1
|
Karl K, Del Piccolo N, Light T, Roy T, Dudeja P, Ursachi VC, Fafilek B, Krejci P, Hristova K. Ligand bias underlies differential signaling of multiple FGFs via FGFR1. eLife 2024; 12:RP88144. [PMID: 38568193 PMCID: PMC10990489 DOI: 10.7554/elife.88144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.
Collapse
Affiliation(s)
- Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Nuala Del Piccolo
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Taylor Light
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Tanaya Roy
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| | - Pooja Dudeja
- Department of Biology, Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
| | - Vlad-Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
- International Clinical Research Center, St. Anne's University HospitalBrnoCzech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
- International Clinical Research Center, St. Anne's University HospitalBrnoCzech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk UniversityBrnoCzech Republic
- Institute of Animal Physiology and Genetics of the CASBrnoCzech Republic
- International Clinical Research Center, St. Anne's University HospitalBrnoCzech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
2
|
Go YJ, Kalathingal M, Rhee YM. Elucidating activation and deactivation dynamics of VEGFR-2 transmembrane domain with coarse-grained molecular dynamics simulations. PLoS One 2023; 18:e0281781. [PMID: 36795710 PMCID: PMC9934429 DOI: 10.1371/journal.pone.0281781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR-2) is a member of receptor tyrosine kinases (RTKs) and is a dimeric membrane protein that functions as a primary regulator of angiogenesis. As is usual with RTKs, spatial alignment of its transmembrane domain (TMD) is essential toward VEGFR-2 activation. Experimentally, the helix rotations within TMD around their own helical axes are known to participate importantly toward the activation process in VEGFR-2, but the detailed dynamics of the interconversion between the active and inactive TMD forms have not been clearly elucidated at the molecular level. Here, we attempt to elucidate the process by using coarse grained (CG) molecular dynamics (MD) simulations. We observe that inactive dimeric TMD in separation is structurally stable over tens of microseconds, suggesting that TMD itself is passive and does not allow spontaneous signaling of VEGFR-2. By starting from the active conformation, we reveal the mechanism of TMD inactivation through analyzing the CG MD trajectories. We observe that interconversions between a left-handed overlay and a right-handed one are essential for the process of going from an active TMD structure to the inactive form. In addition, our simulations find that the helices can rotate properly when the overlaying structure of the helices interconverts and when the crossing angle of the two helices changes by larger than ~40 degrees. As the activation right after the ligand attachment on VEGFR-2 will take place in the reverse manner of this inactivation process, these structural aspects will also appear importantly for the activation process. The rather large change in helix configuration for activation also explains why VEGFR-2 rarely self-activate and how the activating ligand structurally drive the whole VEGFR-2. This mechanism of TMD activation / inactivation within VEGFR-2 may help in further understanding the overall activation processes of other RTKs.
Collapse
Affiliation(s)
- Yeon Ju Go
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Mahroof Kalathingal
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- * E-mail:
| |
Collapse
|
3
|
Wirth D, McCall A, Hristova K. Neural network strategies for plasma membrane selection in fluorescence microscopy images. Biophys J 2021; 120:2374-2385. [PMID: 33961865 PMCID: PMC8390876 DOI: 10.1016/j.bpj.2021.04.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
In recent years, there has been an explosion of fluorescence microscopy studies of live cells in the literature. The analysis of the images obtained in these studies often requires labor-intensive manual annotation to extract meaningful information. In this study, we explore the utility of a neural network approach to recognize, classify, and select plasma membranes in high-resolution images, thus greatly speeding up data analysis and reducing the need for personnel training for highly repetitive tasks. Two different strategies are tested: 1) a semantic segmentation strategy, and 2) a sequential application of an object detector followed by a semantic segmentation network. Multiple network architectures are evaluated for each strategy, and the best performing solutions are combined and implemented in the Recognition Of Cellular Membranes software. We show that images annotated manually and with the Recognition Of Cellular Membranes software yield identical results by comparing Förster resonance energy transfer binding curves for the membrane protein fibroblast growth factor receptor 3. The approach that we describe in this work can be applied to other image selection tasks in cell biology.
Collapse
Affiliation(s)
- Daniel Wirth
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Alec McCall
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
4
|
Ahmed F, Zapata-Mercado E, Rahman S, Hristova K. The Biased Ligands NGF and NT-3 Differentially Stabilize Trk-A Dimers. Biophys J 2020; 120:55-63. [PMID: 33285113 DOI: 10.1016/j.bpj.2020.11.2262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Trk-A is a receptor tyrosine kinase (RTK) that plays an essential role in the development and functioning of the nervous system. Trk-A is expressed in neurons and signals in response to two ligands, NGF and neurotrophin-3 (NT-3), with very different functional consequences. Thus, NGF and NT-3 are "biased" ligands for Trk-A. Because it has been hypothesized that biased RTK ligands induce differential stabilization of RTK dimers, here, we seek to test this hypothesis for NGF and NT-3. In particular, we use Förster resonance energy transfer (FRET) and fluorescence intensity fluctuation spectroscopy to assess the strength of Trk-A interactions and Trk-A oligomer size in the presence of the two ligands. Although the difference in Trk-A behavior in response to the two ligands has been previously attributed to differences in their binding to Trk-A in the endosomes at low pH, here, we further show differences in the stabilities of the NGF- and NT-3-bound Trk-A dimers in the plasma membrane and at neutral pH. We discuss the biological significance of these new findings and their implications for the design of Trk-A ligands with novel functionalities.
Collapse
Affiliation(s)
- Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Elmer Zapata-Mercado
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sanim Rahman
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
5
|
Byrne PO, Hristova K, Leahy DJ. EGFR forms ligand-independent oligomers that are distinct from the active state. J Biol Chem 2020; 295:13353-13362. [PMID: 32727847 DOI: 10.1074/jbc.ra120.012852] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/27/2020] [Indexed: 01/15/2023] Open
Abstract
The human epidermal growth factor receptor (EGFR/ERBB1) is a receptor tyrosine kinase (RTK) that forms activated oligomers in response to ligand. Much evidence indicates that EGFR/ERBB1 also forms oligomers in the absence of ligand, but the structure and physiological role of these ligand-independent oligomers remain unclear. To examine these features, we use fluorescence microscopy to measure the oligomer stability and FRET efficiency for homo- and hetero-oligomers of fluorescent protein-labeled forms of EGFR and its paralog, human epidermal growth factor receptor 2 (HER2/ERBB2) in vesicles derived from mammalian cell membranes. We observe that both receptors form ligand-independent oligomers at physiological plasma membrane concentrations. Mutations introduced in the kinase region at the active state asymmetric kinase dimer interface do not affect the stability of ligand-independent EGFR oligomers. These results indicate that ligand-independent EGFR oligomers form using interactions that are distinct from the EGFR active state.
Collapse
Affiliation(s)
- Patrick O Byrne
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
6
|
Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. J Biol Chem 2020; 295:9917-9933. [PMID: 32467228 PMCID: PMC7380177 DOI: 10.1074/jbc.ra120.013639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Indexed: 01/09/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that control vital cell processes such as cell growth, survival, and differentiation. There is a growing body of evidence that RTKs from different subfamilies can interact and that these diverse interactions can have important biological consequences. However, these heterointeractions are often ignored, and their strengths are unknown. In this work, we studied the heterointeractions of nine RTK pairs, epidermal growth factor receptor (EGFR)-EPH receptor A2 (EPHA2), EGFR-vascular endothelial growth factor receptor 2 (VEGFR2), EPHA2-VEGFR2, EPHA2-fibroblast growth factor receptor 1 (FGFR1), EPHA2-FGFR2, EPHA2-FGFR3, VEGFR2-FGFR1, VEGFR2-FGFR2, and VEGFR2-FGFR3, using a FRET-based method. Surprisingly, we found that RTK heterodimerization and homodimerization strengths can be similar, underscoring the significance of RTK heterointeractions in signaling. We discuss how these heterointeractions can contribute to the complexity of RTK signal transduction, and we highlight the utility of quantitative FRET for probing multiple interactions in the plasma membrane.
Collapse
Affiliation(s)
- Michael D Paul
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hana N Grubb
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kalina Hristova
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Paul MD, Hristova K. The transition model of RTK activation: A quantitative framework for understanding RTK signaling and RTK modulator activity. Cytokine Growth Factor Rev 2019; 49:23-31. [PMID: 31711797 PMCID: PMC6898792 DOI: 10.1016/j.cytogfr.2019.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023]
Abstract
Here, we discuss the transition model of receptor tyrosine kinase (RTK) activation, which is derived from biophysical investigations of RTK interactions and signaling. The model postulates that (1) RTKs can interact laterally to form dimers even in the absence of ligand, (2) different unliganded RTK dimers have different stabilities, (3) ligand binding stabilizes the RTK dimers, and (4) ligand binding causes structural changes in the RTK dimer. The model is grounded in the principles of physical chemistry and provides a framework to understand RTK activity and to make predictions in quantitative terms. It can guide basic research aimed at uncovering the mechanism of RTK activation and, in the long run, can empower the search for modulators of RTK function.
Collapse
Affiliation(s)
- Michael D Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States.
| |
Collapse
|
8
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
9
|
Dimerization of the Trk receptors in the plasma membrane: effects of their cognate ligands. Biochem J 2018; 475:3669-3685. [PMID: 30366959 DOI: 10.1042/bcj20180637] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors which control cell growth and differentiation, and play important roles in tumorigenesis. Despite decades of RTK research, the mechanism of RTK activation in response to their ligands is still under debate. Here, we investigate the interactions that control the activation of the tropomyosin receptor kinase (Trk) family of RTKs in the plasma membrane, using a FRET-based methodology. The Trk receptors are expressed in neuronal tissues, and guide the development of the central and peripheral nervous systems during development. We quantify the dimerization of human Trk-A, Trk-B, and Trk-C in the absence and presence of their cognate ligands: human β-nerve growth factor, human brain-derived neurotrophic factor, and human neurotrophin-3, respectively. We also assess conformational changes in the Trk dimers upon ligand binding. Our data support a model of Trk activation in which (1) Trks have a propensity to interact laterally and to form dimers even in the absence of ligand, (2) different Trk unliganded dimers have different stabilities, (3) ligand binding leads to Trk dimer stabilization, and (4) ligand binding induces structural changes in the Trk dimers which propagate to their transmembrane and intracellular domains. This model, which we call the 'transition model of RTK activation,' may hold true for many other RTKs.
Collapse
|
10
|
Freed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, Lemmon MA. EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 2017; 171:683-695.e18. [PMID: 28988771 DOI: 10.1016/j.cell.2017.09.017] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/31/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.
Collapse
Affiliation(s)
- Daniel M Freed
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Nicholas J Bessman
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Anatoly Kiyatkin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Emanuel Salazar-Cavazos
- Department of Pathology and UNM Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jason O Moore
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Christopher C Valley
- Department of Pathology and UNM Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Kathryn M Ferguson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Daniel J Leahy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Diane S Lidke
- Department of Pathology and UNM Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
11
|
Sarabipour S. Parallels and Distinctions in FGFR, VEGFR, and EGFR Mechanisms of Transmembrane Signaling. Biochemistry 2017. [DOI: 10.1021/acs.biochem.7b00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sarvenaz Sarabipour
- Institute for Computational
Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Jefferson RE, Min D, Corin K, Wang JY, Bowie JU. Applications of Single-Molecule Methods to Membrane Protein Folding Studies. J Mol Biol 2017; 430:424-437. [PMID: 28549924 DOI: 10.1016/j.jmb.2017.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Protein folding is a fundamental life process with many implications throughout biology and medicine. Consequently, there have been enormous efforts to understand how proteins fold. Almost all of this effort has focused on water-soluble proteins, however, leaving membrane proteins largely wandering in the wilderness. The neglect has occurred not because membrane proteins are unimportant but rather because they present many theoretical and technical complications. Indeed, quantitative membrane protein folding studies are generally restricted to a handful of well-behaved proteins. Single-molecule methods may greatly alter this picture, however, because the ability to work at or near infinite dilution removes aggregation problems, one of the main technical challenges of membrane protein folding studies.
Collapse
Affiliation(s)
- Robert E Jefferson
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Duyoung Min
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Karolina Corin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - Jing Yang Wang
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, 90095, CA, USA.
| |
Collapse
|
13
|
King C, Raicu V, Hristova K. Understanding the FRET Signatures of Interacting Membrane Proteins. J Biol Chem 2017; 292:5291-5310. [PMID: 28188294 DOI: 10.1074/jbc.m116.764282] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/07/2017] [Indexed: 12/30/2022] Open
Abstract
FRET is an indispensable experimental tool for studying membrane proteins. Currently, two models are available for researchers to determine the oligomerization state of membrane proteins in a static quenching FRET experiment: the model of Veatch and Stryer, derived in 1977, and the kinetic theory-based model for intraoligomeric FRET, derived in 2007. Because of confinement in two dimensions, a substantial amount of FRET is generated by energy transfer between fluorophores located in separate oligomers in the two-dimensional bilayer. This interoligomeric FRET (also known as stochastic, bystander, or proximity FRET) is not accounted for in either model. Here, we use the kinetic theory formalism to describe the dependence of the FRET efficiency measured in an experiment (i.e. the "total apparent FRET efficiency") on the interoligomeric FRET due to random proximity within the bilayer and the intraoligomeric FRET resulting from protein-protein interactions. We find that data analysis with both models without consideration of the proximity FRET leads to incorrect conclusions about the oligomeric state of the protein. We show that knowledge of the total surface densities of fluorophore-labeled membrane proteins is essential for correctly interpreting the measured total apparent FRET efficiency. We also find that bulk, two-color, static quenching FRET experiments are best suited for the study of monomeric, dimerizing, or dimeric proteins but have limitations in discerning the order of larger oligomers. The theory and methodology described in this work will allow researchers to extract meaningful parameters from static quenching FRET measurements in biological membranes.
Collapse
Affiliation(s)
- Christopher King
- the Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218 and
| | - Valerica Raicu
- the Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53211
| | - Kalina Hristova
- the Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218 and .,From the Department of Materials Science and Engineering and
| |
Collapse
|
14
|
Del Piccolo N, Sarabipour S, Hristova K. A New Method to Study Heterodimerization of Membrane Proteins and Its Application to Fibroblast Growth Factor Receptors. J Biol Chem 2016; 292:1288-1301. [PMID: 27927983 DOI: 10.1074/jbc.m116.755777] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/05/2016] [Indexed: 12/30/2022] Open
Abstract
The activity of receptor tyrosine kinases (RTKs) is controlled through their lateral association in the plasma membrane. RTKs are believed to form both homodimers and heterodimers, and the different dimers are believed to play unique roles in cell signaling. However, RTK heterodimers remain poorly characterized, as compared with homodimers, because of limitations in current experimental methods. Here, we develop a FRET-based methodology to assess the thermodynamics of hetero-interactions in the plasma membrane. To demonstrate the utility of the methodology, we use it to study the hetero-interactions between three fibroblast growth factor receptors-FGFR1, FGFR2, and FGFR3-in the absence of ligand. Our results show that all possible FGFR heterodimers form, suggesting that the biological roles of FGFR heterodimers may be as significant as the homodimer roles. We further investigate the effect of two pathogenic point mutations in FGFR3 (A391E and G380R) on heterodimerization. We show that each of these mutations stabilize most of the heterodimers, with the largest effects observed for FGFR3 wild-type/mutant heterodimers. We thus demonstrate that the methodology presented here can yield new knowledge about RTK interactions and can further our understanding of signal transduction across the plasma membrane.
Collapse
Affiliation(s)
- Nuala Del Piccolo
- From the Department of Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Sarvenaz Sarabipour
- From the Department of Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Kalina Hristova
- From the Department of Materials Science & Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
15
|
Sarabipour S, Hristova K. Pathogenic Cysteine Removal Mutations in FGFR Extracellular Domains Stabilize Receptor Dimers and Perturb the TM Dimer Structure. J Mol Biol 2016; 428:3903-3910. [PMID: 27596331 DOI: 10.1016/j.jmb.2016.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/02/2016] [Accepted: 08/25/2016] [Indexed: 12/14/2022]
Abstract
Missense mutations that introduce or remove cysteine residues in receptor tyrosine kinases are believed to cause pathologies by stabilizing the active receptor tyrosine kinase dimers. However, the magnitude of this stabilizing effect has not been measured for full-length receptors. Here, we characterize the dimer stabilities of three full-length fibroblast growth factor receptor (FGFR) mutants harboring pathogenic cysteine substitutions: the C178S FGFR1 mutant, the C342R FGFR2 mutant, and the C228R FGFR3 mutant. We find that the three mutations stabilize the FGFR dimers. We further see that the mutations alter the configuration of the FGFR transmembrane dimers. Thus, both aberrant dimerization and perturbed dimer structure likely contribute to the pathological phenotypes arising due to these mutations.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, USA.
| |
Collapse
|
16
|
Khadria AS, Senes A. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET. Biopolymers 2016; 104:247-64. [PMID: 25968159 DOI: 10.1002/bip.22667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
17
|
Sarabipour S, Hristova K. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1436-42. [PMID: 27040652 PMCID: PMC4870120 DOI: 10.1016/j.bbamem.2016.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/15/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022]
Abstract
The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, United States.
| |
Collapse
|
18
|
King C, Stoneman M, Raicu V, Hristova K. Fully quantified spectral imaging reveals in vivo membrane protein interactions. Integr Biol (Camb) 2016; 8:216-29. [PMID: 26787445 DOI: 10.1039/c5ib00202h] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here we introduce the fully quantified spectral imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling.
Collapse
Affiliation(s)
- Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, USA
| | | | | | | |
Collapse
|
19
|
Sarabipour S, Hristova K. Mechanism of FGF receptor dimerization and activation. Nat Commun 2016; 7:10262. [PMID: 26725515 PMCID: PMC4725768 DOI: 10.1038/ncomms10262] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
20
|
Del Piccolo N, Placone J, Hristova K. Effect of thanatophoric dysplasia type I mutations on FGFR3 dimerization. Biophys J 2015; 108:272-8. [PMID: 25606676 DOI: 10.1016/j.bpj.2014.11.3460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 11/15/2022] Open
Abstract
Thanatophoric dysplasia type I (TDI) is a lethal human skeletal growth disorder with a prevalence of 1 in 20,000 to 1 in 50,000 births. TDI is known to arise because of five different mutations, all involving the substitution of an amino acid with a cysteine in fibroblast growth factor receptor 3 (FGFR3). Cysteine mutations in receptor tyrosine kinases (RTKs) have been previously proposed to induce constitutive dimerization in the absence of ligand, leading to receptor overactivation. However, their effect on RTK dimer stability has never been measured experimentally. In this study, we characterize the effect of three TDI mutations, Arg248Cys, Ser249Cys, and Tyr373Cys, on FGFR3 dimerization in mammalian membranes, in the absence of ligand. We demonstrate that the mutations lead to surprisingly modest dimer stabilization and to structural perturbations of the dimers, challenging the current understanding of the molecular interactions that underlie TDI.
Collapse
Affiliation(s)
- Nuala Del Piccolo
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jesse Placone
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
21
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
22
|
Singh DR, Ahmed F, King C, Gupta N, Salotto M, Pasquale EB, Hristova K. EphA2 Receptor Unliganded Dimers Suppress EphA2 Pro-tumorigenic Signaling. J Biol Chem 2015; 290:27271-27279. [PMID: 26363067 DOI: 10.1074/jbc.m115.676866] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
The EphA2 receptor tyrosine kinase promotes cell migration and cancer malignancy through a ligand- and kinase-independent distinctive mechanism that has been linked to high Ser-897 phosphorylation and low tyrosine phosphorylation. Here, we demonstrate that EphA2 forms dimers in the plasma membrane of HEK293T cells in the absence of ephrin ligand binding, suggesting that the current seeding mechanism model of EphA2 activation is incomplete. We also characterize a dimerization-deficient EphA2 mutant that shows enhanced ability to promote cell migration, concomitant with increased Ser-897 phosphorylation and decreased tyrosine phosphorylation compared with EphA2 wild type. Our data reveal a correlation between unliganded dimerization and tumorigenic signaling and suggest that EphA2 pro-tumorigenic activity is mediated by the EphA2 monomer. Thus, a therapeutic strategy that aims at the stabilization of EphA2 dimers may be beneficial for the treatment of cancers linked to EphA2 overexpression.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Fozia Ahmed
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Christopher King
- Department of Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 and
| | - Nisha Gupta
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Matt Salotto
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Elena B Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, California 92037
| | - Kalina Hristova
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218; Department of Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218 and.
| |
Collapse
|
23
|
Sarabipour S, Del Piccolo N, Hristova K. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer. Acc Chem Res 2015; 48:2262-9. [PMID: 26244699 PMCID: PMC4841635 DOI: 10.1021/acs.accounts.5b00238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic single amino acid mutations that cause skeletal and cranial dysplasias, as well as cancer, we also study the effects of these mutations on dimerization. First, we show that the A391E mutation, linked to Crouzon syndrome with acanthosis nigricans and to bladder cancer, significantly enhances FGFR3 dimerization in the absence of ligand and thus induces aberrant receptor interactions. Second, we present results about the effect of three cysteine mutations that cause thanatophoric dysplasia, a lethal phenotype. Such cysteine mutations have been hypothesized previously to cause constitutive dimerization, but we find instead that they have a surprisingly modest effect on dimerization. Most of the studied pathogenic mutations also altered FGFR3 dimer structure, suggesting that both increases in dimerization propensities and changes in dimer structure contribute to the pathological phenotypes. The results acquired with the QI-FRET method further our understanding of the interactions between FGFR3 molecules and RTK molecules in general. Since RTK dimerization regulates RTK signaling, our findings advance our knowledge of RTK activity in health and disease. The utility of the QI-FRET method is not restricted to RTKs, and we thus hope that in the future the QI-FRET method will be applied to other classes of membrane proteins, such as channels and G protein-coupled receptors.
Collapse
MESH Headings
- Acanthosis Nigricans/etiology
- Acanthosis Nigricans/genetics
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Craniofacial Dysostosis/etiology
- Craniofacial Dysostosis/genetics
- Dimerization
- Fluorescence Resonance Energy Transfer
- Humans
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Receptor, Fibroblast Growth Factor, Type 3/chemistry
- Receptor, Fibroblast Growth Factor, Type 3/deficiency
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Thanatophoric Dysplasia/etiology
- Thanatophoric Dysplasia/genetics
- Transport Vesicles/chemistry
- Transport Vesicles/metabolism
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Nuala Del Piccolo
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
24
|
Comps-Agrar L, Dunshee DR, Eaton DL, Sonoda J. Unliganded fibroblast growth factor receptor 1 forms density-independent dimers. J Biol Chem 2015; 290:24166-77. [PMID: 26272615 DOI: 10.1074/jbc.m115.681395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factors receptors (FGFRs) are thought to initiate intracellular signaling cascades upon ligand-induced dimerization of the extracellular domain. Although the existence of unliganded FGFR1 dimers on the surface of living cells has been proposed, this notion remains rather controversial. Here, we employed time-resolved Förster resonance energy transfer combined with SNAP- and ACP-tag labeling in COS7 cells to monitor dimerization of full-length FGFR1 at the cell-surface with or without the coreceptor βKlotho. Using this approach we observed homodimerization of unliganded FGFR1 that is independent of its surface density. The homo-interaction signal observed for FGFR1 was indeed as robust as that obtained for epidermal growth factor receptor (EGFR) and was further increased by the addition of activating ligands or pathogenic mutations. Mutational analysis indicated that the kinase and the transmembrane domains, rather than the extracellular domain, mediate the ligand-independent FGFR1 dimerization. In addition, we observed a formation of a higher order ligand-independent complex by the c-spliced isoform of FGFR1 and βKlotho. Collectively, our approach provides novel insights into the assembly and dynamics of the full-length FGFRs on the cell surface.
Collapse
Affiliation(s)
| | | | | | - Junichiro Sonoda
- Molecular Biology, Genentech, Inc., South San Francisco, California 94080
| |
Collapse
|
25
|
Sarabipour S, Hristova K. FGFR3 unliganded dimer stabilization by the juxtamembrane domain. J Mol Biol 2015; 427:1705-14. [PMID: 25688803 PMCID: PMC4380549 DOI: 10.1016/j.jmb.2015.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/12/2015] [Accepted: 02/11/2015] [Indexed: 11/22/2022]
Abstract
Receptor tyrosine kinases (RTKs) conduct biochemical signals upon dimerization in the membrane plane. While RTKs are generally known to be activated in response to ligand binding, many of these receptors are capable of forming unliganded dimers that are likely important intermediates in the signaling process. All 58 RTKs consist of an extracellular (EC) domain, a transmembrane (TM) domain, and an intracellular domain that includes a juxtamembrane (JM) sequence and a kinase domain. Here we investigate directly the effect of the JM domain on unliganded dimer stability of FGFR3, a receptor that is critically important for skeletal development. The data suggest that FGFR3 unliganded dimers are stabilized by receptor-receptor contacts that involve the JM domains. The contribution is significant, as it is similar in magnitude to the stabilizing contribution of a pathogenic mutation and the repulsive contribution of the EC domain. Furthermore, we show that the effects of the JM domain and a TM pathogenic mutation on unliganded FGFR3 dimer stability are additive. We observe that the JM-mediated dimer stabilization occurs when the JM domain is linked to FGFR3 TM domain and not simply anchored to the plasma membrane. These results point to a coordinated stabilization of the unliganded dimeric state of FGFR3 by its JM and TM domains via a mechanism that is distinctly different from the case of another well studied receptor, EGFR.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, USA.
| |
Collapse
|
26
|
Sarabipour S, Chan RB, Zhou B, Di Paolo G, Hristova K. Analytical characterization of plasma membrane-derived vesicles produced via osmotic and chemical vesiculation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1591-8. [PMID: 25896659 DOI: 10.1016/j.bbamem.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Plasma membrane-derived vesicles are being used in biophysical and biochemical research as a simple, yet native-like model of the cellular membrane. Here we report on the characterization of vesicles produced via two different vesiculation methods from CHO and A431 cell lines. The first method is a recently developed method which utilizes chloride salts to induce osmotic vesiculation. The second is a well established chemical vesiculation method which uses DTT and formaldehyde. We show that both vesiculation methods produce vesicles which contain the lipid species previously reported in the plasma membrane of these cell lines. The two methods lead to small but statistically significant differences in two lipid species only; phosphatidylcholine (PC) and plasmalogen phosphatidylethanolamine (PEp). However, highly significant differences were observed in the degree of incorporation of a membrane receptor and in the degree of retention of soluble cytosolic proteins within the vesicles.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY 10032, USA
| | - Kalina Hristova
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
King C, Sarabipour S, Byrne P, Leahy DJ, Hristova K. The FRET signatures of noninteracting proteins in membranes: simulations and experiments. Biophys J 2014; 106:1309-17. [PMID: 24655506 DOI: 10.1016/j.bpj.2014.01.039] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/08/2014] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
Förster resonance energy transfer (FRET) experiments are often used to study interactions between integral membrane proteins in cellular membranes. However, in addition to the FRET of sequence-specific interactions, these experiments invariably record a contribution due to proximity FRET, which occurs when a donor and an acceptor approach each other by chance within distances of ∼100 Å. This effect does not reflect specific interactions in the membrane and is frequently unappreciated, despite the fact that its magnitude can be significant. Here we develop a computational description of proximity FRET, simulating the cases of proximity FRET when fluorescent proteins are used to tag monomeric, dimeric, trimeric, and tetrameric membrane proteins, as well as membrane proteins existing in monomer-dimer equilibria. We also perform rigorous experimental measurements of this effect, by identifying membrane receptors that do not associate in mammalian membranes. We measure the FRET efficiencies between yellow fluorescent protein and mCherry-tagged versions of these receptors in plasma-membrane-derived vesicles as a function of receptor concentration. Finally, we demonstrate that the experimental measurements are well described by our predictions. The work presented here brings additional rigor to FRET-based studies of membrane protein interactions, and should have broad utility in membrane biophysics research.
Collapse
Affiliation(s)
- Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Sarvenaz Sarabipour
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Patrick Byrne
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel J Leahy
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kalina Hristova
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, Maryland; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
28
|
Kavran JM, McCabe JM, Byrne PO, Connacher MK, Wang Z, Ramek A, Sarabipour S, Shan Y, Shaw DE, Hristova K, Cole PA, Leahy DJ. How IGF-1 activates its receptor. eLife 2014; 3:03772. [PMID: 25255214 PMCID: PMC4381924 DOI: 10.7554/elife.03772] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation.
Collapse
Affiliation(s)
- Jennifer M Kavran
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacqueline M McCabe
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Patrick O Byrne
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Mary Katherine Connacher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zhihong Wang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, United States
| | | | - Sarvenaz Sarabipour
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | | | - David E Shaw
- DE Shaw Research, New York, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, United States
| | - Philip A Cole
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Daniel J Leahy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
29
|
Manni S, Mineev KS, Usmanova D, Lyukmanova EN, Shulepko MA, Kirpichnikov MP, Winter J, Matkovic M, Deupi X, Arseniev AS, Ballmer-Hofer K. Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation. Structure 2014; 22:1077-1089. [PMID: 24980797 DOI: 10.1016/j.str.2014.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Transmembrane signaling by receptor tyrosine kinases (RTKs) entails ligand-mediated dimerization and structural rearrangement of the extracellular domains. RTK activation also depends on the specific orientation of the transmembrane domain (TMD) helices, as suggested by pathogenic, constitutively active RTK mutants. Such mutant TMDs carry polar amino acids promoting stable transmembrane helix dimerization, which is essential for kinase activation. We investigated the effect of polar amino acids introduced into the TMD of vascular endothelial growth factor receptor 2, regulating blood vessel homeostasis. Two mutants showed constitutive kinase activity, suggesting that precise TMD orientation is mandatory for kinase activation. Nuclear magnetic resonance spectroscopy revealed that TMD helices in activated constructs were rotated by 180° relative to the interface of the wild-type conformation, confirming that ligand-mediated receptor activation indeed results from transmembrane helix rearrangement. A molecular dynamics simulation confirmed the transmembrane helix arrangement of wild-type and mutant TMDs revealed by nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Sandro Manni
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Dinara Usmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskie Gori 1, Moscow 119234, Russian Federation
| | - Jonas Winter
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Milos Matkovic
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland
| | - Xavier Deupi
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland; Paul Scherrer Institute, Condensed Matter Theory Group, 5232 Villigen PSI, Switzerland
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russian Federation
| | - Kurt Ballmer-Hofer
- Paul Scherrer Institute, Biomolecular Research, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
30
|
Raicu V, Singh DR. FRET spectrometry: a new tool for the determination of protein quaternary structure in living cells. Biophys J 2014; 105:1937-45. [PMID: 24209838 DOI: 10.1016/j.bpj.2013.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022] Open
Abstract
Förster resonance energy transfer (FRET) is an exquisitely sensitive method for detection of molecular interactions and conformational changes in living cells. The recent advent of fluorescence imaging technology with single-molecule (or molecular-complex) sensitivity, together with refinements in the kinetic theory of FRET, provide the necessary tool kits for determining the stoichiometry and relative disposition of the protomers within protein complexes (i.e., quaternary structure) of membrane receptors and transporters in living cells. In contrast to standard average-based methods, this method relies on the analysis of distributions of apparent FRET efficiencies, E(app), across the image pixels of individual cells expressing proteins of interest. The most probable quaternary structure of the complex is identified from the number of peaks in the E(app) distribution and their dependence on a single parameter, termed pairwise FRET efficiency. Such peaks collectively create a unique FRET spectrum corresponding to each oligomeric configuration of the protein. Therefore, FRET could quite literally become a spectrometric method--akin to that of mass spectrometry--for sorting protein complexes according to their size and shape.
Collapse
Affiliation(s)
- Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin; Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin.
| | | |
Collapse
|
31
|
Placone J, He L, Del Piccolo N, Hristova K. Strong dimerization of wild-type ErbB2/Neu transmembrane domain and the oncogenic Val664Glu mutant in mammalian plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2326-30. [PMID: 24631664 DOI: 10.1016/j.bbamem.2014.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 12/29/2022]
Abstract
Here, we study the homodimerization of the transmembrane domain of Neu, as well as an oncogenic mutant (V664E), in vesicles derived from the plasma membrane of mammalian cells. For the characterization, we use a Förster resonance energy transfer (FRET)-based method termed Quantitative Imaging-FRET (QI-FRET), which yields the donor and acceptor concentrations in addition to the FRET efficiencies in individual plasma membrane-derived vesicles. Our results demonstrate that both the wild-type and the mutant are 100% dimeric, suggesting that the Neu TM helix dimerizes more efficiently than other RTK TM domains in mammalian membranes. Furthermore, the data suggest that the V664E mutation causes a very small, but statistically significant change in dimer structure. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
Collapse
Affiliation(s)
- Jesse Placone
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Nuala Del Piccolo
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
32
|
Sarabipour S, Hristova K. FGFR3 transmembrane domain interactions persist in the presence of its extracellular domain. Biophys J 2014; 105:165-71. [PMID: 23823235 DOI: 10.1016/j.bpj.2013.05.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 01/30/2023] Open
Abstract
Isolated receptor tyrosine kinase transmembrane (TM) domains have been shown to form sequence-specific dimers in membranes. Yet, it is not clear whether studies of isolated TM domains yield knowledge that is relevant to full-length receptors or whether the large glycosylated extracellular domains alter the interactions between the TM helices. Here, we address this question by quantifying the effect of the pathogenic A391E TM domain mutation on the stability of the fibroblast growth factor receptor 3 dimer in the presence of the extracellular domain and comparing these results to the case of the isolated TM fibroblast growth factor receptor 3 domains. We perform the measurements in plasma membrane-derived vesicles using a Förster-resonance-energy-transfer-based method. The effect of the mutation on dimer stability in both cases is the same (∼-1.5 kcal/mol), suggesting that the interactions observed in simple TM-peptide model systems are relevant in a biological context.
Collapse
Affiliation(s)
- Sarvenaz Sarabipour
- Department of Materials Sciences and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
33
|
Bocharov EV, Lesovoy DM, Goncharuk SA, Goncharuk MV, Hristova K, Arseniev AS. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies. Structure 2013; 21:2087-93. [PMID: 24120763 PMCID: PMC3844157 DOI: 10.1016/j.str.2013.08.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) transduces biochemical signals via lateral dimerization in the plasma membrane, and plays an important role in human development and disease. Eight different pathogenic mutations, implicated in cancers and growth disorders, have been identified in the FGFR3 transmembrane segment. Here, we describe the dimerization of the FGFR3 transmembrane domain in membrane-mimicking DPC/SDS (9/1) micelles. In the solved NMR structure, the two transmembrane helices pack into a symmetric left-handed dimer, with intermolecular stacking interactions occurring in the dimer central region. Some pathogenic mutations fall within the helix-helix interface, whereas others are located within a putative alternative interface. This implies that although the observed dimer structure is important for FGFR3 signaling, the mechanism of FGFR3-mediated transduction across the membrane is complex. We propose an FGFR3 signaling mechanism that is based on the solved structure, available structures of isolated soluble FGFR domains, and published biochemical and biophysical data.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, Moscow 117997, Russian Federation.
| | | | | | | | | | | |
Collapse
|
34
|
Singh DR, Mohammad MM, Patowary S, Stoneman MR, Oliver JA, Movileanu L, Raicu V. Determination of the quaternary structure of a bacterial ATP-binding cassette (ABC) transporter in living cells. Integr Biol (Camb) 2013; 5:312-23. [PMID: 23223798 DOI: 10.1039/c2ib20218b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic Gram-negative bacterium that affects patients with cystic fibrosis and immunocompromised individuals. This bacterium coexpresses two unique forms of lipopolysaccharides (LPSs) on its surface, the A- and B-band LPS, which are among the main virulence factors that contribute to its pathogenicity. The polysaccharides in A-band LPSs are synthesized in the cytoplasm and translocated into the periplasm via an ATP-binding cassette (ABC) transporter consisting of a transmembrane protein, Wzm, and a cytoplasmic nucleotide-binding protein, Wzt. Most of the biochemical studies of A-band PSs in Pseudomonas aeruginosa are focused on the stages of the synthesis and ligation of PS, leaving the export stage involving the ABC transporter mostly unexplored. This difficulty is compounded by the fact that the subunit composition and structure of this bi-component ABC transporter are still unknown. Here we propose a simple but powerful method, based on Förster Resonance Energy Transfer (FRET) and optical micro-spectroscopy technology, to probe the structure of dynamic (as opposed to static) protein complexes in living cells. We use this method to determine the association stoichiometry and quaternary structure of the Wzm-Wzt complex in living cells. It is found that Wzt forms a rhombus-shaped homo-tetramer which becomes a square upon co-expression with Wzm, and that Wzm forms a square-shaped homo-tetramer both in the presence and absence of Wzt. Based on these results, we propose a structural model for the double-tetramer complex formed by the bi-component ABC transporter in living cells. An understanding of the structure and behavior of this ABC transporter will help develop antibiotics targeting the biosynthesis of the A-band LPS endotoxin.
Collapse
Affiliation(s)
- Deo R Singh
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Glycophorin A transmembrane domain dimerization in plasma membrane vesicles derived from CHO, HEK 293T, and A431 cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1829-33. [PMID: 23562404 DOI: 10.1016/j.bbamem.2013.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 11/23/2022]
Abstract
Membrane protein interactions, which underlie biological function, take place in the complex cellular membrane environment. Plasma membrane derived vesicles are a model system which allows the interactions between membrane proteins to be studied without the need for their extraction, purification, and reconstitution into lipid bilayers. Plasma membrane vesicles can be produced from different cell lines and by different methods, providing a rich variety of native-like model systems. With these choices, however, questions arise as to how the different types of vesicle preparations affect the interactions between membrane proteins. Here we address this question using the glycophorin A transmembrane domain (GpA) as a model system. We compare the dimerization of GpA in six different vesicle preparations derived from Chinese hamster ovary (CHO), Human Embryonic Kidney 293T (HEK 293T) and A431 cells. We accomplish this with the use of a FRET-based method which yields the FRET efficiency, the donor concentration, and the acceptor concentration in each vesicle. We show that the vesicle preparation protocol has no statistically significant effect on GpA dimerization. Based on these results, we propose that any of the six plasma membrane preparations investigated here can be used as a model system for studies of membrane protein interactions.
Collapse
|
36
|
He L, Hristova K. Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. Sci Rep 2012; 2:854. [PMID: 23152945 PMCID: PMC3497011 DOI: 10.1038/srep00854] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 10/29/2012] [Indexed: 12/04/2022] Open
Abstract
EGFR is the best studied receptor tyrosine kinase. Yet, a comprehensive mechanistic understanding of EGFR signaling is lacking, despite very active research in the field. In this paper, we investigate the role of the juxtamembrane (JM) domain in EGFR signaling by replacing it with a (GGS)10 unstructured sequence. We probe the effect of this replacement on (i) EGFR phosphorylation, (ii) EGFR dimerization and (iii) ligand (EGF) binding. We show that the replacement of EGFR JM domain with a (GGS)10 unstructured linker completely abolishes the phosphorylation of all tyrosine residues, without measurable effects on receptor dimerization or ligand binding. Our results suggest that the JM domain does not stabilize the inactive EGFR dimer in the absence of ligand, and is likely critical only for the last step of EGFR activation, the ligand-induced transition from the inactive to active dimer.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
37
|
Godfroy JI, Roostan M, Moroz YS, Korendovych IV, Yin H. Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PLoS One 2012; 7:e48875. [PMID: 23155421 PMCID: PMC3498381 DOI: 10.1371/journal.pone.0048875] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/01/2012] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.
Collapse
Affiliation(s)
- James I. Godfroy
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Mohammad Roostan
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Yurii S. Moroz
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, Syracuse, New York, United States of America
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
38
|
Lam MHY, Stagljar I. Strategies for membrane interaction proteomics: no mass spectrometry required. Proteomics 2012; 12:1519-26. [PMID: 22610515 DOI: 10.1002/pmic.201100471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Membrane-bound proteins are one of the most important protein types in the cell, and are involved in many major cell processes and signaling pathways. Most proteins, including those at membranes, must interact with other proteins to form complexes, which are essential for their function(s). In this review, we describe some of the major non-mass spectrometry-based methods and technologies used for the investigation of intracellular membrane protein complexes including Tango, fluorescence/bioluminescence resonance energy transfer (F/BRET), luminescence-based mammalian interactome mapping (LUMIER), protein-fragment complementation assay (PCA), and membrane yeast two-hybrid assay (MYTH). We highlight the advantages and drawbacks of these methods, describe recent studies utilizing these methods, and discuss some of the major findings in the study of membrane protein-based cell pathways.
Collapse
Affiliation(s)
- Mandy H Y Lam
- Donnelly Centre for Cellular and Biomolecular Research, Department of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
39
|
Placone J, Hristova K. Direct assessment of the effect of the Gly380Arg achondroplasia mutation on FGFR3 dimerization using quantitative imaging FRET. PLoS One 2012; 7:e46678. [PMID: 23056398 PMCID: PMC3467271 DOI: 10.1371/journal.pone.0046678] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/04/2012] [Indexed: 11/19/2022] Open
Abstract
The Gly380Arg mutation in FGFR3 is the genetic cause for achondroplasia (ACH), the most common form of human dwarfism. The mutation has been proposed to increase FGFR3 dimerization, but the dimerization propensities of wild-type and mutant FGFR3 have not been compared. Here we use quantitative imaging FRET to characterize the dimerization of wild-type FGFR3 and the ACH mutant in plasma membrane-derived vesicles from HEK293T cells. We demonstrate a small, but statistically significant increase in FGFR3 dimerization due to the ACH mutation. The data are consistent with the idea that the ACH mutation causes a structural change which affects both the stability and the activity of FGFR3 dimers in the absence of ligand.
Collapse
Affiliation(s)
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
40
|
Del Piccolo N, Placone J, He L, Agudelo SC, Hristova K. Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions. Anal Chem 2012; 84:8650-5. [PMID: 22985263 DOI: 10.1021/ac301776j] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma membrane derived vesicles are used as a model system for the biochemical and biophysical investigations of membrane proteins and membrane organization. The most widely used vesiculation procedure relies on formaldehyde and dithiothreitol (DTT), but these active chemicals may introduce artifacts in the experimental results. Here we describe a procedure to vesiculate Chinese hamster ovary (CHO) cells, widely used for the expression of recombinant proteins, using a hypertonic vesiculation buffer containing chloride salts and no formaldehyde or DTT. We characterize the size distribution of the produced vesicles. We also show that these vesicles can be used for the biophysical characterization of interactions between membrane proteins.
Collapse
Affiliation(s)
- Nuala Del Piccolo
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | | | |
Collapse
|
41
|
Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV, Cowburn D, Mohammadi M. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 2012; 20:77-88. [PMID: 22244757 DOI: 10.1016/j.str.2011.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 10/14/2022]
Abstract
Uncontrolled fibroblast growth factor (FGF) signaling can lead to human malignancies necessitating multiple layers of self-regulatory control mechanisms. Fibroblast growth factor receptor (FGFR) autoinhibition mediated by the alternatively spliced immunoglobulin (Ig) domain 1 (D1) and the acid box (AB)-containing linker between D1 and Ig domain 2 (D2) serves as the first line of defense to minimize inadvertent FGF signaling. In this report, nuclear magnetic resonance and surface plasmon resonance spectroscopy are used to demonstrate that the AB subregion of FGFR electrostatically engages the heparan sulfate (HS)-binding site on the D2 domain in cis to directly suppress HS-binding affinity of FGFR. Furthermore, the cis electrostatic interaction sterically autoinhibits ligand-binding affinity of FGFR because of the close proximity of HS-binding and primary ligand-binding sites on the D2 domain. These data, together with the strong amino acid sequence conservation of the AB subregion among FGFR orthologs, highlight the universal role of the AB subregion in FGFR autoinhibition.
Collapse
Affiliation(s)
- Juliya Kalinina
- Department of Pharmacology, New York University School of Medicine, 550, First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Abstract
VEGFs activate 3 receptor tyrosine kinases, VEGFR-1, VEGFR-2, and VEGFR-3, promoting angiogenic and lymphangiogenic signaling. The extracellular receptor domain (ECD) consists of 7 Ig-homology domains; domains 2 and 3 (D23) represent the ligand-binding domain, whereas the function of D4-7 is unclear. Ligand binding promotes receptor dimerization and instigates transmembrane signaling and receptor kinase activation. In the present study, isothermal titration calorimetry showed that the Gibbs free energy of VEGF-A, VEGF-C, or VEGF-E binding to D23 or the full-length ECD of VEGFR-2 is dominated by favorable entropic contribution with enthalpic penalty. The free energy of VEGF binding to the ECD is 1.0-1.7 kcal/mol less favorable than for binding to D23. A model of the VEGF-E/VEGFR-2 ECD complex derived from small-angle scattering data provided evidence for homotypic interactions in D4-7. We also solved the crystal structures of complexes between VEGF-A or VEGF-E with D23, which revealed comparable binding surfaces and similar interactions between the ligands and the receptor, but showed variation in D23 twist angles. The energetically unfavorable homotypic interactions in D4-7 may be required for re-orientation of receptor monomers, and this mechanism might prevent ligand-independent activation of VEGFR-2 to evade the deleterious consequences for blood and lymph vessel homeostasis arising from inappropriate receptor activation.
Collapse
|
43
|
Prakash A, Janosi L, Doxastakis M. GxxxG motifs, phenylalanine, and cholesterol guide the self-association of transmembrane domains of ErbB2 receptors. Biophys J 2012; 101:1949-58. [PMID: 22004749 DOI: 10.1016/j.bpj.2011.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/28/2022] Open
Abstract
GxxxG motifs are common in transmembrane domains of membrane proteins and are often introduced to artificial peptides to inhibit or promote association to stable structures. The transmembrane domain of ErbB2 presents two separate such motifs that are proposed to be connected to stability and activity of the dimer. Using molecular simulations, we show that these sequences play a critical role during the recognition stage, forming transient complexes that lead to stable dimers. In pure phospholipid bilayers association occurs by contacts formed at the C-terminus promoted by the presence of phenylalanine residues. Helices subsequently rotate to eventually pack at short separations favored by lipid entropic contributions. In contrast, at intermediate cholesterol concentrations, a different pathway is followed that involves dimers with a weaker interface toward the N-terminus. However, at high cholesterol content, a switch toward the C-terminus is observed with an overall nonmonotonic change of the dimerization affinity. This conformational switch modulated by cholesterol has important implications on the thermodynamic, structural, and kinetic characteristics of helix-helix association in lipid membranes.
Collapse
Affiliation(s)
- Anupam Prakash
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
44
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
45
|
He L, Hristova K. Physical-chemical principles underlying RTK activation, and their implications for human disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:995-1005. [PMID: 21840295 DOI: 10.1016/j.bbamem.2011.07.044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/27/2011] [Accepted: 07/29/2011] [Indexed: 12/15/2022]
Abstract
RTKs, the second largest family of membrane receptors, exert control over cell proliferation, differentiation and migration. In recent years, our understanding of RTK structure and activation in health and disease has skyrocketed. Here we describe experimental approaches used to interrogate RTKs, and we review the quantitative biophysical frameworks and structural considerations that shape our understanding of RTK function. We discuss current knowledge about RTK interactions, focusing on the role of different domains in RTK homodimerization, and on the importance and challenges in RTK heterodimerization studies. We also review our understanding of pathogenic RTK mutations, and the underlying physical-chemical causes for the pathologies. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
46
|
High-throughput selection of transmembrane sequences that enhance receptor tyrosine kinase activation. J Mol Biol 2011; 412:43-54. [PMID: 21767549 DOI: 10.1016/j.jmb.2011.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 12/21/2022]
Abstract
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells.
Collapse
|
47
|
He L, Shobnam N, Wimley WC, Hristova K. FGFR3 heterodimerization in achondroplasia, the most common form of human dwarfism. J Biol Chem 2011; 286:13272-81. [PMID: 21324899 DOI: 10.1074/jbc.m110.205583] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) causes achondroplasia, the most common form of human dwarfism. Achondroplasia is a heterozygous disorder, and thus the affected individuals express both wild-type and mutant FGFR3. Yet heterodimerization in achondroplasia has not been characterized thus far. To investigate the formation of FGFR3 heterodimers in cellular membranes, we designed an FGFR3 construct that lacks the kinase domain, and we monitored the formation of inactive heterodimers between this construct and wild-type and mutant FGFR3. The formation of the inactive heterodimers depleted the pool of full-length receptors capable of forming active homodimers and ultimately reduced their phosphorylation. By analyzing the effect of the truncated FGFR3 on full-length receptor phosphorylation, we demonstrated that FGFR3 WT/G380R heterodimers form with lower probability than wild-type FGFR3 homodimers at low ligand concentration. These results further our knowledge of FGFR3-associated bone disorders.
Collapse
Affiliation(s)
- Lijuan He
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|