to SARS-CoV-2, and a recent genome-wide association study (GWAS) of the risk of critical illness revealed a significant genetic component. To gain insight into how human genetic variation attenuates or exacerbates disease following SARS-CoV-2 infection, we implicated putatively functional COVID risk variants in the cis-regulatory landscapes of human immune cell types with established roles in disease severity and used high-resolution chromatin conformation capture to map these disease-associated elements to their effector genes. RESULTS This functional genomic approach implicates 16 genes involved in viral replication, the interferon response, and inflammation. Several of these genes (PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in immune cells from patients with severe versus moderate COVID-19 disease, and we demonstrate a previously unappreciated role for GART in T cell-dependent antibody-producing B cell differentiation in a human tonsillar organoid model. CONCLUSIONS This study offers immunogenetic insight into the basis of COVID-19 disease severity and implicates new targets for therapeutics that limit SARS-CoV-2 infection and its resultant life-threatening inflammation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Prabhat Sharma
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Rajan M Thomas
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Emylette Cruz Cabrera
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Biancolella M, Colona VL, Mehrian-Shai R, Watt JL, Luzzatto L, Novelli G, Reichardt JKV. COVID-19 2022 update: transition of the pandemic to the endemic phase. Hum Genomics 2022; 16:19. [PMID: 35650595 PMCID: PMC9156835 DOI: 10.1186/s40246-022-00392-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Ruty Mehrian-Shai
- Sheba Medical Center, Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,University of Florence, Florence, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy. .,Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, USA. .,Department of Biomedicine and Prevention, School of Medicine and Surgery, Via Montpellier 1, 00133, Rome, Italy.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|
46
|
Signa S, Dell’Orso G, Gattorno M, Faraci M. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases - the first one hundred transplanted patients. Expert Rev Clin Immunol 2022; 18:667-689. [DOI: 10.1080/1744666x.2022.2078704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Sara Signa
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Dell’Orso
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Maura Faraci
- Hematopoietic stem cell Transplantation Unit, Department of Hematology-Oncology, IRCSS Istituto Giannina Gaslini, Genova, Italy
| |
Collapse
|
47
|
Tanaka T, Shiba T, Honda Y, Izawa K, Yasumi T, Saito MK, Nishikomori R. Induced Pluripotent Stem Cell-Derived Monocytes/Macrophages in Autoinflammatory Diseases. Front Immunol 2022; 13:870535. [PMID: 35603217 PMCID: PMC9120581 DOI: 10.3389/fimmu.2022.870535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of autoinflammation, first proposed in 1999, refers to a seemingly unprovoked episode of sterile inflammation manifesting as unexplained fever, skin rashes, and arthralgia. Autoinflammatory diseases are caused mainly by hereditary abnormalities of innate immunity, without the production of autoantibodies or autoreactive T cells. The revolutionary discovery of induced pluripotent stem cells (iPSCs), whereby a patient’s somatic cells can be reprogrammed into an embryonic pluripotent state by forced expression of a defined set of transcription factors, has the transformative potential to enable in vitro disease modeling and drug candidate screening, as well as to provide a resource for cell replacement therapy. Recent reports demonstrate that recapitulating a disease phenotype in vitro is feasible for numerous monogenic diseases, including autoinflammatory diseases. In this review, we provide a comprehensive overview of current advances in research into autoinflammatory diseases involving iPSC-derived monocytes/macrophages. This review may aid in the planning of new studies of autoinflammatory diseases.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Pediatrics, Japanese Red Cross Otsu Hospital, Otsu, Japan
- *Correspondence: Takayuki Tanaka,
| | - Takeshi Shiba
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
48
|
Schwartz SL, Dey D, Tanquary J, Bair CR, Lowen AC, Conn GL. Role of helical structure and dynamics in oligoadenylate synthetase 1 (OAS1) mismatch tolerance and activation by short dsRNAs. Proc Natl Acad Sci U S A 2022; 119:e2107111119. [PMID: 35017296 PMCID: PMC8784149 DOI: 10.1073/pnas.2107111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Julia Tanquary
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Camden R Bair
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| |
Collapse
|
49
|
Seidl E, Schramm D, Schön C, Reiter K, Pawlita I, Kappler M, Reu-Hofer S, Hauck F, Albert M, Griese M. Pulmonary alveolar proteinosis due to heterozygous mutation in OAS1: Whole lung lavages for long-term bridging to hematopoietic stem cell transplantation. Pediatr Pulmonol 2022; 57:273-277. [PMID: 34647697 DOI: 10.1002/ppul.25728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Pulmonary alveolar proteinosis (PAP) is defined by increased accumulation of surfactant in the alveolar space. PAP has been reported to be associated with a large number of clinical conditions and diseases. Whole lung lavages (WLLs) can be helpful to stabilize the clinical course of PAP until the underlying condition is identified, which may enable more specific treatment. Recently, heterozygous OAS1 gain-of-function variants were described as cause in patients with infantile-onset PAP combined with hypogammaglobulinemia. CASE PRESENTATION At age 4 months, a female infant born to term was diagnosed with hypogammaglobulinemia and treated with monthly immunoglobulin injections. At age 15 months, the girl needed supplemental oxygen at night, and at age 18 months, also during the day. At age 2 years, PAP of unknown etiology was diagnosed by computed tomography scan and open lung biopsy. Subsequently, monthly WLLs were started, which stabilized the clinical course for over 2 years until a disease-causing OAS1 variant was diagnosed and the patient was successfully treated by hematopoietic stem cell transplantation (HSCT). CONCLUSION Here, we describe the successful management of a female patient with severe PAP caused by a heterozygous OAS1 gain-of-function variant until a definitive diagnosis was made and cured by HSCT.
Collapse
Affiliation(s)
- Elias Seidl
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dirk Schramm
- Department of General Pediatrics, Neonatology and Pediatrics Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Carola Schön
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karl Reiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ingo Pawlita
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Kappler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Albert
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.,Comprehensive Pneumology Center-Munich (CPC-M), Member of the German Center for Lung Diseases DZL, Munich, Germany
| |
Collapse
|
50
|
Gothe F, Gehrig J, Rapp CK, Knoflach K, Reu-Hofer S, Länger F, Schramm D, Ley-Zaporozhan J, Ehl S, Schwerk N, Faletti L, Griese M. Early-onset, fatal interstitial lung disease in STAT3 gain-of-function patients. Pediatr Pulmonol 2021; 56:3934-3941. [PMID: 34549903 DOI: 10.1002/ppul.25684] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Gain-of-function variants in STAT3 are known to cause severe, multifaceted autoimmunity. Here we report three individuals with de-novo STAT3 GOF alleles and early-onset, severe interstitial lung disease manifesting during the first 3 years of life. Imaging and histology revealed different forms of interstitial pneumonia alongside fibrotic and cystic tissue destruction. Definitive diagnosis was established by postmortem whole exome sequencing and functional validation of two new STAT3 variants. Such lung-predominant forms of STAT3 GOF disease expand the phenotypic spectrum of diseases associated with activating STAT3 variants and add to our understanding of this life-threatening inborn error of immunity.
Collapse
Affiliation(s)
- Florian Gothe
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jonathan Gehrig
- Center for Chronic Immunodeficiency, Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Christina K Rapp
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Simone Reu-Hofer
- Department of Pathology, Julius-Maximilians-Universität Wuerzburg, Wuerzburg, Germany
| | - Florian Länger
- Department of Pathology, Hannover Medical School, Hanover, Germany.,German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany
| | - Dirk Schramm
- Department of Pediatric Pneumology, University Children's Hospital Düsseldorf, Düsseldorf, Germany
| | - Julia Ley-Zaporozhan
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany.,Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany
| | - Laura Faletti
- Center for Chronic Immunodeficiency, Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany.,German Center for Lung Research (DZL), CPC Munich, Munich, Germany
| |
Collapse
|