1
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
2
|
Amleh A, Chen HP, Watad L, Abramovich I, Agranovich B, Gottlieb E, Ben-Dov IZ, Nechama M, Volovelsky O. Arginine depletion attenuates renal cystogenesis in tuberous sclerosis complex model. Cell Rep Med 2023:101073. [PMID: 37290438 DOI: 10.1016/j.xcrm.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Cystic kidney disease is a leading cause of morbidity in patients with tuberous sclerosis complex (TSC). We characterize the misregulated metabolic pathways using cell lines, a TSC mouse model, and human kidney sections. Our study reveals a substantial perturbation in the arginine biosynthesis pathway in TSC models with overexpression of argininosuccinate synthetase 1 (ASS1). The rise in ASS1 expression is dependent on the mechanistic target of rapamycin complex 1 (mTORC1) activity. Arginine depletion prevents mTORC1 hyperactivation and cell cycle progression and averts cystogenic signaling overexpression of c-Myc and P65. Accordingly, an arginine-depleted diet substantially reduces the TSC cystic load in mice, indicating the potential therapeutic effects of arginine deprivation for the treatment of TSC-associated kidney disease.
Collapse
Affiliation(s)
- Athar Amleh
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hadass Pri Chen
- Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Nephrology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lana Watad
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Bella Agranovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Iddo Z Ben-Dov
- Department of Nephrology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Laboratory of Medical Transcriptomics, Department of Nephrology and Hypertension and Internal Medicine B, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Morris Nechama
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Oded Volovelsky
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
3
|
Zhao L, Liu Y, Zhang S, Wei L, Cheng H, Wang J, Wang J. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis 2022; 13:378. [PMID: 35444235 PMCID: PMC9021207 DOI: 10.1038/s41419-022-04821-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Metabolic disorders and abnormal immune function changes occur in tumor tissues and cells to varying degrees. There is increasing evidence that reprogrammed energy metabolism contributes to the development of tumor suppressive immune microenvironment and influences the course of gastric cancer (GC). Current studies have found that tumor microenvironment (TME) also has important clinicopathological significance in predicting prognosis and therapeutic efficacy. Novel approaches targeting TME therapy, such as immune checkpoint blockade (ICB), metabolic inhibitors and key enzymes of immune metabolism, have been involved in the treatment of GC. However, the interaction between GC cells metabolism and immune metabolism and how to make better use of these immunotherapy methods in the complex TME in GC are still being explored. Here, we discuss how metabolic reprogramming of GC cells and immune cells involved in GC immune responses modulate anti-tumor immune responses, as well as the effects of gastrointestinal flora in TME and GC. It is also proposed how to enhance anti-tumor immune response by understanding the targeted metabolism of these metabolic reprogramming to provide direction for the treatment and prognosis of GC.
Collapse
Affiliation(s)
- Lin Zhao
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yuanyuan Liu
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Simiao Zhang
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Lingyu Wei
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.,Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Hongbing Cheng
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.,Department of Microbiology, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jinsheng Wang
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China. .,Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| | - Jia Wang
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China. .,Department of Immunology, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
4
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
5
|
L-Arginine Modulates Neonatal Leukocyte Recruitment in a Gestational Age-Dependent Manner. J Clin Med 2020; 9:jcm9092772. [PMID: 32867030 PMCID: PMC7563285 DOI: 10.3390/jcm9092772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
(1) Background: L-arginine is a complex modulator of immune functions, and its levels are known to decrease under septic conditions. L-arginine may suppress leukocyte recruitment in vivo; however, little is known about the gestational age-specific effects of L-arginine on leukocyte recruitment in preterm infants. We now asked whether L-arginine alters leukocyte recruitment in preterm and term neonates. (2) Methods: Leukocytes were isolated from preterm (28 + 0 to 32 + 6 weeks of gestation) and term (>37 weeks of gestation) newborns as well as from healthy adults. After incubation with 10 µg/mL L-arginine, we assessed leukocyte rolling and adhesion in dynamic microflow chamber experiments and leukocyte transmigration in fluorescence assays. In addition, we measured the expression of inducible nitric oxide synthase (iNOS) and Arginase 1 (Arg-1) in neutrophils by flow cytometry. (3) Results: Leukocyte rolling, adhesion, and transmigration increased with gestational age. Leukocyte rolling, adhesion, and transmigration were decreased by L-arginine in term-born infants and adults. Preterm leukocytes showed no change in recruitment upon L-arginine exposure. Leukocyte adhesion after L-arginine exposure reached similar levels among all groups. In line, the expression of iNOS and Arg-1 was similar in all three age groups. (4) Conclusion: L-arginine dampens the ex vivo recruitment capacity of leukocytes from term-born infants, whereas no effect was seen in premature infants. As levels of iNOS and Arg-1 in neutrophils remain ontogenetically unchanged, the anti-inflammatory effect of L-arginine on the leukocyte recruitment cascade needs further investigation. These results add to the controversial debate of L-arginine supplementation in premature infants in sepsis.
Collapse
|
6
|
S. Clemente G, van Waarde A, F. Antunes I, Dömling A, H. Elsinga P. Arginase as a Potential Biomarker of Disease Progression: A Molecular Imaging Perspective. Int J Mol Sci 2020; 21:E5291. [PMID: 32722521 PMCID: PMC7432485 DOI: 10.3390/ijms21155291] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Arginase is a widely known enzyme of the urea cycle that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The action of arginase goes beyond the boundaries of hepatic ureogenic function, being widespread through most tissues. Two arginase isoforms coexist, the type I (Arg1) predominantly expressed in the liver and the type II (Arg2) expressed throughout extrahepatic tissues. By producing L-ornithine while competing with nitric oxide synthase (NOS) for the same substrate (L-arginine), arginase can influence the endogenous levels of polyamines, proline, and NO•. Several pathophysiological processes may deregulate arginase/NOS balance, disturbing the homeostasis and functionality of the organism. Upregulated arginase expression is associated with several pathological processes that can range from cardiovascular, immune-mediated, and tumorigenic conditions to neurodegenerative disorders. Thus, arginase is a potential biomarker of disease progression and severity and has recently been the subject of research studies regarding the therapeutic efficacy of arginase inhibitors. This review gives a comprehensive overview of the pathophysiological role of arginase and the current state of development of arginase inhibitors, discussing the potential of arginase as a molecular imaging biomarker and stimulating the development of novel specific and high-affinity arginase imaging probes.
Collapse
Affiliation(s)
- Gonçalo S. Clemente
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Inês F. Antunes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (G.S.C.); (A.v.W.); (I.F.A.)
| |
Collapse
|
7
|
Jankowski J, Ognik K, Konieczka P, Mikulski D. Effects of different levels of arginine and methionine in a high-lysine diet on the immune status, performance, and carcass traits of turkeys. Poult Sci 2020; 99:4730-4740. [PMID: 32988507 PMCID: PMC7598108 DOI: 10.1016/j.psj.2020.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/20/2023] Open
Abstract
We postulated that the use of appropriate levels and proportions of arginine (Arg) and methionine (Met) in compound feed with high lysine content (Lys) would make it possible to fully exploit the growth potential of modern fattening turkey crossbreds, without compromising their immune system. The aim of this study was to determine the effect of different ratios of Arg and Met in diets with high Lys content on the performance and immune status of turkeys. The turkeys were assigned to 6 groups with 8 replicates per group and 18 birds per replicate. Six feeding programs, with 3 dietary Arg levels (90, 100, and 110%) and 2 dietary Met levels (30 and 45%) relative to dietary Lys content, were compared. During each of 4 feeding phases (weeks 0–4, 5–8, 9–12, and 13–16), birds were fed ad libitum isocaloric diets containing high level of Lys, approximately 1.83, 1.67, 1.49, and 1.20%, respectively. The dietary treatments had no effect on daily feed intake or body weight at any stage of the study. The protein content of the breast meat was higher in the treatments with the highest Arg level (110%) compared with the lowest Arg level (90%). Similarly, protein content was higher in the treatments with the higher Met level compared with the lower Met level. Higher plasma levels of tumor necrosis factor, interleukin 6 (IL-6), and immunoglobulin Y were found in turkeys fed diets with the lowest Arg content. An increase in Met content resulted in a decrease in plasma content of IL-6. In growing turkeys fed diets high in Lys, an Arg level of 90% relative to Lys can be used without negatively affecting production results and immune system. Regardless of dietary Arg levels, an increase in Met content does not stimulate the immune defense system and shows no effect on growth performance of turkeys in current trial.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland.
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Jankowski J, Mikulski D, Mikulska M, Ognik K, Całyniuk Z, Mróz E, Zduńczyk Z. The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poult Sci 2019; 99:1028-1037. [PMID: 32036960 PMCID: PMC7587641 DOI: 10.1016/j.psj.2019.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
The research hypothesis postulated that the optimal dietary inclusion levels and ratios of lysine (Lys), arginine (Arg), and methionine (Met) can increase the growth potential of hybrid turkeys and limit metabolic disorders that weaken immune function. The experiment was carried out in a full rearing cycle, from 1 to 16 wk of age, in a two-factorial randomized design with 3 levels of Arg and 2 levels of Met (90, 100 and 110% of Arg, and 30 or 45% of Met, relative to the content of dietary Lys), with 6 groups of 8 replicates per group and 18 turkeys per replicate. In the first and second month of rearing, a significant dietary Arg-by-Met interaction was noted for daily feed intake and body weight gain, and a more beneficial effect was exerted by higher Met content and medium Arg content. Throughout the experiment, the higher dietary Met level increased the final body weight (BW) of turkeys (P = 0.001). Different dietary Arg levels had no influence on the growth performance of turkeys, but the lowest level decreased dressing yield (P = 0.001), and the highest level increased the percentage of breast muscles in the final BW of turkeys (P = 0.003). The lowest Arg level (90% of Lys content) undesirably increased the concentration of the proinflammatory cytokine IL-6 (P = 0.028) and decreased globulin concentration (P = 0.001) in the blood plasma of turkeys. The higher dietary Met level (45% of Lys content) increased plasma albumin concentration (P = 0.016). It can be concluded that higher dietary levels of Met (45 vs. 30% of Lys content) and Arg (100 and 110 vs. 90% of Lys content) have a more beneficial effect on the growth performance and immune status of turkeys.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dariusz Mikulski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Marzena Mikulska
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland.
| | - Zuzanna Całyniuk
- Department of Biochemistry and Toxicology, University of Life Sciences, 20-950 Lublin, Poland
| | - Emilia Mróz
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Zenon Zduńczyk
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
9
|
Chen X, Qin S, Zhao X, Zhou S. l-Proline protects mice challenged by Klebsiella pneumoniae bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:213-220. [PMID: 31324551 DOI: 10.1016/j.jmii.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/09/2019] [Accepted: 05/29/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE K. pneumoniae, a common pathogen that frequently causes bacteremia in clinic, is unresponsive to most of known antibiotics, thus cumulatively exacerbating empirical therapy failures. Effective strategies to control Klebsiella pneumoniae bacteremia are in high demand. One possibility is to mobilize host defense mechanisms against bacterial pathogens. METHODS We employed GC/MS-based metabolomics to identify the changes of metabolism in mice challenged by K. pneumoniae (ATCC 43816) bacteremia. RESULTS Compared with the mice that compromised from K. pneumoniae bacteremia, mice that survived from infection displayed the varied metabolomic profile. The differential analysis of metabolome showed that Ethanedioic acid, d-Glucose, l-Glutamine, Myo-inositol, and l-Proline were more likely associated with the host surviving a K. pneumoniae bacteremia. Further pathway enrichment analysis proposed that arginine and proline metabolism involved in outcome of K. pneumoniae bacteremia. The follow-up data showed that exogenous l-Proline but not d-Proline could decline the loads of Klebsiella pneumonia in infected blood and tissues (lung, liver and spleen) and increase the mouse survival. CONCLUSION Our study provides an exercisable strategy of identifying metabolic biomarkers from surviving host and highlights the possibility of utilizing the metabolic biomarker as a therapy for K. pneumoniae bacteremia.
Collapse
Affiliation(s)
- Xuedong Chen
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Sihua Qin
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Zhao
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Shaosong Zhou
- Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Bazacliu C, Neu J. Pathophysiology of Necrotizing Enterocolitis: An Update. Curr Pediatr Rev 2019; 15:68-87. [PMID: 30387398 DOI: 10.2174/1573396314666181102123030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/12/2022]
Abstract
NEC is a devastating disease that, once present, is very difficult to treat. In the absence of an etiologic treatment, preventive measures are required. Advances in decoding the pathophysiology of NEC are being made but a more comprehensive understanding is needed for the targeting of preventative strategies. A better definition of the disease as well as diagnostic criteria are needed to be able to specifically label a disease as NEC. Multiple environmental factors combined with host susceptibility appear to contribute to enhanced risks for developing this disease. Several different proximal pathways are involved, all leading to a common undesired outcome: Intestinal necrosis. The most common form of this disease appears to involve inflammatory pathways that are closely meshed with the intestinal microbiota, where a dysbiosis may result in dysregulated inflammation. The organisms present in the intestinal tract prior to the onset of NEC along with their diversity and functional capabilities are just beginning to be understood. Fulfillment of postulates that support causality for particular microorganisms is needed if bacteriotherapies are to be intelligently applied for the prevention of NEC. Identification of molecular effector pathways that propagate inflammation, understanding of, even incipient role of genetic predisposition and of miRNAs may help solve the puzzle of this disease and may bring the researchers closer to finding a treatment. Despite recent progress, multiple limitations of the current animal models, difficulties related to studies in humans, along with the lack of a "clear" definition will continue to make it a very challenging disease to decipher.
Collapse
Affiliation(s)
- Catalina Bazacliu
- Department of Pediatrics, Division of Neonatology, University of Florida, FL, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, FL, United States
| |
Collapse
|
11
|
Aghaeepour N, Kin C, Ganio EA, Jensen KP, Gaudilliere DK, Tingle M, Tsai A, Lancero HL, Choisy B, McNeil LS, Okada R, Shelton AA, Nolan GP, Angst MS, Gaudilliere BL. Deep Immune Profiling of an Arginine-Enriched Nutritional Intervention in Patients Undergoing Surgery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2171-2180. [PMID: 28794234 PMCID: PMC5807249 DOI: 10.4049/jimmunol.1700421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
Application of high-content immune profiling technologies has enormous potential to advance medicine. Whether these technologies reveal pertinent biology when implemented in interventional clinical trials is an important question. The beneficial effects of preoperative arginine-enriched dietary supplements (AES) are highly context specific, as they reduce infection rates in elective surgery, but possibly increase morbidity in critically ill patients. This study combined single-cell mass cytometry with the multiplex analysis of relevant plasma cytokines to comprehensively profile the immune-modifying effects of this much-debated intervention in patients undergoing surgery. An elastic net algorithm applied to the high-dimensional mass cytometry dataset identified a cross-validated model consisting of 20 interrelated immune features that separated patients assigned to AES from controls. The model revealed wide-ranging effects of AES on innate and adaptive immune compartments. Notably, AES increased STAT1 and STAT3 signaling responses in lymphoid cell subsets after surgery, consistent with enhanced adaptive mechanisms that may protect against postsurgical infection. Unexpectedly, AES also increased ERK and P38 MAPK signaling responses in monocytic myeloid-derived suppressor cells, which was paired with their pronounced expansion. These results provide novel mechanistic arguments as to why AES may exert context-specific beneficial or adverse effects in patients with critical illness. This study lays out an analytical framework to distill high-dimensional datasets gathered in an interventional clinical trial into a fairly simple model that converges with known biology and provides insight into novel and clinically relevant cellular mechanisms.
Collapse
Affiliation(s)
- Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Cindy Kin
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94121
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Kent P Jensen
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94121; and
| | - Dyani K Gaudilliere
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94121
| | - Martha Tingle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Amy Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Hope L Lancero
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Benjamin Choisy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Leslie S McNeil
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Robin Okada
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Andrew A Shelton
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94121
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94121
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121
| | - Brice L Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94121;
| |
Collapse
|
12
|
Jankovic A, Ferreri C, Filipovic M, Ivanovic-Burmazovic I, Stancic A, Otasevic V, Korac A, Buzadzic B, Korac B. Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin. Free Radic Res 2016; 50:S51-S63. [DOI: 10.1080/10715762.2016.1232483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Carla Ferreri
- ISOF, BioFreeRadicals Group, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Milos Filipovic
- CNRS, Institute of Biochemistry and Cellular Genetics, Université de Bordeaux, Bordeaux, France
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Korac
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, Centre for Electron Microscopy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Ren M, Zhang S, Liu X, Li S, Mao X, Zeng X, Qiao S. Different Lipopolysaccharide Branched-Chain Amino Acids Modulate Porcine Intestinal Endogenous β-Defensin Expression through the Sirt1/ERK/90RSK Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3371-3379. [PMID: 27083206 DOI: 10.1021/acs.jafc.6b00968] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nutritional induction of endogenous antimicrobial peptide expression is considered a promising approach to inhibit the outgrowth and infection of pathogenic microbes in mammals. The present study investigated possible regulation of porcine epithelial β-defensins in response to branched-chain amino acids (BCAA) in vivo and in vitro. BCAA treatment increased relative mRNA expression of jejunal and ileal β-defensins in weaned piglets. In IPEC-J2 cells, isoleucine, leucine, and valine could stimulate β-defensin expression, possibly associated with stimulation of ERK1/2 phosphorylation. Inhibition of Sirt1 and ERK completely blocked the activation of ERK and 90RSK protein by isoleucine, simultaneously decreasing defensin expression. BCAA stimulate expression of porcine intestinal epithelial β-defensins with isoleucine the most, potent possibly through activation of the Sirt1/ERK/90RSK signaling pathway. The β-defensins regulation of lipopolysaccharide was related with an ERK-independent pathway. BCAA modulation of endogenous defensin might be a promising approach to enhance disease resistance and intestinal health in young animals and children.
Collapse
Affiliation(s)
- Man Ren
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
- College of Animal Science, Anhui Science & Technology University , No. 9 Donghua Road, Fengyang, Anhui 233100, China
| | - Shihai Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xutong Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Shenghe Li
- College of Animal Science, Anhui Science & Technology University , No. 9 Donghua Road, Fengyang, Anhui 233100, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University , No. 46 Xinkang Road, Yucheng, Ya'an 625014, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University , No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
14
|
Gogoi M, Datey A, Wilson KT, Chakravortty D. Dual role of arginine metabolism in establishing pathogenesis. Curr Opin Microbiol 2016; 29:43-48. [PMID: 26610300 PMCID: PMC4755812 DOI: 10.1016/j.mib.2015.10.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
Abstract
Arginine is an integral part of host defense when invading pathogens are encountered. The arginine metabolite nitric oxide (NO) confers antimicrobial properties, whereas the metabolite ornithine is utilized for polyamine synthesis. Polyamines are crucial to tissue repair and anti-inflammatory responses. iNOS/arginase balance can determine Th1/Th2 response. Furthermore, the host arginine pool and its metabolites are utilized as energy sources by various pathogens. Apart from its role as an immune modulator, recent studies have also highlighted the therapeutic effects of arginine. This article sheds light upon the roles of arginine metabolism during pathological conditions and its therapeutic potential.
Collapse
Affiliation(s)
- Mayuri Gogoi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Center for Mucosal Inflammation and Cancer, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, United States.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
15
|
Gruosso T, Garnier C, Abelanet S, Kieffer Y, Lemesre V, Bellanger D, Bieche I, Marangoni E, Sastre-Garau X, Mieulet V, Mechta-Grigoriou F. MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nat Commun 2015; 6:8583. [PMID: 26456302 PMCID: PMC4633961 DOI: 10.1038/ncomms9583] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/07/2015] [Indexed: 02/08/2023] Open
Abstract
Ovarian cancer is a silent disease with a poor prognosis that urgently requires new therapeutic strategies. In low-grade ovarian tumours, mutations in the MAP3K BRAF gene constitutively activate the downstream kinase MEK. Here we demonstrate that an additional MAP3K, MAP3K8 (TPL-2/COT), accumulates in high-grade serous ovarian carcinomas (HGSCs) and is a potential prognostic marker for these tumours. By combining analyses on HGSC patient cohorts, ovarian cancer cells and patient-derived xenografts, we demonstrate that MAP3K8 controls cancer cell proliferation and migration by regulating key players in G1/S transition and adhesion dynamics. In addition, we show that the MEK pathway is the main pathway involved in mediating MAP3K8 function, and that MAP3K8 exhibits a reliable predictive value for the effectiveness of MEK inhibitor treatment. Our data highlight key roles for MAP3K8 in HGSC and indicate that MEK inhibitors could be a useful treatment strategy, in combination with conventional chemotherapy, for this disease.
Collapse
Affiliation(s)
- Tina Gruosso
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Camille Garnier
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Sophie Abelanet
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Yann Kieffer
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Vincent Lemesre
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Dorine Bellanger
- Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France.,Genomics and Biology of the Hereditary Breast Cancers, Institut Curie, 26, rue d'Ulm, Paris 75248, France
| | - Ivan Bieche
- Department of Pharmacogenomics, Institut Curie, 26, rue d'Ulm, Paris 75248, France
| | - Elisabetta Marangoni
- Translational Research Department, Laboratory of Precinical Investigation, Institut Curie, 26, rue d'Ulm, Paris 75248, France
| | | | - Virginie Mieulet
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| | - Fatima Mechta-Grigoriou
- Stress and Cancer Laboratory, Institut Curie, 26, rue d'Ulm, Paris 75248, France.,Inserm, Genetics and Biology of Cancers, U830, Paris F-75248, France
| |
Collapse
|
16
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Pallett LJ, Gill US, Quaglia A, Sinclair LV, Jover-Cobos M, Schurich A, Singh KP, Thomas N, Das A, Chen A, Fusai G, Bertoletti A, Cantrell DA, Kennedy PT, Davies NA, Haniffa M, Maini MK. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat Med 2015; 21:591-600. [PMID: 25962123 PMCID: PMC4458139 DOI: 10.1038/nm.3856] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/31/2015] [Indexed: 12/14/2022]
Abstract
Infection with hepatitis B virus (HBV) results in disparate degrees of tissue injury: the virus can either replicate without pathological consequences or trigger immune-mediated necroinflammatory liver damage. We investigated the potential for myeloid-derived suppressor cells (MDSCs) to suppress T cell-mediated immunopathology in this setting. Granulocytic MDSCs (gMDSCs) expanded transiently in acute resolving HBV, decreasing in frequency prior to peak hepatic injury. In persistent infection, arginase-expressing gMDSCs (and circulating arginase) increased most in disease phases characterized by HBV replication without immunopathology, whilst L-arginine decreased. gMDSCs expressed liver-homing chemokine receptors and accumulated in the liver, their expansion supported by hepatic stellate cells. We provide in vitro and ex vivo evidence that gMDSCs potently inhibited T cells in a partially arginase-dependent manner. L-arginine-deprived T cells upregulated system L amino acid transporters to increase uptake of essential nutrients and attempt metabolic reprogramming. These data demonstrate the capacity of expanded arginase-expressing gMDSCs to regulate liver immunopathology in HBV infection.
Collapse
Affiliation(s)
- Laura J. Pallett
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| | - Upkar S. Gill
- Centre for Digestive Diseases, Blizard Institue, Bart’s and the London School of Medicine and Dentistry, London, UK
| | - Alberto Quaglia
- Institute of Liver Studies, Kings College Hospital, London, UK
| | - Linda V. Sinclair
- Division of Cell Signaling and Immunology, University of Dundee, Dundee, UK
| | - Maria Jover-Cobos
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Anna Schurich
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| | - Kasha P. Singh
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| | - Niclas Thomas
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| | - Abhishek Das
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| | - Antony Chen
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| | - Giuseppe Fusai
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Antonio Bertoletti
- Duke-Nus Medical School, Emerging Infectious Disease Program, Singapore
- Singapore Institute for Clinical Sciences, Agency of Science and Technology, Singapore
| | - Doreen A. Cantrell
- Division of Cell Signaling and Immunology, University of Dundee, Dundee, UK
| | - Patrick T. Kennedy
- Centre for Digestive Diseases, Blizard Institue, Bart’s and the London School of Medicine and Dentistry, London, UK
| | - Nathan A. Davies
- Institute of Liver and Digestive Health, University College London, London, UK
| | - Muzlifah Haniffa
- Singapore Institute for Clinical Sciences, Agency of Science and Technology, Singapore
- Institute of Cellular Medicine, Newcastle University, UK
| | - Mala K. Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
18
|
Badurdeen S, Mulongo M, Berkley JA. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr Res 2015; 77:290-7. [PMID: 25360828 PMCID: PMC4335378 DOI: 10.1038/pr.2014.177] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
Preterm newborns are highly susceptible to bacterial infections. This susceptibility is regarded as being due to immaturity of multiple pathways of the immune system. However, it is unclear whether a mechanism that unifies these different, suppressed pathways exists. Here, we argue that the immune vulnerability of the preterm neonate is critically related to arginine depletion. Arginine, a "conditionally essential" amino acid, is depleted in acute catabolic states, including sepsis. Its metabolism is highly compartmentalized and regulated, including by arginase-mediated hydrolysis. Recent data suggest that arginase II-mediated arginine depletion is essential for the innate immune suppression that occurs in newborn models of bacterial challenge, impairing pathways critical for the immune response. Evidence that arginine depletion mediates protection from immune activation during first gut colonization suggests a regulatory role in controlling gut-derived pathogens. Clinical studies show that plasma arginine is depleted during sepsis. In keeping with animal studies, small clinical trials of L-arginine supplementation have shown benefit in reducing necrotizing enterocolitis in premature neonates. We propose a novel, broader hypothesis that arginine depletion during bacterial challenge is a key factor limiting the neonate's ability to mount an adequate immune response, contributing to the increased susceptibility to infections, particularly with respect to gut-derived sepsis.
Collapse
Affiliation(s)
- Shiraz Badurdeen
- Department of Paediatrics, Oxford University Hospitals NHS Trust, Oxford, UK,()
| | - Musa Mulongo
- KEMRI-Wellcome Trust, Centre for Geographic Medicine and Research-Coast, Kilifi, Kenya
| | - James A. Berkley
- KEMRI-Wellcome Trust, Centre for Geographic Medicine and Research-Coast, Kilifi, Kenya,Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
In vitro anti-inflammatory effects of citrulline on peritoneal macrophages in Zucker diabetic fatty rats. Br J Nutr 2014; 113:120-4. [PMID: 25391524 DOI: 10.1017/s0007114514002086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In type 2 diabetes (T2D) macrophage dysfunction increases susceptibility to infection and mortality. This may result from the associated decreased plasma concentration of arginine, an amino acid that plays an important role in immunity. In vitro, increasing arginine availability leads to an improvement in macrophage function; however, arginine supplementation in diabetic obese patients may be detrimental. The aim of the present study was to assess in vitro whether citrulline, an arginine precursor, could replace arginine in the regulation of macrophage function under a condition of diabetes and obesity. Peritoneal macrophages from diabetic obese or lean rats were incubated for 6 h in an arginine-free medium, in the presence of increasing citrulline concentrations (0·1, 0·5, 1 or 2 mmol/l). Cytokine and NO production was determined. Peritoneal macrophages from either lean or diabetic obese rats produced NO, and at higher levels in the cells from lean rats. In diabetic obese rats, TNF-α production decreased with increasing citrulline concentrations, but was higher than that in the cells from lean rats. In contrast, IL-6 production increased with increasing citrulline concentrations. The present experiment shows that citrulline is effectively used for NO production and regulates cytokine production in macrophages from diabetic obese rats. This effect warrants in vivo evaluation in T2D-related inflammation.
Collapse
|
20
|
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5:532. [PMID: 25386178 PMCID: PMC4209874 DOI: 10.3389/fimmu.2014.00532] [Citation(s) in RCA: 853] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacology, Institute of Medical Sciences, Faculty of Medical Sciences, Siksha 'O' Anusandhan University , Bhubaneshwar , India
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center, Johannes Gutenberg University , Mainz , Germany ; Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
21
|
The unique role of dietary L-arginine in the acceleration of peritoneal macrophage sensitivity to bacterial endotoxin. Immunol Res 2013. [PMID: 23184235 DOI: 10.1007/s12026-012-8379-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is known that cells and organisms can indirectly "sense" changes in L-arginine availability via changes in the activity of various metabolic pathways. However, the mechanism(s) by which genes can be directly regulated by L-arginine in mammalian cells have not yet been elucidated. We investigated the effect of L-arginine in the in vivo model of peritoneal inflammation in mice and in vitro in RAW 264.7 macrophages. A detailed analysis of basic physiological functions and selected intracellular signaling cascades revealed that L-arginine is crucial for the acceleration of macrophage activation by bacterial lipopolysaccharide. L-arginine increased the production of reactive oxygen species, nitric oxide, release of Ca(2+), as well as inducible nitric oxide synthase expression. Interestingly, the effect of L-arginine on macrophage activation was dependent on the phosphorylation of mitogen-activated protein kinases and activity of phospholipase C. In RAW 264.7 cells, L-arginine was shown to modulate the response of macrophages toward lipopolysaccharide via the activation of G-protein-coupled receptors. According to our data, we concluded that L-arginine availability plays a key role in the initiation of intracellular signaling pathways that trigger the lipopolysaccharide-induced inflammatory responses in murine macrophages. Although macrophages are partially stimulated in the absence of extracellular L-arginine, the presence of this amino acid significantly accelerates the sensitivity of macrophages to bacterial endotoxin.
Collapse
|
22
|
Wu L, Wang W, Yao K, Zhou T, Yin J, Li T, Yang L, He L, Yang X, Zhang H, Wang Q, Huang R, Yin Y. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One 2013; 8:e69502. [PMID: 23922725 PMCID: PMC3726672 DOI: 10.1371/journal.pone.0069502] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/10/2013] [Indexed: 01/29/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that reduces feed intake and animal performance, especially in swine. Arginine and glutamine play important roles in swine nutrition. The objective of this study was to determine the effects of dietary supplementation with arginine and glutamine on both the impairment induced by DON stress and immune relevant cytokines in growing pigs. A total of forty 60-d-old healthy growing pigs with a mean body weight of 16.28±1.54 kg were randomly divided into 5 groups, and assigned to 3 amino acid treatments fed 1.0% arginine (Arg), 1.0% glutamine (Gln) and 0.5% Arg+0.5% Gln, respectively, plus a toxin control and a non-toxin control. Pigs in the 3 amino acid treatments were fed the corresponding amino acids, and those in non-toxin control and toxin control were fed commercial diet with 1.64% Alanine as isonitrogenous control for 7 days. The toxin control and amino acid treatments were then challenged by feeding DON-contaminated diet with a final DON concentration of 6 mg/kg of diet for 21 days. No significant differences were observed between toxin control and the amino acid groups with regard to the average daily gain (ADG), although the values for average daily feed intake (ADFI) in the amino acid groups were significantly higher than that in toxin control (P<0.01). The relative liver weight in toxin control was significantly greater than those in non-toxin control, arginine and Arg+Glu groups (P<0.01), but there were no significant differences in other organs. With regard to serum biochemistry, the values of BUN, ALP, ALT and AST in the amino acid groups were lower than those in toxin control. IGF1, GH and SOD in the amino acid groups were significantly higher than those in toxin control (P<0.01). The IL-2 and TNFα values in the amino acid groups were similar to those in non-toxin control, and significantly lower than those in toxin control (P<0.01). These results showed the effects of dietary supplementation with arginine and glutamine on alleviating the impairment induced by DON stress and immune relevant cytokines in growing pigs.
Collapse
Affiliation(s)
- Li Wu
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Wence Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Kang Yao
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ting Zhou
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail: (YY); (TZ)
| | - Jie Yin
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Tiejun Li
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Liuqin He
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Xiaojian Yang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hongfu Zhang
- China National Key Laboratory of Animal Nutrition, Beijing Animal and Veterinary Science Institute, Chinese Agricultural Academy, Beijing, People’s Republic of China
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Ruilin Huang
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Research Center of Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science, and Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- * E-mail: (YY); (TZ)
| |
Collapse
|
23
|
Kakazu E, Kondo Y, Shimosegawa T. The Relationship between Renal Dysfunction and Abnormalities of the Immune System in Patients with Decompensated Cirrhosis. ISRN GASTROENTEROLOGY 2012; 2012:123826. [PMID: 23326675 PMCID: PMC3541637 DOI: 10.5402/2012/123826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/06/2012] [Indexed: 12/15/2022]
Abstract
In patients with advanced cirrhosis, not only hepatocellular carcinoma but also bacterial infections, such as spontaneous bacterial peritonitis (SBP) or pneumonia, are frequent clinical complications in such immune-compromised patients. These pathologies often progress to renal dysfunction, especially hepatorenal syndrome (HRS). The central pathology of HRS is splanchnic arterial vasodilation and hyperpermeability followed by bacterial translocation (BT). BT induces a severe inflammatory response in the peritoneal lymphoid tissue, with the activation of the immune systems and the long-lasting production of vasoactive mediators that can impair the circulatory function and cause renal failure. Recent studies report that the plasma amino acid imbalance appeared to be related to an abnormality of the immune system in patients with decompensated cirrhosis. This paper can provide a new approach for future studies of the pathology in cirrhotic patients with renal dysfunction.
Collapse
Affiliation(s)
- Eiji Kakazu
- Division of Gastroenterology, Tohoku University Hospital, 1-1 Seiryo, Aobaku, Sendai 980-8574, Japan
| | | | | |
Collapse
|
24
|
|
25
|
Breuillard C, Belabed L, Bonhomme S, Blanc-Quintin MC, Neveux N, Couderc R, De Bandt JP, Cynober L, Darquy S. Arginine availability modulates arginine metabolism and TNFα production in peritoneal macrophages from Zucker Diabetic Fatty rats. Clin Nutr 2012; 31:415-21. [DOI: 10.1016/j.clnu.2011.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/27/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
26
|
Leishmania amazonensis arginase compartmentalization in the glycosome is important for parasite infectivity. PLoS One 2012; 7:e34022. [PMID: 22479507 PMCID: PMC3316525 DOI: 10.1371/journal.pone.0034022] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/20/2012] [Indexed: 11/19/2022] Open
Abstract
In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg− L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg− mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration.
Collapse
|
27
|
Gantke T, Sriskantharajah S, Sadowski M, Ley SC. IκB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev 2012; 246:168-82. [DOI: 10.1111/j.1600-065x.2012.01104.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Yan L, Lamb RF. Amino acid sensing and regulation of mTORC1. Semin Cell Dev Biol 2012; 23:621-5. [PMID: 22342805 DOI: 10.1016/j.semcdb.2012.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Amino acids play fundamental roles in the cell both as the building blocks of new proteins and as metabolic precursors. To adapt to their limitation during periods of protein starvation, multiple adaptive mechanisms have evolved, including a rapid cessation of new protein synthesis, an increase in amino acid biosynthesis and transport, and autophagy. Here, we discuss what we currently know about how amino acid limitation is sensed, and how this sensing might be transmitted to mTORC1 to regulate protein synthesis and autophagy.
Collapse
Affiliation(s)
- Lijun Yan
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, PR China.
| | | |
Collapse
|
29
|
Konno Y, Ashida T, Inaba Y, Ito T, Tanabe H, Maemoto A, Ayabe T, Mizukami Y, Fujiya M, Kohgo Y. Isoleucine, an Essential Amino Acid, Induces the Expression of Human <i>β</i> Defensin 2 through the Activation of the G-Protein Coupled Receptor-ERK Pathway in the Intestinal Epithelia. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/fns.2012.34077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Many physiologic and pathophysiologic processes are modulated by arginine availability, which can be regulated by arginase. An understanding of the conditions that result in elevated arginase activity as well as the consequences of arginine deficiency is essential for design of effective nutritional support for disease. This review will emphasize recent findings regarding effects of plasma arginase and arginine deficiencies in disease. RECENT FINDINGS Elevations in plasma arginase, derived primarily from hemolysis of red blood cells or liver damage, that are associated with arginine deficiency have been identified in an increasing number of diseases and conditions. Arginine insufficiency not only can activate a stress kinase pathway that impairs function of T lymphocytes but it also can inhibit the mitogen-activated protein kinase signaling pathway required for macrophage production of cytokines in response to bacterial endotoxin/lipopolysaccharide. SUMMARY There are at least two broad categories of arginine deficiency syndromes, involving either T-cell dysfunction or endothelial dysfunction, depending on the disease context in which arginine deficiency occurs. There is limited information regarding the safety and efficacy of supplementation with arginine or its precursor citrulline in ameliorating arginine deficiency in specific diseases, indicating the need for further studies.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
31
|
Abstract
It is clear that mTORC1 (mammalian target of rapamycin complex 1) is regulated by the presence of ambient amino acid nutrients. However, the mechanism by which amino acids regulate mTORC1 is still open to question, despite extensive efforts. Our recent work has revealed that PR61ϵ, a B56 family regulatory subunit of PP2A (protein phosphatase 2A), associates with and regulates the activity of MAP4K3 (mitogen-activated protein kinase kinase kinase kinase 3), a protein kinase regulated by amino acid sufficiency that acts upstream of mTORC1. In searching for a physiological process regulated by amino acids, we have demonstrated recently that arginine plays a role in the activation of LPS (lipopolysaccharide)-induced MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling in macrophages. PP2A similarly associates with the upstream regulator of MEK in this signalling pathway, TPL-2 (tumour progression locus-2), in response to arginine availability. Thus PP2A is a negative regulator of both MAP4K3 and TPL-2 in both mTORC1 and MEK/ERK signalling pathways.
Collapse
|
32
|
Mieulet V, Lamb RF. [Arginine and innate immune response]. Med Sci (Paris) 2011; 27:461-3. [PMID: 21609661 DOI: 10.1051/medsci/2011275005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Vougioukalaki M, Kanellis DC, Gkouskou K, Eliopoulos AG. Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 2011; 304:80-9. [PMID: 21377269 DOI: 10.1016/j.canlet.2011.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 01/11/2023]
Abstract
The activation of mitogen-activated protein kinases (MAPKs) is critically involved in inflammatory and oncogenic events. Tumor progression locus 2 (Tpl2), also known as COT and MAP3 kinase 8 (MAP3K8), is a serine-threonine kinase with an important physiological role in tumor necrosis factor, interleukin-1, CD40, Toll-like receptor and G protein-coupled receptor-mediated ERK MAPK signaling. Whilst the full characterization of the biochemical events that lead to the activation of Tpl2 still represent a major challenge, genetic and molecular evidence has highlighted interesting interactions with the NF-κB network. Here, we provide an overview of the multifaceted functions of Tpl2 and the molecular mechanisms that govern its regulation.
Collapse
Affiliation(s)
- Maria Vougioukalaki
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, University of Crete Medical School, Institute for Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | | | | | | |
Collapse
|
34
|
Yaffe MB, VanHook AM. Science Signaling
Podcast: 4 January 2011. Sci Signal 2011. [DOI: 10.1126/scisignal.2001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chief Scientific Editor Michael Yaffe reviews the past year in
Science Signaling
.
Collapse
Affiliation(s)
- Michael B. Yaffe
- Chief Scientific Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
- Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, N.W., Washington, DC 20005, USA
| |
Collapse
|
35
|
Abstract
The activation of macrophages through Toll-like receptor (TLR) signaling pathways is a major component of innate immune responses to infection. Because the production of nitric oxide (NO) from arginine by the inducible isoform of NO synthase (iNOS) in activated macrophages is essential for host defense against many pathogens, arginine availability is a critical determinant of resistance to infection. Thus, induction of the arginine catabolic enzyme arginase is exploited by some pathogens as a means of immune evasion. Details of this mechanism are revealed by studies that demonstrate that mycobacteria use a component of the TLR pathway to induce the type I isoform of arginase in macrophages through an autocrine-paracrine mechanism that involves macrophage-produced cytokines. Separate studies show that, in addition to inhibiting NO synthesis by substrate limitation, reducing the availability of arginine simply by nutrient deprivation can blunt the innate immune response by impairing a specific mitogen-activated protein kinase (MAPK) pathway downstream of TLR4. These findings illustrate the growing complexity of the roles of arginine as an enzyme substrate and also as a regulatory molecule in signal transduction pathways in immune cells.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|