1
|
Jack CE, Cope EM, Lemel L, Canals M, Drube J, Hoffmann C, Inoue A, Hislop JN, Thompson D. GRK5 regulates endocytosis of FPR2 independent of β-arrestins. J Biol Chem 2025; 301:108112. [PMID: 39706266 PMCID: PMC11773488 DOI: 10.1016/j.jbc.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
The formyl-peptide receptor 2 (FPR2) is a G-protein-coupled receptor that responds to pathogen-derived peptides and regulates both proinflammatory and proresolution cellular processes. While ligand selectivity and G-protein signaling of FPR2 have been well characterized, molecular mechanisms controlling subsequent events such as endocytosis and recycling to the plasma membrane are less understood. Here, we show the key role of the G-protein-coupled receptor kinase 5 (GRK5) in facilitating FPR2 endocytosis and postendocytic trafficking. We found, in response to activation by a synthetic peptide WKYMVm, the recruitment of β-arrestins to the receptor requires both putative phosphorylation sites in the C-terminal region of FPR2 and the presence of GRKs, predominantly GRK5. Furthermore, although GRKs are required for β-arrestin recruitment and endocytosis, the recruitment of β-arrestin is not itself essential for FPR2 endocytosis. Instead, β-arrestin determines postendocytic delivery of FPR2 to subcellular compartments and subsequent plasma membrane delivery and controls the magnitude of downstream signal transduction. Collectively, the newly characterized FPR2 molecular pharmacology will facilitate the design of more efficient therapeutics targeting chronic inflammation.
Collapse
Affiliation(s)
- Christine E Jack
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Emily M Cope
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Laura Lemel
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julia Drube
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Carsten Hoffmann
- Institut für Molekulare Zellbiologie, CMB-Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, United Kingdom.
| | - Dawn Thompson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, United Kingdom.
| |
Collapse
|
2
|
Li J, Inoue A, Manglik A, von Zastrow M. Role of the G protein-coupled receptor kinase 2/3 N terminus in discriminating the endocytic effects of opioid agonist drugs. Mol Pharmacol 2025; 107:100003. [PMID: 39919161 DOI: 10.1124/molpharm.124.000951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Endocytosis of the μ-type opioid receptor (MOR) is a fundamentally important cellular regulatory process that is characteristically driven less effectively by partial relative to full agonist ligands. Such agonist-selective endocytic discrimination depends on how strongly drugs promote MOR binding to β-arrestins, and this, in turn, depends on how strongly they stimulate phosphorylation of the MOR cytoplasmic tail by G protein-coupled receptor kinases (GRKs) from the GRK2/3 subfamily. While these relatively "downstream" steps in the agonist selective endocytic pathway are now well defined, it remains unclear how agonist-bound receptors are distinguished "upstream" by GRKs. Focusing on GRK2 as a prototype, we show that this single GRK subtype can distinguish the endocytic activities of different MOR agonists in cells lacking other GRKs and that agonist selectivity is introduced at the most upstream step of GRK2 binding to MOR. This interaction requires prior membrane recruitment of GRK2 by its conserved Pleckstrin homology domain and is enhanced by phosphorylation of the MOR tail, but neither reaction can explain the high degree of agonist selectivity in the observed interaction of GRK2 with MOR. We identify the N-terminal domain (NTD) of GRK2, which is identical in GRK3, as a discrete element required for the full agonist selectivity of MOR-GRK2 interaction and show that the NTD is also required for GRK2 to promote MOR endocytosis after it is bound. We propose a simple cellular mechanism of upstream agonist discrimination that is organized as a series of biochemical checkpoints and uses the NTD as an agonist-selective sensor. SIGNIFICANCE STATEMENT: This study investigates how G protein-coupled receptor kinases (GRKs) distinguish the effects of opioid agonist drugs on regulated endocytosis of the μ-type opioid receptor (MOR). It shows that a single GRK subtype is sufficient to determine the agonist selectivity of MOR internalization, agonists are distinguished by how strongly they promote GRK2 recruitment by MOR, and the GRK2/3 N terminus is a key determinant of agonist discrimination.
Collapse
Affiliation(s)
- Joy Li
- Tetrad Graduate Program, Department of Biochemistry and Biophysics, University of California San Francisco School of Medicine, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA; Quantitative Biology Institute, University of California San Francisco, San Francisco, California, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, Japan
| | - Aashish Manglik
- Quantitative Biology Institute, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA
| | - Mark von Zastrow
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California, USA; Quantitative Biology Institute, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
3
|
Dagunts A, Adoff H, Novy B, Maria MD, Lobingier BT. Retromer Opposes Opioid-Induced Downregulation of the Mu Opioid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626482. [PMID: 39677727 PMCID: PMC11642924 DOI: 10.1101/2024.12.02.626482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The mu opioid receptor (MOR) is protected from opioid-induced trafficking to lysosomes and proteolytic downregulation by its ability to access the endosomal recycling pathway through its C-terminal recycling motif, LENL. MOR sorting towards the lysosome results in downregulation of opioid signaling while recycling of MOR to the plasma membrane preserves signaling function. However, the mechanisms by which LENL promotes MOR recycling are unknown, and this sequence does not match any known consensus recycling motif. Here we took a functional genomics approach with a comparative genome-wide screen design to identify genes which control opioid receptor expression and downregulation. We identified 146 hits including all three subunits of the endosomal Retromer complex. We show that the LENL motif in MOR is a novel Retromer recycling motif and that LENL is a necessary, sufficient, and conserved mechanism to give MOR access to the Retromer recycling pathway and protect MOR from agonist-induced downregulation to multiple clinically relevant opioids including fentanyl and methadone.
Collapse
Affiliation(s)
- Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
4
|
Polacco BJ, Lobingier BT, Blythe EE, Abreu N, Khare P, Howard MK, Gonzalez-Hernandez AJ, Xu J, Li Q, Novy B, Naing ZZC, Shoichet BK, Coyote-Maestas W, Levitz J, Krogan NJ, Von Zastrow M, Hüttenhain R. Profiling the proximal proteome of the activated μ-opioid receptor. Nat Chem Biol 2024; 20:1133-1143. [PMID: 38528119 PMCID: PMC11365811 DOI: 10.1038/s41589-024-01588-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
The μ-opioid receptor (μOR) represents an important target of therapeutic and abused drugs. So far, most understanding of μOR activity has focused on a subset of known signal transducers and regulatory molecules. Yet μOR signaling is coordinated by additional proteins in the interaction network of the activated receptor, which have largely remained invisible given the lack of technologies to interrogate these networks systematically. Here we describe a proteomics and computational approach to map the proximal proteome of the activated μOR and to extract subcellular location, trafficking and functional partners of G-protein-coupled receptor (GPCR) activity. We demonstrate that distinct opioid agonists exert differences in the μOR proximal proteome mediated by endocytosis and endosomal sorting. Moreover, we identify two new μOR network components, EYA4 and KCTD12, which are recruited on the basis of receptor-triggered G-protein activation and might form a previously unrecognized buffering system for G-protein activity broadly modulating cellular GPCR signaling.
Collapse
Affiliation(s)
- Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR, USA
| | - Emily E Blythe
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Nohely Abreu
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Prachi Khare
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Matthew K Howard
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- TETRAD Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | | | - Jiewei Xu
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Qiongyu Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR, USA
| | - Zun Zar Chi Naing
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Brian K Shoichet
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Willow Coyote-Maestas
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Mark Von Zastrow
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA.
| | - Ruth Hüttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA.
- J. David Gladstone Institutes, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Underwood O, Fritzwanker S, Glenn J, Blum NK, Batista-Gondin A, Drube J, Hoffmann C, Briddon SJ, Schulz S, Canals M. Key phosphorylation sites for robust β-arrestin2 binding at the MOR revisited. Commun Biol 2024; 7:933. [PMID: 39095612 PMCID: PMC11297201 DOI: 10.1038/s42003-024-06571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Desensitisation of the mu-opioid receptor (MOR) is proposed to underlie the initiation of opioid analgesic tolerance and previous work has shown that agonist-induced phosphorylation of the MOR C-tail contributes to this desensitisation. Moreover, phosphorylation is important for β-arrestin recruitment to the receptor, and ligands of different efficacies induce distinct phosphorylation barcodes. The C-tail 370TREHPSTANT379 motif harbours Ser/Thr residues important for these regulatory functions. 375Ser is the primary phosphorylation site of a ligand-dependent, hierarchical, and sequential process, whereby flanking 370Thr, 376Thr and 379Thr get subsequently and rapidly phosphorylated. Here we used GRK KO cells, phosphosite specific antibodies and site-directed mutagenesis to evaluate the contribution of the different GRK subfamilies to ligand-induced phosphorylation barcodes and β-arrestin2 recruitment. We show that both GRK2/3 and GRK5/6 subfamilies promote phosphorylation of 370Thr and 375Ser. Importantly, only GRK2/3 induce phosphorylation of 376Thr and 379Thr, and we identify these residues as key sites to promote robust β-arrestin recruitment to the MOR. These data provide insight into the mechanisms of MOR regulation and suggest that the cellular complement of GRK subfamilies plays an important role in determining the tissue responses of opioid agonists.
Collapse
Affiliation(s)
- Owen Underwood
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Sebastian Fritzwanker
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jaqueline Glenn
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Nina Kathleen Blum
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Arisbel Batista-Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Julia Drube
- Institut fur Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Carsten Hoffmann
- Institut fur Molekulare Zellbiologie, CMB - Center for Molecular Biomedicine, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK
| | - Stefan Schulz
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
- 7TM Antibodies GmbH, Hans-Knöll-Straße 6, D-07745, Jena, Germany
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, Midlands, UK.
| |
Collapse
|
6
|
Oliinyk D, Will A, Schneidmadel FR, Böhme M, Rinke J, Hochhaus A, Ernst T, Hahn N, Geis C, Lubeck M, Raether O, Humphrey SJ, Meier F. µPhos: a scalable and sensitive platform for high-dimensional phosphoproteomics. Mol Syst Biol 2024; 20:972-995. [PMID: 38907068 PMCID: PMC11297287 DOI: 10.1038/s44320-024-00050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Mass spectrometry has revolutionized cell signaling research by vastly simplifying the analysis of many thousands of phosphorylation sites in the human proteome. Defining the cellular response to perturbations is crucial for further illuminating the functionality of the phosphoproteome. Here we describe µPhos ('microPhos'), an accessible phosphoproteomics platform that permits phosphopeptide enrichment from 96-well cell culture and small tissue amounts in <8 h total processing time. By greatly minimizing transfer steps and liquid volumes, we demonstrate increased sensitivity, >90% selectivity, and excellent quantitative reproducibility. Employing highly sensitive trapped ion mobility mass spectrometry, we quantify ~17,000 Class I phosphosites in a human cancer cell line using 20 µg starting material, and confidently localize ~6200 phosphosites from 1 µg. This depth covers key signaling pathways, rendering sample-limited applications and perturbation experiments with hundreds of samples viable. We employ µPhos to study drug- and time-dependent response signatures in a leukemia cell line, and by quantifying 30,000 Class I phosphosites in the mouse brain we reveal distinct spatial kinase activities in subregions of the hippocampal formation.
Collapse
Affiliation(s)
- Denys Oliinyk
- Functional Proteomics, Jena University Hospital, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
| | - Andreas Will
- Functional Proteomics, Jena University Hospital, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
| | - Felix R Schneidmadel
- Functional Proteomics, Jena University Hospital, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
| | - Maximilian Böhme
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
- Klinik für Innere Medizin II, Jena University Hospital, 07747, Jena, Germany
| | - Jenny Rinke
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
- Klinik für Innere Medizin II, Jena University Hospital, 07747, Jena, Germany
| | - Andreas Hochhaus
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
- Klinik für Innere Medizin II, Jena University Hospital, 07747, Jena, Germany
| | - Thomas Ernst
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany
- Klinik für Innere Medizin II, Jena University Hospital, 07747, Jena, Germany
| | - Nina Hahn
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section of Translational Neuroimmunology, Department of Neurology, Jena University Hospital, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Markus Lubeck
- Bruker Daltonics GmbH & Co. KG, 28359, Bremen, Germany
| | | | - Sean J Humphrey
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, 3052, Victoria, Australia.
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, 07747, Jena, Germany.
- Comprehensive Cancer Center Central Germany, 07747, Jena, Germany.
| |
Collapse
|
7
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
8
|
Taboun ZS, Sadeghi J. The bidirectional relationship between opioids and the gut microbiome: Implications for opioid tolerance and clinical interventions. Int Immunopharmacol 2023; 125:111142. [PMID: 37918085 DOI: 10.1016/j.intimp.2023.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Opioids are widely used in treating patients with acute and chronic pain; however, this class of drugs is also commonly abused. Opioid use disorder and associated overdoses are becoming more prevalent as the opioid crisis continues. Chronic opioid use is associated with tolerance, which decreases the efficacy of opioids over time, but also puts individuals at risk of fatal overdoses. Therefore, it is essential to identify strategies to reduce opioid tolerance in those that use these agents. The gut microbiome has been found to play a critical role in opioid tolerance, with opioids causing dysbiosis of the gut, and changes in the gut microbiome impacting opioid tolerance. These changes in turn have a detrimental effect on the gut microbiome, creating a positive feedback cycle. We review the bidirectional relationship between the gut microbiome and opioid tolerance, discuss the role of modulation of the gut microbiome as a potential therapeutic option in opioid-induced gut dysbiosis, and suggest opportunities for further research and clinical interventions.
Collapse
Affiliation(s)
- Zahra S Taboun
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Javad Sadeghi
- School of Engineering, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
| |
Collapse
|
9
|
Manning JJ, Rawcliffe G, Finlay DB, Glass M. Cannabinoid 1 (CB 1 ) receptor arrestin subtype-selectivity and phosphorylation dependence. Br J Pharmacol 2023; 180:369-382. [PMID: 36250246 PMCID: PMC10100024 DOI: 10.1111/bph.15973] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Arrestin or G protein bias may be desirable for novel cannabinoid therapeutics. Arrestin-2 and arrestin-3 translocation to CB1 receptor have been suggested to mediate different functions that may be exploited with biased ligands. Here, the requirement of a recently described phosphorylation motif 'pxxp' (where 'p' denotes phosphorylatable serine or threonine and 'x' denotes any other amino acid) within the CB1 receptor C-terminus for interaction with different arrestin subtypes was examined. EXPERIMENTAL APPROACH Site-directed mutagenesis was conducted to generate nine different phosphorylation-impaired CB1 receptor C-terminal mutants. Bioluminescence resonance energy transfer (BRET) was employed to measure arrestin-2/3 translocation and G protein dissociation of a high efficacy agonist for each mutant. Immunocytochemistry was used to quantify receptor expression. KEY RESULTS The effects of each mutation were shared for arrestin-2 and arrestin-3 translocation to CB1 receptor pxxp motifs are partially required for arrestin-2/3 translocation, but translocation was not completely inhibited until all phosphorylation sites were mutated. The rate of arrestin translocation was reduced with simultaneous mutation of S425 and S429. Desensitisation of G protein dissociation was inhibited in different mutants proportional to the extent of their respective loss of arrestin translocation. CONCLUSIONS AND IMPLICATIONS These data do not support the existence of an 'essential' pxxp motif for arrestin translocation to CB1 receptor. These data also identify that arrestin-2 and arrestin-3 have equivalent phosphorylation requirements within the CB1 receptor C-terminus, suggesting arrestin subtype-selective biased ligands may not be viable and that different regions of the C-terminus contribute differently to arrestin translocation.
Collapse
Affiliation(s)
- Jamie J Manning
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gabriel Rawcliffe
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Liu S, Kang WJ, Abrimian A, Xu J, Cartegni L, Majumdar S, Hesketh P, Bekker A, Pan YX. Alternative Pre-mRNA Splicing of the Mu Opioid Receptor Gene, OPRM1: Insight into Complex Mu Opioid Actions. Biomolecules 2021; 11:biom11101525. [PMID: 34680158 PMCID: PMC8534031 DOI: 10.3390/biom11101525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Most opioid analgesics used clinically, including morphine and fentanyl, as well as the recreational drug heroin, act primarily through the mu opioid receptor, a class A Rhodopsin-like G protein-coupled receptor (GPCR). The single-copy mu opioid receptor gene, OPRM1, undergoes extensive alternative splicing, creating multiple splice variants or isoforms via a variety of alternative splicing events. These OPRM1 splice variants can be categorized into three major types based on the receptor structure: (1) full-length 7 transmembrane (TM) C-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Increasing evidence suggests that these OPRM1 splice variants are pharmacologically important in mediating the distinct actions of various mu opioids. More importantly, the OPRM1 variants can be targeted for development of novel opioid analgesics that are potent against multiple types of pain, but devoid of many side-effects associated with traditional opiates. In this review, we provide an overview of OPRM1 alternative splicing and its functional relevance in opioid pharmacology.
Collapse
Affiliation(s)
- Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Wen-Jia Kang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Anna Abrimian
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Luca Cartegni
- Department of Chemical Biology, Ernest Mario School of Pharmacy Rutgers University, Piscataway, NJ 08854, USA;
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Patrick Hesketh
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Alex Bekker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (S.L.); (W.-J.K.); (A.A.); (J.X.); (P.H.); (A.B.)
- Correspondence: ; Tel.: +1-973-972-3213
| |
Collapse
|
12
|
Kunselman JM, Lott J, Puthenveedu MA. Mechanisms of selective G protein-coupled receptor localization and trafficking. Curr Opin Cell Biol 2021; 71:158-165. [PMID: 33965654 PMCID: PMC8328924 DOI: 10.1016/j.ceb.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
The trafficking of G protein-coupled receptors (GPCRs) to different membrane compartments has recently emerged as being a critical determinant of the signaling profiles of activation. GPCRs, which share many structural and functional similarities, also share many mechanisms that traffic them between compartments. This sharing raises the question of how the trafficking of individual GPCRs is selectively regulated. Here, we will discuss recent studies addressing the mechanisms that contribute to selectivity in endocytic and biosynthetic trafficking of GPCRs.
Collapse
Affiliation(s)
- Jennifer M Kunselman
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua Lott
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Manojkumar A Puthenveedu
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Zhou J, Ma R, Jin Y, Fang J, Du J, Shao X, Liang Y, Fang J. Molecular mechanisms of opioid tolerance: From opioid receptors to inflammatory mediators (Review). Exp Ther Med 2021; 22:1004. [PMID: 34345286 PMCID: PMC8311239 DOI: 10.3892/etm.2021.10437] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Opioids are considered the most effective analgesics for the treatment of both acute and chronic pain. However, prolonged opioid use can induce a certain level of tolerance to its analgesic effects, leading to a reduction in its effectiveness, addiction and abuse. A better understanding of the mechanisms underlying opioid tolerance may provide insights into this phenomenon and aid in the development of novel methods to combat the side effects of opioid tolerance. The present review focused on two major contributors to tolerance, opioid receptors and inflammatory mediators. The molecular mechanisms involved in the desensitization of the opioid receptors were briefly described, including their phosphorylation, internalisation and recycling. Subsequently, the effects of Toll like receptor 4/NOD-like receptor family pyrin domain containing 3-mediated proinflammatory responses in opioid tolerance were discussed, aiming in supporting the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Ruijie Ma
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Ying Jin
- Department of Rehabilitation in Traditional Chinese Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Junfan Fang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Junying Du
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiaomei Shao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yi Liang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
14
|
von Zastrow M. Proteomic Approaches to Investigate Regulated Trafficking and Signaling of G Protein-Coupled Receptors. Mol Pharmacol 2021; 99:392-398. [PMID: 33361190 PMCID: PMC8058503 DOI: 10.1124/molpharm.120.000178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Advances in proteomic methodologies based on quantitative mass spectrometry are now transforming pharmacology and experimental biology more broadly. The present review will discuss several examples based on work in the author's laboratory, which focuses on delineating relationships between G protein-coupled receptor signaling and trafficking in the endocytic network. The examples highlighted correspond to those discussed in a talk presented at the 2019 EB/ASPET meeting, which was organized by Professor Joe Beavo to commemorate his receipt of the Julius Axelrod Award. SIGNIFICANCE STATEMENT: GPCRs are allosteric machines that signal by interacting with other cellular proteins, and this, in turn, is determined by a complex interplay between the biochemical, subcellular localization, and membrane trafficking properties of receptors relative to transducer and regulatory proteins. The present minireview highlights recent advances and challenges in elucidating this dynamic cell biology and toward delineating the cellular basis of drug action at the level of defined GPCR interaction networks using proteomic approaches enabled by quantitative mass spectrometry.
Collapse
Affiliation(s)
- Mark von Zastrow
- Departments of Cellular and Molecular Pharmacology, and Psychiatry and Behavioral Science, San Francisco School of Medicine, and Quantitative Biology Institute, University of California, San Francisco, California
| |
Collapse
|
15
|
De Aquino JP, Parida S, Sofuoglu M. The Pharmacology of Buprenorphine Microinduction for Opioid Use Disorder. Clin Drug Investig 2021; 41:425-436. [PMID: 33818748 PMCID: PMC8020374 DOI: 10.1007/s40261-021-01032-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Although expanding the availability of buprenorphine—a first-line pharmacotherapy for opioid-use disorder (OUD)—has increased the capacity of healthcare systems to offer treatment, starting this medication is fraught with significant barriers. Standard induction regimens require persons with OUD to taper and discontinue full opioid agonists and experience opioid withdrawal prior to the first dose of buprenorphine. Further, emerging evidence indicates that precipitated withdrawal during induction may impact long-term treatment outcomes. Microinduction is a novel approach that, by harnessing buprenorphine’s unique pharmacological profile, may allow circumventing the needed for prolonged opioid tapers, and reduce the risk of precipitated withdrawal—holding promise to enhance treatment access. In this review, we examine the pharmacological basis for microinduction and appraise the evidence of this approach to improve clinical outcomes among persons with OUD. First, we highlight the potential dose-dependent effects of buprenorphine on two key neuroadaptations at the mu-opioid receptor (MOR)—resensitization and upregulation. We then focus on how microinduction may reverse these chronic MOR neuroadaptations, allowing the maintenance of an adequate opioid tone, and thereby potentially circumventing opioid withdrawal. Second, we describe the clinical evidence available, derived from observational reports and open-label studies, examining the potential efficacy of microinduction. Despite significant heterogeneity—exemplified by variable buprenorphine formulations, daily doses, and schedules of administration—these data provide preliminary support for the feasibility of microinduction. Finally, we provide new mechanistic, methodological, and clinical insights to guide future translational research, as well as randomized, placebo-controlled clinical trials in this compelling agenda of pharmacotherapy development.
Collapse
Affiliation(s)
- Joao P De Aquino
- VA Connecticut Healthcare System, 950 Campbell Avenue, 151D, West Haven, CT, 06516, USA. .,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
| | - Suprit Parida
- VA Connecticut Healthcare System, 950 Campbell Avenue, 151D, West Haven, CT, 06516, USA.,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Mehmet Sofuoglu
- VA Connecticut Healthcare System, 950 Campbell Avenue, 151D, West Haven, CT, 06516, USA.,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| |
Collapse
|
16
|
Aydin Y, Coin I. Biochemical insights into structure and function of arrestins. FEBS J 2021; 288:2529-2549. [DOI: 10.1111/febs.15811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Yasmin Aydin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| | - Irene Coin
- Institute of Biochemistry Faculty of Life Sciences University of Leipzig Germany
| |
Collapse
|
17
|
von Zastrow M, Sorkin A. Mechanisms for Regulating and Organizing Receptor Signaling by Endocytosis. Annu Rev Biochem 2021; 90:709-737. [PMID: 33606955 DOI: 10.1146/annurev-biochem-081820-092427] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California 94143, USA;
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
18
|
Gurevich EV, Gurevich VV. GRKs as Modulators of Neurotransmitter Receptors. Cells 2020; 10:52. [PMID: 33396400 PMCID: PMC7823573 DOI: 10.3390/cells10010052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.
Collapse
Affiliation(s)
- Eugenia V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 27232, USA;
| | | |
Collapse
|
19
|
Pineyro G, Nagi K. Signaling diversity of mu- and delta- opioid receptor ligands: Re-evaluating the benefits of β-arrestin/G protein signaling bias. Cell Signal 2020; 80:109906. [PMID: 33383156 DOI: 10.1016/j.cellsig.2020.109906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/02/2023]
Abstract
Opioid analgesics are elective for treating moderate to severe pain but their use is restricted by severe side effects. Signaling bias has been proposed as a viable means for improving this situation. To exploit this opportunity, continuous efforts are devoted to understand how ligand-specific modulations of receptor functions could mediate the different in vivo effects of opioids. Advances in the field have led to the development of biased agonists based on hypotheses that allocated desired and undesired effects to specific signaling pathways. However, the prevalent hypothesis associating β-arrestin to opioid side effects was recently challenged and multiple of the newly developed biased drugs may not display the superior side effects profile that was sought. Moreover, biased agonism at opioid receptors is now known to be time- and cell-dependent, which adds a new layer of complexity for bias estimation. Here, we first review the signaling mechanisms underlying desired and undesired effects of opioids. We then describe biased agonism at opioid receptors and discuss the different perspectives that support the desired and undesired effects of opioids in view of exploiting biased signaling for therapeutic purposes. Finally, we explore how signaling kinetics and cellular background can influence the magnitude and directionality of bias at those receptors.
Collapse
Affiliation(s)
- Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine research center, Montreal, QC H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
20
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
GRKs as Key Modulators of Opioid Receptor Function. Cells 2020; 9:cells9112400. [PMID: 33147802 PMCID: PMC7692057 DOI: 10.3390/cells9112400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the link between agonist-induced phosphorylation of the mu-opioid receptor (MOR) and the associated physiological effects is critical for the development of novel analgesic drugs and is particularly important for understanding the mechanisms responsible for opioid-induced tolerance and addiction. The family of G protein receptor kinases (GRKs) play a pivotal role in such processes, mediating phosphorylation of residues at the C-tail of opioid receptors. Numerous strategies, such as phosphosite specific antibodies and mass spectrometry have allowed the detection of phosphorylated residues and the use of mutant knock-in mice have shed light on the role of GRK regulation in opioid receptor physiology. Here we review our current understanding on the role of GRKs in the actions of opioid receptors, with a particular focus on the MOR, the target of most commonly used opioid analgesics such as morphine or fentanyl.
Collapse
|
22
|
Møller TC, Pedersen MF, van Senten JR, Seiersen SD, Mathiesen JM, Bouvier M, Bräuner-Osborne H. Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Sci Rep 2020; 10:17395. [PMID: 33060647 PMCID: PMC7567791 DOI: 10.1038/s41598-020-73674-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 01/14/2023] Open
Abstract
Most G protein-coupled receptors (GPCRs) recruit β-arrestins and internalize upon agonist stimulation. For the μ-opioid receptor (μ-OR), this process has been linked to development of opioid tolerance. GPCR kinases (GRKs), particularly GRK2 and GRK3, have been shown to be important for μ-OR recruitment of β-arrestin and internalization. However, the contribution of GRK2 and GRK3 to β-arrestin recruitment and receptor internalization, remain to be determined in their complete absence. Using CRISPR/Cas9-mediated genome editing we established HEK293 cells with knockout of GRK2, GRK3 or both to dissect their individual contributions in β-arrestin2 recruitment and μ-OR internalization upon stimulation with four different agonists. We showed that GRK2/3 removal reduced agonist-induced μ-OR internalization and β-arrestin2 recruitment substantially and we found GRK2 to be more important for these processes than GRK3. Furthermore, we observed a sustained and GRK2/3 independent component of β-arrestin2 recruitment to the plasma membrane upon μ-OR activation. Rescue expression experiments restored GRK2/3 functions. Inhibition of GRK2/3 using the small molecule inhibitor CMPD101 showed a high similarity between the genetic and pharmacological approaches, cross-validating the specificity of both. However, off-target effects were observed at high CMPD101 concentrations. These GRK2/3 KO cell lines should prove useful for a wide range of studies on GPCR function.
Collapse
Affiliation(s)
- Thor C Møller
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Mie F Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jeffrey R van Senten
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Sofie D Seiersen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, Canada
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|
23
|
Jullié D, Gondin AB, von Zastrow M, Canals M. Opioid Pharmacology under the Microscope. Mol Pharmacol 2020; 98:425-432. [PMID: 32198210 PMCID: PMC7562971 DOI: 10.1124/mol.119.119321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
The powerful analgesic effects of opioid drugs have captivated the interest of physicians and scientists for millennia, and the ability of opioid drugs to produce serious undesired effects has been recognized for a similar period of time (Kieffer and Evans, 2009). Many of these develop progressively with prolonged or repeated drug use and then persist, motivating particular interest in understanding how opioid drugs initiate adaptive or maladaptive modifications in neural function or regulation. Exciting advances have been made over the past several years in elucidating drug-induced changes at molecular, cellular, and physiologic scales of analysis. The present review will highlight some recent cellular studies that we believe bridge across scales and will focus on optical imaging approaches that put opioid drug action "under the microscope." SIGNIFICANCE STATEMENT: Opioid receptors are major pharmacological targets, but their signaling at the cellular level results from a complex interplay between pharmacology, regulation, subcellular localization, and membrane trafficking. This minireview discusses recent advances in understanding the cellular biology of opioid receptors, emphasizing particular topics discussed at the 50th anniversary of the International Narcotics Research Conference. Our goal is to highlight distinct signaling and regulatory properties emerging from the cellular biology of opioid receptors and discuss potential relevance to therapeutics.
Collapse
Affiliation(s)
- Damien Jullié
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Arisbel B Gondin
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Mark von Zastrow
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| | - Meritxell Canals
- Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco School of Medicine, San Francisco, California (D.J., M.v.Z.); Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia (A.B.G.); Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (M.C.); and Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom (M.C.)
| |
Collapse
|
24
|
Birdsong WT, Williams JT. Recent Progress in Opioid Research from an Electrophysiological Perspective. Mol Pharmacol 2020; 98:401-409. [PMID: 32198208 PMCID: PMC7562972 DOI: 10.1124/mol.119.119040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Electrophysiological approaches provide powerful tools to further our understanding of how different opioids affect signaling through opioid receptors; how opioid receptors modulate circuitry involved in processes such as pain, respiration, addiction, and feeding; and how receptor signaling and circuits are altered by physiologic challenges, such as injury, stress, and chronic opioid treatment. The use of genetic manipulations to alter or remove μ-opioid receptors (MORs) with anatomic and cell type specificity and the ability to activate or inhibit specific circuits through opto- or chemogenetic approaches are being used in combination with electrophysiological, pharmacological, and systems-level physiology experiments to expand our understanding of the beneficial and maladaptive roles of opioids and opioid receptor signaling. New approaches for studying endogenous opioid peptide signaling and release and the dynamics of these systems in response to chronic opioid use, pain, and stress will add another layer to our understanding of the intricacies of opioid modulation of brain circuits. This understanding may lead to new targets or approaches for drug development or treatment regimens that may affect both acute and long-term effects of manipulating the activity of circuits involved in opioid-mediated physiology and behaviors. This review will discuss recent advancements in our understanding of the role of phosphorylation in regulating MOR signaling, as well as our understanding of circuits and signaling pathways mediating physiologic behaviors such as respiratory control, and discuss how electrophysiological tools combined with new technologies have and will continue to advance the field of opioid research. SIGNIFICANCE STATEMENT: This review discusses recent advancements in our understanding of μ-opioid receptor (MOR) function and regulation and the role of electrophysiological approaches combined with new technologies in pushing the field of opioid research forward. This covers regulation of MOR at the receptor level, adaptations induced by chronic opioid treatment, sites of action of MOR modulation of specific brain circuits, and the role of the endogenous opioid system in driving physiology and behavior through modulation of these brain circuits.
Collapse
Affiliation(s)
- William T Birdsong
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| | - John T Williams
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (W.T.B.) and Vollum Institute, Oregon Health & Science University, Portland, Oregon (J.T.W.)
| |
Collapse
|
25
|
Leff ER, Arttamangkul S, Williams JT. Chronic Treatment with Morphine Disrupts Acute Kinase-Dependent Desensitization of GPCRs. Mol Pharmacol 2020; 98:497-507. [PMID: 32362586 PMCID: PMC7562982 DOI: 10.1124/mol.119.119362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/24/2020] [Indexed: 11/22/2022] Open
Abstract
Based on studies using mutations of the µ-opioid receptor (MOR), phosphorylation of multiple sites on the C-terminus has been recognized as a critical step underlying acute desensitization and the development of cellular tolerance. The aim of this study is to explore which kinases mediate desensitization of MOR in brain slices from drug-naïve and morphine-treated animals. Whole-cell recordings from locus coeruleus neurons were made, and the agonist-induced increase in potassium conductance was measured. In slices from naïve animals, pharmacological inhibition of G-protein receptor kinase (GRK2/3) with compound 101 blocked acute desensitization. Following chronic treatment with morphine, compound 101 was less effective at blocking acute desensitization. Compound 101 blocked receptor internalization in tissue from both naïve and morphine-treated animals, suggesting that GRK2/3 remained active. Kinase inhibitors aimed at blocking protein kinase C and c-Jun N-terminal kinase had no effect on desensitization in tissue taken from naïve animals. However, in slices taken from morphine-treated animals, the combination of these blockers along with compound 101 was required to block acute desensitization. Acute desensitization of the potassium conductance induced by the somatostatin receptor was also blocked by compound 101 in slices from naïve but not morphine-treated animals. As was observed with MOR, it was necessary to use the combination of kinase inhibitors to block desensitization of the somatostatin receptor in slices from morphine-treated animals. The results show that chronic treatment with morphine results in a surprising and heterologous adaptation in kinase-dependent desensitization. SIGNIFICANCE STATEMENT: The results show that chronic treatment with morphine induced heterologous adaptations in kinase regulation of G protein coupled receptor (GPCR) desensitization. Although the canonical mechanism for acute desensitization through phosphorylation by G protein-coupled receptor kinase is supported in tissue taken from naïve animals, following chronic treatment with morphine, the acute kinase-dependent desensitization of GPCRs is disrupted such that additional kinases, including protein kinase C and c-Jun N-terminal kinase, contribute to desensitization.
Collapse
Affiliation(s)
- Emily R Leff
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
26
|
Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 PMCID: PMC7275904 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
27
|
Mechanism of β-arrestin recruitment by the μ-opioid G protein-coupled receptor. Proc Natl Acad Sci U S A 2020; 117:16346-16355. [PMID: 32601232 DOI: 10.1073/pnas.1918264117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Agonists to the μ-opioid G protein-coupled receptor (μOR) can alleviate pain through activation of G protein signaling, but they can also induce β-arrestin activation, leading to such side effects as respiratory depression. Biased ligands to μOR that induce G protein signaling without inducing β-arrestin signaling can alleviate pain while reducing side effects. However, the mechanism for stimulating β-arrestin signaling is not known, making it difficult to design optimum biased ligands. We use extensive molecular dynamics simulations to determine three-dimensional (3D) structures of activated β-arrestin2 stabilized by phosphorylated μOR bound to the morphine and D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) nonbiased agonists and to the TRV130 biased agonist. For nonbiased agonists, we find that the β-arrestin2 couples to the phosphorylated μOR by forming strong polar interactions with intracellular loop 2 (ICL2) and either the ICL3 or cytoplasmic region of transmembrane (TM6). Strikingly, Gi protein makes identical strong bonds with these same ICLs. Thus, the Gi protein and β-arrestin2 compete for the same binding site even though their recruitment leads to much different outcomes. On the other hand, we find that TRV130 has a greater tendency to bind the extracellular portion of TM2 and TM3, which repositions TM6 in the cytoplasmic region of μOR, hindering β-arrestin2 from making polar anchors to the ICL3 or to the cytosolic end of TM6. This dramatically reduces the affinity between μOR and β-arrestin2.
Collapse
|
28
|
Kaya AI, Perry NA, Gurevich VV, Iverson TM. Phosphorylation barcode-dependent signal bias of the dopamine D1 receptor. Proc Natl Acad Sci U S A 2020; 117:14139-14149. [PMID: 32503917 PMCID: PMC7321966 DOI: 10.1073/pnas.1918736117] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Agonist-activated G protein-coupled receptors (GPCRs) must correctly select from hundreds of potential downstream signaling cascades and effectors. To accomplish this, GPCRs first bind to an intermediary signaling protein, such as G protein or arrestin. These intermediaries initiate signaling cascades that promote the activity of different effectors, including several protein kinases. The relative roles of G proteins versus arrestins in initiating and directing signaling is hotly debated, and it remains unclear how the correct final signaling pathway is chosen given the ready availability of protein partners. Here, we begin to deconvolute the process of signal bias from the dopamine D1 receptor (D1R) by exploring factors that promote the activation of ERK1/2 or Src, the kinases that lead to cell growth and proliferation. We found that ERK1/2 activation involves both arrestin and Gαs, while Src activation depends solely on arrestin. Interestingly, we found that the phosphorylation pattern influences both arrestin and Gαs coupling, suggesting an additional way the cells regulate G protein signaling. The phosphorylation sites in the D1R intracellular loop 3 are particularly important for directing the binding of G protein versus arrestin and for selecting between the activation of ERK1/2 and Src. Collectively, these studies correlate functional outcomes with a physical basis for signaling bias and provide fundamental information on how GPCR signaling is directed.
Collapse
Affiliation(s)
- Ali I Kaya
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Nicole A Perry
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232;
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
29
|
Lemos Duarte M, Devi LA. Post-translational Modifications of Opioid Receptors. Trends Neurosci 2020; 43:417-432. [PMID: 32459993 PMCID: PMC7323054 DOI: 10.1016/j.tins.2020.03.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Post-translational modifications (PTMs) are key events in signal transduction since they affect protein function by regulating their abundance and/or activity. PTMs involve the covalent attachment of functional groups to specific amino acids. Since they tend to be generally reversible, PTMs serve as regulators of signal transduction pathways. G-protein-coupled receptors (GPCRs) are major signaling proteins that undergo multiple types of PTMs. In this Review, we focus on the opioid receptors, members of GPCR family A, and highlight recent advances in the field that have underscored the importance of PTMs in the functional regulation of these receptors. Since opioid receptor activity plays a central role in the development of tolerance and addiction to morphine and other drugs of abuse, understanding the molecular mechanisms regulating receptor activity is of fundamental importance.
Collapse
Affiliation(s)
- Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Gudin J, Fudin J. A Narrative Pharmacological Review of Buprenorphine: A Unique Opioid for the Treatment of Chronic Pain. Pain Ther 2020; 9:41-54. [PMID: 31994020 PMCID: PMC7203271 DOI: 10.1007/s40122-019-00143-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Buprenorphine is a Schedule III opioid analgesic with unique pharmacodynamic and pharmacokinetic properties that may be preferable to those of Schedule II full μ-opioid receptor agonists. The structure of buprenorphine allows for multimechanistic interactions with opioid receptors μ, δ, κ, and opioid receptor-like 1. Buprenorphine is considered a partial agonist with very high binding affinity for the μ-opioid receptor, an antagonist with high binding affinity for the δ- and κ-opioid receptors, and an agonist with low binding affinity for the opioid receptor-like 1 receptor. Partial agonism at the μ-opioid receptor does not provide partial analgesia, but rather analgesia equivalent to that of full μ-opioid receptor agonists. In addition, unlike full μ-opioid receptor agonists, buprenorphine may have a unique role in mediating analgesic signaling at spinal opioid receptors while having less of an effect on brain receptors, potentially limiting classic opioid-related adverse events such as euphoria, addiction, or respiratory depression. The pharmacokinetic properties of buprenorphine are also advantageous in a clinical setting, where metabolic and excretory pathways allow for use in patients requiring concomitant medications, the elderly, and those with renal or hepatic impairment. The unique pharmacodynamic and pharmacokinetic properties of buprenorphine translate to an effective analgesic with a potentially favorable safety profile compared with that of full μ-opioid receptor agonists for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jeffrey Gudin
- Department of Anesthesiology, Englewood Hospital and Medical Center, 350 Engle St, Englewood, NJ, 07631, USA.
- Department of Anesthesia and Perioperative Care, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA.
| | - Jeffrey Fudin
- Western New England University College of Pharmacy and Health Sciences, 1215 Wilbraham Road, Springfield, MA, 01119, USA
- Albany College of Pharmacy & Health Sciences, 106 New Scotland Avenue, Albany, NY, 12208, USA
- Remitigate, LLC, 357 Delaware Avenue #214, Delmar, NY, 12054, USA
| |
Collapse
|
31
|
Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020; 29:1345-1354. [PMID: 32297394 DOI: 10.1002/pro.3872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cell function over short- and long-term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.
Collapse
Affiliation(s)
- Thomas J Fernandez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
32
|
Stoeber M, Jullié D, Li J, Chakraborty S, Majumdar S, Lambert NA, Manglik A, von Zastrow M. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. eLife 2020; 9:54208. [PMID: 32096468 PMCID: PMC7041944 DOI: 10.7554/elife.54208] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) signal through allostery, and it is increasingly clear that chemically distinct agonists can produce different receptor-based effects. It has been proposed that agonists selectively promote receptors to recruit one cellular interacting partner over another, introducing allosteric ‘bias’ into the signaling system. However, the underlying hypothesis - that different agonists drive GPCRs to engage different cytoplasmic proteins in living cells - remains untested due to the complexity of readouts through which receptor-proximal interactions are typically inferred. We describe a cell-based assay to overcome this challenge, based on GPCR-interacting biosensors that are disconnected from endogenous transduction mechanisms. Focusing on opioid receptors, we directly demonstrate differences between biosensor recruitment produced by chemically distinct opioid ligands in living cells. We then show that selective recruitment applies to GRK2, a biologically relevant GPCR regulator, through discrete interactions of GRK2 with receptors or with G protein beta-gamma subunits which are differentially promoted by agonists. About a third of all drugs work by targeting a group of proteins known as G-protein coupled receptors, or GPCRs for short. These receptors are found on the surface of cells and transmit messages across the cell’s outer barrier. When a signaling molecule, like a hormone, is released in the body, it binds to a GPCR and changes the receptor’s shape. The change in structure affects how the GPCR interacts and binds to other proteins on the inside of the cell, triggering a series of reactions that alter the cell’s activity. Scientists have previously seen that a GPCR can trigger different responses depending on which signaling molecule is binding on the surface of the cell. However, the mechanism for this is unknown. One hypothesis is that different signaling molecules change the GPCR’s preference for binding to different proteins on the inside of the cell. The challenge has been to observe this happening without interfering with the process. Stoeber et al. have now tested this idea by attaching fluorescent tags to proteins that bind to activated GPCRs directly and without binding other signaling proteins. This meant these proteins could be tracked under a microscope as they made their way to bind to the GPCRs. Stoeber et al. focused on one particular GPCR, known as the opioid receptor, and tested the binding of two different opioid signaling molecules, etorphine and Dynorphin A. The experiments revealed that the different opioids did affect which of the engineered proteins would preferentially bind to the opioid receptor. This was followed by a similar experiment, where the engineered proteins were replaced with another protein called GRK2, which binds to the opioid receptor under normal conditions in the cell. This showed that GRK2 binds much more strongly to the opioid receptor when Dynorphin A is added compared to adding etorphine. These findings show that GPCRs can not only communicate that a signaling molecule is binding but can respond differently to convey what molecule it is more specifically. This could be important in developing drugs, particularly to specifically trigger the desired response and reduce side effects. Stoeber et al. suggest that an important next step for research is to understand how the GPCRs preferentially bind to different proteins.
Collapse
Affiliation(s)
- Miriam Stoeber
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Damien Jullié
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Joy Li
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, United States.,St Louis College of Pharmacy, St. Louis, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, United States.,St Louis College of Pharmacy, St. Louis, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, United States
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Anesthesia, University of California, San Francisco, San Francisco, United States
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
33
|
Salazar-Cavazos E, Nitta CF, Mitra ED, Wilson BS, Lidke KA, Hlavacek WS, Lidke DS. Multisite EGFR phosphorylation is regulated by adaptor protein abundances and dimer lifetimes. Mol Biol Cell 2020; 31:695-708. [PMID: 31913761 PMCID: PMC7202077 DOI: 10.1091/mbc.e19-09-0548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Differential epidermal growth factor receptor (EGFR) phosphorylation is thought to couple receptor activation to distinct signaling pathways. However, the molecular mechanisms responsible for biased signaling are unresolved due to a lack of insight into the phosphorylation patterns of full-length EGFR. We extended a single-molecule pull-down technique previously used to study protein-protein interactions to allow for robust measurement of receptor phosphorylation. We found that EGFR is predominantly phosphorylated at multiple sites, yet phosphorylation at specific tyrosines is variable and only a subset of receptors share phosphorylation at the same site, even with saturating ligand concentrations. We found distinct populations of receptors as soon as 1 min after ligand stimulation, indicating early diversification of function. To understand this heterogeneity, we developed a mathematical model. The model predicted that variations in phosphorylation are dependent on the abundances of signaling partners, while phosphorylation levels are dependent on dimer lifetimes. The predictions were confirmed in studies of cell lines with different expression levels of signaling partners, and in experiments comparing low- and high-affinity ligands and oncogenic EGFR mutants. These results reveal how ligand-regulated receptor dimerization dynamics and adaptor protein concentrations play critical roles in EGFR signaling.
Collapse
Affiliation(s)
| | | | - Eshan D Mitra
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | | | - Keith A Lidke
- Comprehensive Cancer Center, and.,Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131
| | - William S Hlavacek
- Comprehensive Cancer Center, and.,Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Diane S Lidke
- Department of Pathology.,Comprehensive Cancer Center, and
| |
Collapse
|
34
|
Kunselman JM, Zajac AS, Weinberg ZY, Puthenveedu MA. Homologous Regulation of Mu Opioid Receptor Recycling by G βγ , Protein Kinase C, and Receptor Phosphorylation. Mol Pharmacol 2019; 96:702-710. [PMID: 31575621 PMCID: PMC6820217 DOI: 10.1124/mol.119.117267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/14/2019] [Indexed: 12/20/2022] Open
Abstract
Membrane trafficking and receptor signaling are two fundamental cellular processes that interact constantly. Although how trafficking regulates signaling is well studied, how signaling pathways regulate trafficking is less well understood. Here, we use the mu opioid receptor (MOR), the primary target for opioid analgesics, to define a signaling pathway that dynamically regulates postendocytic receptor recycling. By directly visualizing individual MOR recycling events, we show that agonist increases MOR recycling. Inhibition of G βγ, phospholipase C, or protein kinase C mimicked agonist removal, whereas activation of G βγ increased recycling even after agonist removal. Phosphorylation of serine 363 on the C-terminal tail of MOR was required and sufficient for agonist-mediated regulation of MOR recycling. Our results identify a feedback loop that regulates MOR recycling via G βγ , protein kinase C, and receptor phosphorylation. This could serve as a general model for how signaling regulates postendocytic trafficking of G protein-coupled receptors. SIGNIFICANCE STATEMENT: G protein-coupled receptor (GPCR) localization in the endosome is being increasingly recognized as an important and distinct component of GPCR signaling and physiology. This study identifies a G protein-dependent and protein kinase C-dependent signaling pathway that dynamically regulates the endosomal localization of the mu opioid receptor, the primary target of opioid analgesics and abused drugs. This pathway could provide a mechanism to manipulate spatial encoding of opioid signaling and physiology.
Collapse
Affiliation(s)
- Jennifer M Kunselman
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| | - Amanda S Zajac
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| | - Zara Y Weinberg
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program (J.M.K., M.A.P.) and Department of Pharmacology (J.M.K., Z.Y.W., M.A.P.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania (A.S.Z., M.A.P.)
| |
Collapse
|
35
|
Arttamangkul S, Leff ER, Koita O, Birdsong WT, Williams JT. Separation of Acute Desensitization and Long-Term Tolerance of µ-Opioid Receptors Is Determined by the Degree of C-Terminal Phosphorylation. Mol Pharmacol 2019; 96:505-514. [PMID: 31383769 PMCID: PMC6750191 DOI: 10.1124/mol.119.117358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation of sites on the C terminus of the μ-opioid receptor (MOR) results in the induction of acute desensitization that is thought to be a precursor for the development of long-term tolerance. Alanine mutations of all 11 phosphorylation sites on the C terminus of MORs almost completely abolished desensitization and one measure of tolerance in locus coeruleus neurons when these phosphorylation-deficient MORs were virally expressed in MOR knockout rats. In the present work, we identified specific residues that underlie acute desensitization, receptor internalization, and tolerance and examined four MOR variants with different alanine or glutamate mutations in the C terminus. Alanine mutations in the sequence between amino acids 375 and 379 (STANT-3A) and the sequence between amino acids 363 and 394 having four additional alanine substitutions (STANT + 7A) reduced desensitization and two measures of long-term tolerance. After chronic morphine treatment, alanine mutations in the sequence between 354 and 357 (TSST-4A) blocked one measure of long-term tolerance (increased acute desensitization and slowed recovery from desensitization) but did not change a second (decreased sensitivity to morphine). With the expression of receptors having glutamate substitutions in the TSST sequence (TSST-4E), an increase in acute desensitization was present after chronic morphine treatment, but the sensitivity to morphine was not changed. The results show that all 11 phosphorylation sites contribute, in varying degrees, to acute desensitization and long-term tolerance. That acute desensitization and tolerance are not necessarily linked illustrates the complexity of events that are triggered by chronic treatment with morphine. SIGNIFICANCE STATEMENT: In this work, we showed that the degree of phosphorylation on the C terminus of the μ-opioid receptor alters acute desensitization and internalization, and in measures of long-term tolerance to morphine. The primary conclusion is that the degree of phosphorylation on the 11 possible sites of the C terminus has different roles for expression of the multiple adaptive mechanisms that follow acute and long-term agonist activation. Although the idea that acute desensitization and tolerance are intimately linked is generally supported, these results indicate that disruption of one phosphorylation cassette of the C terminus TSST (354-357) distinguishes the two processes.
Collapse
Affiliation(s)
| | - Emily R Leff
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - Omar Koita
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | | | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
36
|
Gondin AB, Halls ML, Canals M, Briddon SJ. GRK Mediates μ-Opioid Receptor Plasma Membrane Reorganization. Front Mol Neurosci 2019; 12:104. [PMID: 31118885 PMCID: PMC6504784 DOI: 10.3389/fnmol.2019.00104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Differential regulation of the μ-opioid receptor (MOP) has been linked to the development of opioid tolerance and dependence which both limit the clinical use of opioid analgesics. At a cellular level, MOP regulation occurs via receptor phosphorylation, desensitization, plasma membrane redistribution, and internalization. Here, we used fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) to detect and quantify ligand-dependent changes in the plasma membrane organization of MOP expressed in human embryonic kidney (HEK293) cells. The low internalizing agonist morphine and the antagonist naloxone did not alter constitutive MOP plasma membrane organization. In contrast, the internalizing agonist DAMGO changed MOP plasma membrane organization in a pertussis toxin-insensitive manner and by two mechanisms. Firstly, it slowed MOP diffusion in a manner that was independent of internalization but dependent on GRK2/3. Secondly, DAMGO reduced the surface receptor number and the proportion of mobile receptors, and increased receptor clustering in a manner that was dependent on clathrin-mediated endocytosis. Overall, these results suggest the existence of distinct sequential MOP reorganization events at the plasma membrane and provide insights into the specific protein interactions that control MOP plasma membrane organization.
Collapse
Affiliation(s)
- Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Stephen J Briddon
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
37
|
Kliewer A, Schmiedel F, Sianati S, Bailey A, Bateman JT, Levitt ES, Williams JT, Christie MJ, Schulz S. Phosphorylation-deficient G-protein-biased μ-opioid receptors improve analgesia and diminish tolerance but worsen opioid side effects. Nat Commun 2019; 10:367. [PMID: 30664663 PMCID: PMC6341117 DOI: 10.1038/s41467-018-08162-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Opioid analgesics are powerful pain relievers; however, over time, pain control diminishes as analgesic tolerance develops. The molecular mechanisms initiating tolerance have remained unresolved to date. We have previously shown that desensitization of the μ-opioid receptor and interaction with β-arrestins is controlled by carboxyl-terminal phosphorylation. Here we created knockin mice with a series of serine- and threonine-to-alanine mutations that render the receptor increasingly unable to recruit β-arrestins. Desensitization is inhibited in locus coeruleus neurons of mutant mice. Opioid-induced analgesia is strongly enhanced and analgesic tolerance is greatly diminished. Surprisingly, respiratory depression, constipation, and opioid withdrawal signs are unchanged or exacerbated, indicating that β-arrestin recruitment does not contribute to the severity of opioid side effects and, hence, predicting that G-protein-biased µ-agonists are still likely to elicit severe adverse effects. In conclusion, our findings identify carboxyl-terminal multisite phosphorylation as key step that drives acute μ-opioid receptor desensitization and long-term tolerance.
Collapse
Affiliation(s)
- A Kliewer
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, 07747, Jena, Germany
| | - F Schmiedel
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, 07747, Jena, Germany
| | - S Sianati
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW, 2006, Australia
| | - A Bailey
- Institute of Medical and Biomedical Education, St George's University of London, London, SW17 ORE, UK
| | - J T Bateman
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32608, USA
| | - E S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32608, USA
| | - J T Williams
- The Vollum Institute, Oregon Health and Science University, 3181S.W. Sam Jackson Pk. Rd., Portland, OR, 97239, USA
| | - M J Christie
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, NSW, 2006, Australia
| | - S Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, 07747, Jena, Germany.
| |
Collapse
|
38
|
Pena DA, Duarte ML, Pramio DT, Devi LA, Schechtman D. Exploring Morphine-Triggered PKC-Targets and Their Interaction with Signaling Pathways Leading to Pain via TrkA. Proteomes 2018; 6:proteomes6040039. [PMID: 30301203 PMCID: PMC6313901 DOI: 10.3390/proteomes6040039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
It is well accepted that treatment of chronic pain with morphine leads to μ opioid receptor (MOR) desensitization and the development of morphine tolerance. MOR activation by the selective peptide agonist, D-Ala2, N-MePhe4, Gly-ol]-enkephalin(DAMGO), leads to robust G protein receptor kinase activation, β-arrestin recruitment, and subsequent receptor endocytosis, which does not occur in an activation by morphine. However, MOR activation by morphine induces receptor desensitization, in a Protein kinase C (PKC) dependent manner. PKC inhibitors have been reported to decrease receptor desensitization, reduce opiate tolerance, and increase analgesia. However, the exact role of PKC in these processes is not clearly delineated. The difficulties in establishing a particular role for PKC have been, in part, due to the lack of reagents that allow the selective identification of PKC targets. Recently, we generated a conformation state-specific anti-PKC antibody that preferentially recognizes the active state of this kinase. Using this antibody to selectively isolate PKC substrates and a proteomics strategy to establish the identity of the proteins, we examined the effect of morphine treatment on the PKC targets. We found an enhanced interaction of a number of proteins with active PKC, in the presence of morphine. In this article, we discuss the role of these proteins in PKC-mediated MOR desensitization and analgesia. In addition, we posit a role for some of these proteins in mediating pain by TrKA activation, via the activation of transient receptor potential cation channel subfamily V member 1 (TRPV1). Finally, we discuss how these new PKC interacting proteins and pathways could be targeted for the treatment of pain.
Collapse
Affiliation(s)
- Darlene A Pena
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Mariana Lemos Duarte
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Dimitrius T Pramio
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Deborah Schechtman
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Sao Paulo 05508-220, Brazil.
| |
Collapse
|
39
|
Miess E, Gondin AB, Yousuf A, Steinborn R, Mösslein N, Yang Y, Göldner M, Ruland JG, Bünemann M, Krasel C, Christie MJ, Halls ML, Schulz S, Canals M. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci Signal 2018; 11:11/539/eaas9609. [PMID: 30018083 DOI: 10.1126/scisignal.aas9609] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G protein receptor kinases (GRKs) and β-arrestins are key regulators of μ-opioid receptor (MOR) signaling and trafficking. We have previously shown that high-efficacy opioids such as DAMGO stimulate a GRK2/3-mediated multisite phosphorylation of conserved C-terminal tail serine and threonine residues, which facilitates internalization of the receptor. In contrast, morphine-induced phosphorylation of MOR is limited to Ser375 and is not sufficient to drive substantial receptor internalization. We report how specific multisite phosphorylation controlled the dynamics of GRK and β-arrestin interactions with MOR and show how such phosphorylation mediated receptor desensitization. We showed that GRK2/3 was recruited more quickly than was β-arrestin to a DAMGO-activated MOR. β-Arrestin recruitment required GRK2 activity and MOR phosphorylation, but GRK recruitment also depended on the phosphorylation sites in the C-terminal tail, specifically four serine and threonine residues within the 370TREHPSTANT379 motif. Our results also suggested that other residues outside this motif participated in the initial and transient recruitment of GRK and β-arrestins. We identified two components of high-efficacy agonist desensitization of MOR: a sustained component, which required GRK2-mediated phosphorylation and a potential soluble factor, and a rapid component, which was likely mediated by GRK2 but independent of receptor phosphorylation. Elucidating these complex receptor-effector interactions represents an important step toward a mechanistic understanding of MOR desensitization that leads to the development of tolerance and dependence.
Collapse
Affiliation(s)
- Elke Miess
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Arsalan Yousuf
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Ralph Steinborn
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - Nadja Mösslein
- Department of Pharmacology and Toxicology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Yunshi Yang
- Department of Pharmacology and Toxicology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Martin Göldner
- Department of Pharmacology and Toxicology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Julia G Ruland
- Department of Pharmacology and Toxicology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Moritz Bünemann
- Department of Pharmacology and Toxicology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Cornelius Krasel
- Department of Pharmacology and Toxicology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - MacDonald J Christie
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia
| | - Stefan Schulz
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany.
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052, Australia.
| |
Collapse
|
40
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
41
|
Arttamangkul S, Heinz DA, Bunzow JR, Song X, Williams JT. Cellular tolerance at the µ-opioid receptor is phosphorylation dependent. eLife 2018; 7:34989. [PMID: 29589831 PMCID: PMC5873894 DOI: 10.7554/elife.34989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
Phosphorylation of the μ-opioid receptor (MOR) is known as a key step in desensitization and internalization but the role in the development of long-term tolerance at the cellular level is not known. Viral expression of wild type (exWT) and mutant MORs, where all phosphorylation sites on the C-terminus (Total Phosphorylation Deficient (TPD)) were mutated to alanine, were examined in locus coeruleus neurons in a MOR knockout rat. Both receptors activated potassium conductance similar to endogenous receptors in wild type animals. The exWT receptors, like endogenous receptors, acutely desensitized, internalized and, after chronic morphine treatment, displayed signs of tolerance. However, TPD receptors did not desensitize or internalize with agonist treatment. In addition the TPD receptors did not develop cellular tolerance following chronic morphine treatment. Thus C-terminal phosphorylation is necessary for the expression of acute desensitization, trafficking and one sign of long-term tolerance to morphine at the cellular level.
Collapse
Affiliation(s)
- Seksiri Arttamangkul
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - Daniel A Heinz
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - James R Bunzow
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - Xianqiang Song
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| | - John T Williams
- The Vollum Institute, Oregon Health and Science University, Oregon, United States
| |
Collapse
|
42
|
Zhou P, Jiang J, Yan H, Li Y, Zhao J, Wang X, Su R, Gong Z. ABIN-1 Negatively Regulates μ-Opioid Receptor Function. Mol Pharmacol 2018; 93:36-48. [PMID: 29237725 DOI: 10.1124/mol.117.109009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 12/01/2017] [Indexed: 01/26/2023] Open
Abstract
The μ-opioid receptor (MOR) is a Gi/o protein-coupled receptor that mediates analgesic, euphoric, and reward effects. Using a bacterial two-hybrid screen, we reported that the carboxyl tail of the rat MOR associates with A20-binding inhibitor of nuclear factor κB (ABIN-1). This interaction was confirmed by direct protein-protein binding and coimmunoprecipitation of MOR and ABIN-1 proteins in cell lysates. Saturation binding studies showed that ABIN-1 had no effect on MOR binding. However, the interaction of ABIN-1 and MOR inhibited the activation of G proteins induced by DAMGO ([d-Ala2,N-Me-Phe4,Gly5-ol]-Enkephalin). MOR phosphorylation, ubiquitination, and internalization induced by DAMGO were decreased in Chinese hamster ovary cells that coexpressed MOR and ABIN-1. The suppression of forskolin-stimulated adenylyl cyclase by DAMGO was also inhibited by the interaction of ABIN-1 with MOR. In addition, extracellular signal-regulated kinase activation was also negatively regulated by overexpression of ABIN-1. These data suggest that ABIN-1 is a negative coregulator of MOR activation, phosphorylation, and internalization in vitro. ABIN-1 also inhibited morphine-induced hyperlocomotion in zebrafish larvae (AB strain). By utilization of an antisense morpholino oligonucleotide (MO) gene knockdown technology, the ABIN-1 MO-injected zebrafish larvae showed a significant increase (approximately 60%) in distance moved compared with control MO-injected larvae after acute morphine treatment (P < 0.01). Taken together, ABIN-1 negatively regulates MOR function in vitro and in vivo.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Binding Sites
- CHO Cells
- Cell Line, Tumor
- Cricetulus
- Cyclic AMP/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Endocytosis
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Larva
- Ligands
- Luminescent Proteins
- Phosphorylation
- Rats
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/physiology
- Signal Transduction
- Sulfur Radioisotopes/metabolism
- Ubiquitination
- Zebrafish/growth & development
Collapse
Affiliation(s)
- Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiebing Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yulei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junru Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zehui Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
43
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Muscarinic receptor regulates extracellular signal regulated kinase by two modes of arrestin binding. Proc Natl Acad Sci U S A 2017; 114:E5579-E5588. [PMID: 28652372 DOI: 10.1073/pnas.1700331114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Binding of agonists to G-protein-coupled receptors (GPCRs) activates heterotrimeric G proteins and downstream signaling. Agonist-bound GPCRs are then phosphorylated by protein kinases and bound by arrestin to trigger desensitization and endocytosis. Arrestin plays another important signaling function. It recruits and regulates activity of an extracellular signal-regulated kinase (ERK) cascade. However, molecular details and timing of ERK activation remain fundamental unanswered questions that limit understanding of how arrestin-dependent GPCR signaling controls cell functions. Here we validate and model a system that tracks the dynamics of interactions of arrestin with receptors and of ERK activation using optical reporters. Our intermolecular FRET measurements in living cells are consistent with β-arrestin binding to M1 muscarinic acetylcholine receptors (M1Rs) in two different binding modes, transient and stable. The stable mode persists for minutes after agonist removal. The choice of mode is governed by phosphorylation on key residues in the third intracellular loop of the receptor. We detect a similar intramolecular conformational change in arrestin in either binding mode. It develops within seconds of arrestin binding to the M1 receptor, and it reverses within seconds of arrestin unbinding from the transient binding mode. Furthermore, we observed that, when stably bound to phosphorylated M1R, β-arrestin scaffolds and activates MEK-dependent ERK. In contrast, when transiently bound, β-arrestin reduces ERK activity via recruitment of a protein phosphatase. All this ERK signaling develops at the plasma membrane. In this scaffolding hypothesis, a shifting balance between the two arrestin binding modes determines the degree of ERK activation at the membrane.
Collapse
|
45
|
Xu J, Lu Z, Narayan A, Le Rouzic VP, Xu M, Hunkele A, Brown TG, Hoefer WF, Rossi GC, Rice RC, Martínez-Rivera A, Rajadhyaksha AM, Cartegni L, Bassoni DL, Pasternak GW, Pan YX. Alternatively spliced mu opioid receptor C termini impact the diverse actions of morphine. J Clin Invest 2017; 127:1561-1573. [PMID: 28319053 DOI: 10.1172/jci88760] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Extensive 3' alternative splicing of the mu opioid receptor gene OPRM1 creates multiple C-terminal splice variants. However, their behavioral relevance remains unknown. The present study generated 3 mutant mouse models with truncated C termini in 2 different mouse strains, C57BL/6J (B6) and 129/SvEv (129). One mouse truncated all C termini downstream of Oprm1 exon 3 (mE3M mice), while the other two selectively truncated C-terminal tails encoded by either exon 4 (mE4M mice) or exon 7 (mE7M mice). Studies of these mice revealed divergent roles for the C termini in morphine-induced behaviors, highlighting the importance of C-terminal variants in complex morphine actions. In mE7M-B6 mice, the exon 7-associated truncation diminished morphine tolerance and reward without altering physical dependence, whereas the exon 4-associated truncation in mE4M-B6 mice facilitated morphine tolerance and reduced morphine dependence without affecting morphine reward. mE7M-B6 mutant mice lost morphine-induced receptor desensitization in the brain stem and hypothalamus, consistent with exon 7 involvement in morphine tolerance. In cell-based studies, exon 7-associated variants shifted the bias of several mu opioids toward β-arrestin 2 over G protein activation compared with the exon 4-associated variant, suggesting an interaction of exon 7-associated C-terminal tails with β-arrestin 2 in morphine-induced desensitization and tolerance. Together, the differential effects of C-terminal truncation illustrate the pharmacological importance of OPRM1 3' alternative splicing.
Collapse
|
46
|
Kibaly C, Lin HY, Loh HH, Law PY. Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacol Res 2017; 119:153-168. [PMID: 28179123 DOI: 10.1016/j.phrs.2017.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
The development of tolerance to morphine, one of the most potent analgesics, in the management of chronic pain is a significant clinical problem and its mechanisms are poorly understood. Morphine exerts its pharmacological effects via the μ-opioid receptor (MOR). Tolerance is highly connected to G-protein-coupled receptors (GPCR) phosphorylation and desensitization increase. Because morphine desensitization previously has been shown to be MOR phosphorylation- and ß-arrestin2-independent (in contrast to agonists such as fentanyl), we examined the contribution of phosphorylation of the entire C-terminus to the development of antinociceptive tolerance to the partial (morphine) and full (fentanyl) MOR agonists in vivo. In MOR knockout (MORKO) mice, we delivered via lentivirus the genes encoding the wild-type MOR (WTMOR) or a phosphorylation-deficient MOR (Cterm(-S/T)MOR) in which all of the serine and threonine residues were mutated to alanine into the ventrolateral periaqueductal grey matter (vlPAG) or lumbar spinal cord (SC), structures that are involved in nociception. We compared the analgesic ED50 in WTMOR- and Cterm(-S/T)MOR-expressing MORKO mice before and after morphine or fentanyl tolerance was induced. Morphine acute antinociception was partially restored in WTMOR- or Cterm(-S/T)MOR-transferred MORKO mice. Fentanyl acute antinociception was observed only in MORKO mice with the transgenes expressed in the SC. Morphine antinociceptive tolerance was not affected by expressing Cterm(-S/T)MOR in the vlPAG or SC of MORKO mice. Fentanyl-induced tolerance in MORKO mice expressing WTMOR or Cterm(-S/T)MOR, is greater than morphine-induced tolerance. Thus, MOR C-terminus phosphorylation does not appear to be critical for morphine tolerance in vivo.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Hong-Yiou Lin
- Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI 48073, USA
| | - Horace H Loh
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function. J Neurosci 2016; 36:3541-51. [PMID: 27013682 DOI: 10.1523/jneurosci.4124-15.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/11/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor-Ca(2+)channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit arrestin 3 and, surprisingly, KO of arrestin 3 produces acute tolerance and impaired receptor resensitization to these agonists. Arrestin 3 is in pre-engaged complexes with the delta opioid receptor at the cell membrane and low-internalizing agonists promote this interaction. This study reveals a novel role for arrestin 3 as a facilitator of receptor resensitization.
Collapse
|
48
|
Determination of sites of U50,488H-promoted phosphorylation of the mouse κ opioid receptor (KOPR): disconnect between KOPR phosphorylation and internalization. Biochem J 2015; 473:497-508. [PMID: 26635353 DOI: 10.1042/bj20141471] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/03/2015] [Indexed: 12/28/2022]
Abstract
Phosphorylation sites of KOPR (κ opioid receptor) following treatment with the selective agonist U50,488H {(-)(trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidiny)cyclo-hexyl]benzeneacetamide} were identified after affinity purification, SDS/PAGE, in-gel digestion with Glu-C and HPLC-MS/MS. Single- and double-phosphorylated peptides were identified containing phosphorylated Ser(356), Thr(357), Thr(363) and Ser(369) in the C-terminal domain. Antibodies were generated against three phosphopeptides containing pSer(356)/pThr(357), pThr(363) and pSer(369) respectively, and affinity-purified antibodies were found to be highly specific for phospho-KOPR. U50,488H markedly enhanced staining of the KOPR by pThr(363)-, pSer(369)- and pSer(356)/pThr(357)-specific antibodies in immunoblotting, which was blocked by the selective KOPR antagonist norbinaltorphimine. Ser(369) phosphorylation affected Thr(363) phosphorylation and vice versa, and Thr(363) or Ser(369) phosphorylation was important for Ser(356)/Thr(357) phosphorylation, revealing a phosphorylation hierarchy. U50,488H, but not etorphine, promoted robust KOPR internalization, although both were full agonists. U50,488H induced higher degrees of phosphorylation than etorphine at Ser(356)/Thr(357), Thr(363) and Ser(369) as determined by immunoblotting. Using SILAC (stable isotope labelling by amino acids in cell culture) and HPLC-MS/MS, we found that, compared with control (C), U50,488H (U) and etorphine (E) KOPR promoted single phosphorylation primarily at Thr(363) and Ser(369) with U/E ratios of 2.5 and 2 respectively. Both induced double phosphorylation at Thr(363)+Ser(369) and Thr(357)+Ser(369) with U/E ratios of 3.3 and 3.4 respectively. Only U50,488H induced triple phosphorylation at Ser(356)+Thr(357)+Ser(369). An unphosphorylated KOPR-(354-372) fragment containing all of the phosphorylation sites was detected with a C/E/U ratio of 1/0.7/0.4, indicating that ∼60% and ∼30% of the mouse KOPR are phosphorylated following U50,488H and etorphine respectively. Thus KOPR internalization requires receptor phosphorylation above a certain threshold, and higher-order KOPR phosphorylation may be disproportionally important.
Collapse
|
49
|
Birdsong WT, Arttamangkul S, Bunzow JR, Williams JT. Agonist Binding and Desensitization of the μ-Opioid Receptor Is Modulated by Phosphorylation of the C-Terminal Tail Domain. Mol Pharmacol 2015; 88:816-24. [PMID: 25934731 PMCID: PMC4576685 DOI: 10.1124/mol.114.097527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/30/2015] [Indexed: 11/22/2022] Open
Abstract
Sustained activation of G protein-coupled receptors can lead to a rapid decline in signaling through acute receptor desensitization. In the case of the μ-opioid receptor (MOPr), this desensitization may play a role in the development of analgesic tolerance. It is understood that phosphorylation of MOPr promotes association with β-arrestin proteins, which then facilitates desensitization and receptor internalization. Agonists that induce acute desensitization have been shown to induce a noncanonical high-affinity agonist binding state in MOPr, conferring a persistent memory of prior receptor activation. In the current study, live-cell confocal imaging was used to investigate the role of receptor phosphorylation in agonist binding to MOPr. A phosphorylation cluster in the C-terminal tail of MOPr was identified as a mediator of agonist-induced affinity changes in MOPr. This site is unique from the primary phosphorylation cluster responsible for β-arrestin binding and internalization. Electrophysiologic measurements of receptor function suggest that both phosphorylation clusters may play a parallel role during acute receptor desensitization. Desensitization was unaffected by alanine mutation of either phosphorylation cluster, but was largely eliminated when both clusters were mutated. Overall, this work suggests that there are multiple effects of MOPr phosphorylation that appear to regulate MOPr function: one affecting β-arrestin binding and a second affecting agonist binding.
Collapse
Affiliation(s)
| | | | - James R Bunzow
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| | - John T Williams
- Vollum Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
50
|
Yousuf A, Miess E, Sianati S, Du YP, Schulz S, Christie MJ. Role of Phosphorylation Sites in Desensitization of µ-Opioid Receptor. Mol Pharmacol 2015; 88:825-35. [PMID: 25969388 DOI: 10.1124/mol.115.098244] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of residues in the C-terminal tail of the µ-opioid receptor (MOPr) is thought to be a key step in desensitization and internalization. Phosphorylation of C-terminal S/T residues is required for internalization (Just et al., 2013), but its role in desensitization is unknown. This study examined the influence of C-terminal phosphorylation sites on rapid desensitization of MOPr. Wild-type MOPr, a 3S/T-A mutant (S363A, T370A, S375A) that maintains internalization, 6S/T-A (S363A, T370A, S375A, T376A, T379A, T383A) and 11S/T-A (all C-terminal S/T residues mutated) mutants not internalized by MOPr agonists were stably expressed in AtT20 cells. Perforated patch-clamp recordings of MOPr-mediated activation of G-protein-activated inwardly rectifying potassium channel (Kir3.X) (GIRK) conductance by submaximal concentrations of Met(5)-enkephalin (ME) and somatostatin (SST; coupling to native SST receptor [SSTR]) were used to examine desensitization induced by exposure to ME and morphine for 5 minutes at 37°C. The rates of ME- and morphine-induced desensitization did not correlate with phosphorylation using phosphorylation site-specific antibodies. ME-induced MOPr desensitization and resensitization did not differ from wild-type for 3S/T-A and 6S/T-A but was abolished in 11S/T-A. Morphine-induced desensitization was unaffected in all three mutants, as was heterologous desensitization of SSTR. Morphine-induced desensitization (but not ME) was reduced by protein kinase C inhibition in wild-type MOPr and abolished in the 11S/T-A mutant, as was heterologous desensitization. These findings establish that MOPr desensitization can occur independently of S/T phosphorylation and internalization; however, C-terminal phosphorylation is necessary for some forms of desensitization because mutation of all C-terminal sites (11S/T-A) abolishes desensitization induced by ME.
Collapse
Affiliation(s)
- Arsalan Yousuf
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Elke Miess
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Setareh Sianati
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Yan-Ping Du
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - Stefan Schulz
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| | - MacDonald J Christie
- Discipline of Pharmacology, University of Sydney, New South Wales, Sydney, Australia (A.Y., S.Si., Y.-P.D., M.J.C.); and Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany (E.M., S.Sc.)
| |
Collapse
|