1
|
Weitz HT, Ettich J, Rafii P, Wittich C, Schultz L, Frank NC, Heise D, Krusche M, Lokau J, Garbers C, Behnke K, Floss DM, Kolmar H, Moll JM, Scheller J. Interleukin-11 receptor is an alternative α-receptor for interleukin-6 and the chimeric cytokine IC7. FEBS J 2025; 292:523-536. [PMID: 39473075 PMCID: PMC11796321 DOI: 10.1111/febs.17309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 10/16/2024] [Indexed: 02/06/2025]
Abstract
The cytokine interleukin 6 (IL-6) signals via the IL-6 α-receptor (IL-6Rα or IL-6R) in complex with the gp130 β-receptor. Cell type restricted expression of the IL-6R limits the action of IL-6 mainly to hepatocytes and some immune cells. Here, we show that IL-6 also binds to the IL-11 α receptor (IL-11Rα or IL-11R) and induces signaling via IL-11R:gp130 complexes, albeit with a lower affinity compared to IL-11. Antagonistic antibodies directed against IL-11R, but not IL-6R, inhibit IL-6 signaling via IL-11R:gp130 receptor complexes. Notably, IL-11 did not cross-react with IL-6R. IL-11R has also been identified as an alternative α receptor for the CNTF/IL-6-derived chimeric cytokine IC7, which has recently been shown to induce weight loss in mice. Accordingly, the effects of therapeutic monoclonal antibodies against IL-6 or IL-6R, which both block IL-6 signaling, may be slightly different. These findings provide new insights into IL-6 signaling and therefore offer new potential therapeutic intervention options in the future.
Collapse
Affiliation(s)
- Hendrik T. Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Laura Schultz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Nils C. Frank
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Juliane Lokau
- Institute of Clinical BiochemistryHannover Medical SchoolGermany
| | | | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Harald Kolmar
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtGermany
- Centre of Synthetic BiologyTechnical University of DarmstadtGermany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfGermany
| |
Collapse
|
2
|
Tsuchiya Y, Nishina T, Komazawa-Sakon S, Seki T, Mikami T, Nakano H. Interleukin-11 signaling plays limited roles for liver fibrosis in a mouse model of metabolic dysfunction-associated steatohepatitis. Biochem Biophys Res Commun 2024; 739:150938. [PMID: 39536410 DOI: 10.1016/j.bbrc.2024.150938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Liver fibrosis, an abnormal accumulation of collagen fibers in the liver, is caused due to several chronic liver diseases including viral hepatitis, alcoholic steatohepatitis, and metabolic dysfunction-associated steatohepatitis. Among the various symptoms of chronic hepatitis, liver fibrosis is the most crucial factor in determining patient prognosis. Extensive liver fibrosis leads to cirrhosis and liver cancer and shortens the lifespans of patients. However, no drug is currently approved for the treatment of liver fibrosis. Therefore, the identification of molecular mechanisms and druggable targets of liver fibrosis is urgently needed. Interleukin-11 is a member of the interleukin-6 family of inflammatory cytokines that is involved in multiple processes of inflammation and tissue repair. Recent reports also suggest the pro-fibrogenic function of interleukin-11 in various organs. In this study, we examined the fibrogenic potential of interleukin-11 in the liver using a choline-deficient, amino acid-defined high-fat diet, a mouse model of metabolic dysfunction-associated steatohepatitis that rapidly develops liver fibrosis. Although interleukin-11 was specifically upregulated in the liver in this pathological model, the loss of interleukin-11 signaling played minor roles in liver injury, inflammation, fibrosis, and signal transduction pathways. Our results indicate that the pro-fibrogenic function of interleukin-11 may vary among organs and disease etiologies.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan; Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, 274-8510, Japan.
| | - Takashi Nishina
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Sachiko Komazawa-Sakon
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Takao Seki
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Tetuo Mikami
- Department of Pathology, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| |
Collapse
|
3
|
Wang R, Li C, Cheng Z, Li M, Shi J, Zhang Z, Jin S, Ma H. H3K9 lactylation in malignant cells facilitates CD8 + T cell dysfunction and poor immunotherapy response. Cell Rep 2024; 43:114686. [PMID: 39216002 DOI: 10.1016/j.celrep.2024.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Histone lysine lactylation (Kla) is a post-translational modification, and its role in tumor immune escape remains unclear. Here, we find that increased histone lactylation is associated with poor response to immunotherapy in head and neck squamous cell carcinoma (HNSCC). H3K9la is identified as a specific modification site in HNSCC. Using cleavage under targets and tagmentation analyses, interleukin-11 (IL-11) is identified as a downstream regulatory gene of H3K9la. IL-11 transcriptionally activates immune checkpoint genes through JAK2/STAT3 signaling in CD8+ T cells. Additionally, IL-11 overexpression promotes tumor progression and CD8+ T cell dysfunction in vivo. Moreover, IL11 knockdown reverses lactate-induced CD8+ T cell exhaustion, and cholesterol-modified siIL11 restores CD8+ T cell killing activity and enhances immunotherapy efficacy. Clinically, H3K9la positively correlates with IL-11 expression and unfavorable immunotherapy responses in patients. This study reveals the crucial role of histone lactylation in immune escape, providing insights into immunotherapy strategies for HNSCC.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chuwen Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhongyi Cheng
- Jingjie PTM Biolab (Hangzhou), Hangzhou, Zhejiang 310018, China
| | - Mingyu Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jianbo Shi
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shufang Jin
- National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China.
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
4
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Nishizawa H, Matsumoto M, Yamanaka M, Irikura R, Nakajima K, Tada K, Nakayama Y, Konishi M, Itoh N, Funayama R, Nakayama K, Igarashi K. BACH1 inhibits senescence, obesity, and short lifespan by ferroptotic FGF21 secretion. Cell Rep 2024; 43:114403. [PMID: 38943639 DOI: 10.1016/j.celrep.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.
Collapse
Affiliation(s)
- Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Mie Yamanaka
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Gladstone Institute of Neurological Disease, Gladstone Institute, San Francisco, CA 94158, USA
| | - Riko Irikura
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuma Nakajima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keisuke Tada
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yoshiaki Nakayama
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Morichika Konishi
- Laboratory of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Ryo Funayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Keiko Nakayama
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| |
Collapse
|
6
|
Malheiro LFL, Fernandes MM, Oliveira CA, Barcelos IDS, Fernandes AJV, Silva BS, Ávila JS, Soares TDJ, Amaral LSDB. Renoprotective mechanisms of exercise training against acute and chronic renal diseases - A perspective based on experimental studies. Life Sci 2024; 346:122628. [PMID: 38614303 DOI: 10.1016/j.lfs.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Regular exercise training can lead to several health benefits, reduce mortality risk, and increase life expectancy. On the other hand, a sedentary lifestyle is a known risk factor for chronic diseases and increased mortality. Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a significant global health problem, affecting millions of people worldwide. The progression from AKI to CKD is well-recognized in the literature, and exercise training has emerged as a potential renoprotective strategy. Thus, this article aims to review the main molecular mechanisms underlying the renoprotective actions of exercise training in the context of AKI and CKD, focusing on its antioxidative, anti-inflammatory, anti-apoptotic, anti-fibrotic, and autophagy regulatory effects. For that, bibliographical research was carried out in Medline/PubMed and Scielo databases. Although the pathophysiological mechanisms involved in renal diseases are not fully understood, experimental studies demonstrate that oxidative stress, inflammation, apoptosis, and dysregulation of fibrotic and autophagic processes play central roles in the development of tissue damage. Increasing evidence has suggested that exercise can beneficially modulate these mechanisms, potentially becoming a safe and effective non-pharmacological strategy for kidney health protection and promotion. Thus, the evidence base discussed in this review suggests that an adequate training program emerges as a valuable tool for preserving renal function in experimental animals, mainly through the production of antioxidant enzymes, nitric oxide (NO), irisin, IL-10, and IL-11. Future research can continue to explore these mechanisms to develop specific guidelines for the prescription of exercise training in different populations of patients with kidney diseases.
Collapse
Affiliation(s)
- Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil
| | - Mariana Masimessi Fernandes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Jullie Veiga Fernandes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Bruna Santos Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Júlia Spínola Ávila
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil; Programa de Pós-Graduação em Biociências, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil; Programa de Pós-Graduação em Biociências, Brazil.
| |
Collapse
|
7
|
Su J, Desmarais J, Chu CQ, Zhu J. Potential therapeutic targets of fibrosis in inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol 2024; 38:101945. [PMID: 38627168 DOI: 10.1016/j.berh.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 09/02/2024]
Abstract
Fibrosis is commonly associated with chronic rheumatic diseases, and causes substantial morbidity and mortality. Treatment of fibrosis is extremely challenging but is badly needed, as approved antifibrotic therapies fibrosis do not halt its progression, which will be discussed with a focus on pulmonary fibrosis. Findings from recent studies indicate several therapeutic targets for treating fibrosis. Interleukin-11 is emerging as a fibrogenic cytokine whose activity can be blocked with neutralizing monoclonal antibodies. Fibroblast activation protein (FAP) is highly expressed by activated fibroblasts in inflammatory and fibrotic tissues. Targeting FAP with different modalities has been extensively explored as adjunct treatment for cancer, which can also apply to treating fibrosis in rheumatic diseases.
Collapse
Affiliation(s)
- Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Julianna Desmarais
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR, 97239, USA; Rheumatology Section, VA Portland Health Care System, Portland, OR, 97239, USA.
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
9
|
Shkhyan R, Flynn C, Lamoure E, Sarkar A, Van Handel B, Li J, York J, Banks N, Van der Horst R, Liu NQ, Lee S, Bajaj P, Vadivel K, Harn HIC, Tassey J, Lozito T, Lieberman JR, Chuong CM, Hurtig MS, Evseenko D. Inhibition of a signaling modality within the gp130 receptor enhances tissue regeneration and mitigates osteoarthritis. Sci Transl Med 2023; 15:eabq2395. [PMID: 36947594 PMCID: PMC10792550 DOI: 10.1126/scitranslmed.abq2395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 01/17/2023] [Indexed: 03/24/2023]
Abstract
Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.
Collapse
Affiliation(s)
- Ruzanna Shkhyan
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Candace Flynn
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Emma Lamoure
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Arijita Sarkar
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Benjamin Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jinxiu Li
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jesse York
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nicholas Banks
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Robert Van der Horst
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Paul Bajaj
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Kanagasabai Vadivel
- UCLA Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA
| | - Hans I.-Chen Harn
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- International Research Center of Wound Repair and Regeneration (iWRR), National Cheng Kung University, Tainan 701401 Taiwan
| | - Jade Tassey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Thomas Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Mark S. Hurtig
- Ontario Veterinary College, Department of Clinical Studies, University of Guelph, ON N1G 2W1, Canada
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
- Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
10
|
Hack SJ, Beane WS, Tseng KAS. Biophysics at the edge of life and death: radical control of apoptotic mechanisms. FRONTIERS IN CELL DEATH 2023; 2:1147605. [PMID: 39897412 PMCID: PMC11784940 DOI: 10.3389/fceld.2023.1147605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Recent studies have furthered our understanding of how dying and living cells interact in different physiological contexts, however the signaling that initiates and mediates apoptosis and apoptosis-induced proliferation are more complex than previously thought. One increasingly important area of study is the biophysical control of apoptosis. In addition to biochemical regulation, biophysical signals (including redox chemistry, bioelectric gradients, acoustic and magnetic stimuli) are also known yet understudied regulators of both cell death and apoptosis-induced proliferation. Mounting evidence suggests biophysical signals may be key targets for therapeutic interventions. This review highlights what is known about the role of biophysical signals in controlling cell death mechanisms during development, regeneration, and carcinogenesis. Since biophysical signals can be controlled spatiotemporally, bypassing the need for genetic manipulation, further investigation may lead to fine-tuned modulation of apoptotic pathways to direct desired therapeutic outcomes.
Collapse
Affiliation(s)
- Samantha J. Hack
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Wendy S. Beane
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Kelly Ai-Sun Tseng
- University of Nevada, Las Vegas, School of Life Sciences, Las Vegas, NV, USA
| |
Collapse
|
11
|
Yang H, Zhang P, Wang Q, Cheng K, Zhao Y. The research development of STAT3 in hepatic ischemia-reperfusion injury. Front Immunol 2023; 14:1066222. [PMID: 36761734 PMCID: PMC9902876 DOI: 10.3389/fimmu.2023.1066222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common complication of surgery, which can cause rapid deterioration of the liver function, increase the risk of graft rejection, and seriously affect the prognosis of patients. The signal transducer and activator of transcription 3 (STAT3) protein has been implicated in pathogenesis of IRI. STAT3 influences the mitochondria through multiple pathways and is also involved in apoptosis and other forms of programmed cell death. STAT3 is associated with Janus kinase (JAK), phosphoinositide-3 kinase (PI3K), and heme oxygenase-1 (HO-1) in liver IRI. The STAT3 pathway plays a dual role in IRI as it can also regulate lipid metabolism which may have potential for treating IRI fatty liver. In this review, we summarize research on the function of STAT3 in liver IRI to provide references for its application in the clinic.
Collapse
Affiliation(s)
| | | | | | | | - Yujun Zhao
- Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhang M, Lin Y, Chen R, Yu H, Li Y, Chen M, Dou C, Yin P, Zhang L, Tang P. Ghost messages: cell death signals spread. Cell Commun Signal 2023; 21:6. [PMID: 36624476 PMCID: PMC9830882 DOI: 10.1186/s12964-022-01004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023] Open
Abstract
Cell death is a mystery in various forms. Whichever type of cell death, this is always accompanied by active or passive molecules release. The recent years marked the renaissance of the study of these molecules showing they can signal to and communicate with recipient cells and regulate physio- or pathological events. This review summarizes the defined forms of messages cells could spread while dying, the effects of these signals on the target tissue/cells, and how these types of communications regulate physio- or pathological processes. By doing so, this review hopes to identify major unresolved questions in the field, formulate new hypothesis worthy of further investigation, and when possible, provide references for the search of novel diagnostic/therapeutics agents. Video abstract.
Collapse
Affiliation(s)
- Mingming Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yuan Lin
- grid.412463.60000 0004 1762 6325Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang People’s Republic of China
| | - Ruijing Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Haikuan Yu
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Yi Li
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ming Chen
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Ce Dou
- grid.410570.70000 0004 1760 6682Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing, 400038 People’s Republic of China
| | - Pengbin Yin
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Licheng Zhang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| | - Peifu Tang
- grid.414252.40000 0004 1761 8894Department of Orthopedics, Chinese PLA General Hospital, Beijing, 100853 People’s Republic of China ,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853 People’s Republic of China
| |
Collapse
|
13
|
Interleukin 11 confers resistance to dextran sulfate sodium-induced colitis in mice. iScience 2023; 26:105934. [PMID: 36685040 PMCID: PMC9852934 DOI: 10.1016/j.isci.2023.105934] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Intestinal homeostasis is tightly regulated by epithelial cells, leukocytes, and stromal cells, and its dysregulation is associated with inflammatory bowel diseases. Interleukin (IL)-11, a member of the IL-6 family of cytokines, is produced by inflammatory fibroblasts during acute colitis. However, the role of IL-11 in the development of colitis is still unclear. Herein, we showed that IL-11 ameliorated DSS-induced acute colitis in mouse models. We found that deletion of Il11ra1 or Il11 rendered mice highly susceptible to DSS-induced colitis compared to the respective control mice. The number of apoptotic epithelial cells was increased in DSS-treated Il11ra1- or Il11-deficient mice. Moreover, we showed that IL-11 production was regulated by reactive oxygen species (ROS) produced by lysozyme M-positive myeloid cells. These findings indicate that fibroblast-produced IL-11 plays an important role in protecting the mucosal epithelium in acute colitis. Myeloid cell-derived ROS contribute to the attenuation of colitis through the production of IL-11.
Collapse
|
14
|
Effenberger M, Widjaja AA, Grabherr F, Schaefer B, Grander C, Mayr L, Schwaerzler J, Enrich B, Moser P, Fink J, Pedrini A, Jaschke N, Kirchmair A, Pfister A, Hausmann B, Bale R, Putzer D, Zoller H, Schafer S, Pjevac P, Trajanoski Z, Oberhuber G, Adolph T, Cook S, Tilg H. Interleukin-11 drives human and mouse alcohol-related liver disease. Gut 2023; 72:168-179. [PMID: 35365572 DOI: 10.1136/gutjnl-2021-326076] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Alcoholic hepatitis (AH) reflects acute exacerbation of alcoholic liver disease (ALD) and is a growing healthcare burden worldwide. Interleukin-11 (IL-11) is a profibrotic, proinflammatory cytokine with increasingly recognised toxicities in parenchymal and epithelial cells. We explored IL-11 serum levels and their prognostic value in patients suffering from AH and cirrhosis of various aetiology and experimental ALD. DESIGN IL-11 serum concentration and tissue expression was determined in a cohort comprising 50 patients with AH, 110 patients with cirrhosis and 19 healthy volunteers. Findings were replicated in an independent patient cohort (n=186). Primary human hepatocytes exposed to ethanol were studied in vitro. Ethanol-fed wildtype mice were treated with a neutralising murine IL-11 receptor-antibody (anti-IL11RA) and examined for severity signs and markers of ALD. RESULTS IL-11 serum concentration and hepatic expression increased with severity of liver disease, mostly pronounced in AH. In a multivariate Cox-regression, a serum level above 6.4 pg/mL was a model of end-stage liver disease independent risk factor for transplant-free survival in patients with compensated and decompensated cirrhosis. In mice, severity of alcohol-induced liver inflammation correlated with enhanced hepatic IL-11 and IL11RA expression. In vitro and in vivo, anti-IL11RA reduced pathogenic signalling pathways (extracellular signal-regulated kinases, c-Jun N-terminal kinase, NADPH oxidase 4) and protected hepatocytes and murine livers from ethanol-induced inflammation and injury. CONCLUSION Pathogenic IL-11 signalling in hepatocytes plays a crucial role in the pathogenesis of ALD and could serve as an independent prognostic factor for transplant-free survival. Blocking IL-11 signalling might be a therapeutic option in human ALD, particularly AH.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Benedikt Schaefer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Julian Schwaerzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- INNPATH, Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Julia Fink
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alisa Pedrini
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolai Jaschke
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Pfister
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Reto Bale
- Department of Radiology, Section of Interventional Oncology-Microinvasive Therapy (SIP), Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel Putzer
- Department of Radiology, Section of Interventional Oncology-Microinvasive Therapy (SIP), Medical University of Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Timon Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Stuart Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
16
|
Okeke ES, Luo M, Feng W, Zhang Y, Mao G, Chen Y, Zeng Z, Qian X, Sun L, Yang L, Wu X. Transcriptomic profiling and differential analysis revealed the neurodevelopmental toxicity mechanisms of zebrafish (Danio rerio) larvae in response to tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109382. [PMID: 35640788 DOI: 10.1016/j.cbpc.2022.109382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Tetrabromobisphenol A bis(2-hydroxyetyl) ether (TBBPA-DHEE) is among the main derivatives of Tetrabromobisphenol A (TBBPA). Result from previous study showed that TBBPA-DHEE can cause neurotoxicity in rat. In this study, zebrafish larvae were used for evaluation of TBBPA-DHEE-induced developmental toxicity, apoptosis, oxidative stress and the potential molecular mechanisms of action. Our result showed that TBBPA-DHEE exposure caused a significant concentration-dependent developmental toxicity endpoints like death rate, malformation rate, growth rate. TBBPA-DHEE altered locomotor and enzymes activities of larvae and caused apoptosis within the brain indicating the potential TBBPA-DHEE-induced cardiac, brain impairment in the zebrafish larvae. Our transcriptomic analysis shows that 691 genes were differentially expressed (DEGs) (539 upregulated, 152 downregulated). The KEGG and GO enrichment pathway analysis shows that the DEGs were involved in development, immunity, enzyme activity. Our study provides novel evidence on the neurodevelopmental toxicity and toxicity mechanism of TBBPA-DHEE which are vital for assessment of the environmental toxicity and risk assessment of the chemical.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, FBS & Natural Science Unit, SGS, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yiran Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhengjia Zeng
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lei Sun
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang 212013, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
17
|
Sakuma R, Kobayashi M, Kobashi R, Onishi M, Maeda M, Kataoka Y, Imaoka S. Brain Pericytes Acquire Stemness via the Nrf2-Dependent Antioxidant System. Stem Cells 2022; 40:641-654. [PMID: 35353891 DOI: 10.1093/stmcls/sxac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Pericytes (PCs) are a mural support cell population elongated at intervals along the walls of capillaries. Recent studies reported that PCs are multipotent cells that are activated in response to tissue injury and contribute to the regenerative process. Using a C.B-17 mouse model of ischemic stroke, it has been proposed that normal brain pericytes (nPCs) are converted to ischemic pericytes (iPCs), some of which function as multipotent stem cells. Furthermore, oxygen-glucose deprivation (OGD) promoted mesenchymal-epithelial transition in nPCs; however, nestin was not induced under OGD conditions. Therefore, further studies are needed to elucidate the PC reprogramming phenomenon. We herein isolated nPCs from the cortex of C.B-17 mice, and compared the traits of iPCs and nPCs. The results obtained showed that nPCs and iPCs shared common pericytic markers. Furthermore, intercellular levels of reactive oxygen species and the nuclear accumulation of nuclear factor erythroid-2-related factor 2 (Nrf2), a key player in antioxidant defenses, were higher in iPCs than in nPCs. OGD/reoxygenation and a treatment with tBHQ, an Nrf2 inducer, increased nestin levels in nPCs. Moreover, epithelial marker levels, including nestin, Sox2, and CDH1 (E-cadherin) mRNAs, were elevated in Nrf2-overexpressing PCs, which formed neurosphere-like cell clusters that differentiated into Tuj1-positive neurons. The present results demonstrate that oxidative stress and Nrf2 are required for the generation of stem cells after stroke and will contribute to the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Rika Sakuma
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Miku Kobayashi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Rui Kobashi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mako Onishi
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Hyogo, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Susumu Imaoka
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| |
Collapse
|
18
|
Dong J, Lim WW, Shekeran SG, Tan J, Lim SY, Goh JWT, George BL, Schafer S, Cook SA, Widjaja AA. Hepatocyte Specific gp130 Signalling Underlies APAP Induced Liver Injury. Int J Mol Sci 2022; 23:ijms23137089. [PMID: 35806094 PMCID: PMC9266364 DOI: 10.3390/ijms23137089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
N-acetyl-p-aminophenol (APAP)-induced liver damage is associated with upregulation of Interleukin-11 (IL11), which is thought to stimulate IL6ST (gp130)-mediated STAT3 activity in hepatocytes, as a compensatory response. However, recent studies have found IL11/IL11RA/gp130 signaling to be hepatotoxic. To investigate further the role of IL11 and gp130 in APAP liver injury, we generated two new mouse strains with conditional knockout (CKO) of either Il11 (CKOIl11) or gp130 (CKOgp130) in adult hepatocytes. Following APAP, as compared to controls, CKOgp130 mice had lesser liver damage with lower serum Alanine Transaminase (ALT) and Aspartate Aminotransferase (AST), greatly reduced serum IL11 levels (90% lower), and lesser centrilobular necrosis. Livers from APAP-injured CKOgp130 mice had lesser ERK, JNK, NOX4 activation and increased markers of regeneration (PCNA, Cyclin D1, Ki67). Experiments were repeated in CKOIl11 mice that, as compared to wild-type mice, had lower APAP-induced ALT/AST, reduced centrilobular necrosis and undetectable IL11 in serum. As seen with CKOgp130 mice, APAP-treated CKOIl11 mice had lesser ERK/JNK/NOX4 activation and greater features of regeneration. Both CKOgp130 and CKOIl11 mice had normal APAP metabolism. After APAP, CKOgp130 and CKOIl11 mice had reduced Il6, Ccl2, Ccl5, Il1β, and Tnfα expression. These studies exclude IL11 upregulation as compensatory and establish autocrine, self-amplifying, gp130-dependent IL11 secretion from damaged hepatocytes as toxic and anti-regenerative.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
| | - Shamini G. Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
| | - Sze Yun Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Benjamin L. George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169857, Singapore;
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
- Correspondence: (S.A.C.); (A.A.W.)
| | - Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.D.); (W.-W.L.); (S.G.S.); (S.Y.L.); (J.W.T.G.); (B.L.G.); (S.S.)
- Correspondence: (S.A.C.); (A.A.W.)
| |
Collapse
|
19
|
New insights into IL-6 family cytokines in metabolism, hepatology and gastroenterology. Nat Rev Gastroenterol Hepatol 2021; 18:787-803. [PMID: 34211157 DOI: 10.1038/s41575-021-00473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
IL-6 family cytokines are defined by the common use of the signal-transducing receptor chain glycoprotein 130 (gp130). Increasing evidence indicates that these cytokines are essential in the regulation of metabolic homeostasis as well as in the pathophysiology of multiple gastrointestinal and liver disorders, thus making them attractive therapeutic targets. Over the past few years, therapies modulating gp130 signalling have grown exponentially in several clinical settings including obesity, cancer and inflammatory bowel disease. A newly engineered gp130 cytokine, IC7Fc, has shown promising preclinical results for the treatment of type 2 diabetes, obesity and liver steatosis. Moreover, drugs that modulate gp130 signalling have shown promise in refractory inflammatory bowel disease in clinical trials. A deeper understanding of the main roles of the IL-6 family of cytokines during homeostatic and pathological conditions, their signalling pathways, sources of production and target cells will be crucial to the development of improved treatments. Here, we review the current state of the role of these cytokines in hepatology and gastroenterology and discuss the progress achieved in translating therapeutics targeting gp130 signalling into clinical practice.
Collapse
|
20
|
Plasma-derived extracellular vesicles discriminate type-1 allergy subjects from non-allergic controls. World Allergy Organ J 2021; 14:100583. [PMID: 34659629 PMCID: PMC8487953 DOI: 10.1016/j.waojou.2021.100583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Allergies are on the rise globally, with an enormous impact on affected individuals’ quality of life as well as health care resources. They cause a wide range of symptoms, from slightly inconvenient to potentially fatal immune reactions. While allergies have been described and classified phenomenologically, there is an unmet need for easily accessible biomarkers to stratify the severity of clinical symptoms. Furthermore, biomarkers marking the success of specific immunotherapy are urgently needed. Objectives Plasma extracellular vesicles (pEV) play a role in coordinating the immune response and may be useful future biomarkers. A pilot study on differences in pEV content was carried out between patients with type I allergy, suffering from rhinoconjunctivitis with or without asthma, and voluntary non-allergic donors. Methods We examined pEV from 38 individuals (22 patients with allergies and 16 controls) for 38 chemokines, cytokines, and soluble factors using high-throughput data mining approaches. Results Patients with allergies had a distinct biomarker pattern, with 7 upregulated (TNF-alpha, IL-4, IL-5, IL-6, IL-17F, CCL2, and CCL17) and 3 downregulated immune mediators (IL-11, IL-27, and CCL20) in pEV compared to controls. This reduced set of 10 factors was able to discriminate controls and allergic patients better than the total array. Conclusions The content of pEV showed potential as a target for biomarker research in allergies. Plasma EV, which are readily measurable via blood test, may come to play an important role in allergy diagnosis. In this proof-of-principle study, it could be shown that pEV's discriminate patients with allergies from controls. Further studies investigating whether the content of pEVs may predict the severity of allergic symptoms or even the induction of tolerance to allergens are needed.
Collapse
|
21
|
An Open Question: Is Non-Ionizing Radiation a Tool for Controlling Apoptosis-Induced Proliferation? Int J Mol Sci 2021; 22:ijms222011159. [PMID: 34681819 PMCID: PMC8537877 DOI: 10.3390/ijms222011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.
Collapse
|
22
|
Huynh J, Ernst M. IL6 Signaling in Cancer: Not Always Bad News. Cancer Res 2021; 81:4671-4672. [PMID: 34526349 DOI: 10.1158/0008-5472.can-21-2137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Understanding the molecular mechanisms that underpin the pleiotropic effects of IL6 in disease are critical to better inform when this cytokine should be therapeutically targeted to provide the most benefit to patients. This is particularly important for cancer and other pathologic conditions strongly linked to chronic inflammation. Shriki and colleagues provide mechanistic evidence that IL6 protects against chronic liver injury and its ensuing tumor development, thereby challenging the prevailing paradigm that IL6 always acts as a tumor-promoting cytokine. These observations contribute to an emerging view of dichotomous and complex activities of IL6 in solid malignancies and will help understand which patients under which circumstances receive the most benefit from therapies that interfere with IL6 signaling.See related article by Shriki et al., p. 4766.
Collapse
Affiliation(s)
- Jennifer Huynh
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia.
| |
Collapse
|
23
|
Dong J, Viswanathan S, Adami E, Schafer S, Kuthubudeen FF, Widjaja AA, Cook SA. The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. eLife 2021; 10:68843. [PMID: 34435951 PMCID: PMC8445623 DOI: 10.7554/elife.68843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
It is generally accepted that IL6-mediated STAT3 signaling in hepatocytes, mediated via glycoprotein 130 (gp130; IL6ST), is beneficial and that the synthetic IL6:IL6ST fusion protein (HyperIL6) promotes liver regeneration. Recently, autocrine IL11 activity that also acts via IL6ST but uses ERK rather than STAT3 to signal, was found to be hepatotoxic. Here we examined whether the beneficial effects of HyperIL6 could reflect unappreciated competitive inhibition of IL11-dependent IL6ST signaling. In human and mouse hepatocytes, HyperIL6 reduced N-acetyl-p-aminophenol (APAP)-induced cell death independent of STAT3 activation and instead, dose-dependently, inhibited IL11-related signaling and toxicities. In mice, expression of HyperIl6 reduced ERK activation and promoted STAT3-independent hepatic regeneration (PCNA, Cyclin D1, Ki67) following administration of either IL11 or APAP. Inhibition of putative intrinsic IL6 trans-signaling had no effect on liver regeneration in mice. Following APAP, mice deleted for Il11 exhibited spontaneous liver repair but HyperIl6, despite robustly activating STAT3, had no effect on liver regeneration in this strain. These data show that synthetic IL6ST binding proteins such as HyperIL6 can have unexpected, on-target effects and suggest IL11, not IL6, as important for liver regeneration.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Fathima F Kuthubudeen
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University ofSingapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
24
|
Liu Y, Lin J, Chen Y, Li Z, Zhou J, Lu X, Chen Z, Zuo D. Omega‑3 polyunsaturated fatty acids inhibit IL‑11/STAT3 signaling in hepatocytes during acetaminophen hepatotoxicity. Int J Mol Med 2021; 48:190. [PMID: 34414450 PMCID: PMC8416141 DOI: 10.3892/ijmm.2021.5023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert a negative effect on IL-6 production in several liver disorders, including cirrhosis, acute liver failure and fatty liver disease. However, its effect on the production of IL-11, another important IL-6 family cytokine, remains unclear. IL-11 was found to be significantly elevated in acetaminophen (APAP)-induced liver damage. The aim of the present study was to investigate whether and how n-3 PUFAs modulate IL-11 production during APAP-induced liver injury. For that purpose, wild-type (WT) and fat-1 transgenic mice were intraperitoneally injected with APAP to induce liver injury. Serum was collected for ELISA and alanine aminotransferase assay. The hepatocytes of APAP-injected mice were isolated for reverse transcription-quantitative PCR and western blot analyses. For the in vitro study, primary hepatocytes isolated from WT or fat-1 mice were stimulated with APAP. The results revealed that both endogenous and exogenous n-3 PUFAs significantly aggravated APAP-induced liver damage via the downregulation of STAT3 signaling. Notably, n-3 PUFAs inhibited IL-11 expression, but not IL-6 expression in hepatocytes during the APAP challenge. Furthermore, it was demonstrated that limited phosphorylation of ERK1/2 and Fos-like-1 (Fra-1) expression are responsible for the n-3 PUFA-mediated inhibitory effect on IL-11 production in APAP-treated hepatocytes. It was concluded that n-3 PUFAs inhibit IL-11 production and further STAT3 activation in hepatocytes during APAP-induced liver injury. Therefore, ERK1/2-mediated Fra-1 expression is responsible for the effect of n-3 PUFAs on IL-11 expression.
Collapse
Affiliation(s)
- Yunzhi Liu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jingmin Lin
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yu Chen
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhuonan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhengliang Chen
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
25
|
Widjaja AA, Dong J, Adami E, Viswanathan S, Ng B, Pakkiri LS, Chothani SP, Singh BK, Lim WW, Zhou J, Shekeran SG, Tan J, Lim SY, Goh J, Wang M, Holgate R, Hearn A, Felkin LE, Yen PM, Dear JW, Drum CL, Schafer S, Cook SA. Redefining IL11 as a regeneration-limiting hepatotoxin and therapeutic target in acetaminophen-induced liver injury. Sci Transl Med 2021; 13:13/597/eaba8146. [PMID: 34108253 DOI: 10.1126/scitranslmed.aba8146] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 12/18/2020] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity. Our results show that species-matched IL11 behaves like a hepatotoxin. IL11 secreted from APAP-damaged human and mouse hepatocytes triggered an autocrine loop of NADPH oxidase 4 (NOX4)-dependent cell death, which occurred downstream of APAP-initiated mitochondrial dysfunction. Hepatocyte-specific deletion of Il11 receptor subunit alpha chain 1 (Il11ra1) in adult mice protected against AILI despite normal APAP metabolism and glutathione (GSH) depletion. Mice with germline deletion of Il11 were also protected from AILI, and deletion of Il1ra1 or Il11 was associated with reduced c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation and quickly restored GSH concentrations. Administration of a neutralizing IL11RA antibody reduced AILI in mice across genetic backgrounds and promoted survival when administered up to 10 hours after APAP. Inhibition of IL11 signaling was associated with the up-regulation of markers of liver regenerations: cyclins and proliferating cell nuclear antigen (PCNA) as well as with phosphorylation of retinoblastoma protein (RB) 24 hours after AILI. Our data suggest that species-matched IL11 is a hepatotoxin and that IL11 signaling might be an effective therapeutic target for APAP-induced liver damage.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Benjamin Ng
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Leroy S Pakkiri
- Cardiac Department, National University Hospital, Singapore 119074, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Wei Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Jessie Tan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Sze Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Joyce Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Mao Wang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Robert Holgate
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Arron Hearn
- Abzena, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Leanne E Felkin
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - James W Dear
- Pharmacology, Toxicology and Therapeutics, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore 119228, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore. .,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, UK
| |
Collapse
|
26
|
The two facets of gp130 signalling in liver tumorigenesis. Semin Immunopathol 2021; 43:609-624. [PMID: 34047814 PMCID: PMC8443519 DOI: 10.1007/s00281-021-00861-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
The liver is a vital organ with multiple functions and a large regenerative capacity. Tumours of the liver are the second most frequently cause of cancer-related death and develop in chronically inflamed livers. IL-6-type cytokines are mediators of inflammation and almost all members signal via the receptor subunit gp130 and the downstream signalling molecule STAT3. We here summarize current knowledge on how gp130 signalling and STAT3 in tumour cells and cells of the tumour micro-environment drives hepatic tumorigenesis. We furthermore discuss very recent findings describing also anti-tumorigenic roles of gp130/STAT3 and important considerations for therapeutic interventions.
Collapse
|
27
|
Comparison of gene expression responses of zebrafish larvae to Vibrio parahaemolyticus infection by static immersion and caudal vein microinjection. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, Ueha S, Yamazaki S, Kawauchi M, Nakamura E, Nishiyama C, Kojima Y, Adachi-Akahane S, Hasegawa M, Nakayama M, Oshima M, Yagita H, Shibuya K, Mikami T, Inohara N, Matsushima K, Tada N, Nakano H. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun 2021; 12:2281. [PMID: 33863879 PMCID: PMC8052408 DOI: 10.1038/s41467-021-22450-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-11 is a member of the IL-6 family of cytokines and is involved in multiple cellular responses, including tumor development. However, the origin and functions of IL-11-producing (IL-11+) cells are not fully understood. To characterize IL-11+ cells in vivo, we generate Il11 reporter mice. IL-11+ cells appear in the colon in murine tumor and acute colitis models. Il11ra1 or Il11 deletion attenuates the development of colitis-associated colorectal cancer. IL-11+ cells express fibroblast markers and genes associated with cell proliferation and tissue repair. IL-11 induces the activation of colonic fibroblasts and epithelial cells through phosphorylation of STAT3. Human cancer database analysis reveals that the expression of genes enriched in IL-11+ fibroblasts is elevated in human colorectal cancer and correlated with reduced recurrence-free survival. IL-11+ fibroblasts activate both tumor cells and fibroblasts via secretion of IL-11, thereby constituting a feed-forward loop between tumor cells and fibroblasts in the tumor microenvironment. The stromal fibroblast population in the colon is composed of heterogeneous and distinct cell subtypes that play a crucial role in the development of colitis and colon cancer. Here the authors generate IL-11 reporter mice and characterize the origin and phenotype of inflammatory IL-11+ fibroblasts in colitis and colon cancer preclinical models.
Collapse
Affiliation(s)
- Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.
| | - Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Daisuke Ohshima
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | - Wakami Takeda
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan.,Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Mika Kawauchi
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Mizuho Hasegawa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mizuho Nakayama
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanobu Oshima
- WPI Nano Life Science Institute (WPI-Nano LSI), Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Naohiro Inohara
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Norihiro Tada
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan. .,Host Defense Research Center, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
29
|
Lipid peroxidation and the subsequent cell death transmitting from ferroptotic cells to neighboring cells. Cell Death Dis 2021; 12:332. [PMID: 33782392 PMCID: PMC8007748 DOI: 10.1038/s41419-021-03613-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/01/2023]
Abstract
Ferroptosis regulated cell death due to the iron-dependent accumulation of lipid peroxide. Ferroptosis is known to constitute the pathology of ischemic diseases, neurodegenerative diseases, and steatohepatitis and also works as a suppressing mechanism against cancer. However, how ferroptotic cells affect surrounding cells remains elusive. We herein report the transfer phenomenon of lipid peroxidation and cell death from ferroptotic cells to nearby cells that are not exposed to ferroptotic inducers (FINs). While primary mouse embryonic fibroblasts (MEFs) and NIH3T3 cells contained senescence-associated β-galactosidase (SA-β-gal)-positive cells, they were decreased upon induction of ferroptosis with FINs. The SA-β-gal decrease was inhibited by ferroptotic inhibitors and knockdown of Atg7, pointing to the involvement of lipid peroxidation and activated autophagosome formation during ferroptosis. A transfer of cell culture medium of cells treated with FINs, type 1 or 2, caused the reduction in SA-β-gal-positive cells in recipient cells that had not been exposed to FINs. Real-time imaging of Kusabira Orange-marked reporter MEFs cocultured with ferroptotic cells showed the generation of lipid peroxide and deaths of the reporter cells. These results indicate that lipid peroxidation and its aftereffects propagate from ferroptotic cells to surrounding cells, even when the surrounding cells are not exposed to FINs. Ferroptotic cells are not merely dying cells but also work as signal transmitters inducing a chain of further ferroptosis.
Collapse
|
30
|
Blache U, Wunderli SL, Hussien AA, Stauber T, Flückiger G, Bollhalder M, Niederöst B, Fucentese SF, Snedeker JG. Inhibition of ERK 1/2 kinases prevents tendon matrix breakdown. Sci Rep 2021; 11:6838. [PMID: 33767224 PMCID: PMC7994809 DOI: 10.1038/s41598-021-85331-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Tendon extracellular matrix (ECM) mechanical unloading results in tissue degradation and breakdown, with niche-dependent cellular stress directing proteolytic degradation of tendon. Here, we show that the extracellular-signal regulated kinase (ERK) pathway is central in tendon degradation of load-deprived tissue explants. We show that ERK 1/2 are highly phosphorylated in mechanically unloaded tendon fascicles in a vascular niche-dependent manner. Pharmacological inhibition of ERK 1/2 abolishes the induction of ECM catabolic gene expression (MMPs) and fully prevents loss of mechanical properties. Moreover, ERK 1/2 inhibition in unloaded tendon fascicles suppresses features of pathological tissue remodeling such as collagen type 3 matrix switch and the induction of the pro-fibrotic cytokine interleukin 11. This work demonstrates ERK signaling as a central checkpoint to trigger tendon matrix degradation and remodeling using load-deprived tissue explants.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Stefania L Wunderli
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Amro A Hussien
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Tino Stauber
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gabriel Flückiger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Maja Bollhalder
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Barbara Niederöst
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandro F Fucentese
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
31
|
Dong J, Viswanathan S, Adami E, Singh BK, Chothani SP, Ng B, Lim WW, Zhou J, Tripathi M, Ko NSJ, Shekeran SG, Tan J, Lim SY, Wang M, Lio PM, Yen PM, Schafer S, Cook SA, Widjaja AA. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat Commun 2021; 12:66. [PMID: 33397952 PMCID: PMC7782504 DOI: 10.1038/s41467-020-20303-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
IL11 is important for fibrosis in non-alcoholic steatohepatitis (NASH) but its role beyond the stroma in liver disease is unclear. Here, we investigate the role of IL11 in hepatocyte lipotoxicity. Hepatocytes highly express IL11RA and secrete IL11 in response to lipid loading. Autocrine IL11 activity causes hepatocyte death through NOX4-derived ROS, activation of ERK, JNK and caspase-3, impaired mitochondrial function and reduced fatty acid oxidation. Paracrine IL11 activity stimulates hepatic stellate cells and causes fibrosis. In mouse models of NASH, hepatocyte-specific deletion of Il11ra1 protects against liver steatosis, fibrosis and inflammation while reducing serum glucose, cholesterol and triglyceride levels and limiting obesity. In mice deleted for Il11ra1, restoration of IL11 cis-signaling in hepatocytes reconstitutes steatosis and inflammation but not fibrosis. We found no evidence for the existence of IL6 or IL11 trans-signaling in hepatocytes or NASH. These data show that IL11 modulates hepatocyte metabolism and suggests a mechanism for NAFLD to NASH transition.
Collapse
Affiliation(s)
- Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin Ng
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Wei Wen Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nicole S J Ko
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shamini G Shekeran
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sze Yun Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Mao Wang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Pei Min Lio
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- National Heart and Lung Institute, Imperial College London, London, UK.
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK.
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
32
|
He Y, Hwang S, Ahmed YA, Feng D, Li N, Ribeiro M, Lafdil F, Kisseleva T, Szabo G, Gao B. Immunopathobiology and therapeutic targets related to cytokines in liver diseases. Cell Mol Immunol 2021; 18:18-37. [PMID: 33203939 PMCID: PMC7853124 DOI: 10.1038/s41423-020-00580-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver injury with any etiology can progress to fibrosis and the end-stage diseases cirrhosis and hepatocellular carcinoma. The progression of liver disease is controlled by a variety of factors, including liver injury, inflammatory cells, inflammatory mediators, cytokines, and the gut microbiome. In the current review, we discuss recent data on a large number of cytokines that play important roles in regulating liver injury, inflammation, fibrosis, and regeneration, with a focus on interferons and T helper (Th) 1, Th2, Th9, Th17, interleukin (IL)-1 family, IL-6 family, and IL-20 family cytokines. Hepatocytes can also produce certain cytokines (such as IL-7, IL-11, and IL-33), and the functions of these cytokines in the liver are briefly summarized. Several cytokines have great therapeutic potential, and some are currently being tested as therapeutic targets in clinical trials for the treatment of liver diseases, which are also described.
Collapse
Affiliation(s)
- Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seonghwan Hwang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Na Li
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Marcelle Ribeiro
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, F-94000, Créteil, France
- INSERM, U955, F-94000, Créteil, France
- Institut Universitaire de France (IUF), Paris, F-75231, Cedex 05, France
| | - Tatiana Kisseleva
- Department of Medicine and Department of Surgery, School of Medicine, University of California, San Diego, CA, 92093, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Connor MG, Camarasa TMN, Patey E, Rasid O, Barrio L, Weight CM, Miller DP, Heyderman RS, Lamont RJ, Enninga J, Hamon MA. The histone demethylase KDM6B fine-tunes the host response to Streptococcus pneumoniae. Nat Microbiol 2020; 6:257-269. [PMID: 33349663 DOI: 10.1038/s41564-020-00805-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Streptococcus pneumoniae is a natural colonizer of the human respiratory tract and an opportunistic pathogen. Although epithelial cells are among the first to encounter pneumococci, the cellular processes and contribution of epithelial cells to the host response are poorly understood. Here, we show that a S. pneumoniae serotype 6B ST90 strain, which does not cause disease in a murine infection model, induces a unique NF-κB signature response distinct from an invasive-disease-causing isolate of serotype 4 (TIGR4). This signature is characterized by activation of p65 and requires a histone demethylase KDM6B. We show, molecularly, that the interaction of the 6B strain with epithelial cells leads to chromatin remodelling within the IL-11 promoter in a KDM6B-dependent manner, where KDM6B specifically demethylates histone H3 lysine 27 dimethyl. Remodelling of the IL-11 locus facilitates p65 access to three NF-κB sites that are otherwise inaccessible when stimulated by IL-1β or TIGR4. Finally, we demonstrate through chemical inhibition of KDM6B with GSK-J4 inhibitor and through exogenous addition of IL-11 that the host responses to the 6B ST90 and TIGR4 strains can be interchanged both in vitro and in a murine model of infection in vivo. Our studies therefore reveal how a chromatin modifier governs cellular responses during infection.
Collapse
Affiliation(s)
| | - Tiphaine M N Camarasa
- G5 Chromatin and Infection, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Emma Patey
- G5 Chromatin and Infection, Institut Pasteur, Paris, France.,University of Glasgow, Scotland, UK
| | - Orhan Rasid
- G5 Chromatin and Infection, Institut Pasteur, Paris, France
| | - Laura Barrio
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur, Paris, France.,UMR CNRS, Paris, France
| | - Caroline M Weight
- Division of Infection and Immunity, University College London, London, UK
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Robert S Heyderman
- Division of Infection and Immunity, University College London, London, UK
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur, Paris, France.,UMR CNRS, Paris, France
| | - Melanie A Hamon
- G5 Chromatin and Infection, Institut Pasteur, Paris, France.
| |
Collapse
|
34
|
Chen Y, Li R, Hu N, Yu C, Song H, Li Y, Dai Y, Guo Z, Li M, Zheng Y, Guo Z, Qi Y. Baihe Wuyao decoction ameliorates CCl 4-induced chronic liver injury and liver fibrosis in mice through blocking TGF-β1/Smad2/3 signaling, anti-inflammation and anti-oxidation effects. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113227. [PMID: 32783983 DOI: 10.1016/j.jep.2020.113227] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Wuyao decoction (BWD), a prescription of Traditional Chinese Medicines, composed of Lilium brownii var. viridulum Baker.(Lilii Bulbus) and Lindera aggregata (Sims) Kosterm. (Linderae Radix), has been used to treat epigastric pain and superficial gastritis for hundreds of years in China. Recently, some compounds obtained from Lilii Bulbus and Linderae Radix had active effects of hepatic protection or liver fibrosis alleviation. Thus, we aim to evaluate the effects of BWD on treatment of chronic liver injury and liver fibrosis induced by carbon tetrachloride (CCl4) and to elucidate the possible molecular mechanism. MATERIALS AND METHODS Mice were treated with BWD (low, medium and high dose), diammonium glycyrrhizinate or vehicle by oral gavage once daily, simultaneously intraperitoneal injected with a single dose of CCl4 (1 μl/g body weight) twice a week for consecutive 6 weeks. Next, all mice were sacrificed after fasted 12 h, and serums and liver tissues were harvested for analysis. The hepatic injury was detected by serum biomarker assay, including aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The hepatic histology and collagen were illustrated by hematoxylin-eosin staining and Sirius red staining respectively. The antioxidant capacity of liver tissues was evaluated by the contents of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenization. The mRNA gene or protein expressions related to fibrosis, oxidative stress and inflammation molecules were performed by real-time quantitative PCR (RT-PCR) or Western-blot. RESULTS BWD exhibited a good hepatic protection with ameliorating liver histological changes, decreasing serum AST and ALT contents, and reducing hepatic fibrosis with stimulation ECMs (such as Collagen1 and Collagen3) degradation. BWD inhibited hepatic stellate cells (HSCs) activation, promoted matrix metalloproteinase-2 (MMP2), MMP9, and MMP12 while suppressing tissue inhibitors of matrix metalloproteinase-1 (TIMP1) expression, and blocked traditional fibrosis TGF-β1/Smad2/3 signal pathway. Moreover, BWD exhibited anti-inflammation effect proved by the reduction of liver Interleukin-1β (IL-1β), TNF-α, IL-11 mRNA levels and promoted anti-oxidation effects determined by inhibition of liver MDA and iNOS levels while promoting liver SOD and Mn-SOD. CONCLUSION BWD ameliorates CCl4-induced CLI and liver fibrosis which is correlated to its blocking TGF-β1/Smad2/3 signaling, anti-inflammation, and anti-oxidation effects. BWD, as a small traditional prescription, is a promising treatment for CLI and liver fibrosis through multiple pharmacological targets.
Collapse
Affiliation(s)
- Yajing Chen
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Ruofei Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Nan Hu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Chunping Yu
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Hongyu Song
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yida Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yujiao Dai
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhao Guo
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Meng Li
- Department of Pharmacy, North China University of Science and Technology, Tangshan, 063210, China
| | - Yi Zheng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Zhiyi Guo
- Medical Research Center, North China University of Science and Technology, Tangshan, 063210, China
| | - Yajuan Qi
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China; Hebei Key Laboratory for Chronic Diseases, North China University of Science and Technology, Tangshan, 063210, China; Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
35
|
Domesticated and optimized mitochondria: Mitochondrial modifications based on energetic status and cellular stress. Life Sci 2020; 265:118766. [PMID: 33245965 DOI: 10.1016/j.lfs.2020.118766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria are the main source of energy and play an important role in coupling intracellular and intercellular metabolic cooperation. Cellular stress and energetic status can affect various mitochondrial behaviors, including mitochondrial biogenesis, mitophagy, assembly of respiratory chain supercomplexes and mitochondrial distribution. These modifications usually result in adaptive adjustment of mitochondrial output and resistance to cellular stress. However, when the pro-death signals triggered by excessive damage converge to mitochondria, mitochondrial reserve and functional status can profoundly determine the direction of cell death, and even affect the survival and death of surrounding or distant tissues. In this review, we discuss multiple mitochondrial modifications in eukaryotes based on metabolic status and cellular stress, and review the emerging knowledge about the effects of mitochondrial dysfunction on the fate of cells and surrounding tissues.
Collapse
|
36
|
Cook SA, Schafer S. Hiding in Plain Sight: Interleukin-11 Emerges as a Master Regulator of Fibrosis, Tissue Integrity, and Stromal Inflammation. Annu Rev Med 2020; 71:263-276. [PMID: 31986085 DOI: 10.1146/annurev-med-041818-011649] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin (IL)-11 is upregulated in a wide variety of fibro-inflammatory diseases such as systemic sclerosis, rheumatoid arthritis, pulmonary fibrosis, inflammatory bowel disease, kidney disease, drug-induced liver injury, and nonalcoholic steatohepatitis. IL-11 is a member of the IL-6 cytokine family and has several distinct properties that define its unique and nonredundant roles in disease. The IL-11 receptor is highly expressed on stromal, epithelial and polarized cells, where noncanonical IL-11 signaling drives the three pathologies common to all fibro-inflammatory diseases-myofibroblast activation, parenchymal cell dysfunction, and inflammation-while also inhibiting tissue regeneration. This cytokine has been little studied, and publications on IL-11 peaked in the early 1990s, when it was largely misunderstood. Here we describe recent advances in our understanding of IL-11 biology, outline how misconceptions as to its function came about, and highlight the large potential of therapies targeting IL-11 signaling for treating human disease.
Collapse
Affiliation(s)
- Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 169857 Singapore, Singapore; , .,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609 Singapore, Singapore.,National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom.,MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, 169857 Singapore, Singapore; , .,National Heart Research Institute Singapore, National Heart Centre Singapore, 169609 Singapore, Singapore
| |
Collapse
|
37
|
Widjaja AA, Chothani SP, Cook SA. Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum Vaccin Immunother 2020; 16:2357-2362. [PMID: 32530750 PMCID: PMC7644218 DOI: 10.1080/21645515.2020.1761203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6 and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed on dissimilar cell types and these cytokines actually have very different roles in biology and pathology. In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepatocytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11 inhibition as therapeutic approaches to treat liver disease. 1,2.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Sonia P. Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
38
|
Sabzevary-Ghahfarokhi M, Soltani A, Luzza F, Larussa T, Rahimian G, Shirzad H, Bagheri N. The protective effects of resveratrol on ulcerative colitis via changing the profile of Nrf2 and IL-1β protein. Mol Biol Rep 2020; 47:6941-6947. [PMID: 32888128 DOI: 10.1007/s11033-020-05753-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with increasing incidence and prevalence in developed countries. The presence of inflammatory cytokines is considered the main detrimental factor in severe types of IBD. The Nrf2 transcription factor plays an important role in reducing the expression of inflammatory agents such as interleukin (IL)-1β and increasing reparative factors such as IL-11. Resveratrol, a plant-derived phenolic compound, reduces the damage in chronic experimentally induced colitis. Twenty patients with UC and also 20 healthy controls were recruited in this study. The proteins expression of Nrf2 and IL-1β was assessed in colonic biopsies by Western blotting. Caco-2 cells were challenged with TNF-α (in vitro simulation of UC), in the presence or not of 190 nM (24 h) and 75 nM (48 h) Resveratrol. Then, Nrf2 and IL-1β in gene and protein expression were measured by real time-PCR and Western blotting in different treatments. Finally, IL-11 proteins expression was measured in culture supernatant by ELISA. A significant increase of IL-1β protein was detected in inflamed colonic tissues from UC patients compared with the control individuals. In Caco-2 cells challenged with TNF-α, protein expression of IL-1β and p-Nrf2 showed an increase, while gene expression of Nrf2 did not show a significant difference. After treatment with Resveratrol, both IL-1β mRNA and protein levels were reduced, while IL-11 protein levels showed any increase. The p-Nrf2 is a dominant form which is prevalent in inflamed tissues from UC patients. Resveratrol can reverse the inflammatory effects of TNF-α by reducing IL-1β and increasing IL-11 production.
Collapse
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Francesco Luzza
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Tiziana Larussa
- Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100, Catanzaro, Italy
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
39
|
Menendez-Castro C, Cordasic N, Dambietz T, Veelken R, Amann K, Hartner A, Hilgers KF. Correlations Between Interleukin-11 Expression and Hypertensive Kidney Injury in a Rat Model of Renovascular Hypertension. Am J Hypertens 2020; 33:331-340. [PMID: 31840157 DOI: 10.1093/ajh/hpz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Interleukin-11 (IL-11) is a pleiotropic cytokine of the interleukin-6 family. Recent studies revealed its crucial role in the development of cardiovascular fibrosis. In this study we examined IL-11 expression levels in the heart and the kidney exposed to high blood pressure in renovascular hypertensive rats and their correlations to fibrotic markers and kidney injury. METHODS Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats. IL-11 expression was measured by real-time polymerase chain reaction in the left ventricle and the right kidney. The correlation of cardiac IL-11 expression with biomarkers of renal fibrosis was assessed. We further investigated IL-11 expression in 2K1C rats grouped into rats with malignant vs. nonmalignant hypertension (distinguishing criteria: weight loss, number of fibrinoid necrosis, and onion skin lesions). RESULTS Thirty-five days after clipping, mean arterial pressure was significantly increased in 2K1C. Renal IL-11 expression was elevated in 2K1C. In the heart there was only a trend toward higher IL-11 expression in 2K1C. IL-11 in the kidney in 2K1C correlated with the expression of transforming growth factor (TGF)-β1/2, collagens, fibronectin, osteopontin, as well as tissue inhibitors of metalloprotease 1/2. There were also correlations of IL-11 with tissue collagen expansion, number of activated fibroblasts and serum creatinine, but no correlation with mean arterial pressure. Renal expression of IL-11 was highest in rats with malignant hypertension. CONCLUSIONS Renal IL-11 expression of renovascular hypertensive rats is markedly increased and correlates with profibrotic markers and loss of function and might therefore serve as a biomarker for the severity of hypertensive nephrosclerosis.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas Dambietz
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
40
|
Abstract
Osteosarcoma is an often highly malignant mesenchymal tumor. By definition, osteosarcoma cells are able to form osteoid, which can mature into tumor bone. Osteosarcoma metastasizes preferentially to the lung. In Europe, the incidence is between 2 and 5 new diagnoses per 1,000,000 people per year. The underlying mechanisms for osteosarcoma formation are not well understood. However, previous radiotherapy or exposition to nuclear radiation increase the risk of osteosarcoma. Patients are usually treated with a neoadjuvant chemotherapy, followed by complete surgical resection of the tumor and post-surgical chemotherapy, which leads to a five-year survival rate of approximately 70% for all stages. Scientific publications in recent years have shown that expression of the cell surface protein interleukin-11 receptor (IL-11R) correlates with a worse prognosis for patients. The IL-11R is activated by its ligand, the cytokine IL-11. IL-11 activates several intracellular signaling cascades within its target cells and is known to be an important regulator of bone homeostasis. Patients with dysfunctional IL-11 signaling display different forms of craniosynostosis. IL-11 induces proliferation of osteosarcoma cell lines in vitro, and the IL-11 signaling cascade was further used to reduce tumor growth and lung metastasis in preclinical mouse models of primary intratibial osteosarcoma. This article gives a comprehensive overview of the frequency, classification, and etiology of osteosarcoma and describes the basic biology of the cytokine IL-11. Furthermore, it summarizes current knowledge about the functional role of IL-11 in osteosarcoma and lists possible therapeutic opportunities.
Collapse
|
41
|
Perez-Gomez R, Magnin V, Mihajlovic Z, Slaninova V, Krejci A. Downregulation of respiratory complex I mediates major signalling changes triggered by TOR activation. Sci Rep 2020; 10:4401. [PMID: 32157127 PMCID: PMC7064613 DOI: 10.1038/s41598-020-61244-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunctions belong amongst the most common metabolic diseases but the signalling networks that lead to the manifestation of a disease phenotype are often not well understood. We identified the subunits of respiratory complex I, III and IV as mediators of major signalling changes during Drosophila wing disc development. Their downregulation in larval wing disc leads to robust stimulation of TOR activity, which in turn orchestrates a complex downstream signalling network. Specifically, after downregulation of the complex I subunit ND-49 (mammalian NDUFS2), TOR activates JNK to induce cell death and ROS production essential for the stimulation of compensatory apoptosis-induced proliferation within the tissue. Additionally, TOR upregulates Notch and JAK/STAT signalling and it directs glycolytic switch of the target tissue. Our results highlight the central role of TOR signalling in mediating the complex response to mitochondrial respiratory dysfunction and they provide a rationale why the disease symptoms associated with respiratory dysfunctions are often alleviated by mTOR inhibitors.
Collapse
Affiliation(s)
- Raquel Perez-Gomez
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Valentina Magnin
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Zorana Mihajlovic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Vera Slaninova
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Alena Krejci
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic. .,University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| |
Collapse
|
42
|
Wang D, Zheng X, Fu B, Nian Z, Qian Y, Sun R, Tian Z, Wei H. Hepatectomy promotes recurrence of liver cancer by enhancing IL-11-STAT3 signaling. EBioMedicine 2019; 46:119-132. [PMID: 31375423 PMCID: PMC6711863 DOI: 10.1016/j.ebiom.2019.07.058] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Patients undergoing surgical resection of hepatocellular carcinoma (HCC) are at risk of recurrence; however, the underlying mechanism remains poorly understood. Methods Through the analysis of gene expression profiles in tumour and matched normal tissues from patients with hepatocellular carcinoma (HCC), we identified differences in interleukin-11 (IL-11) expression. Further, we used genetic mouse, orthotopic tumour, chemically induced, and orthotopic allograft models to study the correlation between IL-11 and postsurgical recurrence. Additionally, we conducted a series of experiments, including histology and immunohistochemistry analysis, three-dimensional culture, immunofluorescence, western blotting, enzyme-linked immunosorbent assay (ELISA) and flow cytometry to investigate the role of IL-11-signal transducer and activator of transcription 3 (STAT3) signaling in HCC recurrence. Findings We demonstrate that IL-11 levels increase after surgery, triggering HCC outgrowth. Accordingly, pharmacological blocking of IL-11-STAT3 signaling in model systems significantly alleviates tumour cell proliferation and suppresses postsurgical recurrence of HCC tumours. Interpretation These data demonstrate that IL-11 has a central role in postsurgical HCC recurrence, and that inhibition of IL-11-STAT3 signaling is a potential therapeutic strategy to prevent recurrence. Fund Natural Science Foundation of China.
Collapse
Affiliation(s)
- Dongyao Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Nian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yeben Qian
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; Institute of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
43
|
Cui BW, Bai T, Yang Y, Zhang Y, Jiang M, Yang HX, Wu M, Liu J, Qiao CY, Zhan ZY, Wu YL, Kang DZ, Lian LH, Nan JX. Thymoquinone Attenuates Acetaminophen Overdose-Induced Acute Liver Injury and Inflammation Via Regulation of JNK and AMPK Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:577-594. [PMID: 30974967 DOI: 10.1142/s0192415x19500307] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thymoquinone (TQ) is a main aromatic component of Nigella sativa L. seeds or Agastache rugosa (Fisch. & C.A.Mey.) Kuntze. The protective mechanism of TQ against acute liver injury induced by acetaminophen (APAP), however, remains unclear. We aimed to investigated the hepato-protective mechanism of TQ on the development of APAP-induced acute liver injury. Male kunming mice were pretreated with TQ or N-acetylcysteine (NAC) before a single APAP injection. Human Chang liver cells were incubated with TQ, SP600125 or AICAR in presence of APAP for 24 h. TQ pretreatment reduced levels of serum aminotransferases and increased hepatic glutathione and glutathione peroxidase activities via inhibiting CYP2E1 expression. TQ inhibited JNK, ERK and P38 phosphorylation induced by APAP. Meanwhile, TQ inhibited PI3K/mTOR signaling activation and activated AMPK phosphorylation. Moreover, TQ prevented APAP-induced hepatocytes apoptosis regulated by Bcl-2 and Bax. Furthermore, TQ inhibited STAT3 phosphorylation on APAP-induced acute liver injury. In addition, TQ significantly inhibited P2X7R protein expression and IL-1 β release. APAP-enhanced JNK phosphorylation and APAP-suppressed AMPK phosphorylation were also observed in Chang liver cells, and these changes were recovered by pretreatment with TQ, SP600125 and AICAR. Our findings suggest that TQ may actively prevent APAP-induced acute liver injury, and the effect may be mediated by JNK and AMPK signaling pathways.
Collapse
Affiliation(s)
- Ben-Wen Cui
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Ting Bai
- † Medical College of Dalian University, Dalian 251122, Liaoning Province, China
| | - Yong Yang
- † Medical College of Dalian University, Dalian 251122, Liaoning Province, China
| | - Yu Zhang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Min Jiang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Hong-Xu Yang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Mei Wu
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Jian Liu
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Chun-Ying Qiao
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Zi-Ying Zhan
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Yan-Ling Wu
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Dong-Zhou Kang
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Li-Hua Lian
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- * Key Laboratory for Natural Resource of Changbai Mountain & Functional Molecules, Ministry of Education, College of Pharmacy, Yanbian University, Clinical Research Center, Yanbian University Hospital, Yanji 133002, Jilin Province, China
| |
Collapse
|
44
|
Miyawaki A, Iizuka Y, Sugino H, Watanabe Y. IL-11 prevents IFN-γ-induced hepatocyte death through selective downregulation of IFN-γ/STAT1 signaling and ROS scavenging. PLoS One 2019; 14:e0211123. [PMID: 30779746 PMCID: PMC6380568 DOI: 10.1371/journal.pone.0211123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/08/2019] [Indexed: 11/19/2022] Open
Abstract
Aims Interferon-γ (IFN-γ) exhibits hepatotoxicity through signal transducer and activator of transcription 1 (STAT1) activation. On the contrary, interleukin-11 (IL-11) shows tissue-protective effects on various organs including the liver through STAT3 activation. Here, we found that IL-11 pretreatment protects hepatocytes from IFN-γ-induced death and investigated the molecular mechanisms, particularly focusing on signal crosstalk. Methods and results Primary culture mouse hepatocytes were treated with IL-11 prior to IFN-γ, and cell death was evaluated by lactate dehydrogenase release into media. As a result, IL-11 pretreatment effectively suppressed IFN-γ-induced hepatocyte death. Since IFN-γ-induced hepatocyte death requires STAT1 signaling, the activity of STAT1 was analyzed. IFN-γ robustly activated STAT1 with its peak at 1 hr after stimulation, which was significantly attenuated by IL-11 pretreatment. Consistently, IL-11 pretreatment impeded mRNA increase of STAT1-downstream molecules promoting cell death, i.e., IRF-1, caspase 1, bak, and bax. IL-11-mediated suppression of STAT1 signaling was presumably due to upregulation of the suppressor of cytokine signaling (SOCS) genes, which are well-known negative feedback regulators of the JAK/STAT pathway. Interestingly, however, IFN-γ pretreatment failed to affect the following IL-11-induced STAT3 activation, although IFN-γ also upregulated SOCSs. Finally, we demonstrated that IL-11 pretreatment mitigated oxidative stress through increasing expression of ROS scavengers. Conclusion IL-11 protects hepatocytes from IFN-γ-induced death via STAT1 signal suppression and ROS scavenging. Further investigation into the mechanisms underlying selective negative feedback regulation of IFN-γ/STAT1 signaling compared to IL-11/STAT3 signaling may shed new light on the molecular biology of hepatocytes.
Collapse
Affiliation(s)
- Akimitsu Miyawaki
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Yoshiko Iizuka
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Hitomi Sugino
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Yoshifumi Watanabe
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
45
|
Two Sides of the Same Coin - Compensatory Proliferation in Regeneration and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:65-85. [PMID: 31520349 DOI: 10.1007/978-3-030-23629-8_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis has long been regarded as a tumor suppressor mechanism and evasion from apoptosis is considered to be one hallmark of cancer. However, this principle is not always consistent with clinical data which often illustrate a correlation between apoptosis and poor prognosis. Work in the last 15 years has provided an explanation for this apparent paradox. Apoptotic cells communicate with their environment and can produce signals which promote compensatory proliferation of surviving cells. This behavior of apoptotic cells is important for tissue regeneration in several model organisms, ranging from hydra to mammals. However, it may also play an important feature for tumorigenesis and tumor relapse. Several distinct forms of apoptosis-induced compensatory proliferation (AiP) have been identified, many of which involve reactive oxygen species (ROS) and immune cells. One type of AiP, "undead" AiP, in which apoptotic cells are kept in an immortalized state and continuously divide, may have particular relevance for tumorigenesis. Furthermore, given that chemo- and radiotherapy often aim to kill tumor cells, an improved understanding of the effects of apoptotic cells on the tumor and the tumor environment is of critical importance for the well-being of the patient. In this review, we summarize the current knowledge of AiP and focus our attention on recent findings obtained in Drosophila and other model organisms, and relate them to tumorigenesis.
Collapse
|
46
|
Kurosawa T, Miyoshi S, Yamazaki S, Nishina T, Mikami T, Oikawa A, Homma S, Nakano H. A murine model of acute lung injury identifies growth factors to promote tissue repair and their biomarkers. Genes Cells 2018; 24:112-125. [PMID: 30474194 DOI: 10.1111/gtc.12659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 11/30/2022]
Abstract
Type II alveolar epithelial cells (AEC2s) play a crucial role in the regeneration of type I AECs after acute lung injury. The mechanisms underlying the regeneration of AEC2s are not fully understood. To address this issue, here, we investigated a murine model of acute lung injury using mice expressing human Diphtheria Toxin Receptor (DTR) under the control of Lysozyme M promoter (LysM-DTR). DT injection induced the depletion of AEC2s, alveolar macrophages, and bone marrow (BM)-derived myeloid cells in LysM-DTR mice, and the mice died within 6 days after DT injection. Apoptotic AEC2s and bronchiolar epithelial cells appeared at 24 hr, whereas Ki67-positive proliferating cells appeared in the alveoli and bronchioles in the lung of LysM-DTR mice at 72-96 hr after DT injection. Transfer of wild-type BM cells into LysM-DTR mice accelerated the regeneration of AEC2s along with the up-regulation of several growth factors. Moreover, several metabolites were significantly decreased in the sera of LysM-DTR mice compared with WT mice after DT injection, suggesting that these metabolites might be biomarkers to predict AEC2s injury. Together, LysM-DTR mice might be useful to identify growth factors to promote lung repair and the metabolites to predict the severity of lung injury.
Collapse
Affiliation(s)
- Takeyuki Kurosawa
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Omori Medical Center, Tokyo, Japan
| | - Shion Miyoshi
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Omori Medical Center, Tokyo, Japan
| | - Soh Yamazaki
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Nishina
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Graduate School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Omori Medical Center, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University Graduate School of Medicine, Tokyo, Japan.,Host Defense Research Center, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Deguchi Y, Nishina T, Asano K, Ohmuraya M, Nakagawa Y, Nakagata N, Sakuma T, Yamamoto T, Araki K, Mikami T, Tanaka M, Nakano H. Generation of and characterization of anti-IL-11 antibodies using newly established Il11-deficient mice. Biochem Biophys Res Commun 2018; 505:453-459. [PMID: 30268501 DOI: 10.1016/j.bbrc.2018.09.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Interleukin (IL)-11 belongs to the members of the IL-6 family of cytokines and is involved in a variety of biological responses, including hematopoiesis, bone development, and carcinogenesis. However, the cellular sources of IL-11 and regulation of IL-11 expression under physiological and pathological conditions are not fully understood. One of the causes to prevent characterization of IL-11 in vivo is due to the lack of reliable antibodies that detect IL-11 by immunohistochemistry. Moreover, although mice lacking Il11ra have been generated and extensively characterized, Il11-deficient mice have not been characterized yet. Here we generated two anti-IL-11 antibodies that blocked biological activities of IL-11 and detected IL-11 by immunohistochemistry, respectively. One clone of anti-IL-11 antibodies blocked IL-11-, but not IL-6-induced cell proliferation and IL-11-induced phosphorylation of STAT3 of an IL-11-dependent cell line. Moreover, we used recently established Il11-deficient mice to test the specificity of anti-IL-11 antibodies for immunohistochemistry. Another clone of anti-IL-11 antibodies stained stromal cells surrounding tumors of the colon of wild-type, but not Il11-deficient mice following treatment with Azoxymethane plus dextran sulfate sodium. Together, these newly developed anti-IL-11 antibodies provide a better understanding of the functions of IL-11 in vivo under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Yutaka Deguchi
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Takashi Nishina
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan.
| | - Kenichi Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan; Host Defense Research Center, Toho University School of Medicine, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan.
| |
Collapse
|
48
|
Diwanji N, Bergmann A. An unexpected friend - ROS in apoptosis-induced compensatory proliferation: Implications for regeneration and cancer. Semin Cell Dev Biol 2018; 80:74-82. [PMID: 28688927 PMCID: PMC5756134 DOI: 10.1016/j.semcdb.2017.07.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 12/21/2022]
Abstract
Apoptosis-induced compensatory proliferation (AiP) is a form of compensatory proliferation that is triggered by apoptotic cell death to maintain tissue homeostasis. As such, AiP is essential for many tissue repair processes including regeneration. The apoptotic effectors, termed caspases, not only execute apoptosis, but are also directly involved in the generation of the signals required for AiP. Reactive oxygen species (ROS) play an important role for regenerative processes. Recently, it was shown in Drosophila that apoptotic caspases can mediate the generation of ROS for promoting AiP. This review summarizes and discusses these findings in the context of regenerative processes and cancer.
Collapse
Affiliation(s)
- Neha Diwanji
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| | - Andreas Bergmann
- University of Massachusetts Medical School, Department of Molecular, Cell and Cancer Biology, 364 Plantation Street - LRB419, Worcester, MA, 01605, USA.
| |
Collapse
|
49
|
Sabzevary-Ghahfarokhi M, Shohan M, Shirzad H, Rahimian G, Bagheri N, Soltani A, Deris F, Ghatreh-Samani M, Razmara E. The expression analysis of Fra-1 gene and IL-11 protein in Iranian patients with ulcerative colitis. BMC Immunol 2018; 19:17. [PMID: 29914371 PMCID: PMC6006762 DOI: 10.1186/s12865-018-0257-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Fra-1 (fosl1) belongs to the activator protein1 (AP-1) family inducing IL-11 expression in oxidative stress condition. IL-11 plays a pivotal role in protecting epithelial barriers integrity. In this study, we investigated the Fra-1 gene expression in the inflamed mucosa of patients with ulcerative colitis (UC) as well as its relation to IL-11 expression. MATERIALS AND METHODS We enrolled 20 patients and 20 healthy controls with definite UC based on the clinical criteria. Fra-1 gene expression in inflamed and non-inflamed colonic biopsies was determined by real-time polymerase chain reaction (RT-PCR). The IL-11 protein concentration was measured by Enzyme-Linked Immunosorbent Assay (ELISA) method. Pearson correlation was applied to calculate the relation between Fra-1 and IL-11. RESULTS An increased level of Fra-1 gene expression was observed in patients with mild ulcerative colitis. The protein concentration of IL-11 was also increased in mild UC patients. Conversely, a significant decrease of IL-11 protein level was detected in severe UC patients compared to control group. CONCLUSION Oxidative stress in inflamed intestinal biopsies can induce fra-1 gene expression. Our findings suggest that Fra-1 transcription factor leads to the production of IL-11 protein in UC patients.
Collapse
Affiliation(s)
- Milad Sabzevary-Ghahfarokhi
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mojtaba Shohan
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hedayatollah Shirzad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Ghorbanali Rahimian
- Department of Internal Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahdi Ghatreh-Samani
- Department of Microbiology and Immunology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
Liu J, Zhang S, Cao H, Wang H, Sun C, Liu S, Yu S, Li Y, Liu W, Wang H, Jiang J, Ying H. Deficiency of p38α in macrophage ameliorates d
-galactosamine/TNF-α-induced acute liver injury in mice. FEBS J 2017; 284:4200-4215. [DOI: 10.1111/febs.14294] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shengjie Zhang
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hongchao Cao
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hui Wang
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Chao Sun
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shengnan Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shuxian Yu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Yan Li
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Wei Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hui Wang
- School of Public Health; Shanghai Jiao Tong University School of Medicine; China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism; Zhongshan Hospital; Fudan University; Shanghai China
| | - Hao Ying
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
- Key Laboratory of Food Safety Risk Assessment; Ministry of Health; Beijing China
| |
Collapse
|