1
|
Hou J, Yu L, Wu C, Wei S, Gao X. Ribosome profiling reveals dynamic translational landscape following X-ray irradiation. Genomics 2025; 117:110987. [PMID: 39755339 DOI: 10.1016/j.ygeno.2025.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/10/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
X-ray irradiation induces widespread changes in gene expression. Positioned at the bottom of the central dogma, translational regulation responds swiftly to environmental stimuli, fine-tuning protein levels. However, the global view of mRNA translation following X-ray exposure remains unclear. In this study, we systematically investigated X-ray-induced translational alternation using ribosome profiling. Our study revealed a temporary translation inhibition in HEK293T cells following X-ray treatment. A subset of mRNAs experienced translational upregulation by bypassing upstream open reading frames (uORFs). The upregulated genes were enriched in the MAPK signaling pathway, such as MAPKBP1. Suppression of MAPKBP1 inhibited X-ray-induced cell apoptosis. Furthermore, we identified the induction of novel peptides encoded by small open reading frames (smORFs) within long non-coding RNAs (lncRNAs) upon X-ray treatment. Overall, our findings provide a comprehensive overview of the translational landscape within eukaryotic cells following X-ray treatment, offering new insights into DNA damage response.
Collapse
Affiliation(s)
- Jingyu Hou
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lei Yu
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Canlan Wu
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Saisai Wei
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiangwei Gao
- Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Ruggiero A, Heim LR, Susman L, Hreaky D, Shapira I, Katsenelson M, Rosenblum K, Slutsky I. NMDA receptors regulate the firing rate set point of hippocampal circuits without altering single-cell dynamics. Neuron 2025; 113:244-259.e7. [PMID: 39515323 DOI: 10.1016/j.neuron.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Understanding how neuronal circuits stabilize their activity is a fundamental yet poorly understood aspect of neuroscience. Here, we show that hippocampal network properties, such as firing rate distribution and dimensionality, are actively regulated, despite perturbations and single-cell drift. Continuous inhibition of N-methyl-D-aspartate receptors (NMDARs) ex vivo lowers the excitation/inhibition ratio and network firing rates while preserving resilience to perturbations. This establishes a new network firing rate set point via NMDAR-eEF2K signaling pathway. NMDARs' capacity to modulate and stabilize network firing is mediated by excitatory synapses and the intrinsic excitability of parvalbumin-positive neurons, respectively. In behaving mice, continuous NMDAR blockade in CA1 reduces network firing without altering single-neuron drift or triggering a compensatory response. These findings expand NMDAR function beyond their canonical role in synaptic plasticity and raise the possibility that some NMDAR-dependent behavioral effects are mediated by their unique regulation of population activity set points.
Collapse
Affiliation(s)
- Antonella Ruggiero
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Lee Susman
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544, USA
| | - Dema Hreaky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Maxim Katsenelson
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; Sieratzki Institute for Advances in Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel.
| |
Collapse
|
4
|
Jia X, Huang C, Liu F, Dong Z, Liu K. Elongation factor 2 in cancer: a promising therapeutic target in protein translation. Cell Mol Biol Lett 2024; 29:156. [PMID: 39707196 DOI: 10.1186/s11658-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
Aberrant elongation of proteins can lead to the activation of oncogenic signaling pathways, resulting in the dysregulation of oncogenic signaling pathways. Eukaryotic elongation factor 2 (eEF2) is an essential regulator of protein synthesis that precisely elongates nascent peptides in the protein elongation process. Although studies have linked aberrant eEF2 expression to various cancers, research has primarily focused on its structure, highlighting a need for deeper exploration into its molecular functions. In this review, recent advancements in the structure, guanosine triphosphatase (GTPase) activity, posttranslational modifications, regulatory factors, and inhibitors of eEF2 are summarized. These findings provide a comprehensive cognition on the critical role of eEF2 and its potential as a therapeutic target in cancer. Furthermore, this review highlights important unanswered questions that warrant investigation in future research.
Collapse
Affiliation(s)
- Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chuntian Huang
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
- Department of Pathology and Pathophysiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Fangfang Liu
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, 450001, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Salimi K, Alvandi M, Saberi Pirouz M, Rakhshan K, Howatson G. Regulating eEF2 and eEF2K in skeletal muscle by exercise. Arch Physiol Biochem 2024; 130:503-514. [PMID: 36633938 DOI: 10.1080/13813455.2023.2164898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023]
Abstract
Skeletal muscle is a flexible and adaptable tissue that strongly responds to exercise training. The skeletal muscle responds to exercise by increasing muscle protein synthesis (MPS) when energy is available. One of protein synthesis's major rate-limiting and critical regulatory steps is the translation elongation pathway. The process of translation elongation in skeletal muscle is highly regulated. It requires elongation factors that are intensely affected by various physiological stimuli such as exercise and the total available energy of cells. Studies have shown that exercise involves the elongation pathway by numerous signalling pathways. Since the elongation pathway, has been far less studied than the other translation steps, its comprehensive prospect and quantitative understanding remain in the dark. This study highlights the current understanding of the effect of exercise training on the translation elongation pathway focussing on the molecular factors affecting the pathway, including Ca2+, AMPK, PKA, mTORC1/P70S6K, MAPKs, and myostatin. We further discussed the mode and volume of exercise training intervention on the translation elongation pathway.What is the topic of this review? This review summarises the impacts of exercise training on the translation elongation pathway in skeletal muscle focussing on eEF2 and eEF2K.What advances does it highlight? This review highlights mechanisms and factors that profoundly influence the translation elongation pathway and argues that exercise might modulate the response. This review also combines the experimental observations focussing on the regulation of translation elongation during and after exercise. The findings widen our horizon to the notion of mechanisms involved in muscle protein synthesis (MPS) through translation elongation response to exercise training.
Collapse
Affiliation(s)
- Kia Salimi
- Department of Exercise Physiology, Faculty of Sport and Exercise Sciences, University of Tehran, Tehran, Iran
| | - Masoomeh Alvandi
- Department of Biological Science in Sport and Health, University of Shahid Beheshti, Tehran, Iran
| | - Mahdi Saberi Pirouz
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Medical Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Mouery RD, Lukasik K, Hsu C, Bonacci T, Bolhuis DL, Wang X, Mills CA, Toomer ED, Canterbury OG, Robertson KC, Branigan TB, Brown NG, Herring LE, Gupton SL, Emanuele MJ. Proteomic analysis reveals a PLK1-dependent G2/M degradation program and a role for AKAP2 in coordinating the mitotic cytoskeleton. Cell Rep 2024; 43:114510. [PMID: 39018246 PMCID: PMC11403584 DOI: 10.1016/j.celrep.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/24/2024] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
Ubiquitination is an essential regulator of cell division. The kinase Polo-like kinase 1 (PLK1) promotes protein degradation at G2/M phase through the E3 ubiquitin ligase Skp1-Cul1-F box (SCF)βTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome is uncharacterized. Combining quantitative proteomics with pharmacologic PLK1 inhibition revealed a widespread, PLK1-dependent program of protein breakdown at G2/M. We validated many PLK1-regulated proteins, including substrates of the cell-cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct E3 ligases. We show that the protein-kinase-A-anchoring protein A-kinase anchor protein 2 (AKAP2) is cell-cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP signaling axis. Expression of a non-degradable AKAP2 mutant resulted in actin defects and aberrant mitotic spindles, suggesting that AKAP2 degradation coordinates cytoskeletal organization during mitosis. These findings uncover PLK1's far-reaching role in shaping the mitotic proteome post-translationally and have potential implications in malignancies where PLK1 is upregulated.
Collapse
Affiliation(s)
- Ryan D Mouery
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kimberly Lukasik
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Carolyn Hsu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - C Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Drew Toomer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Owen G Canterbury
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin C Robertson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Gupton
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Lim JKM, Samiei A, Delaidelli A, de Santis JO, Brinkmann V, Carnie CJ, Radiloff D, Hruby L, Kahler A, Cran J, Leprivier G, Sorensen PH. The eEF2 kinase coordinates the DNA damage response to cisplatin by supporting p53 activation. Cell Death Dis 2024; 15:501. [PMID: 39003251 PMCID: PMC11246425 DOI: 10.1038/s41419-024-06891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a stress-responsive hub that inhibits the translation elongation factor eEF2, and consequently mRNA translation elongation, in response to hypoxia and nutrient deprivation. EEF2K is also involved in the response to DNA damage but its role in response to DNA crosslinks, as induced by cisplatin, is not known. Here we found that eEF2K is critical to mediate the cellular response to cisplatin. We uncovered that eEF2K deficient cells are more resistant to cisplatin treatment. Mechanistically, eEF2K deficiency blunts the activation of the DNA damage response associated ATM and ATR pathways, in turn preventing p53 activation and therefore compromising induction of cisplatin-induced apoptosis. We also report that loss of eEF2K delays the resolution of DNA damage triggered by cisplatin, suggesting that eEF2K contributes to DNA damage repair in response to cisplatin. In support of this, our data shows that eEF2K promotes the expression of the DNA repair protein ERCC1, critical for the repair of cisplatin-caused DNA damage. Finally, using Caenorhabditis elegans as an in vivo model, we find that deletion of efk-1, the worm eEF2K ortholog, mitigates the induction of germ cell death in response to cisplatin. Together, our data highlight that eEF2K represents an evolutionary conserved mediator of the DNA damage response to cisplatin which promotes p53 activation to induce cell death, or alternatively facilitates DNA repair, depending on the extent of DNA damage.
Collapse
Affiliation(s)
- Jonathan K M Lim
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arash Samiei
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Jessica Oliveira de Santis
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vanessa Brinkmann
- Institute of Toxicology, Heinrich Heine University, Düsseldorf, Germany
| | - Christopher J Carnie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Daniel Radiloff
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Laura Hruby
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alisa Kahler
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jordan Cran
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gabriel Leprivier
- Institute of Neuropathology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Neves S, Pacheco S, Vaz F, James P, Simões T, Penque D. Occupational second-hand smoke exposure: A comparative shotgun proteomics study on nasal epithelia from healthy restaurant workers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104459. [PMID: 38685369 DOI: 10.1016/j.etap.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Non-smokers exposed to second-hand smoke (SHS) present risk of developing tobacco smoke-associated pathologies. To investigate the airway molecular response to SHS exposure that could be used in health risk assessment, comparative shotgun proteomics was performed on nasal epithelium from a group of healthy restaurant workers, non-smokers (never and former) exposed and not exposed to SHS in the workplace. HIF1α-glycolytic targets (GAPDH, TPI) and proteins related to xenobiotic metabolism, cell proliferation and differentiation leading to cancer (ADH1C, TUBB4B, EEF2) showed significant modulation in non-smokers exposed. In never smokers exposed, enrichment of glutathione metabolism pathway and EEF2-regulating protein synthesis in genotoxic response were increased, while in former smokers exposed, proteins (LYZ, ATP1A1, SERPINB3) associated with tissue damage/regeneration, apoptosis inhibition and inflammation that may lead to asthma, COPD or cancer, were upregulated. The identified proteins are potential response and susceptibility/risk biomarkers for SHS exposure.
Collapse
Affiliation(s)
- Sofia Neves
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal; Center for Toxicogenomics and Human Health, ToxOmics, NOVA Medical School-FCM, UNL, Lisbon, Portugal.
| | - Solange Pacheco
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal
| | - Fátima Vaz
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal; Center for Toxicogenomics and Human Health, ToxOmics, NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Peter James
- Protein Technology Laboratory, Department of Immunotechnology, Lund University, Sweden
| | - Tânia Simões
- CECAD Cologne-Excellence in Aging Research University of Cologne, Germany
| | - Deborah Penque
- Laboratory of Proteomics, Human Genetics Department, National Institute of Health Dr. Ricardo Jorge, INSA I.P, Lisbon, Portugal; Center for Toxicogenomics and Human Health, ToxOmics, NOVA Medical School-FCM, UNL, Lisbon, Portugal
| |
Collapse
|
9
|
Mir DA, Ma Z, Horrocks J, Rogers AN. Stress-induced Eukaryotic Translational Regulatory Mechanisms. ARXIV 2024:arXiv:2405.01664v1. [PMID: 38745702 PMCID: PMC11092689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The eukaryotic protein synthesis process entails intricate stages governed by diverse mechanisms to tightly regulate translation. Translational regulation during stress is pivotal for maintaining cellular homeostasis, ensuring the accurate expression of essential proteins crucial for survival. This selective translational control mechanism is integral to cellular adaptation and resilience under adverse conditions. This review manuscript explores various mechanisms involved in selective translational regulation, focusing on mRNA-specific and global regulatory processes. Key aspects of translational control include translation initiation, which is often a rate-limiting step, and involves the formation of the eIF4F complex and recruitment of mRNA to ribosomes. Regulation of translation initiation factors, such as eIF4E, eIF4E2, and eIF2, through phosphorylation and interactions with binding proteins, modulates translation efficiency under stress conditions. This review also highlights the control of translation initiation through factors like the eIF4F complex and the ternary complex and also underscores the importance of eIF2α phosphorylation in stress granule formation and cellular stress responses. Additionally, the impact of amino acid deprivation, mTOR signaling, and ribosome biogenesis on translation regulation and cellular adaptation to stress is also discussed. Understanding the intricate mechanisms of translational regulation during stress provides insights into cellular adaptation mechanisms and potential therapeutic targets for various diseases, offering valuable avenues for addressing conditions associated with dysregulated protein synthesis.
Collapse
Affiliation(s)
- Dilawar Ahmad Mir
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Zhengxin Ma
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Jordan Horrocks
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| | - Aric N Rogers
- Kathryn W. Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Bar Harbor, ME
| |
Collapse
|
10
|
Lkhagva-Yondon E, Seo MS, Oh Y, Jung J, Jeon E, Na K, Yoo HS, Kim WC, Esser C, Song SU, Jeon MS. The aryl hydrocarbon receptor controls mesenchymal stromal cell-mediated immunomodulation via ubiquitination of eukaryotic elongation factor-2 kinase. Cell Death Dis 2023; 14:812. [PMID: 38071243 PMCID: PMC10710493 DOI: 10.1038/s41419-023-06341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic advantages due to their immunosuppressive properties. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose signaling plays an important role in the immune system. AHR may be involved in the regulation of MSC-associated immunomodulatory functions. However, the mechanisms by which AHR controls the immunosuppressive functions of MSCs are not well understood. Here, we report that Ahr-deficient MSCs show decreased therapeutic efficacy against graft-versus-host disease (GVHD) compared to wild-type (WT)-MSCs. This was probably due to decreased iNOS protein expression, which is a key regulatory enzyme in MSC immunomodulation. The expression of eukaryotic elongation factor 2 kinase (eEF2K), which inhibits the elongation stage of protein synthesis, is significantly increased in the Ahr-deficient MSCs. Inhibition of eEF2K restored iNOS protein expression. AHR is known to act as an E3 ligase together with CUL4B. We observed constitutive binding of AHR to eEF2K. Consequently, ubiquitination and degradation of eEF2K were inhibited in Ahr-deficient MSCs and by the AHR antagonist CH223191 in WT-MSCs. In summary, AHR regulates the immunomodulatory functions of MSCs through ubiquitination of eEF2K, thereby controlling iNOS protein synthesis and its product, nitric oxide levels.
Collapse
Affiliation(s)
- Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Myeong Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Yena Oh
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Jonghun Jung
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Kwangmin Na
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hyun Seung Yoo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40021, Germany
| | - Sun U Song
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
- SCM Lifescience, Incheon, 21999, Republic of Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea.
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea.
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea.
- SCM Lifescience, Incheon, 21999, Republic of Korea.
| |
Collapse
|
11
|
Mouery RD, Hsu C, Bonacci T, Bolhuis DL, Wang X, Mills CA, Toomer ED, Canterbury OG, Robertson KC, Branigan TB, Brown NG, Herring LE, Emanuele MJ. Proteomic Analysis Reveals a PLK1-Dependent G2/M Degradation Program and Links PKA-AKAP2 to Cell Cycle Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561963. [PMID: 37873169 PMCID: PMC10592729 DOI: 10.1101/2023.10.11.561963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Targeted protein degradation by the ubiquitin-proteasome system is an essential mechanism regulating cellular division. The kinase PLK1 coordinates protein degradation at the G2/M phase of the cell cycle by promoting the binding of substrates to the E3 ubiquitin ligase SCFβTrCP. However, the magnitude to which PLK1 shapes the mitotic proteome has not been characterized. Combining deep, quantitative proteomics with pharmacologic PLK1 inhibition (PLK1i), we identified more than 200 proteins whose abundances were increased by PLK1i at G2/M. We validate many new PLK1-regulated proteins, including several substrates of the cell cycle E3 SCFCyclin F, demonstrating that PLK1 promotes proteolysis through at least two distinct SCF-family E3 ligases. Further, we found that the protein kinase A anchoring protein AKAP2 is cell cycle regulated and that its mitotic degradation is dependent on the PLK1/βTrCP-signaling axis. Interactome analysis revealed that the strongest interactors of AKAP2 function in signaling networks regulating proliferation, including MAPK, AKT, and Hippo. Altogether, our data demonstrate that PLK1 coordinates a widespread program of protein breakdown at G2/M. We propose that dynamic proteolytic changes mediated by PLK1 integrate proliferative signals with the core cell cycle machinery during cell division. This has potential implications in malignancies where PLK1 is aberrantly regulated.
Collapse
Affiliation(s)
- Ryan D Mouery
- Curriculum in Genetics and Molecular Biology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Carolyn Hsu
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Christine A Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - E Drew Toomer
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Owen G Canterbury
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Kevin C Robertson
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Timothy B Branigan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
- Department of Pharmacology. The University of North Carolina at Chapel Hill. Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Lis A, Baptista CG, Dahlgren K, Corvi MM, Blader IJ. Identification of Toxoplasma calcium-dependent protein kinase 3 as a stress-activated elongation factor 2 kinase. mSphere 2023; 8:e0015623. [PMID: 37272703 PMCID: PMC10449493 DOI: 10.1128/msphere.00156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite whose tachyzoite form causes disease via a lytic growth cycle. Its metabolic and cellular pathways are primarily designed to ensure parasite survival within a host cell. But during its lytic cycle, tachyzoites are exposed to the extracellular milieu and prolonged exposure requires activation of stress response pathways that include reprogramming the parasite proteome. Regulation of protein synthesis is therefore important for extracellular survival. We previously reported that in extracellularly stressed parasites, the elongation phase of protein synthesis is regulated by the Toxoplasma oxygen-sensing protein, PHYb. PHYb acts by promoting the activity of elongation factor eEF2, which is a GTPase that catalyzes the transfer of the peptidyl-tRNA from the A site to the P site of the ribosome. In the absence of PHYb, eEF2 is hyper-phosphorylated, which inhibits eEF2 from interacting with the ribosome. eEF2 kinases are atypical calcium-dependent kinases and BLAST analyses revealed the parasite kinase, CDPK3, as the most highly homologous to the Saccharomyces cerevisiae eEF2 kinase, RCK2. In parasites exposed to extracellular stress, loss of CDPK3 leads to decreased eEF2 phosphorylation and enhanced rates of elongation. Furthermore, co-immunoprecipitation studies revealed that CDPK3 and eEF2 interact in stressed parasites. Since CDPK3 and eEF2 normally localize to the plasma membrane and cytosol, respectively, we investigated how the two can interact. We report that under stress conditions, CDPK3 is not N-myristoylated likely leading to its cytoplasmic localization. In summary, we have identified a novel function for CDPK3 as the first protozoan extracellular stress-induced eEF2 kinase.IMPORTANCEAlthough it is an obligate intracellular parasite, Toxoplasma must be able to survive in the extracellular environment. Our previous work indicated that ensuring that elongation continues during protein synthesis is part of this stress response and that this is due to preventing phosphorylation of elongation factor 2. But the identity of the eEF2 kinase has remained unknown in Toxoplasma and other protozoan parasites. Here, we identify CDPK3 as the first protozoan eEF2 kinase and demonstrate that it is part of a stress response initiated when parasites are exposed to extracellular stress. We also demonstrate that CDPK3 engages eEF2 as a result of its relocalization from the plasma membrane to the cytosol.
Collapse
Affiliation(s)
- Agnieszka Lis
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Kelsey Dahlgren
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| | - Maria M. Corvi
- Laboratorio de Bioquímica y Biología Celular de Parásitos, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Buenos Aires, Argentina
| | - Ira J. Blader
- Department of Microbiology and Immunology, SUNY at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
13
|
Thompson LL, Rutherford KA, Lepage CC, McManus KJ. Aberrant SKP1 Expression: Diverse Mechanisms Impacting Genome and Chromosome Stability. Front Cell Dev Biol 2022; 10:859582. [PMID: 35345853 PMCID: PMC8957228 DOI: 10.3389/fcell.2022.859582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
The S-phase Kinase-Associated Protein 1 (SKP1) is a core component of the SKP1, Cullin 1, F-box protein (SCF) complex, an E3 ubiquitin ligase that serves to poly-ubiquitinate a vast array of protein targets as a signal for their proteasomal degradation, thereby playing a critical role in the regulation of downstream biological processes. Many of the proteins regulated by SKP1 and the SCF complex normally function within pathways that are essential for maintaining genome stability, including DNA damage repair, apoptotic signaling, and centrosome dynamics. Accordingly, aberrant SKP1 and SCF complex expression and function is expected to disrupt these essential pathways, which may have pathological implications in diseases like cancer. In this review, we summarize the central role SKP1 plays in regulating essential cellular processes; we describe functional models in which SKP1 expression is altered and the corresponding impacts on genome stability; and we discuss the prevalence of SKP1 somatic copy number alterations, mutations, and altered protein expression across different cancer types, to identify a potential link between SKP1 and SCF complex dysfunction to chromosome/genome instability and cancer pathogenesis. Ultimately, understanding the role of SKP1 in driving chromosome instability will expand upon our rudimentary understanding of the key events required for genome/chromosome stability that may aid in our understanding of cancer pathogenesis, which will be critical for future studies to establish whether SKP1 may be useful as prognostic indicator or as a therapeutic target.
Collapse
Affiliation(s)
- Laura L Thompson
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Kailee A Rutherford
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Chloe C Lepage
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Kirk J McManus
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
15
|
AU-Rich Element RNA Binding Proteins: At the Crossroads of Post-Transcriptional Regulation and Genome Integrity. Int J Mol Sci 2021; 23:ijms23010096. [PMID: 35008519 PMCID: PMC8744917 DOI: 10.3390/ijms23010096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Genome integrity must be tightly preserved to ensure cellular survival and to deter the genesis of disease. Endogenous and exogenous stressors that impose threats to genomic stability through DNA damage are counteracted by a tightly regulated DNA damage response (DDR). RNA binding proteins (RBPs) are emerging as regulators and mediators of diverse biological processes. Specifically, RBPs that bind to adenine uridine (AU)-rich elements (AREs) in the 3' untranslated region (UTR) of mRNAs (AU-RBPs) have emerged as key players in regulating the DDR and preserving genome integrity. Here we review eight established AU-RBPs (AUF1, HuR, KHSRP, TIA-1, TIAR, ZFP36, ZFP36L1, ZFP36L2) and their ability to maintain genome integrity through various interactions. We have reviewed canonical roles of AU-RBPs in regulating the fate of mRNA transcripts encoding DDR genes at multiple post-transcriptional levels. We have also attempted to shed light on non-canonical roles of AU-RBPs exploring their post-translational modifications (PTMs) and sub-cellular localization in response to genotoxic stresses by various factors involved in DDR and genome maintenance. Dysfunctional AU-RBPs have been increasingly found to be associated with many human cancers. Further understanding of the roles of AU-RBPS in maintaining genomic integrity may uncover novel therapeutic strategies for cancer.
Collapse
|
16
|
Woodward K, Shirokikh NE. Translational control in cell ageing: an update. Biochem Soc Trans 2021; 49:2853-2869. [PMID: 34913471 PMCID: PMC8786278 DOI: 10.1042/bst20210844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
Cellular ageing is one of the main drivers of organismal ageing and holds keys towards improving the longevity and quality of the extended life. Elucidating mechanisms underlying the emergence of the aged cells as well as their altered responses to the environment will help understanding the evolutionarily defined longevity preferences across species with different strategies of survival. Much is understood about the role of alterations in the DNA, including many epigenetic modifications such as methylation, in relation to the aged cell phenotype. While transcriptomes of the aged cells are beginning to be better-characterised, their translational responses remain under active investigation. Many of the translationally controlled homeostatic pathways are centred around mitigation of DNA damage, cell stress response and regulation of the proliferative potential of the cells, and thus are critical for the aged cell function. Translation profiling-type studies have boosted the opportunities in discovering the function of protein biosynthesis control and are starting to be applied to the aged cells. Here, we provide a summary of the current knowledge about translational mechanisms considered to be commonly altered in the aged cells, including the integrated stress response-, mechanistic target of Rapamycin- and elongation factor 2 kinase-mediated pathways. We enlist and discuss findings of the recent works that use broad profiling-type approaches to investigate the age-related translational pathways. We outline the limitations of the methods and the remaining unknowns in the established ageing-associated translation mechanisms, and flag translational mechanisms with high prospective importance in ageing, for future studies.
Collapse
Affiliation(s)
- Katrina Woodward
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| | - Nikolay E. Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Acton, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Ballard DJ, Peng HY, Das JK, Kumar A, Wang L, Ren Y, Xiong X, Ren X, Yang JM, Song J. Insights Into the Pathologic Roles and Regulation of Eukaryotic Elongation Factor-2 Kinase. Front Mol Biosci 2021; 8:727863. [PMID: 34532346 PMCID: PMC8438118 DOI: 10.3389/fmolb.2021.727863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic Elongation Factor-2 Kinase (eEF2K) acts as a negative regulator of protein synthesis, translation, and cell growth. As a structurally unique member of the alpha-kinase family, eEF2K is essential to cell survival under stressful conditions, as it contributes to both cell viability and proliferation. Known as the modulator of the global rate of protein translation, eEF2K inhibits eEF2 (eukaryotic Elongation Factor 2) and decreases translation elongation when active. eEF2K is regulated by various mechanisms, including phosphorylation through residues and autophosphorylation. Specifically, this protein kinase is downregulated through the phosphorylation of multiple sites via mTOR signaling and upregulated via the AMPK pathway. eEF2K plays important roles in numerous biological systems, including neurology, cardiology, myology, and immunology. This review provides further insights into the current roles of eEF2K and its potential to be explored as a therapeutic target for drug development.
Collapse
Affiliation(s)
- Darby J. Ballard
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Hao-Yun Peng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jugal Kishore Das
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Anil Kumar
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Yijie Ren
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xiaofang Xiong
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Xingcong Ren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jin-Ming Yang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, United States
| |
Collapse
|
18
|
Mohanan G, Das A, Rajyaguru PI. Genotoxic stress response: What is the role of cytoplasmic mRNA fate? Bioessays 2021; 43:e2000311. [PMID: 34096096 DOI: 10.1002/bies.202000311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Genotoxic stress leads to DNA damage which can be detrimental to the cell. A well-orchestrated cellular response is mounted to manage and repair the genotoxic stress-induced DNA damage. Our understanding of genotoxic stress response is derived mainly from studies focused on transcription, mRNA splicing, and protein turnover. Surprisingly not as much is understood about the role of mRNA translation and decay in genotoxic stress response. This is despite the fact that regulation of gene expression at the level of mRNA translation and decay plays a critical role in a myriad of cellular processes. This review aims to summarize some of the known findings of the role of mRNA translation and decay by focusing on two categories of examples. We discuss examples of mRNA whose fates are regulated in the cytoplasm and RNA-binding proteins that regulate mRNA fates in response to genotoxic stress.
Collapse
Affiliation(s)
- Gayatri Mohanan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Amiyaranjan Das
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
19
|
Aliabadi F, Sohrabi B, Mostafavi E, Pazoki-Toroudi H, Webster TJ. Ubiquitin-proteasome system and the role of its inhibitors in cancer therapy. Open Biol 2021; 11:200390. [PMID: 33906413 PMCID: PMC8080017 DOI: 10.1098/rsob.200390] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite all the other cells that have the potential to prevent cancer development and metastasis through tumour suppressor proteins, cancer cells can upregulate the ubiquitin–proteasome system (UPS) by which they can degrade tumour suppressor proteins and avoid apoptosis. This system plays an extensive role in cell regulation organized in two steps. Each step has an important role in controlling cancer. This demonstrates the importance of understanding UPS inhibitors and improving these inhibitors to foster a new hope in cancer therapy. UPS inhibitors, as less invasive chemotherapy drugs, are increasingly used to alleviate symptoms of various cancers in malignant states. Despite their success in reducing the development of cancer with the lowest side effects, thus far, an appropriate inhibitor that can effectively inactivate this system with the least drug resistance has not yet been fully investigated. A fundamental understanding of the system is necessary to fully elucidate its role in causing/controlling cancer. In this review, we first comprehensively investigate this system, and then each step containing ubiquitination and protein degradation as well as their inhibitors are discussed. Ultimately, its advantages and disadvantages and some perspectives for improving the efficiency of these inhibitors are discussed.
Collapse
Affiliation(s)
- Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Beheshteh Sohrabi
- Department of Chemistry, Surface Chemistry Research Laboratory, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.,Stanford Cardiovascular Institute, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Progress in the Development of Eukaryotic Elongation Factor 2 Kinase (eEF2K) Natural Product and Synthetic Small Molecule Inhibitors for Cancer Chemotherapy. Int J Mol Sci 2021; 22:ijms22052408. [PMID: 33673713 PMCID: PMC7957638 DOI: 10.3390/ijms22052408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K or Ca2+/calmodulin-dependent protein kinase, CAMKIII) is a new member of an atypical α-kinase family different from conventional protein kinases that is now considered as a potential target for the treatment of cancer. This protein regulates the phosphorylation of eukaryotic elongation factor 2 (eEF2) to restrain activity and inhibit the elongation stage of protein synthesis. Mounting evidence shows that eEF2K regulates the cell cycle, autophagy, apoptosis, angiogenesis, invasion, and metastasis in several types of cancers. The expression of eEF2K promotes survival of cancer cells, and the level of this protein is increased in many cancer cells to adapt them to the microenvironment conditions including hypoxia, nutrient depletion, and acidosis. The physiological function of eEF2K and its role in the development and progression of cancer are here reviewed in detail. In addition, a summary of progress for in vitro eEF2K inhibitors from anti-cancer drug discovery research in recent years, along with their structure-activity relationships (SARs) and synthetic routes or natural sources, is also described. Special attention is given to those inhibitors that have been already validated in vivo, with the overall aim to provide reference context for the further development of new first-in-class anti-cancer drugs that target eEF2K.
Collapse
|
21
|
Abstract
Senescence is a state of long-term cell cycle arrest that arises in cells that have incurred sublethal damage. While senescent cells no longer replicate, they remain metabolically active and further develop unique and stable phenotypes that are not present in proliferating cells. On one hand, senescent cells increase in size, maintain an active mTORC1 complex, and produce and secrete a substantial amount of inflammatory proteins as part of the senescence-associated secretory phenotype (SASP). On the other hand, these progrowth phenotypes contrast with the p53-mediated growth arrest typical of senescent cells that is associated with nucleolar stress and an inhibition of rRNA processing and ribosome biogenesis. In sum, translation in senescent cells paradoxically comprises both a global repression of translation triggered by DNA damage and a select increase in the translation of specific proteins, including SASP factors.
Collapse
|
22
|
Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of β-TrCP1/2 in carcinogenesis. FEBS J 2020; 288:3351-3374. [PMID: 33021036 DOI: 10.1111/febs.15585] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
β-transducin repeat-containing protein (β-TrCP), one of the well-characterized F-box proteins, acts as a substrate receptor and constitutes an active SCFβ-TrCP E3 ligase with a scaffold protein CUL1, a RING protein RBX1, and an adaptor protein SKP1. β-TrCP plays a critical role in the regulation of various physiological and pathological processes, including signal transduction, cell cycle progression, cell migration, DNA damage response, and tumorigenesis, by governing burgeoning amounts of key regulators for ubiquitination and proteasomal degradation. Given that a variety of β-TrCP substrates are well-known oncoproteins and tumor suppressors, and dysregulation of β-TrCP is frequently identified in human cancers, β-TrCP plays a vital role in carcinogenesis. In this review, we first briefly introduce the characteristics of β-TrCP1, β-TrCP2, and SCFβ-TrCP ubiquitin ligase, and then discuss SCFβ-TrCP ubiquitin ligase regulated biological processes by targeting its substrates for degradation. Moreover, we summarize the regulation of β-TrCP1 and β-TrCP2 at multiple layers and further discuss the various roles of β-TrCP1 and β-TrCP2 in human cancer, functioning as either an oncoprotein or a tumor suppressor in a manner dependent of cellular context. Finally, we provide novel insights for future perspectives on the potential of targeting β-TrCP1 and β-TrCP2 for cancer therapy.
Collapse
Affiliation(s)
- Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Yu Q, Dai CL, Zhang Y, Chen Y, Wu Z, Iqbal K, Liu F, Gong CX. Intranasal Insulin Increases Synaptic Protein Expression and Prevents Anesthesia-Induced Cognitive Deficits Through mTOR-eEF2 Pathway. J Alzheimers Dis 2020; 70:925-936. [PMID: 31306126 DOI: 10.3233/jad-190280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
General anesthesia increases the risk for cognitive impairment and Alzheimer's disease (AD) in vulnerable individuals such as the elderly. We previously reported that prior administration of insulin through intranasal delivery can prevent the anesthesia-induced cognitive impairment and biochemical changes in the brain. However, little is known about the underlying molecular mechanisms. Here, we report that general anesthesia resulted in downregulation of mammalian/mechanistic target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the brain along with reduction of presynaptic proteins and brain-derived neurotrophic factor and cognitive impairment in aged mice. Prior administration of intranasal insulin prevented these anesthesia-induced changes. These results suggest the involvement of the mTOR-eEF2 signaling pathway in the anesthesia-induced brain changes and cognitive impairment and in the prevention of these changes with insulin. Correlation analyses and the use of eEF2 kinase inhibitor further support our conclusions. These studies shed light on the molecular mechanism by which anesthesia and insulin could act on synaptic proteins and cognitive function.
Collapse
Affiliation(s)
- Qian Yu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Orthopedics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chun-Ling Dai
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yongli Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yanxing Chen
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Wu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.,Department of Cell Biology and Genetics, School of Basic Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
24
|
Li F, Mladenov E, Mortoga S, Iliakis G. SCF SKP2 regulates APC/C CDH1-mediated degradation of CTIP to adjust DNA-end resection in G 2-phase. Cell Death Dis 2020; 11:548. [PMID: 32683422 PMCID: PMC7368859 DOI: 10.1038/s41419-020-02755-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 11/20/2022]
Abstract
The cell cycle-dependent engagement of DNA-end resection at DSBs is regulated by phosphorylation of CTIP by CDKs, the central regulators of cell cycle transitions. Cell cycle transitions are also intimately regulated by protein degradation via two E3 ubiquitin ligases: SCFSKP2 and APC/CCDH1 complex. Although APC/CCDH1 regulates CTIP in G1– and G2-phase, contributions by SCFSKP2 have not been reported. We demonstrate that SCFSKP2 is a strong positive regulator of resection. Knockdown of SKP2, fully suppresses resection in several cell lines. Notably, this suppression is G2-phase specific and is not observed in S-phase or G1–phase cells. Knockdown of SKP2 inactivates SCFSKP2 causing APC/CCDH1 activation, which degrades CTIP. The stabilizing function of SCFSKP2 on CTIP promotes resection and supports gene conversion (GC), alternative end joining (alt-EJ) and cell survival. We propose that CDKs and SCFSKP2-APC/CCDH1 cooperate to regulate resection and repair pathway choice at DSBs in G2-phase.
Collapse
Affiliation(s)
- Fanghua Li
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Sharif Mortoga
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany.
| |
Collapse
|
25
|
Jin X, Xie J, Zabolocki M, Wang X, Jiang T, Wang D, Désaubry L, Bardy C, Proud CG. The prohibitin-binding compound fluorizoline affects multiple components of the translational machinery and inhibits protein synthesis. J Biol Chem 2020; 295:9855-9867. [PMID: 32430400 DOI: 10.1074/jbc.ra120.012979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Indexed: 01/12/2023] Open
Abstract
Fluorizoline (FLZ) binds to prohibitin-1 and -2 (PHB1/2), which are pleiotropic scaffold proteins known to affect signaling pathways involved in several intracellular processes. However, it is not yet clear how FLZ exerts its effect. Here, we show that exposure of three different human cancer cell lines to FLZ increases the phosphorylation of key translation factors, particularly of initiation factor 2 (eIF2) and elongation factor 2 (eEF2), modifications that inhibit their activities. FLZ also impaired signaling through mTOR complex 1, which also regulates the translational machinery, e.g. through the eIF4E-binding protein 4E-BP1. In line with these findings, FLZ potently inhibited protein synthesis. We noted that the first phase of this inhibition involves very rapid eEF2 phosphorylation, which is catalyzed by a dedicated Ca2+-dependent protein kinase, eEF2 kinase (eEF2K). We also demonstrate that FLZ induces a swift and marked rise in intracellular Ca2+ levels, likely explaining the effects on eEF2. Disruption of normal Ca2+ homeostasis can also induce endoplasmic reticulum stress, and our results suggest that induction of this stress response contributes to the increased phosphorylation of eIF2, likely because of activation of the eIF2-modifying kinase PKR-like endoplasmic reticulum kinase (PERK). We show that FLZ induces cancer cell death and that this effect involves contributions from the phosphorylation of both eEF2 and eIF2. Our findings provide important new insights into the biological effects of FLZ and thus the roles of PHBs, specifically in regulating Ca2+ levels, cellular protein synthesis, and cell survival.
Collapse
Affiliation(s)
- Xin Jin
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Michael Zabolocki
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Human Neurophysiology and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Xuemin Wang
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Tao Jiang
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Dong Wang
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Laurent Désaubry
- Sino-French Joint Lab of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Laboratory of Medicinal Chemistry and Cardio-oncology, CNRS, Strasbourg, France
| | - Cedric Bardy
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia.,Laboratory for Human Neurophysiology and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health & Medical Research Institute, Adelaide, Australia .,School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
26
|
Repression of eEF2K transcription by NF-κB tunes translation elongation to inflammation and dsDNA-sensing. Proc Natl Acad Sci U S A 2019; 116:22583-22590. [PMID: 31636182 DOI: 10.1073/pnas.1909143116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene expression is rapidly remodeled by infection and inflammation in part via transcription factor NF-κB activation and regulated protein synthesis. While protein synthesis is largely controlled by mRNA translation initiation, whether cellular translation elongation factors are responsive to inflammation and infection remains poorly understood. Here, we reveal a surprising mechanism whereby NF-κB restricts phosphorylation of the critical translation elongation factor eEF2, which catalyzes the protein synthesis translocation step. Upon exposure to NF-κB-activating stimuli, including TNFα, human cytomegalovirus infection, or double-stranded DNA, eEF2 phosphorylation on Thr56, which slows elongation to limit protein synthesis, and the overall abundance of eEF2 kinase (eEF2K) are reduced. Significantly, this reflected a p65 NF-κB subunit-dependent reduction in eEF2K pre-mRNA, indicating that NF-κB activation represses eEF2K transcription to decrease eEF2K protein levels. Finally, we demonstrate that reducing eEF2K abundance regulates protein synthesis in response to a bacterial toxin that inactivates eEF2. This establishes that NF-κB activation by diverse physiological effectors controls eEF2 activity via a transcriptional repression mechanism that reduces eEF2K polypeptide abundance to preclude eEF2 phosphorylation, thereby stimulating translation elongation and protein synthesis. Moreover, it illustrates how nuclear transcription regulation shapes translation elongation factor activity and exposes how eEF2 is integrated into innate immune response networks orchestrated by NF-κB.
Collapse
|
27
|
Sanchez M, Lin Y, Yang CC, McQuary P, Rosa Campos A, Aza Blanc P, Wolf DA. Cross Talk between eIF2α and eEF2 Phosphorylation Pathways Optimizes Translational Arrest in Response to Oxidative Stress. iScience 2019; 20:466-480. [PMID: 31627132 PMCID: PMC6823656 DOI: 10.1016/j.isci.2019.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 09/23/2019] [Indexed: 01/26/2023] Open
Abstract
The cellular stress response triggers a cascade of events leading to transcriptional reprogramming and a transient inhibition of global protein synthesis, which is thought to be mediated by phosphorylation of eukaryotic initiation factor-2α (eIF2α). Using mouse embryonic fibroblasts (MEFs) and the fission yeast S. pombe, we report that rapid translational arrest and cell survival in response to hydrogen peroxide-induced oxidative stress do not rely on eIF2α kinases and eIF2α phosphorylation. Rather, H2O2 induces a block in elongation through phosphorylation of eukaryotic elongation factor 2 (eEF2). Kinetic and dose-response analyses uncovered cross talk between the eIF2α and eEF2 phosphorylation pathways, indicating that, in MEFs, eEF2 phosphorylation initiates the acute shutdown in translation, which is maintained by eIF2α phosphorylation. Our results challenge the common conception that eIF2α phosphorylation is the primary trigger of translational arrest in response to oxidative stress and point to integrated control that may facilitate the survival of cancer cells. Oxidative stress-induced translation arrest is independent of eIF2α phosphorylation Oxidative stress blocks translation elongation Oxidative stress triggers eEF2 kinase activation eEF2K KO cells are hypersensitive to oxidative stress
Collapse
Affiliation(s)
- Marisa Sanchez
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Yingying Lin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen 361102, China
| | - Chih-Cheng Yang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Philip McQuary
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Pedro Aza Blanc
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research and Center for Stress Signaling Networks, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
28
|
Piserchio A, Will N, Giles DH, Hajredini F, Dalby KN, Ghose R. Solution Structure of the Carboxy-Terminal Tandem Repeat Domain of Eukaryotic Elongation Factor 2 Kinase and Its Role in Substrate Recognition. J Mol Biol 2019; 431:2700-2717. [PMID: 31108082 PMCID: PMC6599559 DOI: 10.1016/j.jmb.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
Eukaryotic elongation factor 2 kinase (eEF-2K), an atypical calmodulin-activated protein kinase, regulates translational elongation by phosphorylating its substrate, eukaryotic elongation factor 2 (eEF-2), thereby reducing its affinity for the ribosome. The activation and activity of eEF-2K are critical for survival under energy-deprived conditions and is implicated in a variety of essential physiological processes. Previous biochemical experiments have indicated that the binding site for the substrate eEF-2 is located in the C-terminal domain of eEF-2K, a region predicted to harbor several α-helical repeats. Here, using NMR methodology, we have determined the solution structure of a C-terminal fragment of eEF-2K, eEF-2K562-725 that encodes two α-helical repeats. The structure of eEF-2K562-725 shows signatures characteristic of TPR domains and of their SEL1-like sub-family. Furthermore, using the analyses of NMR spectral perturbations and ITC measurements, we have localized the eEF-2 binding site on eEF-2K562-725. We find that eEF-2K562-725 engages eEF-2 with an affinity comparable to that of the full-length enzyme. Furthermore, eEF-2K562-725 is able to inhibit the phosphorylation of eEF-2 by full-length eEF-2K in trans. Our present studies establish that eEF-2K562-725 encodes the major elements necessary to enable the eEF-2K/eEF-2 interactions.
Collapse
Affiliation(s)
- Andrea Piserchio
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA
| | - Nathan Will
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - David H Giles
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Fatlum Hajredini
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| | - Kevin N Dalby
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, TX 78712, USA
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, NewYork, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Chemistry, The Graduate Center of CUNY, New York, NY 10016, USA; Graduate Program in Physics, The Graduate Center of CUNY, New York, NY 10016, USA.
| |
Collapse
|
29
|
Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell Mol Life Sci 2019; 76:2499-2510. [PMID: 30919022 PMCID: PMC11105231 DOI: 10.1007/s00018-019-03082-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Ubiquitin ligases play an integral role in fine-tuning signaling cascades necessary for normal cell function. Aberrant regulation of ubiquitin ligases has been implicated in several neurodegenerative diseases, generally, due to mutations within the E3 ligase itself. Several proteomic-based methods have recently emerged to facilitate the rapid identification of ligase-substrate pairs-a previously challenging feat due to the transient nature of ligase-substrate interactions. These novel methods complement standard immunoprecipitations (IPs) and include proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, tandem ubiquitin-binding entities (TUBEs), and a molecular trapping unit known as the NEDDylator. The implementation of these techniques is expected to facilitate the rapid identification of novel substrates of E3 ubiquitin ligases, a process that is likely to enhance our understanding of neurodegenerative diseases and highlight novel therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Mark P Molloy
- Faculty of Medicine and Health, Sydney School of Medicine, Royal North Shore Hospital, Pacific Hwy, St Leonards, Sydney, NSW, 2065, Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia.
| |
Collapse
|
30
|
Su TT. Drug screening in Drosophila; why, when, and when not? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e346. [PMID: 31056843 DOI: 10.1002/wdev.346] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
The best global seller among oncology drugs in 2018 is lenalidomide, an analog of thalidomide. It took 53 years and a circuitous route from the discovery of thalidomide to approval of an analog for use in treatment of cancer. We understand now a lot more about the genetic and molecular basis of diseases than we did in 1953 when thalidomide was discovered. We have also no shortage of chemical libraries with hundreds of thousands of compounds, both synthetic and natural. What we need are better ways to search among these rich resources for compounds with the potential to do what we want them to do. This review summarizes examples from the literature that make Drosophila melanogaster a good model to screen for drugs, and discusses knowledge gaps and technical challenges that make Drosophila models not as widely used as they could or should be. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado.,Molecular, Cellular and Developmental Biology, University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
31
|
Xie J, de Souza Alves V, von der Haar T, O’Keefe L, Lenchine RV, Jensen KB, Liu R, Coldwell MJ, Wang X, Proud CG. Regulation of the Elongation Phase of Protein Synthesis Enhances Translation Accuracy and Modulates Lifespan. Curr Biol 2019; 29:737-749.e5. [DOI: 10.1016/j.cub.2019.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
|
32
|
Lao JP, Ulrich KM, Johnson JR, Newton BW, Vashisht AA, Wohlschlegel JA, Krogan NJ, Toczyski DP. The Yeast DNA Damage Checkpoint Kinase Rad53 Targets the Exoribonuclease, Xrn1. G3 (BETHESDA, MD.) 2018; 8:3931-3944. [PMID: 30377154 PMCID: PMC6288840 DOI: 10.1534/g3.118.200767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
The highly conserved DNA damage response (DDR) pathway monitors the genomic integrity of the cell and protects against genotoxic stresses. The apical kinases, Mec1 and Tel1 (ATR and ATM in human, respectively), initiate the DNA damage signaling cascade through the effector kinases, Rad53 and Chk1, to regulate a variety of cellular processes including cell cycle progression, DNA damage repair, chromatin remodeling, and transcription. The DDR also regulates other cellular pathways, but direct substrates and mechanisms are still lacking. Using a mass spectrometry-based phosphoproteomic screen in Saccharomyces cerevisiae, we identified novel targets of Rad53, many of which are proteins that are involved in RNA metabolism. Of the 33 novel substrates identified, we verified that 12 are directly phosphorylated by Rad53 in vitro: Xrn1, Gcd11, Rps7b, Ded1, Cho2, Pus1, Hst1, Srv2, Set3, Snu23, Alb1, and Scp160. We further characterized Xrn1, a highly conserved 5' exoribonuclease that functions in RNA degradation and the most enriched in our phosphoproteomics screen. Phosphorylation of Xrn1 by Rad53 does not appear to affect Xrn1's intrinsic nuclease activity in vitro, but may affect its activity or specificity in vivo.
Collapse
Affiliation(s)
- Jessica P Lao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Katie M Ulrich
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - Ajay A Vashisht
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, CA 90095
| | - James A Wohlschlegel
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, CA 90095
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158
| | - David P Toczyski
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
| |
Collapse
|
33
|
Koppenhafer SL, Goss KL, Terry WW, Gordon DJ. mTORC1/2 and Protein Translation Regulate Levels of CHK1 and the Sensitivity to CHK1 Inhibitors in Ewing Sarcoma Cells. Mol Cancer Ther 2018; 17:2676-2688. [PMID: 30282812 DOI: 10.1158/1535-7163.mct-18-0260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
Abstract
The treatment of Ewing sarcoma has changed very little in the past two decades and novel treatment approaches are needed. We recently identified that Ewing sarcoma cells are uniquely vulnerable to inhibitors of ribonucleotide reductase (RNR), the rate-limiting enzyme in the synthesis of deoxyribonucleotides. We subsequently found that the inhibition of checkpoint kinase 1 (CHK1) increases the sensitivity of Ewing sarcoma cells to inhibitors of RNR, such as gemcitabine. However, Ewing sarcoma cells exhibit high levels of the CHK1 protein, which may represent an adaptive response to elevated levels of endogenous DNA replication stress. Consequently, we began this work with the aim of determining the impact of CHK1 levels on drug sensitivity, as well as identifying the mechanisms and pathways that regulate CHK1 levels in Ewing sarcoma cells. In this report, we show that the high levels of the CHK1 protein in Ewing sarcoma cells limit the efficacy of CHK1 inhibitors. However, inhibition of mTORC1/2 activates the translational repressor 4E-BP1, reduces protein synthesis, and decreases levels of the CHK1 protein in Ewing sarcoma cells. Similarly, we identified that the CHK1 inhibitor prexasertib also activates 4E-BP1, inhibits protein synthesis, and reduces CHK1 protein levels in Ewing sarcoma cells. Moreover, the combination of prexasertib and gemcitabine was synergistic in vitro, caused tumor regression in vivo, and significantly prolonged mouse survival in a Ewing sarcoma xenograft experiment. Overall, our results provide insight into Ewing sarcoma biology and support further investigation of the CHK1 pathway as a therapeutic target in Ewing sarcoma tumors.
Collapse
Affiliation(s)
- Stacia L Koppenhafer
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - Kelli L Goss
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - William W Terry
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa
| | - David J Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
34
|
El-Naggar AM, Sorensen PH. Translational control of aberrant stress responses as a hallmark of cancer. J Pathol 2018; 244:650-666. [PMID: 29293271 DOI: 10.1002/path.5030] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology, Faculty of Medicine, Menoufia University, Egypt
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada
| |
Collapse
|
35
|
Abstract
The cellular response to external stress signals and DNA damage depends on the activity of ubiquitin ligases (E3s), which regulate numerous cellular processes, including homeostasis, metabolism and cell cycle progression. E3s recognize, interact with and ubiquitylate protein substrates in a temporally and spatially regulated manner. The topology of the ubiquitin chains dictates the fate of the substrates, marking them for recognition and degradation by the proteasome or altering their subcellular localization or assembly into functional complexes. Both genetic and epigenetic alterations account for the deregulation of E3s in cancer. Consequently, the stability and/or activity of E3 substrates are also altered, in some cases leading to downregulation of tumour-suppressor activities and upregulation of oncogenic activities. A better understanding of the mechanisms underlying E3 regulation and function in tumorigenesis is expected to identify novel prognostic markers and to enable the development of the next generation of anticancer therapies. This Review summarizes the oncogenic and tumour-suppressor roles of selected E3s and highlights novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
| | - Jianfei Qi
- University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92130, USA
- Technion Integrated Cancer Center, Technion, Israel Institute of Technology Faculty of Medicine, Haifa 31096, Israel
| |
Collapse
|
36
|
Green VA, Pelkmans L. A Systems Survey of Progressive Host-Cell Reorganization during Rotavirus Infection. Cell Host Microbe 2017; 20:107-20. [PMID: 27414499 DOI: 10.1016/j.chom.2016.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/12/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Pathogen invasion is often accompanied by widespread alterations in cellular physiology, which reflects the hijacking of host factors and processes for pathogen entry and replication. Although genetic perturbation screens have revealed the complexity of host factors involved for numerous pathogens, it has remained challenging to temporally define the progression of events in host cell reorganization during infection. We combine high-confidence genome-scale RNAi screening of host factors required for rotavirus infection in human intestinal cells with an innovative approach to infer the trajectory of virus infection from fixed cell populations. This approach reveals a comprehensive network of host cellular processes involved in rotavirus infection and implicates AMPK in initiating the development of a rotavirus-permissive environment. Our work provides a powerful approach that can be generalized to order complex host cellular requirements along a trajectory of cellular reorganization during pathogen invasion.
Collapse
Affiliation(s)
- Victoria A Green
- Faculty of Sciences, Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - Lucas Pelkmans
- Faculty of Sciences, Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Zhang C, Lei JL, Zhang H, Xia YZ, Yu P, Yang L, Kong LY. Calyxin Y sensitizes cisplatin-sensitive and resistant hepatocellular carcinoma cells to cisplatin through apoptotic and autophagic cell death via SCF βTrCP-mediated eEF2K degradation. Oncotarget 2017; 8:70595-70616. [PMID: 29050305 PMCID: PMC5642580 DOI: 10.18632/oncotarget.19883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
The down-regulation of eukaryotic elongation factor-2 kinase (eEF2K) is associated with an enhancement in the sensitivity of malignant cells to chemotherapeutic agents. In this study, we found that the silencing of eEF2K enhanced cisplatin (CDDP)-induced cytotoxicity in CDDP-sensitive (HepG2) and resistant (HepG2/CDDP) cells. Calyxin Y, a unique chalcone diarylheptanoid adduct, down-regulated eEF2K by promoting Skp1-Cul1-F-box protein (SCF) β-transducin repeat-containing protein (βTrCP)-mediated protein degradation and synergistically enhanced the cytotoxicity of CDDP. Subsequently, we identified a potential mechanism of this cooperative interaction by showing that the combination of calyxin Y and CDDP enhanced apoptotic cell death via mitochondrial dysfunction. In addition, the combination induced autophagy, which contributed to the synergistic cytotoxic effect. Further research revealed that calyxin Y synergistically sensitized HepG2 and HepG2/CDDP cells to CDDP through enhanced apoptotic and autophagic cell death via the SCF βTrCP-eEF2K pathway. Finally, in vivo studies demonstrated that calyxin Y could enhance the response of HepG2/CDDP cells to CDDP in xenograft models with low systemic toxicity. Thus, the combination of calyxin Y and CDDP might represent an attractive therapeutic strategy for the treatment of chemotherapy-sensitive and resistant hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Li Lei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
38
|
VprBP/DCAF1 Regulates the Degradation and Nonproteolytic Activation of the Cell Cycle Transcription Factor FoxM1. Mol Cell Biol 2017; 37:MCB.00609-16. [PMID: 28416635 DOI: 10.1128/mcb.00609-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
The oncogenic transcription factor FoxM1 plays a vital role in cell cycle progression, is activated in numerous human malignancies, and is linked to chromosome instability. We characterize here a cullin 4-based E3 ubiquitin ligase and its substrate receptor, VprBP/DCAF1 (CRL4VprBP), which we show regulate FoxM1 ubiquitylation and degradation. Paradoxically, we also found that the substrate receptor VprBP is a potent FoxM1 activator. VprBP depletion reduces expression of FoxM1 target genes and impairs mitotic entry, whereas ectopic VprBP expression strongly activates a FoxM1 transcriptional reporter. VprBP binding to CRL4 is reduced during mitosis, and our data suggest that VprBP activation of FoxM1 is ligase independent. This implies a nonproteolytic activation mechanism that is reminiscent of, yet distinct from, the ubiquitin-dependent transactivation of the oncoprotein Myc by other E3s. Significantly, VprBP protein levels were upregulated in high-grade serous ovarian patient tumors, where the FoxM1 signature is amplified. These data suggest that FoxM1 abundance and activity are controlled by VprBP and highlight the functional repurposing of E3 ligase substrate receptors independent of the ubiquitin system.
Collapse
|
39
|
Johanns M, Pyr Dit Ruys S, Houddane A, Vertommen D, Herinckx G, Hue L, Proud CG, Rider MH. Direct and indirect activation of eukaryotic elongation factor 2 kinase by AMP-activated protein kinase. Cell Signal 2017; 36:212-221. [PMID: 28502587 DOI: 10.1016/j.cellsig.2017.05.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K) is a key regulator of protein synthesis in mammalian cells. It phosphorylates and inhibits eEF2, the translation factor necessary for peptide translocation during the elongation phase of protein synthesis. When cellular energy demand outweighs energy supply, AMP-activated protein kinase (AMPK) and eEF2K become activated, leading to eEF2 phosphorylation, which reduces the rate of protein synthesis, a process that consumes a large proportion of cellular energy under optimal conditions. AIM The goal of the present study was to elucidate the mechanisms by which AMPK activation leads to increased eEF2 phosphorylation to decrease protein synthesis. METHODS Using genetically modified mouse embryo fibroblasts (MEFs), effects of treatments with commonly used AMPK activators to increase eEF2 phosphorylation were compared with that of the novel compound 991. Bacterially expressed recombinant eEF2K was phosphorylated in vitro by recombinant activated AMPK for phosphorylation site-identification by mass spectrometry followed by site-directed mutagenesis of the identified sites to alanine residues to study effects on the kinetic properties of eEF2K. Wild-type eEF2K and a Ser491/Ser492 mutant were retrovirally re-introduced in eEF2K-deficient MEFs and effects of 991 treatment on eEF2 phosphorylation and protein synthesis rates were studied in these cells. RESULTS & CONCLUSIONS AMPK activation leads to increased eEF2 phosphorylation in MEFs mainly by direct activation of eEF2K and partly by inhibition of mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment of MEFs with AMPK activators can also lead to eEF2K activation independently of AMPK probably via a rise in intracellular Ca2+. AMPK activates eEF2K by multi-site phosphorylation and the newly identified Ser491/Ser492 is important for activation, leading to mTOR-independent inhibition of protein synthesis. Our study provides new insights into the control of eEF2K by AMPK, with implications for linking metabolic stress to decreased protein synthesis to conserve energy reserves, a pathway that is of major importance in cancer cell survival.
Collapse
Affiliation(s)
- M Johanns
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - S Pyr Dit Ruys
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - A Houddane
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - D Vertommen
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - G Herinckx
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - L Hue
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium
| | - C G Proud
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - M H Rider
- Université catholique de Louvain (UCL), de Duve Institute, Avenue Hippocrate 75 bte 74.02, 1200-Brussels, Belgium.
| |
Collapse
|
40
|
Zhu H, Song H, Chen G, Yang X, Liu J, Ge Y, Lu J, Qin Q, Zhang C, Xu L, Di X, Cai J, Ma J, Zhang S, Sun X. eEF2K promotes progression and radioresistance of esophageal squamous cell carcinoma. Radiother Oncol 2017; 124:439-447. [PMID: 28431753 DOI: 10.1016/j.radonc.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 03/06/2017] [Accepted: 04/02/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To investigate the biological function of eEF2K in esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS Tissue microarrays containing 100 pairs of ESCC tumor and adjacent normal tissues were completed. Overexpression and knockdown of eEF2K were constructed in ECA-109 and TE-13 ESCC cells. DNA damage, cell viability, migration and invasion, radioresistance, apoptosis and autophagy were determined by immunofluorescence, CCK-8, transwell assay, colony formation assay, flow cytometry and western blot, respectively. Tumor growth and radioresistance were also evaluated using xenograft models created in nude mice. RESULTS eEF2K expression was higher in ESCC tissues compared with matched non-tumor tissues (P<0.05). Proliferation was increased in eEF2K overexpressing cells compared with controls (P<0.05), while silencing eEF2K reduced cell proliferation (P<0.05). Furthermore, lower levels of eEF2K expression correlated with slower migration and invasion rates (P<0.05), while higher levels of eEF2K expression with faster migration and invasion rates (P<0.05). eEF2K overexpression resulted in radioresistance and radiation-induced autophagy, and reduced radiation-induced apoptosis compared with controls, but silencing eEF2K promoted radiosensitivity and apoptosis, and reduced autophagy. In addition, eEF2K overexpression promoted the tumor growth in vivo (P<0.01). Combined treatment of NH125 (a pharmacological inhibitor of eEF2K) and radiation was more effective at delaying xenograft tumor growth than NH125 and radiation alone (P<0.05). CONCLUSION eEF2K induced progression and radioresistance in ESCC, which may be a novel therapeutic target for ESCC to increase radiosensitivity.
Collapse
Affiliation(s)
- Hongcheng Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Hongmei Song
- Department of Radiation Oncology, The Second Hospital of Lianyungang, Lianyungang Hospital Affiliated to Bengbu Medical College, China
| | - Guangzong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, China
| | - Jia Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Yangyang Ge
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Nantong University, China
| | - Jing Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Chi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Liping Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Jing Cai
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Nantong University, China
| | - Jianxin Ma
- Department of Radiation Oncology, The Second Hospital of Lianyungang, Lianyungang Hospital Affiliated to Bengbu Medical College, China
| | - Shu Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
41
|
Alemasova EE, Lavrik OI. At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair. Acta Naturae 2017; 9:4-16. [PMID: 28740723 PMCID: PMC5508997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/26/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
Collapse
Affiliation(s)
- E. E. Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
| | - O. I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
42
|
Tavares CDJ, Giles DH, Stancu G, Chitjian CA, Ferguson SB, Wellmann RM, Kaoud TS, Ghose R, Dalby KN. Signal Integration at Elongation Factor 2 Kinase: THE ROLES OF CALCIUM, CALMODULIN, AND SER-500 PHOSPHORYLATION. J Biol Chem 2016; 292:2032-2045. [PMID: 27956550 DOI: 10.1074/jbc.m116.753277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/28/2016] [Indexed: 12/22/2022] Open
Abstract
Eukaryotic elongation factor 2 kinase (eEF-2K), the only calmodulin (CaM)-dependent member of the unique α-kinase family, impedes protein synthesis by phosphorylating eEF-2. We recently identified Thr-348 and Ser-500 as two key autophosphorylation sites within eEF-2K that regulate its activity. eEF-2K is regulated by Ca2+ ions and multiple upstream signaling pathways, but how it integrates these signals into a coherent output, i.e. phosphorylation of eEF-2, is unclear. This study focuses on understanding how the post-translational phosphorylation of Ser-500 integrates with Ca2+ and CaM to regulate eEF-2K. CaM is shown to be absolutely necessary for efficient activity of eEF-2K, and Ca2+ is shown to enhance the affinity of CaM toward eEF-2K. Ser-500 is found to undergo autophosphorylation in cells treated with ionomycin and is likely also targeted by PKA. In vitro, autophosphorylation of Ser-500 is found to require Ca2+ and CaM and is inhibited by mutations that compromise binding of phosphorylated Thr-348 to an allosteric binding pocket on the kinase domain. A phosphomimetic Ser-500 to aspartic acid mutation (eEF-2K S500D) enhances the rate of activation (Thr-348 autophosphorylation) by 6-fold and lowers the EC50 for Ca2+/CaM binding to activated eEF-2K (Thr-348 phosphorylated) by 20-fold. This is predicted to result in an elevation of the cellular fraction of active eEF-2K. In support of this mechanism, eEF-2K knock-out MCF10A cells reconstituted with eEF-2K S500D display relatively high levels of phospho-eEF-2 under basal conditions. This study reports how phosphorylation of a regulatory site (Ser-500) integrates with Ca2+ and CaM to influence eEF-2K activity.
Collapse
Affiliation(s)
- Clint D J Tavares
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712.
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Gabriel Stancu
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Catrina A Chitjian
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Scarlett B Ferguson
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Rebecca M Wellmann
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Tamer S Kaoud
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712
| | - Ranajeet Ghose
- the Department of Chemistry, City College of New York, New York, New York 10031; the Graduate Center, City University of New York, New York, New York 10016
| | - Kevin N Dalby
- From the Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712; Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712.
| |
Collapse
|
43
|
McKnight RA, Yost CC, Zinkhan EK, Fu Q, Callaway CW, Fung CM. Intrauterine growth restriction inhibits expression of eukaryotic elongation factor 2 kinase, a regulator of protein translation. Physiol Genomics 2016; 48:616-25. [PMID: 27317589 DOI: 10.1152/physiolgenomics.00045.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022] Open
Abstract
Nutrient deprivation suppresses protein synthesis by blocking peptide elongation. Transcriptional upregulation and activation of eukaryotic elongation factor 2 kinase (eEF2K) blocks peptide elongation by phosphorylating eukaryotic elongation factor 2. Previous studies examining placentas from intrauterine growth restricted (IUGR) newborn infants show decreased eEF2K expression and activity despite chronic nutrient deprivation. However, the effect of IUGR on hepatic eEF2K expression in the fetus is unknown. We, therefore, examined the transcriptional regulation of hepatic eEF2K gene expression in a Sprague-Dawley rat model of IUGR. We found decreased hepatic eEF2K mRNA and protein levels in IUGR offspring at birth compared with control, consistent with previous placental observations. Furthermore, the CpG island within the eEF2K promoter demonstrated increased methylation at a critical USF 1/2 transcription factor binding site. In vitro methylation of this binding site caused near complete loss of eEF2K promoter activity, designating this promoter as methylation sensitive. The eEF2K promotor in IUGR offspring also lost the protective histone covalent modifications associated with unmethylated CGIs. In addition, the +1 nucleosome was displaced 3' and RNA polymerase loading was reduced at the IUGR eEF2K promoter. Our findings provide evidence to explain why IUGR-induced chronic nutrient deprivation does not result in the upregulation of eEF2K gene transcription.
Collapse
Affiliation(s)
- Robert A McKnight
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Christian C Yost
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Erin K Zinkhan
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Qi Fu
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christopher W Callaway
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Camille M Fung
- Division of Neonatology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah; and
| |
Collapse
|
44
|
Liao Y, Chu HP, Hu Z, Merkin JJ, Chen J, Liu Z, Degenhardt K, White E, Ryazanov AG. Paradoxical Roles of Elongation Factor-2 Kinase in Stem Cell Survival. J Biol Chem 2016; 291:19545-57. [PMID: 27466362 DOI: 10.1074/jbc.m116.724856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Indexed: 11/06/2022] Open
Abstract
Protein synthesis inhibition is an immediate response during stress to switch the composition of protein pool in order to adapt to the new environment. It was reported that this response could be either protective or deleterious. However, how cells choose to live or die upon protein synthesis inhibition is largely unknown. Previously, we have shown that elongation factor-2 kinase (eEF2K), a protein kinase that suppresses protein synthesis during elongation phase, is a positive regulator of apoptosis both in vivo and in vitro Consistently, here we report that knock-out of eEF2K protects mice from a lethal dose of whole-body ionizing radiation at 8 Gy by reducing apoptosis levels in both bone marrow and gastrointestinal tracts. Surprisingly, similar to the loss of p53, eEF2K deficiency results in more severe damage to the gastrointestinal tract at 20 Gy with the increased mitotic cell death in small intestinal stem cells. Furthermore, using epithelial cell lines, we showed that eEF2K is required for G2/M arrest induced by radiation to prevent mitotic catastrophe in a p53-independent manner. Specifically, we observed the elevation of Akt/ERK activity as well as the reduction of p21 expression in Eef2k(-/-) cells. Therefore, eEF2K also provides a protective strategy to maintain genomic integrity by arresting cell cycle in response to stress. Our results suggest that protective versus pro-apoptotic roles of eEF2K depend on the type of cells: eEF2K is protective in highly proliferative cells, such as small intestinal stem cells and cancer cells, which are more susceptible to mitotic catastrophe.
Collapse
Affiliation(s)
- Yi Liao
- From the Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China, the Department of Pharmacology, Robert Wood Johnson Medical School, and
| | - Hsueh-Ping Chu
- the Department of Pharmacology, Robert Wood Johnson Medical School, and the Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
| | - Zhixian Hu
- the Department of Pharmacology, Robert Wood Johnson Medical School, and
| | - Jason J Merkin
- the Department of Pharmacology, Robert Wood Johnson Medical School, and
| | - Jianmin Chen
- the Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Zuguo Liu
- From the Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, China, the Affiliated Xiamen Eye Center of Xiamen University, Xiamen, Fujian 361102, China
| | - Kurt Degenhardt
- the Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Eileen White
- the Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Alexey G Ryazanov
- the Department of Pharmacology, Robert Wood Johnson Medical School, and
| |
Collapse
|
45
|
Takatani T, Shirakawa J, Roe MW, Leech CA, Maier BF, Mirmira RG, Kulkarni RN. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation. Sci Rep 2016; 6:28177. [PMID: 27378176 PMCID: PMC4932502 DOI: 10.1038/srep28177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is among several pathological features that underlie β-cell failure in the development of type 1 and type 2 diabetes. Adaptor proteins in the insulin/insulin-like-growth factor-1 signaling pathways, such as insulin receptor substrate-1 (IRS1) and IRS2, differentially impact β-cell survival but the underlying mechanisms remain unclear. Here we report that β-cells deficient in IRS1 (IRS1KO) are resistant, while IRS2 deficiency (IRS2KO) makes them susceptible to ER stress-mediated apoptosis. IRS1KOs exhibited low nuclear accumulation of spliced XBP-1 due to its poor stability, in contrast to elevated accumulation in IRS2KO. The reduced nuclear accumulation in IRS1KO was due to protein instability of Xbp1 secondary to proteasomal degradation. IRS1KO also demonstrated an attenuation in their general translation status in response to ER stress revealed by polyribosomal profiling. Phosphorylation of eEF2 was dramatically increased in IRS1KO enabling the β-cells to adapt to ER stress by blocking translation. Furthermore, significantly high ER calcium (Ca2+) was detected in IRS1KO β-cells even upon induction of ER stress. These observations suggest that IRS1 could be a therapeutic target for β-cell protection against ER stress-mediated cell death by modulating XBP-1 stability, protein synthesis, and Ca2+ storage in the ER.
Collapse
Affiliation(s)
- Tomozumi Takatani
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Jun Shirakawa
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael W Roe
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY), Upstate Medical University, Syracuse, NY, USA
| | - Bernhard F Maier
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Department of Biochemistry and Molecular Biology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Eukaryotic elongation factor 2 kinase as a drug target in cancer, and in cardiovascular and neurodegenerative diseases. Acta Pharmacol Sin 2016; 37:285-94. [PMID: 26806303 DOI: 10.1038/aps.2015.123] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023]
Abstract
Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual protein kinase that regulates the elongation stage of protein synthesis by phosphorylating and inhibiting its only known substrate, eEF2. Elongation is a highly energy-consuming process, and eEF2K activity is tightly regulated by several signaling pathways. Regulating translation elongation can modulate the cellular energy demand and may also control the expression of specific proteins. Growing evidence links eEF2K to a range of human diseases, including cardiovascular conditions (atherosclerosis, via macrophage survival) and pulmonary arterial hypertension, as well as solid tumors, where eEF2K appears to play contrasting roles depending on tumor type and stage. eEF2K is also involved in neurological disorders and may be a valuable target in treating depression and certain neurodegenerative diseases. Because eEF2K is not required for mammalian development or cell viability, inhibiting its function may not elicit serious side effects, while the fact that it is an atypical kinase and quite distinct from the vast majority of other mammalian kinases suggests the possibility to develop it into compounds that inhibit eEF2K without affecting other important protein kinases. Further research is needed to explore these possibilities and there is an urgent need to identify and characterize potent and specific small-molecule inhibitors of eEF2K. In this article we review the recent evidence concerning the role of eEF2K in human diseases as well as the progress in developing small-molecule inhibitors of this enzyme.
Collapse
|
47
|
Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation. Biochem J 2015; 473:473-85. [PMID: 26621875 DOI: 10.1042/bj20150419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/30/2015] [Indexed: 11/17/2022]
Abstract
CVB3 (coxsackievirus 3) is a primary causal agent of viral myocarditis. Emodin is a natural compound isolated from certain plant roots. In the present study, we found that emodin inhibited CVB3 replication in vitro and in mice, and now we report an unrecognized mechanism by which emodin inhibits CVB3 replication through suppression of viral protein translation via multiple pathways. On one hand, emodin treatment inhibited Akt/mTOR (mammalian target of rapamycin) signalling and activated 4EBP1 (eukaryotic initiation factor 4R-binding protein 1), leading to suppression of translation initiation of ribosomal protein L32 encoded by a 5'-TOP (terminal oligopyrimidine) mRNA. On the other hand, emodin treatment differentially regulated multiple signal cascades, including Akt/mTORC1/p70(S6K) (p70 S6 kinase), ERK1/2 (extracellular-signal-regulated kinase 1/2)/p90(RSK) (p90 ribosomal S6 kinase) and Ca(2+)/calmodulin, leading to activation of eEF2K (eukaryotic elongation factor 2 kinase) and subsequent inactivation of eEF2 (eukaryotic elongation factor 2), resulting in inhibition of CVB3 VP1 (viral protein 1) synthesis. These data imply that eEF2K is a major factor mediating cross-talk of different arms of signalling cascades in this signal network. This notion was verified by either overexpressing eEF2K or treating the cells with siRNAs or eEF2K inhibitor A484954. We showed further that the emodin-induced decrease in p70(S6K) phosphorylation plays a dominant positive role in activation of eEF2K and in turn in conferring the antiviral effect of emodin. This finding was further solidified by expressing constitutively active and dominant-negative Akt. Collectively, our data reveal that emodin inhibits viral replication through impairing translational machinery and suppression of viral translation elongation.
Collapse
|
48
|
Stickel SA, Gomes NP, Frederick B, Raben D, Su TT. Bouvardin is a Radiation Modulator with a Novel Mechanism of Action. Radiat Res 2015; 184:392-403. [PMID: 26414509 DOI: 10.1667/rr14068.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein synthesis is essential for growth, proliferation and survival of cells. Translation factors are overexpressed in many cancers and in preclinical models, their experimental inhibition has been shown to inhibit cancer growth. Differential regulation of translation also occurs upon exposure to cancer-relevant stressors such as hypoxia and ionizing radiation. The failure to regulate translation has been shown to interfere with recovery after genotoxic stress. These findings suggest that modulation of translation, alone or in conjunction with genotoxins, may be therapeutic in oncology. Yet, only two drugs that directly inhibit translation are FDA-approved for oncology therapies used today. We have previously identified the protein synthesis inhibitor, bouvardin in a screen for small molecule enhancers of ionizing radiation in Drosophila melanogaster . Bouvardin was independently identified in a screen for selective inhibitors of engineered human breast cancer stem cells. Here we report the effect of bouvardin treatment in preclinical models of head and neck cancer (HNC) and glioma, two cancer types for which radiation therapy is the most common treatment. Our data show that bouvardin treatment blocked translation elongation on human ribosomes and suggest that it did so by blocking the dissociation of elongation factor 2 from the ribosome. Bouvardin and radiation enhanced the induction of clonogenic death in HNC and glioma cells, although by different mechanisms. Bouvardin treatment enhanced the radiation-induced antitumor effects in HNC tumor xenografts in mice. These data suggest that inhibition of translation elongation, particularly in combination with radiation treatment, may be a promising treatment option for cancer.
Collapse
Affiliation(s)
- Stefanie A Stickel
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado
| | - Nathan P Gomes
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,d SuviCa, Inc., Boulder, Colorado
| | - Barbara Frederick
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,c Department of Radiation Oncology, University of Colorado Health Sciences Campus, Aurora, Colorado; and
| | - David Raben
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,c Department of Radiation Oncology, University of Colorado Health Sciences Campus, Aurora, Colorado; and
| | - Tin Tin Su
- a Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado;,b University of Colorado, Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
49
|
Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast ÁM, Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Milsom MD, Steinmetz LM, Schroeder T, Trumpp A, Krijgsveld J, Essers MAG. Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell 2015; 17:422-34. [PMID: 26299573 DOI: 10.1016/j.stem.2015.07.007] [Citation(s) in RCA: 321] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 01/28/2023]
Abstract
Infections are associated with extensive platelet consumption, representing a high risk for health. However, the mechanism coordinating the rapid regeneration of the platelet pool during such stress conditions remains unclear. Here, we report that the phenotypic hematopoietic stem cell (HSC) compartment contains stem-like megakaryocyte-committed progenitors (SL-MkPs), a cell population that shares many features with multipotent HSCs and serves as a lineage-restricted emergency pool for inflammatory insults. During homeostasis, SL-MkPs are maintained in a primed but quiescent state, thus contributing little to steady-state megakaryopoiesis. Even though lineage-specific megakaryocyte transcripts are expressed, protein synthesis is suppressed. In response to acute inflammation, SL-MkPs become activated, resulting in megakaryocyte protein production from pre-existing transcripts and a maturation of SL-MkPs and other megakaryocyte progenitors. This results in an efficient replenishment of platelets that are lost during inflammatory insult. Thus, our study reveals an emergency machinery that counteracts life-threatening platelet depletions during acute inflammation.
Collapse
Affiliation(s)
- Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Jenny Hansson
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Daniel Klimmeck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Lars Velten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Hannah Uckelmann
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Stephan Wurzer
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Áine M Prendergast
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Alexandra Schnell
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Klaus Hexel
- Core Facility Flow Cytometry, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Rachel Santarella-Mellwig
- European Molecular Biology Laboratory (EMBL), Electron Microscopy Core Facility, 69117 Heidelberg, Germany
| | - Sandra Blaszkiewicz
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Andrea Kuck
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Hartmut Geiger
- Institute for Molecular Medicine, Ulm University, 89081 Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Experimental Hematology Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Division of Stem Cells and Cancer, Hematopoietic Stem Cells and Stress Group, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Loss of diphthamide pre-activates NF-κB and death receptor pathways and renders MCF7 cells hypersensitive to tumor necrosis factor. Proc Natl Acad Sci U S A 2015; 112:10732-7. [PMID: 26261303 DOI: 10.1073/pnas.1512863112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The diphthamide on human eukaryotic translation elongation factor 2 (eEF2) is the target of ADP ribosylating diphtheria toxin (DT) and Pseudomonas exotoxin A (PE). This modification is synthesized by seven dipthamide biosynthesis proteins (DPH1-DPH7) and is conserved among eukaryotes and archaea. We generated MCF7 breast cancer cell line-derived DPH gene knockout (ko) cells to assess the impact of complete or partial inactivation on diphthamide synthesis and toxin sensitivity, and to address the biological consequence of diphthamide deficiency. Cells with heterozygous gene inactivation still contained predominantly diphthamide-modified eEF2 and were as sensitive to PE and DT as parent cells. Thus, DPH gene copy number reduction does not affect overall diphthamide synthesis and toxin sensitivity. Complete inactivation of DPH1, DPH2, DPH4, and DPH5 generated viable cells without diphthamide. DPH1ko, DPH2ko, and DPH4ko harbored unmodified eEF2 and DPH5ko ACP- (diphthine-precursor) modified eEF2. Loss of diphthamide prevented ADP ribosylation of eEF2, rendered cells resistant to PE and DT, but does not affect sensitivity toward other protein synthesis inhibitors, such as saporin or cycloheximide. Surprisingly, cells without diphthamide (independent of which the DPH gene compromised) were presensitized toward nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) and death-receptor pathways without crossing lethal thresholds. In consequence, loss of diphthamide rendered cells hypersensitive toward TNF-mediated apoptosis. This finding suggests a role of diphthamide in modulating NF-κB, death receptor, or apoptosis pathways.
Collapse
|