1
|
Tang X, Zhang J, Sun Y, Xu Z, Huang T, Liu X, Song Y, Zhang Y, Deng Y. Autonomic lysosomal escape via sialic acid modification enhances mRNA lipid nanoparticles to eradicate tumors and build humoral immune memory. J Control Release 2025; 382:113647. [PMID: 40158813 DOI: 10.1016/j.jconrel.2025.113647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Lysosomes present a major barrier to efficient mRNA delivery. Existing strategies primarily depend on lysosomal disruption, which is inefficient and carries a risk of cytolysis. We propose an Autonomic Lysosomal Escape (ALE) strategy, in which sialic acid (SA) modification enables over 90 % of LNPs to successfully escape from lysosomes by inducing cells to spontaneously reduce lysosome generation. The SA modification enhances the transfection efficiency of LNPs administered via intravenous injection, intramuscular injection, and inhalation, demonstrating the broad applicability. The structure of cleavable PEG-lipids was optimized using a newly developed method, termed Systematic Evaluation of LNPs' Efficiency by Cumulative Tests (SELECT). The results showed that polyethylene glycol 2000-cholesterol hemisuccinate (Ps) is the optimal candidate for co-modification with SA. The resulting LNPs co-modified with SA and Ps (SAPs@LNPs) completely eradicated TC-1 tumors and induced humoral immune memory. Combining SA-modified doxorubicin liposomes (DOX-SL) further accelerates tumor elimination, while licensed PEGylated liposomal doxorubicin (Caelyx) impairs the efficacy of mRNA vaccines. This difference stems from DOX-SL's selective depletion of tumor-associated immune cells (TAICs) and the nonspecific cytotoxicity of Caelyx. These findings suggest that combining Caelyx with mRNA vaccines should be approached with caution. Our study also highlights the key roles of humoral immune memory and natural killer cell-driven antibody-dependent cellular cytotoxicity (ADCC) in tumor eradication, and incorporating them into the cancer immune cycle further refines this theory.
Collapse
Affiliation(s)
- Xueying Tang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Jiashuo Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yuejia Sun
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Zihan Xu
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Tiancheng Huang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| | - Yu Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, Liaoning 117004, China.
| |
Collapse
|
2
|
Chen M, Liu G, Fang Z, Gao W, Song Y, Lei L, Du X, Li X. Buddleoside alleviates nonalcoholic steatohepatitis by targeting the AMPK-TFEB signaling pathway. Autophagy 2025; 21:1316-1334. [PMID: 39936600 DOI: 10.1080/15548627.2025.2466145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a combination of hepatic steatosis, inflammation, and fibrosis, and it often follows simple hepatic steatosis in nonalcoholic fatty liver disease (NAFLD). However, no pharmacological treatment is currently available for NASH. Given the important role of TFEB (transcription factor EB) in regulating the macroautophagy/autophagy-lysosomal pathway, TFEB is potentially a novel therapeutic target for treatment of NASH, which function can be regulated by AMP-activated protein kinase (AMPK) and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Buddleoside (Bud), a natural flavonoid compound, has recently emerged as a promising drug candidate for liver diseases. Here, we shown that Bud treatment alleviated hepatic steatosis, insulin resistance, inflammation, and fibrosis in mice fed a high-fat and high-cholesterol (HFHC) diet. Notably, Bud activated AMPK, inhibited MTORC1, and enhanced TFEB transcriptional activity as well as autophagic flux in vivo and in vitro. Inhibition of AMPK or knockout of hepatic Tfeb abrogated the alleviation effects of Bud on hepatic steatosis, insulin resistance, inflammation, and fibrosis. Mechanistic investigation revealed that Bud bound to the PRKAB1 subunit via Val81, Arg83, and Ser108 residues and activated AMPK, thereby eliciting phosphorylation of RPTOR (regulatory associated protein of MTOR complex 1) and inhibiting the kinase MTORC1, which activated the TFEB-mediated autophagy-lysosomal pathway and further ameliorated HFHC-induced NASH in mice. Altogether, our results indicate that Bud ameliorates NASH by activating hepatic the AMPK-TFEB axis, suggesting that Bud is a potential therapeutic strategy for NASH.Abbreviations: ACAC, acetyl-CoA carboxylase; ADaM, allosteric drug and metabolite; AICAR, 5-aminoimidazole-4-carboxamide1-β-D-ribofuranoside; AKT, AKT serine/threonine kinase; ALP, autophagy-lysosomal pathway; AMPK, AMP-activated protein kinase; Bud, buddleoside; CAMKK2, calcium/calmodulin dependent protein kinase kinase 2; CC, compound C; CETSA, cellular thermal shift assay; Cmax, maximum concentration; CQ, chloroquine; DARTS, drug affinity responsive target stability assay; EIF4EBP1, eukaryotic translation factor 4E binding protein 1; GOT1, glutamic-oxaloacetic transaminase 1; GPT, glutamic-pyruvic transaminase; GSK3B, glycogen synthase kinase 3 beta; GTT, glucose-tolerance test; HFD, high fat diet; HFHC, high-fat and high-cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; IKBKB, inhibitor of nuclear factor kappa B kinase subunit beta; INSR, insulin receptor; ITT, insulin-tolerance test; LDH, lactate dehydrogenase; STK11, serine/threonine kinase 11; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MTORC1, MTOR complex 1; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; ND, normal diet; NFKB, nuclear factor kappa B; PA, palmitic acid; PSR, picrosirius red; RRAG, Ras related GTP binding; RPTOR, regulatory associated protein of MTOR complex 1; RPS6, ribosomal protein S6; RPS6KB, ribosomal protein S6 kinase B; SMAD2, SMAD family member 2; SMAD3, SMAD family member 3; SQSTM1, sequestosome 1; TFEB, transcription factor EB; tfeb-HKO, hepatocyte-specific tfeb knockout; TSC2, TSC complex subunit 2.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Nicastro R, Péli-Gulli MP, Caligaris M, Jaquenoud M, Dokládal L, Alba J, Tripodi F, Pillet B, Brunner M, Stumpe M, Muneshige K, Hatakeyama R, Dengjel J, De Virgilio C. TORC1 autonomously controls its spatial partitioning via the Rag GTPase tether Tco89. Cell Rep 2025; 44:115683. [PMID: 40359108 DOI: 10.1016/j.celrep.2025.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The eukaryotic target of rapamycin complex 1 (TORC1) kinase is a homeostatic regulator of growth, integrating nutritional cues at the endolysosomal compartment. Amino acids activate mammalian TORC1 (mTORC1) through the Rag GTPases that recruit it to lysosomes via a short domain within the mTORC1 subunit Raptor. Intriguingly, this "Raptor claw" domain is absent in Kog1, the Raptor ortholog in yeast. Instead, as we show here, yeast utilizes the fungal-specific Tco89 to tether TORC1 to active Rag GTPases. This interaction enables TORC1 to precisely calibrate the activity of the S6K1-related effector kinase Sch9 in response to amino acid availability. TORC1 stabilizes Tco89 by phosphorylation, and its inactivation causes swift Tco89 proteolysis, provoking a redistribution of TORC1 from the vacuole to signaling endosomes and its spatial separation from Sch9. Thus, TORC1 not only operates in spatially distinct subcellular pools but also controls its own quantitative distribution between these pools to economize energy resources under fluctuating nutrient conditions.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Marco Caligaris
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Malika Jaquenoud
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ladislav Dokládal
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kenji Muneshige
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Riko Hatakeyama
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
4
|
Senapati PK, Mahapatra KK, Singh A, Bhutia SK. mTOR inhibitors in targeting autophagy and autophagy-associated signaling for cancer cell death and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189342. [PMID: 40339669 DOI: 10.1016/j.bbcan.2025.189342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The mechanistic target of rapamycin (mTOR) is a protein kinase that plays a central regulatory switch to control multifaceted cellular processes, including autophagy. As a nutrient sensor, mTOR inhibits autophagy by phosphorylating and inactivating key regulators, including ULK1, Beclin-1, UVRAG, and TFEB, preventing autophagy initiation and lysosomal biogenesis. It also suppresses autophagy-related protein expression, prioritizing growth over cellular recycling. Under nutrient deprivation, mTORC1 activity decreases, allowing autophagy to restore cellular homeostasis. Hyperautophagic activities lead to autophagic cell death; sometime after the point of no return, the cell goes for non-apoptotic, non-necrotic cell death i.e., Autosis. In cancer, the crosstalk between autophagy and mTOR is context-dependent, driving either cell survival or autophagy-dependent cell death. Using mTOR inhibitors, autophagic cell death can be induced to regulate cell growth, and proliferation is a potential therapeutic option for cancer treatment. mTOR inhibitors are broadly categorized into two types, i.e., natural and synthetic mTOR inhibitors. Although several studies in preclinical and clinical trials of various synthetic mTOR inhibitors are now in focus for cancer therapies, limited work has been done to explore autophagic cell death-inducing mTOR inhibitors. In addition, many natural mTOR inhibitors display better efficacy over synthetic mTOR inhibitors due to their lower toxicity, biocompatibility, and potential to overcome drug resistance in inducing autophagic cell death for cancer treatment.
Collapse
Affiliation(s)
- Prakash Kumar Senapati
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University Bhubaneswar, Odisha-752054, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
5
|
Lu Y, Liu Y, Cao J, Zhang Y, Zheng Y, Wang F. Waterborne ammonia toxicity damages crustacean hemocytes via lysosome-dependent autophagy: A case study of swimming crabs Portunus trituberculatus. ENVIRONMENTAL RESEARCH 2025; 272:120985. [PMID: 39983961 DOI: 10.1016/j.envres.2025.120985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
Waterborne ammonia is a threat to animal health and its accumulation is typical of aquatic ecosystems. Autophagy serves as a safeguard of intracellular homeostasis, yet its role in maintaining the health of hemocytes, the master regulators of crustacean immunity, remains unclear. Herein, the swimming crab (Portunus trituberculatus) is employed as a case study to illustrate the impact of ammonia on hemocyte health via autophagy. This study showed the occurrence of abnormal cellular structure and significant accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS) (P < 0.05), demonstrating that severe ammonia stress can damage hemocytes. This was accompanied by significant increase of autophagy hemocytes fraction and apoptosis (P < 0.05). Meanwhile, there was a significant increase in the expression of Beclin1 and microtubule-associated protein 1 light chain 3 (LC3-II) (P < 0.05). This suggests an ammonia-induced autophagy initiation. However, ammonia stress significantly decreased lysosomal fluorescence intensity (P < 0.05) and expression of the marker gene lysosomal-associated membrane protein 1 (LAMP1) (P < 0.05). These imply an ammonia-induced repression of lysosome-dependent autophagy degradation, which may underlie the pronounced increase in apoptosis (P < 0.05). After the administration of the autophagy activator rapamycin (Rap), rather than the inhibitor 3-Methyladenine (3-MA), the levels of apoptosis, ROS and the fraction of autophagic cells were significantly decreased (P < 0.05), demonstrating a mitigation of the ammonia-induced cell damage through lysosome-dependent autophagy degradation. This study sheds light on how crustaceans respond to ammonia exposure by demonstrating the significance of lysosome-dependent autophagy in maintaining hemocyte health.
Collapse
Affiliation(s)
- Yunliang Lu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianwei Cao
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yueqi Zhang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuan Zheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Fang Wang
- Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
6
|
Tapia PJ, Martina JA, Contreras PS, Prashar A, Jeong E, De Nardo D, Puertollano R. TFEB and TFE3 regulate STING1-dependent immune responses by controlling type I interferon signaling. Autophagy 2025:1-18. [PMID: 40195022 DOI: 10.1080/15548627.2025.2487036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
STING1 is an essential component of the innate immune defense against a wide variety of pathogens. Whereas induction of type I interferon (IFN) responses is one of the best-defined functions of STING1, our transcriptomic analysis revealed IFN-independent activities of STING1 in macrophages, including transcriptional upregulation of numerous lysosomal and autophagic genes. This upregulation was mediated by the STING1-induced activation of the transcription factors TFEB and TFE3, and led to increased autophagy, lysosomal biogenesis, and lysosomal acidification. TFEB and TFE3 also modulated IFN-dependent STING1 signaling by controlling IRF3 activation. IFN production and cell death were increased in TFEB- and TFE3-depleted iBMDMs. Conversely, TFEB overexpression led to reduced IRF3 activation and an almost complete inhibition of IFN synthesis and secretion, resulting in decreased CASP3 activation and increased cell survival. Our study reveals a key role of TFEB and TFE3 as regulators of STING1-mediated innate antiviral immunity.Abbreviation: ACOD1/IRG1, aconitate decarboxylase 1; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; CGAS, cyclic GMP-AMP synthase; DMXAA, 5,6-dimethylxanthenone-4-acetic acid; EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1; GABARAP, GABA type A receptor-associated protein; HSV-1, herpes simplex virus type; iBMDMs, immortalized bone marrow-derived macrophages; IFN, type I interferon; IFNB, interferon beta; IKBKE, inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF3, interferon regulatory factor 3; LAMP1, lysosomal associated membrane protein 1; LAMP2, lysosomal associated membrane protein 2; MTORC1, mechanistic target of rapamycin kinase complex 1; RPS6, ribosomal protein S6; STING1, stimulator of interferon response cGAMP interactor 1; TBK1, TANK binding kinase 1; TFE3, transcription factor binding to IGHM enhancer 3; TFEB, transcription factor EB.
Collapse
Affiliation(s)
- Pablo J Tapia
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akriti Prashar
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Gupta S, Dasari S, Warren RR, Shen W, Urban RM, Stanton ML, Lohse CM, Holdren MA, Hoenig MF, Pitel BA, Smoley SA, Nelson SW, Torell NR, Moon AC, Nelson LM, Garcia JJ, Lucas PC, Halling KC, Kipp BR, Boorjian SA, De Langhe SP, Erickson LA, Sharma V, Cheville JC, Leibovich BC. Renal Neoplasia in Birt-Hogg-Dubé Syndrome: Integrated Histopathologic, Bulk, and Single-cell Transcriptomic Analysis. Eur Urol 2025:S0302-2838(25)00184-8. [PMID: 40253282 DOI: 10.1016/j.eururo.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/04/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND AND OBJECTIVE It is unclear whether historically diagnosed "hybrid tumors" in patients with Birt-Hogg-Dubé syndrome (BHD) represent unique tumors or a hybrid between oncocytoma and chromophobe renal cell carcinoma (Ch-RCC), and existing diagnostic criteria are ambiguous. We aimed to understand the spectrum of folliculin gene (FLCN) alterations, outcomes for BHD patients with kidney tumors, and the biology of FLCN-mutated tumors (FMTs) to refine diagnostic algorithms. METHODS Germline testing for FLCN alterations and outcomes for 20 BHD patients with 84 kidney tumors were evaluated. Renal tumors were profiled for histopathology and analyzed using a combination of next-generation sequencing, bulk/single-cell transcriptomic analysis, and immunohistochemistry (IHC). KEY FINDINGS AND LIMITATIONS Ninety unique germline FLCN variants in 234 unrelated families included rare deletion events (14/234, 6%), including those of the promoter region. Most patients (17/19, 90%) met the National Comprehensive Cancer Network criteria for germline testing. Almost all cases represented indolent FMTs (n = 81), with metastases seen in two (of three) nonconventional renal cell carcinoma patients. FMTs showed a gene expression profile distinct from both oncocytoma and Ch-RCC characterized by four distinct L1CAM-/FOXI1+ and two L1CAM+/FOXI1- cell populations that showed GPNMB overexpression. IHC panels that include L1CAM, SOX9, and GPNMB can be a reliable screen for conventional FMTs. Limitations include the absence of external transcriptomic datasets to avoid batch effects. CONCLUSIONS AND CLINICAL IMPLICATIONS Our results highlight the gaps in current clinical germline testing strategies for BHD, which should include promoter deletion events. Multimodal molecular profiling results can be translated into routine clinical practice using IHC biomarkers to improve the diagnosis of BHD and to separate indolent "conventional" FMTs from "nonconventional tumors," which may be clinically aggressive.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Rachel R Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wei Shen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rhianna M Urban
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Melissa L Stanton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | - Christine M Lohse
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Megan A Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Megan F Hoenig
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stephanie A Smoley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stefan W Nelson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Nate R Torell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Autumn C Moon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Leah M Nelson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joaquin J Garcia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Peter C Lucas
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Stijn P De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
8
|
Tang Z, Xing C, Araszkiewicz A, Yang K, Huai W, Jeltema D, Dobbs N, Zhang Y, Sun LO, Yan N. STING mediates lysosomal quality control and recovery through its proton channel function and TFEB activation in lysosomal storage disorders. Mol Cell 2025; 85:1624-1639.e5. [PMID: 40185098 PMCID: PMC12009194 DOI: 10.1016/j.molcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Lysosomes are essential organelles for cellular homeostasis. Defective lysosomes are associated with diseases like lysosomal storage disorders (LSDs). How lysosomal defects are detected and lysosomal function restored remain incompletely understood. Here, we show that STING mediates a neuroinflammatory gene signature in three distinct LSD mouse models, Galctwi/twi, Ppt1-/-, and Cln7-/-. Transcriptomic analysis of Galctwi/twi mouse brain tissue revealed that STING also mediates the expression of lysosomal genes that are regulated by transcriptional factor EB (TFEB). Immunohistochemical and single-nucleus RNA-sequencing (snRNA-seq) analysis show that STING regulates lysosomal gene expression in microglia. Mechanistically, we show that STING activation leads to TFEB dephosphorylation, nuclear translocation, and expression of lysosomal genes. This process requires STING's proton channel function, the V-ATPase-ATG5-ATG8 cascade, and is independent of immune signaling. Furthermore, we show that the STING-TFEB axis facilitates lysosomal repair. Together, our data identify STING-TFEB as a lysosomal quality control mechanism that responds to lysosomal dysfunction.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Araszkiewicz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
10
|
Cobo I, Murillo-Saich J, Alishala M, Calderon S, Coras R, Hemming B, Inkum F, Rosas F, Takei R, Spann N, Prohaska TA, Alabarse PVG, Jeong SJ, Nickl CK, Cheng A, Li B, Vogel A, Weichhart T, Fuster JJ, Le T, Bradstreet TR, Webber AM, Edelson BT, Razani B, Ebert BL, Taneja R, Terkeltaub R, Bryan RL, Guma M, Glass CK. Particle uptake by macrophages triggers bifurcated transcriptional pathways that differentially regulate inflammation and lysosomal gene expression. Immunity 2025; 58:826-842.e8. [PMID: 40118070 DOI: 10.1016/j.immuni.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 09/19/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Exposure to particles is a driver of several inflammatory diseases. Here, we investigated macrophage responses to monosodium urate crystals, calcium pyrophosphate crystals, aluminum salts, and silica nanoparticles. While each particle induced a distinct gene expression pattern, we identified a common inflammatory signature and acute activation of lysosomal acidification genes. Using monosodium urate crystals as a model, we demonstrated that this lysosomal gene program is regulated by a 5'-prime-AMP-activated protein kinase (AMPK)-dependent transcriptional network, including TFEB, TFE3, and the epigenetic regulators DNA methyl transferase 3a (DNMT3A) and DOT1L. This lysosomal acidification program operates in parallel with, but largely independently of, a JNK-AP-1-dependent network driving crystal-induced chemokine and cytokine expression. These findings reveal a bifurcation in pathways governing inflammatory and lysosomal responses, offering insights for treating particle-associated diseases.
Collapse
Affiliation(s)
- Isidoro Cobo
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; CAMBAC (Comprehensive Arthritis, Musculoskeletal, Bone and Autoimmunity Center), University of Alabama at Birmingham, Birmingham, CA, USA.
| | - Jessica Murillo-Saich
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA
| | - Mohnish Alishala
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Stephen Calderon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Roxana Coras
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA
| | - Benjamin Hemming
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Faith Inkum
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fiorella Rosas
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Riku Takei
- Division of Clinical Immunology & Rheumatology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Thomas A Prohaska
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Paulo V G Alabarse
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christian K Nickl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Anyan Cheng
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA
| | - Benjamin Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Andrea Vogel
- Center for Pathobiochemistry & Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center for Pathobiochemistry & Genetics, Medical University of Vienna, Vienna, Austria
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Thomas Le
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Tara R Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashlee M Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Division of Cardiology, Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Robert Terkeltaub
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Ru Liu Bryan
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Monica Guma
- Division of Rheumatology, Allergy, and Immunology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, San Diego, CA, USA; Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, Bellaterra, Barcelona 08193, Spain
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
11
|
Remy D, Antoine-Bally S, de Toqueville S, Jolly C, Macé AS, Champenois G, Nemati F, Brito I, Raynal V, Priya A, Berlioz A, Dahmani A, Nicolas A, Meseure D, Marangoni E, Chavrier P. TFEB triggers a matrix degradation and invasion program in triple-negative breast cancer cells upon mTORC1 repression. Dev Cell 2025; 60:1018-1035.e8. [PMID: 39729986 DOI: 10.1016/j.devcel.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is frequently hyperactivated in triple-negative breast cancers (TNBCs) associated with poor prognosis and is a therapeutic target in breast cancer management. Here, we describe the effects of repression of mTOR-containing complex 1 (mTORC1) through knockdown of several key mTORC1 components or with mTOR inhibitors used in cancer therapy. mTORC1 repression results in an ∼10-fold increase in extracellular matrix proteolytic degradation. Repression in several TNBC models, including in patient-derived xenografts (PDXs), induces nuclear translocation of transcription factor EB (TFEB), which drives a transcriptional program that controls endolysosome function and exocytosis. This response triggers a surge in endolysosomal recycling and the surface exposure of membrane type 1 matrix metalloproteinase (MT1-MMP) associated with invadopodia hyperfunctionality. Furthermore, repression of mTORC1 results in a basal-like breast cancer cell phenotype and disruption of ductal carcinoma in situ (DCIS)-like organization in a tumor xenograft model. Altogether, our data call for revaluation of mTOR inhibitors in breast cancer therapy.
Collapse
Affiliation(s)
- David Remy
- Institut Curie, CNRS UMR 144, PSL University, 75005 Paris, France.
| | | | | | - Célia Jolly
- Institut Curie, CNRS UMR 144, PSL University, 75005 Paris, France
| | - Anne-Sophie Macé
- CurieCoreTech Cell and Tissue Imaging (PICT-IBiSA), Institut Curie, PSL University, 75005 Paris, France
| | | | - Fariba Nemati
- Laboratory of Preclinical Investigation, Institut Curie, PSL University, 26 Rue d'Ulm, 75005 Paris, France
| | - Isabel Brito
- CurieCoreTech Bioinformatics (CUBIC) Platform, Institut Curie, PSL University, 75005 Paris, France
| | - Virginie Raynal
- CurieCoreTech Next Generation Sequencing (ICGex) Platform, Institut Curie, PSL University, 75005 Paris, France
| | - Amulya Priya
- Institut Curie, CNRS UMR 144, PSL University, 75005 Paris, France
| | - Adèle Berlioz
- Institut Curie, CNRS UMR 144, PSL University, 75005 Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Institut Curie, PSL University, 26 Rue d'Ulm, 75005 Paris, France
| | - André Nicolas
- Experimental Pathology Platform, Institut Curie, 75005 Paris, France
| | - Didier Meseure
- Experimental Pathology Platform, Institut Curie, 75005 Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Institut Curie, PSL University, 26 Rue d'Ulm, 75005 Paris, France
| | | |
Collapse
|
12
|
Custode BM, Annunziata F, Dos Santos Matos F, Schiano V, Maffia V, Lillo M, Colonna R, De Cegli R, Ballabio A, Pastore N. Folliculin depletion results in liver cell damage and cholangiocarcinoma through MiT/TFE activation. Cell Death Differ 2025:10.1038/s41418-025-01486-8. [PMID: 40189703 DOI: 10.1038/s41418-025-01486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025] Open
Abstract
Mutations in the tumor suppressor gene Folliculin (FLCN) are responsible for Birt-Hogg-Dube' (BHD) syndrome, a rare inherited condition that predisposes affected individuals to skin tumors, pulmonary cysts, and kidney tumors. FLCN regulates key cellular pathways, including TFEB, TFE3, and mTORC1, which are critical for maintaining cell homeostasis. Loss of FLCN leads to both hyperactivation of mTORC1 and constitutive activation of TFEB and TFE3, contributing to tumorigenesis. While previous studies showed that Flcn liver-specific conditional knockout (FlcnLiKO) mice are protected from developing liver fibrosis and damage upon high-fat diet exposure, the potential role of FLCN loss in liver carcinogenesis remained unexplored. Here, we demonstrate that hepatic loss of FLCN in mice results in cancer associated with inflammation and fibrosis with features of cholangiocarcinoma (CCA). This phenotype emerges in mice over 90-week-old, with a male predominance. Moreover, FlcnLiKO mice are more prone to develop diethylnitrosamine (DEN)- or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced liver tumors with heterogenous histological features. Notably, depletion of TFE3, but not TFEB, in the liver of FlcnLiKO mice fully rescues the cancer phenotype and normalized mTORC1 signaling, highlighting TFE3 as the primary driver of liver cancer and mTORC1 hyperactivity in the absence of FLCN.
Collapse
Affiliation(s)
| | | | | | - Valentina Schiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Veronica Maffia
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Milena Lillo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Rita Colonna
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy
| | - Nunzia Pastore
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy.
- Department of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy.
| |
Collapse
|
13
|
Pfau DJ, Bryk R. High throughput screening assay for the identification of ATF4 and TFEB activating compounds. AUTOPHAGY REPORTS 2025; 4:2473765. [PMID: 40265045 PMCID: PMC11980509 DOI: 10.1080/27694127.2025.2473765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 04/24/2025]
Abstract
Macrophages act to defend against infection, but can fail to completely prevent bacterial replication and dissemination in an immunocompetent host. Recent studies have shown that activation of a host transcription factor, TFEB, a regulator of lysosomal biogenesis, could restrict intramacrophage replication of the human pathogen Mycobacterium tuberculosis and synergize with suboptimal levels of the antibiotic rifampin to reduce bacterial loads. Currently available small molecule TFEB activators lack selectivity and potency, but could be potentially useful in a variety of pathological conditions with suboptimal lysosomal activity. TFEB nuclear translocation and activation depend on its phosphorylation status which is controlled by multiple cellular pathways. We devised a whole cell, high throughput screening assay to identify small molecules that activate TFEB by establishing a stably transfected HEK293T reporter cell line for ATF4, a basic leucine zipper transcription factor induced by stress response and activated in parallel to TFEB. We optimized its use in vitro using compounds that target endoplasmic reticulum stress and intracellular calcium signaling. We report results from screening the commercially available LOPAC library and the Selleck Chemicals library modified to include only FDA-approved drugs and clinical research compounds. We identified twenty-one compounds across six clinical use categories that activate ATF4, and confirmed that two proteasome inhibitors promote TFEB activation. The results of this study provide an assay that could be used to screen for small molecules that activate ATF4 and TFEB and a potential list of compounds identified as activators of the ATF4 transcription factor in response to cellular stress.
Collapse
Affiliation(s)
- Daniel J Pfau
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Ruslana Bryk
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
14
|
Chen Y, Wang Z, Ma Q, Sun C. The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 2025; 55:61. [PMID: 39950330 PMCID: PMC11878481 DOI: 10.3892/ijmm.2025.5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.
Collapse
Affiliation(s)
| | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
15
|
Jing Y, Kobayashi M, Shoulkamy MI, Zhou M, Thi Vu H, Arakawa H, Sabit H, Iwabuchi S, Quang Vu C, Kasahara A, Ueno M, Tadokoro Y, Kurayoshi K, Chen X, Yan Y, Arai S, Hashimoto S, Soga T, Todo T, Nakada M, Hirao A. Lysine-arginine imbalance overcomes therapeutic tolerance governed by the transcription factor E3-lysosome axis in glioblastoma. Nat Commun 2025; 16:2876. [PMID: 40169552 PMCID: PMC11962137 DOI: 10.1038/s41467-025-56946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Recent advances in cancer therapy have underscored the importance of targeting specific metabolic pathways. In this study, we propose a precision nutrition approach aimed at lysosomal function in glioblastoma multiforme (GBM). Using patient-derived GBM cells, we identify lysosomal activity as a unique metabolic biomarker of tumorigenesis, controlling the efficacy of temozolomide (TMZ), a standard GBM therapy. Employing combined analyses of clinical patient samples and xenograft models, we further elucidate the pivotal role of Transcription Factor Binding To IGHM Enhancer 3 (TFE3), a master regulator of lysosomal biogenesis, in modulating malignant properties, particularly TMZ tolerance, by regulating peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α)-mediated mitochondrial activity. Notably, we find that lysine protects GBM cells from lysosomal stress by counteracting arginine's effects on nitric oxide production. The lysine restriction mimetic, homoarginine administration, significantly enhances the efficacy of anticancer therapies through lysosomal dysfunction. This study underscores the critical role of lysosomal function modulated by amino acid metabolism in GBM pathogenesis and treatment.
Collapse
Affiliation(s)
- Yongwei Jing
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Meiqi Zhou
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ha Thi Vu
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Medical Biology and Genetics, Hanoi Medical University, Ha Noi, Vietnam
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Cong Quang Vu
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaya Ueno
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuhang Yan
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
16
|
Yan J, Dong H, Sun Y, Tian T, Liu H, Xiao C, Gong J, Xia Q, Hou Y. Amino acid-mTOR pathway-associated transcription factor GATAβ4 regulates storage protein expression in Bombyx mori. Int J Biol Macromol 2025; 298:139943. [PMID: 39824424 DOI: 10.1016/j.ijbiomac.2025.139943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Storage proteins (SPs) are hexameric macromolecular protein, an important component of insect serum protein, which plays a variety of roles in insect metamorphosis and development. However, their regulatory mechanisms remain unclear. Our previous studies revealed that the expression of SPs is regulated by nutritional signals and identified FoxO as a negative regulator of SPs in the silkworm Bombyx mori (B. mori). In this study, amino acids upregulated BmSP expression, whereas Rapamycin downregulated it in fat body cultured in vitro. Rapamycin also reduced BmSP expression in B. mori larvae. Overexpression of the nutrient transcription factor GATA family in BmE cells revealed that only BmGATAβ4 significantly upregulated BmSP expression. Furthermore, the amino acid-mTOR signaling pathway modulated BmGATAβ4 expression. Overexpression of BmGATAβ4 resulted in increased BmSP expression in B. mori larvae. Luciferase reporter assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation identified GATA-like CRE 1-1 and GATA-like CRE 2-2 of the BmSP1 promoter as binding sites for BmGATAβ4. These findings provide new insights into the regulation of nutrient protein expression in insects.
Collapse
Affiliation(s)
- Jiamin Yan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Haonan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuanyuan Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Tingting Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Huawei Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Chunxia Xiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Jing Gong
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
17
|
LI Y, PAN J, YANG G, YU J, WU X, MIN D, CHENG M, YU D, NAN M, GAO X, PANG L, GONG L, JIA L. Mechanism of Huayu Qutan recipe anti-atherosclerosis mediates lipophagymammalian target of rapamycin complex 1/ transcription factor EB signaling pathway in ApoE-/-mice. J TRADIT CHIN MED 2025; 45:291-302. [PMID: 40151116 PMCID: PMC11955768 DOI: 10.19852/j.cnki.jtcm.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE To investigate the effects of Huayu Qutan recipe (, HYQT) on the atherosclerosis (AS) model of ApoE-/- mice with a high-fat diet and to illustrate the underlying mechanisms from modern patho-physiological conceptualizations. METHODS High performance liquid chromatography of quadrupole time of flight-tandem mass spectrometry (HPLC-Q-TOF-MS/MS) analysis was used to identify the active compounds in the recipe. The mice were randomly allocated into 7 groups: control (CTRL) group, normal diet (ND) group, high-fat diet (HFD) group, HYQT groups (low dose, medium dose, and high dose), and simvastatin (SIM) group. Deferent doses of HYQT were gavaged twice a day, and then the protective effect of HYQT on plaque formation in ApoE-/- mice with a high-fat diet was verified viahematoxylin-eosin (HE) staining and oil red o (ORO) staining. We observed the co-localization in aortic macrophages and lipid droplets (LDs) by CD68 and the Bodipy fluorescence probe. Light chain 3 phosphoprotein class Ⅱ/light chain 3 phosphoprotein class Ⅰ (LC3Ⅱ/LC3Ⅰ) was examined by western blotting, and sequestosome 1 (SQSTM1/p62), Beclin1, Lamp1, mammalian target of rapamycin (mTOR), phosphorylated mammalian target of rapamycin (p-mTOR), and ATP-binding cassette transporter A1 (ABCA1) were examined by real-time polymerase chain reaction (RT-PCR) and Western blotting. Transcription factor EB (TFEB) nuclear translocation was determined by immunofluorescence analysis. RESULTS Five active compounds were identified using HPLC-Q-TOF-MS/MS analysis: ferulic acid, chlorogenic acid, calycosin, formononetin, and 8,2'-dihydroxy-7,4'-dimethoxy-isoflavane. The effect of HYQT on atherosclerotic plaque formation in ApoE-/- mice was investigated. These findings showed that HYQT decreased the co-localization of CD68 and Bodipy and increased the co-localization of CD68 and LC3B. Medium and high doses of HYQT increased autophagosome formation and promoted the maturation of LC3Ⅱ/LC3Ⅰ. Additionally, HYQT decreased the expression of SQSTM1/p62. Medium and high doses of HYQT also increased the expression of Beclin1 and Lamp1. RT-PCR and Western blot results suggested that HYQT enhanced the expression of ABCA1 mRNA and protein and regulated the mTORC1/TFEB signaling pathway. CONCLUSION The results indicate that HYQT is an effective traditional Chinese herbal remedy for the treatment of AS. HYQT mitigates macrophage-derived foam cell formation by activating autophagy in atherosclerosis. The mTOR/TFEB signaling pathway and ABCA1 are therapeutic targets of HYQT for the treatment of AS.
Collapse
Affiliation(s)
- Yue LI
- 1 Department of Cardiology, the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
- 2 Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang 110032, China
| | - Jiaxiang PAN
- 1 Department of Cardiology, the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Guanlin YANG
- 3 Innovation Engineering Technology Center of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Jiajia YU
- 4 Postdoctoral Program of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xize WU
- 5 Graduate School of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Dongyu MIN
- 6 Experimental Center of Traditional Chinese Medicine, the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Meijia CHENG
- 6 Experimental Center of Traditional Chinese Medicine, the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Dongdong YU
- 7 Department of Osteology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Minghua NAN
- 8 Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
- 9 Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Xiaoyu GAO
- 10 Department of Oncology department, Shengjing Hospital affiliated to China Medical University, Shenyang 110000, China
| | - Linlin PANG
- 1 Department of Cardiology, the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Lihong GONG
- 1 Department of Cardiology, the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
- 2 Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang 110032, China
| | - Lianqun JIA
- 3 Innovation Engineering Technology Center of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| |
Collapse
|
18
|
Ruolo I, Napolitano S, Postiglione L, Napolitano G, Ballabio A, di Bernardo D. Investigation of dynamic regulation of TFEB nuclear shuttling by microfluidics and quantitative modelling. Commun Biol 2025; 8:443. [PMID: 40089585 PMCID: PMC11910602 DOI: 10.1038/s42003-025-07870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
Transcription Factor EB (TFEB) controls lysosomal biogenesis and autophagy in response to nutritional status and other stress factors. Although its regulation by nuclear translocation is known to involve a complex network of well-studied regulatory processes, the precise contribution of each of these mechanisms is unclear. Using microfluidics technology and real-time imaging coupled with mathematical modelling, we explored the dynamic regulation of TFEB under different conditions. We found that TFEB nuclear translocation upon nutrient deprivation happens in two phases: a fast one characterised by a transient boost in TFEB dephosphorylation dependent on transient calcium release mediated by mucolipin 1 (MCOLN1) followed by activation of the Calcineurin phosphatase, and a slower one driven by inhibition of mTORC1-dependent phosphorylation of TFEB. Upon refeeding, TFEB cytoplasmic relocalisation kinetics are determined by Exportin 1 (XPO1). Collectively, our results show how different mechanisms interact to regulate TFEB activation and the power of microfluidics and quantitative modelling to elucidate complex biological mechanisms.
Collapse
Affiliation(s)
- Iacopo Ruolo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Napolitano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institut Pasteur, Inria, Université Paris Cité, Paris, France
| | - Lorena Postiglione
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, US
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, US
| | - Diego di Bernardo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
19
|
Ran Q, Li A, Yao B, Xiang C, Qu C, Zhang Y, He X, Chen H. Action and therapeutic targets of folliculin interacting protein 1: a novel signaling mechanism in redox regulation. Front Cell Dev Biol 2025; 13:1523489. [PMID: 40143966 PMCID: PMC11936992 DOI: 10.3389/fcell.2025.1523489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Rapid activation of adenosine monophosphate-activated protein kinase (AMPK) induces phosphorylation of mitochondrial-associated proteins, a process by which phosphate groups are added to regulate mitochondrial function, thereby modulating mitochondrial energy metabolism, triggering an acute metabolic response, and sustaining metabolic adaptation through transcriptional regulation. AMPK directly phosphorylates folliculin interacting protein 1 (FNIP1), leading to the nuclear translocation of transcription factor EB (TFEB) in response to mitochondrial functions. While mitochondrial function is tightly linked to finely-tuned energy-sensing mobility, FNIP1 plays critical roles in glucose transport and sensing, mitochondrial autophagy, cellular stress response, and muscle fiber contraction. Consequently, FNIP1 emerges as a promising novel target for addressing aberrant mitochondrial energy metabolism. Recent evidence indicates that FNIP1 is implicated in mitochondrial biology through various pathways, including AMPK, mTOR, and ubiquitination, which regulate mitochondrial autophagy, oxidative stress responses, and skeletal muscle contraction. Nonetheless, there is a dearth of literature discussing the physiological mechanism of action of FNIP1 as a novel therapeutic target. This review outlines how FNIP1 regulates metabolic-related signaling pathways and enzyme activities, such as modulating mitochondrial energy metabolism, catalytic activity of metabolic enzymes, and the homeostasis of metabolic products, thereby controlling cellular function and fate in different contexts. Our focus will be on elucidating how these metabolite-mediated signaling pathways regulate physiological processes and inflammatory diseases.
Collapse
Affiliation(s)
- Qingzhi Ran
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Aoshuang Li
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Bo Yao
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xiang
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunyi Qu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yongkang Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Diagnosis and Treatment Center of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanhui He
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Hengwen Chen
- Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Shen YZ, Yao YD, Li HL, Li Y, Hu YC. CTSO and HLA-DQA1 as biomarkers in sepsis-associated ARDS: insights from RNA sequencing and immune infiltration analysis. BMC Infect Dis 2025; 25:326. [PMID: 40055592 PMCID: PMC11887161 DOI: 10.1186/s12879-025-10726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
The onset of sepsis frequently coincides with acute respiratory distress syndrome (ARDS), which constitutes a significant contributor to severe acid-base disturbances in septic patients. In the pathogenesis of sepsis, it conducts a crucial role. lysosomal metabolic disorders and immune imbalance conduct a pivotal role. Despite extensive research into the alterations in immune status during sepsis, few studies have been reported to thoroughly examine the association between lysosomes and sepsis. As a result, this study is predominantly Intended to delve into the link between lysosome-related genes and alterations in the lysosome in the immune microenvironment from the standpoint of bioinformatics in sepsis. The Registration Number was ChiCTR1900021261. Registration Date is 2019/02/04. Method Sepsis data source: Sepsis data was collected from previous clinical data and sequencing results (Originated from BGI Shenzhen Co., Ltd.) and the GO database was utilized for data collection of lysosome-related genes. Differential expression genes (DEGs) were screened on clinical sequencing data by employing IDEP 0.93 software subsequent to quality control. Afterwards, enrichment analysis was conducted by adopting Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co expression Network Analysis (WGCNA), followed by cross referencing of lysosomal genes to identify DEGs associated with lysosomes. GO and KEGG pathway analysis wereperformed subsequently. The genes obtained from PLSGs and WGCNA by Creating a PPI network entails the following steps: the points were intersected at first. Afterwards, CytoHubba and MCODE analysis were performed by utilizing cytoscape software. Next, the intersection was taken to confirm Hub gene sequences, and subsequently the central DEGs tightly associated with existing CTD scores. Notwithstanding the fact that the causes of sepsis are multifaceted, ARDS can often trigger the development of sepsis in numerous cases. Simultaneously, with an aim to predict transcription factor levels in the central nervous system, Cytoscape software was adopted DEGs and to find relevant target miRNAs in the miRWalk database, and a correlated regulatory network was established accordingly. The SEPSIS immune infiltration model was constructed by employing ImmuCellAI software. Afterwards, the association between DEGs and immune microenvironment abundance was constructed by adopting Spearman's method. Last but not least, it is worth noting that single-cell sequencing has been validated as a method to analyze hub gene expression in immune cells of sepsis patients, enabling the selection of key genes that are closely associated with predictive outcomes. Result When acute respiratory distress syndrome (ARDS) is present, the differentially expressed genes (DEGs) are implicated in lysosomal metabolism and the regulation of the immune microenvironment. Six hub DEGs were bound up with sepsis or was attributable to the examinations. On top of that, it was determined that the patients had acute respiratory distress syndrome. The associated immune analysis illustrated a remarkable augment in T cell infiltration in the immune microenvironment of sepsis, while the infiltration relative to DC was reduced at certain level. Positive correlations were found between the two by employing Spearman analysis between hub DEGs and the regulatory role of immune cells. Moreover, it was universally acknowledged that anti-inflammatory immune cells were responsible for the negative correlation. On the basis of single-cell sequencing, it has been determined that CTSO and HLA-DQA1 were expressed in immune cells in sepsis. Aside from that, the survival-death curve direction suggested that they could be utilized as core genes for predicting sepsis-related prognosis analysis. Conclusion An analysis of this study demonstrates the interaction between sepsis lysosome-related metabolism and changes by understanding the pathogenesis of immune cells in the microenvironment. On this basis, we can develop new clinical diagnostics and therapeutic approaches of sepsis and identifying drug targets. Nonetheless, ARDS and sepsis can differ simply by the difference in site of infection; as the etiology of numerous ARDS cases is quite complex, progression to sepsis can occur if infection exacerbates or other complications arise, meeting the diagnostic criteria of sepsis 3.0.
Collapse
Affiliation(s)
- Yu Zhou Shen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Yan Dong Yao
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Hai Li Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Yang Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Ying Chun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China.
| |
Collapse
|
21
|
Xia Q, Liu X, Zhong L, Qu J, Dong L. SMURF1 mediates damaged lysosomal homeostasis by ubiquitinating PPP3CB to promote the activation of TFEB. Autophagy 2025; 21:530-547. [PMID: 39324484 PMCID: PMC11849922 DOI: 10.1080/15548627.2024.2407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
The calcium-activated phosphatase PPP3/calcineurin dephosphorylates TFEB (transcription factor EB) to trigger its nuclear translocation and the activation of macroautophagic/autophagic targets. However, the detailed molecular mechanism regulating TFEB activation remains poorly understood. Here, we highlighted the importance of SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) in the activation of TFEB for lysosomal homeostasis. SMURF1 deficiency prevents the calcium-triggered ubiquitination of the catalytic subunit of PPP3/calcineurin in a manner consistent with defective autophagic degradation of damaged lysosomes. Mechanically, PPP3CB/CNA2 plays a bridging role in the recruitment of SMURF1 by LGALS3 (galectin 3) upon lysosome damage. Importantly, PPP3CB increases the dissociation of the N-terminal tail (NT) and C-terminal carbohydrate-recognition domain (CRD) of LGALS3, which may promote the formation of open conformers in a PPP3CB dephosphorylation activity-dependent manner. In addition, PPP3CB is ubiquitinated at lysine 146 by the recruited SMURF1 in response to intracellular calcium stimulation. The K63-linked ubiquitination of PPP3CB enhances the recruitment of TFEB. Moreover, TFEB directly interacts with both PPP3CB and the regulatory subunit PPP3R1 which facilitate the conformational correction of TFEB for its activation for the transcription of TFEB-targeted genes. Altogether, our results highlighted a critical mechanism for the regulation of PPP3/calcineurin activity via its ubiquitin ligase SMURF1 in response to lysosomal membrane damage, which may account for a potential target for the treatment of stress-related diseases.Abbreviation AID: autoinhibitory domain; ATG: autophagy related; CD: catalytic domain; CRD: carbohydrate-recognition domain; CsA: cyclosporin A; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complexes required for transport; GSK3B: glycogen synthase kinase 3 beta; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; NT: N-terminal tail; PPP3CB: protein phosphatase 3 catalytic subunit beta; PPP3R1: protein phosphatase 3 regulatory subunit B, alpha; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; VCP/p97: valosin containing protein; YWHA/14-3-3: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein.
Collapse
Affiliation(s)
- Qin Xia
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lu Zhong
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
22
|
Huang T, Sun C, Du F, Chen ZJ. STING-induced noncanonical autophagy regulates endolysosomal homeostasis. Proc Natl Acad Sci U S A 2025; 122:e2415422122. [PMID: 39982740 PMCID: PMC11874320 DOI: 10.1073/pnas.2415422122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
The cGAS-STING pathway mediates innate immune responses to cytosolic DNA. In addition to its well-established role in inducing inflammatory cytokines, activation of the cGAS-STING pathway also induces noncanonical autophagy, a process involving the conjugation of the ATG8 family of ubiquitin-like proteins to membranes of the endolysosomal system. The mechanisms and functions of STING-induced autophagy remain poorly understood. In this study, we demonstrated that STING activation induced formation of pH-elevated Golgi-derived vesicles that led to ATG16L1 and V-ATPase-dependent noncanonical autophagy. We showed that STING-induced noncanonical autophagy resulted in activation of the MiT/TFE family of transcription factors (TFEB, TFE3, and MITF), which regulate lysosome biogenesis. We found that lipidation of the ATG8 proteins, particularly GABARAPs, inhibited phosphorylation of MiT/TFE transcription factors by mTORC1. The lipidated GABARAPs bound to the Folliculin-interacting proteins (FNIPs), thereby sequestering the FNIP-folliculin protein complexes from activating mTORC1, resulting in dephosphorylation and nuclear translocation of MiT/TFE transcription factors. Furthermore, we found that STING-induced autophagy activated Leucine-rich repeat kinase 2 (LRRK2), a protein implicated in Parkinson's disease, through GABARAPs lipidation. We further showed that STING-induced autophagy induced ALIX-mediated ESCRT machinery recruitment to mitigate endolysosomal perturbation. These results reveal the multifaceted functions of STING-induced noncanonical autophagy in regulating endolysosomal homeostasis.
Collapse
Affiliation(s)
- Tuozhi Huang
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
- Center for Inflammation Research, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
| | - Chenglong Sun
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
- Center for Inflammation Research, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
| | - Fenghe Du
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
- Center for Inflammation Research, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
- HHMI, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
- Center for Inflammation Research, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
- HHMI, University of Texas, Southwestern Medical Center, Dallas, TX75390-9148
| |
Collapse
|
23
|
Garcia-Sanchez JA, Bonnet E, Loubatier C, Doye A, Paillier G, Segui F, Larbret F, Chaintreuil P, Batistic L, Torre C, Deckert M, Polanowska J, Munro P, Boyer L, Visvikis O. Evolutionary conserved regulation of TFEB stability by the E3 ubiquitin ligase WWP2 modulates response to stress in vivo. iScience 2025; 28:111838. [PMID: 39995862 PMCID: PMC11848471 DOI: 10.1016/j.isci.2025.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/22/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Transcription factor EB (TFEB) is a key transcription factor that orchestrates the cellular response to stress. Dysregulation of TFEB is associated with a range of human diseases, and understanding the regulatory mechanisms of TFEB is crucial for identifying potential drug targets. In this study, we used Caenorhabditis elegans to screen for E3 ubiquitin ligases regulating the activity of TFEB's homolog, HLH-30, upon pathogenic infection. We identified WWP-1 as a regulator of HLH-30-dependent immune response controlling HLH-30 stability to mediate host defense in vivo. We found that HLH-30 interacts with WWP-1, supporting a model of WWP-1 directly regulating HLH-30. Furthermore, we found that WWP-1's human homolog WWP2 binds TFEB, directly induces TFEB ubiquitination and stabilizes TFEB. Finally, we found that WWP2 is required for TFEB-dependent host response in human monocytes-derived macrophages upon infection. Overall, our work has identified an evolutionarily conserved regulation of TFEB by WWP2 and highlighted its role in modulating stress response.
Collapse
Affiliation(s)
| | - Estelle Bonnet
- Université Côte d’Azur, INSERM, C3M, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d’Azur, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Anne Doye
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | - Fabien Segui
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | - Cédric Torre
- Université Côte d’Azur, INSERM, C3M, Nice, France
| | | | | | | | | | | |
Collapse
|
24
|
Deng RM, Huang G, Wang T, Zhou J. Regulated programmed cell death in sepsis associated acute lung injury: From pathogenesis to therapy. Int Immunopharmacol 2025; 148:114111. [PMID: 39832461 DOI: 10.1016/j.intimp.2025.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Sepsis associated acute lung injury (SALI) is a common complication in patients with severe sepsis and a disease with high morbidity and mortality in ICU patients. The main mechanism of SALI is pulmonary hypoperfusion due to hypotension and shock caused by sepsis, which leads to ischemic necrosis of alveolar endothelial cells and eventually lung failure. At present, SALI therapy mainly includes antibiotic therapy, fluid resuscitation, transfusion products and vasoactive drugs, but these strategies are not satisfactory. Therefore, focusing on the role of different cell death patterns in SALI may help in the search for effective treatments. Understanding the molecular mechanisms of SALI and identifying pathways that inhibit lung cell death are critical to developing effective drug therapies to prevent the progression of SALI. Cell death is controlled by programmed cell death (PCD) pathways, including apoptosis, necroptosis, ferroptosis, pyroptosis and autophagy. There is growing evidence that PCD plays an important role in the pathogenesis of SALI, and inhibitors of various types of PCD represent a promising therapeutic strategy. Therefore, understanding the role and mechanism of PCD in SALI is conducive to our understanding of its pathological mechanism, and is of great significance for the treatment of SALI. In this article, we discuss recent advances in the role of PCD in SALI, show how different signaling pathways (such as NF-κB, PI3K/Akt, mTOR, and Nrf2) regulate PCD to regulate SALI development, and discuss the associations between various types of PCD. The aim is to explore the molecular mechanism behind SALI and to find new targets for SALI therapy.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Guiming Huang
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Tingting Wang
- Department of Anaesthesia, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, PR China
| | - Juan Zhou
- Department of Thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
25
|
Xu Y, Wang Q, Wang J, Qian C, Wang Y, Lu S, Song L, He Z, Liu W, Wan W. The cGAS-STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance. Immunity 2025; 58:309-325.e6. [PMID: 39689715 DOI: 10.1016/j.immuni.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Induction of autophagy is an ancient function of the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway through which autophagic cargoes are delivered to lysosomes for degradation. However, whether lysosome function is also modulated by the cGAS-STING pathway remains unknown. Here, we discovered that the cGAS-STING pathway upregulated lysosomal activity by stimulating lysosome biogenesis independently of the downstream protein kinase TANK-binding kinase 1 (TBK1). STING activation enhanced lysosome biogenesis through inducing the nuclear translocation of transcription factor EB (TFEB) as well as its paralogs transcription factor E3 (TFE3) and microphthalmia-associated transcription factor (MITF). STING-induced lipidation of GABA type A receptor-associated protein (GABARAP), an autophagy-related protein, on STING vesicles was responsible for TFEB activation. Membrane-bound GABARAP sequestered the GTPase-activating protein folliculin (FLCN) and FLCN-interacting protein (FNIP) complex to block its function toward the Rag GTPases Ras-related GTP-binding C and D (RagC and RagD), abolishing mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent phosphorylation and inactivation of TFEB. Functionally, STING-induced lysosome biogenesis within cells facilitated the clearance of cytoplasmic DNA and invading pathogens. Thus, our findings reveal that induction of lysosome biogenesis is another important function of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha 410205, Hunan, China.
| | - Qian Wang
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chuying Qian
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yusha Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Sheng Lu
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lijiang Song
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zhengfu He
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Wei Liu
- Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China.
| | - Wei Wan
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
26
|
Shin KWD, Atalay MV, Cetin-Atalay R, O'Leary EM, Glass ME, Szafran JCH, Woods PS, Meliton AY, Shamaa OR, Tian Y, Mutlu GM, Hamanaka RB. mTOR signaling regulates multiple metabolic pathways in human lung fibroblasts after TGF-β and in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2025; 328:L215-L228. [PMID: 39745695 DOI: 10.1152/ajplung.00189.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Idiopathic pulmonary fibrosis is a fatal disease characterized by the transforming growth factor (TGF-β)-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lungs with scar tissue. We and others have shown that TGF-β-mediated activation of the mechanistic target of rapamycin complex 1 (mTORC1) and downstream upregulation of activating transcription factor 4 (ATF4) promotes metabolic reprogramming in lung fibroblasts characterized by upregulation of the de novo synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored. Here, we used RNA sequencing to determine how both ATF4 and mTOR regulate gene expression in human lung fibroblasts following TGF-β. We found that ATF4 primarily regulates enzymes and transporters involved in amino acid homeostasis as well as aminoacyl-tRNA synthetases. mTOR inhibition resulted not only in the loss of ATF4 target gene expression but also in the reduced expression of glycolytic enzymes and mitochondrial electron transport chain subunits. Analysis of TGF-β-induced changes in cellular metabolite levels confirmed that ATF4 regulates amino acid homeostasis in lung fibroblasts, whereas mTOR also regulates glycolytic and TCA cycle metabolites. We further analyzed publicly available single-cell RNA-seq datasets and found increased expression of ATF4 and mTOR-regulated genes in pathologic fibroblast populations from the lungs of patients with IPF. Our results provide insight into the mechanisms of metabolic reprogramming in lung fibroblasts and highlight novel ATF4 and mTOR-dependent pathways that may be targeted to inhibit fibrotic processes.NEW & NOTEWORTHY Here, we used transcriptomic and metabolomic approaches to develop a more complete understanding of the role that mTOR, and its downstream effector ATF4, play in promoting metabolic reprogramming in lung fibroblasts. We identify novel metabolic pathways that may promote pathologic phenotypes, and we provide evidence from single-cell RNA-seq datasets that similar metabolic reprogramming occurs in patient lungs.
Collapse
Affiliation(s)
- Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - M Volkan Atalay
- Department of Information Systems and Supply Chain Management, Loyola University Chicago, Chicago, Illinois, United States
| | - Rengul Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Erin M O'Leary
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Mariel E Glass
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Jennifer C Houpy Szafran
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
27
|
Choi M, Choi S, Cho M, Kim C. Metabolic Signaling as a Driver of T Cell Aging. Immune Netw 2025; 25:e14. [PMID: 40078788 PMCID: PMC11896665 DOI: 10.4110/in.2025.25.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Aging significantly diminishes T cell immunity, increasing susceptibility to infections and reducing vaccine efficacy in older individuals. Metabolism plays a key role in T cell function, shaping their energy requirements, activation, and differentiation. Recent studies highlight altered metabolic signaling as a pivotal factor in T cell aging, influencing the ability of T cells to maintain quiescence, respond to activation, and differentiate into functional subsets. Aberrant metabolic pathways disrupt the quiescence of aged T cells and skew their differentiation toward short-lived, pro-inflammatory effector T cells while hindering the generation of long-lived memory and T follicular helper cells. These changes contribute to a hyper-inflammatory state, exacerbate chronic low-grade inflammation, and compromise immune homeostasis. In this review, we explore how metabolic signaling is altered during T cell aging and the resulting functional impacts. We also discuss therapeutic approaches aimed at restoring proper T cell differentiation, improving vaccine responses, and rejuvenating immune function in older populations.
Collapse
Affiliation(s)
- Minju Choi
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| | - Sujin Choi
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| | - Minkyeong Cho
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| | - Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02708, Korea
| |
Collapse
|
28
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
29
|
Jani C, Jain N, Marsh AK, Uchil P, Doan T, Hudspith M, Glover OT, Baskir ZR, Boucau J, Root DE, van der Wel NN, Doench JG, Barczak AK. VPS18 contributes to phagosome membrane integrity in Mycobacterium tuberculosis-infected macrophages. SCIENCE ADVANCES 2025; 11:eadr6166. [PMID: 39888996 PMCID: PMC11784855 DOI: 10.1126/sciadv.adr6166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 02/02/2025]
Abstract
Mycobacterium tuberculosis (Mtb) has evolved to be exquisitely adapted to survive within host macrophages. The capacity to damage the phagosomal membrane has emerged as central to Mtb virulence. While Mtb factors driving membrane damage have been described, host factors that maintain phagosomal integrity or repair Mtb-induced damage to contain the pathogen remain largely unknown. We used a genome-wide CRISPR screen to identify host factors required to repair Mtb-damaged phagosomal membranes. Vacuolar protein sorting-associated protein 18 (VPS18), a member of the HOPS and CORVET trafficking complexes, was among the top hits. VPS18 colocalized with Mtb in macrophages beginning shortly after infection, and VPS18-knockout macrophages demonstrated increased damage of Mtb-containing phagosomes without impaired autophagy. Mtb grew more robustly in VPS18-knockout cells, and the first-line antituberculosis antibiotic pyrazinamide was less effective. Our results identify VPS18 as required for phagosomal membrane integrity in Mtb-infected cells and suggest that modulating phagosome integrity may hold promise for improving the efficacy of antibiotic treatment for TB.
Collapse
Affiliation(s)
- Charul Jani
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Neha Jain
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Amanda K. Marsh
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Pooja Uchil
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Triet Doan
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Meggie Hudspith
- Electron Microscopy Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Owen T. Glover
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zach R. Baskir
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Julie Boucau
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Nicole N. van der Wel
- Electron Microscopy Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Amy K. Barczak
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- The Broad Institute, Cambridge, MA 02139, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Zhang JL, Wang XF, Li JL, Duan C, Wang JF. The cholesterol metabolite 25-hydroxycholesterol suppresses porcine deltacoronavirus via lipophagy inhibition and mTORC1 modulation. Vet Res 2025; 56:23. [PMID: 39891192 PMCID: PMC11786589 DOI: 10.1186/s13567-025-01452-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/29/2024] [Indexed: 02/03/2025] Open
Abstract
25-Hydroxycholesterol (25HC) is a hydroxylated cholesterol with multiple antiviral activities, however, little is known about the mechanisms by which 25HC correlates antiviral ability with lipid droplet (LD) dynamic balance to ensure cholesterol homeostasis. In the present study, 25HC was applied to porcine deltacoronavirus (PDCoV)-infected LLC-PK1 (Lilly Laboratories Culture-Porcine Kidney 1) cells and piglets to explore its antiviral capacity and underlying mechanism. The results revealed that 25HC decreased free cholesterol (FC) levels but increased triglyceride (TG) levels in PDCoV-infected cells and piglets. The accumulation of LDs induced by oleic acid (OA) impedes PDCoV replication. In addition, 25HC administration increases LD accumulation and declines protein expression associated with lipophagy and lysosomes to facilitate LD accumulation. Moreover, 25HC inhibited TFEB (transcription factor-EB) expression, blocked its translocation into the nucleus and reversed Mechanistic Target of Rapamycin Complex 1 (mTORC1) activity, which in turn hindered lipophagy and PDCoV replication. Additionally, 25HC treatment ameliorated the clinical symptoms and intestinal injury of PDCoV-infected piglets. These findings reveal the beneficial effect of lipophagy on PDCoV infection and uncover the antiviral mechanism of 25HC, by which lipophagy and mTOR activity are tightly controlled by 25HC.
Collapse
Affiliation(s)
- Jia-Lu Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Xue-Fei Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jia-Lin Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Cong Duan
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Jiu-Feng Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Lum MA, Jonas KA, Parmar S, Black AR, O’Connor CM, Dobersch S, Yamamoto N, Robertson TM, Schutter A, Giambi M, Avelar RA, DiFeo A, Woods NT, Kugel S, Narla G, Black JD. Small-molecule modulators of B56-PP2A restore 4E-BP function to suppress eIF4E-dependent translation in cancer cells. J Clin Invest 2025; 135:e176093. [PMID: 39869680 PMCID: PMC11827888 DOI: 10.1172/jci176093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E-binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1. Here, we leveraged biased small-molecule activators of PP2A (SMAPs) to explore the role of B56-PP2A(s) in 4E-BP regulation and the potential of B56-PP2A activation for restoring translational control in tumors. SMAP treatment promoted PP2A-dependent hypophosphorylation of 4E-BP1/2, supporting a role for B56-PP2As (e.g., B56α-PP2A) as 4E-BP phosphatases. Unexpectedly, SMAPs induced transcriptional upregulation of 4E-BP1 through a B56-PP2A→TFE3/TFEB→ATF4 axis. Cap-binding and coimmunoprecipitation assays showed that B56-PP2A(s) activation blocks assembly of the eIF4F translation initiation complex, and cap-dependent translation assays confirmed the translation-inhibitory effects of SMAPs. Thus, B56-PP2A(s) orchestrate a translation-repressive program involving transcriptional induction and activation of 4E-BP1. Notably, SMAPs promoted 4E-BP1-dependent apoptosis in tumor cells and potentiated 4E-BP1 function in the presence of ERK or mTOR inhibitors, agents that rely on inhibition of eIF4E-dependent translation for antitumor activity. These findings, combined with the ability of SMAPs to regulate 4E-BP1 in vivo, highlight the potential of PP2A activators for cancer therapy and overcoming therapy resistance.
Collapse
Affiliation(s)
- Michelle A. Lum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Kayla A. Jonas
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Shreya Parmar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Adrian R. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Caitlin M. O’Connor
- Division of Genetic Medicine, Department of Internal Medicine, and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie Dobersch
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Naomi Yamamoto
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Tess M. Robertson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Aidan Schutter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Miranda Giambi
- Division of Genetic Medicine, Department of Internal Medicine, and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita A. Avelar
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology and
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Analisa DiFeo
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology and
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Sita Kugel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer D. Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| |
Collapse
|
32
|
Fu BXH, Xu A, Li H, Johnson DE, Grandis JR, Gilbert LA. Loss of Fanconi anemia proteins causes a reliance on lysosomal exocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634631. [PMID: 39896609 PMCID: PMC11785144 DOI: 10.1101/2025.01.23.634631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Mutations in the FA pathway lead to a rare genetic disease that increases risk of bone marrow failure, acute myeloid leukemia, and solid tumors. FA patients have a 500 to 800-fold increase in head and neck squamous cell carcinoma compared to the general population and the treatment for these malignancies are ineffective and limited due to the deficiency in DNA damage repair. Using unbiased CRISPR-interference screening, we found the loss of FA function renders cells dependent on key exocytosis genes such as SNAP23. Further investigation revealed that loss of FA pathway function induced deficiencies in lysosomal health, dysregulation of autophagy and increased lysosomal exocytosis. The compromised cellular state caused by the loss of FA genes is accompanied with decreased lysosome abundance and increased lysosomal membrane permeabilization in cells. We found these signatures in vitro across multiple cell types and cell lines and in clinically relevant FA patient cancers. Our findings are the first to connect the FA pathway to lysosomal exocytosis and thus expands our understanding of FA as a disease and of induced dependencies in FA mutant cancers.
Collapse
|
33
|
Fuerlinger A, Stockner A, Sedej S, Abdellatif M. Caloric restriction and its mimetics in heart failure with preserved ejection fraction: mechanisms and therapeutic potential. Cardiovasc Diabetol 2025; 24:21. [PMID: 39827109 PMCID: PMC11742808 DOI: 10.1186/s12933-024-02566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
The global increase in human life expectancy, coupled with an unprecedented rise in the prevalence of obesity, has led to a growing clinical and socioeconomic burden of heart failure with preserved ejection fraction (HFpEF). Mechanistically, the molecular and cellular hallmarks of aging are omnipresent in HFpEF and are further exacerbated by obesity and associated metabolic diseases. Conversely, weight loss strategies, particularly caloric restriction, have shown promise in improving health status in patients with HFpEF and are considered the gold standard for promoting longevity and healthspan (disease-free lifetime) in model organisms. In this review, we implicate fundamental mechanisms of aging in driving HFpEF and elucidate how caloric restriction mitigates the disease progression. Furthermore, we discuss the potential for pharmacologically mimicking the beneficial effects of caloric restriction in HFpEF using clinically approved and emerging caloric restriction mimetics. We surmise that these compounds could offer novel therapeutic avenues for HFpEF and alleviate the challenges associated with the implementation of caloric restriction and other lifestyle modifications to reduce the burden of HFpEF at a population level.
Collapse
Affiliation(s)
- Alexander Fuerlinger
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
| | - Alina Stockner
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria
- BioTechMed-Graz, 8010, Graz, Austria
- Faculty of Medicine, University of Maribor, 2000, Maribor, Slovenia
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, 8036, Graz, Austria.
- BioTechMed-Graz, 8010, Graz, Austria.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805, Villejuif, France.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, 75006, France.
| |
Collapse
|
34
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
35
|
He L, Cho S, Blenis J. mTORC1, the maestro of cell metabolism and growth. Genes Dev 2025; 39:109-131. [PMID: 39572234 PMCID: PMC11789495 DOI: 10.1101/gad.352084.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The mechanistic target of rapamycin (mTOR) pathway senses and integrates various environmental and intracellular cues to regulate cell growth and proliferation. As a key conductor of the balance between anabolic and catabolic processes, mTOR complex 1 (mTORC1) orchestrates the symphonic regulation of glycolysis, nucleic acid and lipid metabolism, protein translation and degradation, and gene expression. Dysregulation of the mTOR pathway is linked to numerous human diseases, including cancer, neurodegenerative disorders, obesity, diabetes, and aging. This review provides an in-depth understanding of how nutrients and growth signals are coordinated to influence mTOR signaling and the extensive metabolic rewiring under its command. Additionally, we discuss the use of mTORC1 inhibitors in various aging-associated metabolic diseases and the current and future potential for targeting mTOR in clinical settings. By deciphering the complex landscape of mTORC1 signaling, this review aims to inform novel therapeutic strategies and provide a road map for future research endeavors in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Long He
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sungyun Cho
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA;
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
36
|
He M, Wu H, Xu T, Zhao Y, Wang Z, Liu Y. Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis. J Adv Res 2025:S2090-1232(25)00034-7. [PMID: 39788287 DOI: 10.1016/j.jare.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections. OBJECTIVES Plant-derived natural products, owing to their structural and functional diversity, are increasingly being explored and utilized as encouraging candidates for HDT compounds. This study aims to identify and screen natural compounds with potential as HDT for the treatment of intracellular Salmonella infections. METHODS A cell-based screening approach was deployed to identify natural compounds capable of mitigating the intracellular replication of S. enterica. Safety and efficacy of the candidate compounds were evaluated using multiple animal models. RNA sequencing, ELISA, and immunoblotting analyses were conducted to elucidate the underlying mechanisms of action. RESULTS Our results reveal that fangchinoline (FAN) effectively reduces S. enterica survival both in vitro and in vivo. Meanwhile, FAN also displays anti-infective activity against other intracellular pathogens, including multidrug-resistant isolates. A 14-day safety evaluation in mice showed no significant toxic or adverse effects from FAN administration. RNA sequencing analysis reveals an upregulation of lysosome pathways in S. enterica-infected cells treated with FAN. Mechanistic studies indicate that FAN increases acid lysosomal quantities and fosters autophagic response in Salmonella-infected cells via the AMPK-mTORC1-TFEB axis. In addition, FAN alleviates the inflammatory response in Salmonella-infected cells by inactivating the NF-κB pathway. CONCLUSION Our findings suggest that FAN represents a lead HDT compound for tackling recalcitrant infections caused by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Mengping He
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huihui Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yurong Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
37
|
Kuno A, Hosoda R, Saga Y, Iwahara N, Tatekoshi Y, Numazawa R, Horio Y. Resveratrol promotes autophagosome elimination via SIRT1 in cardiomyocytes. J Pharmacol Sci 2025; 157:25-34. [PMID: 39706642 DOI: 10.1016/j.jphs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
The processes of autophagy, including autophagosome formation, fusion of autophagosomes with lysosomes, and degradation of autophagosomes by lysosomes, are regulated by various mechanisms. We recently found that treatment with resveratrol, an activator of the NAD+-dependent protein deacetylase Sirtuin-1 (SIRT1), in a mouse model prevented autophagosome accumulation in the heart with high mTORC1 activity. In this study, we investigated whether SIRT1 mediates the effects of resveratrol on autophagosome elimination using a cardiomyocyte model. In H9c2 cardiomyocytes, treatment with the mTORC1 activator MHY1485 induced autophagosome accumulation accompanied by increases in fragmented mitochondria within the autophagosomes and levels of intracellular reactive oxygen species (ROS), indicative of impaired autophagy-mediated elimination of mitochondria and resultant oxidative stress. MHY1485 suppressed the fusion of autophagosomes with lysosomes. Co-treatment with resveratrol attenuated the MHY1485-induced increases in autophagosomes, mitochondria within autophagosomes, and levels of ROS. Knockdown of Sirt1 reversed the reductions in autophagosomes and ROS levels induced by resveratrol under the condition of MHY1485 treatment. Neither resveratrol treatment nor Sirt1 knockdown modulated the phosphorylation levels of UVRAG, a target of mTORC1 for suppression of autophagosome-lysosome fusion. Our findings suggest that SIRT1 mediates the resveratrol-induced promotion of autophagosome elimination in cells with high mTORC1 activity.
Collapse
Affiliation(s)
- Atsushi Kuno
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Ryusuke Hosoda
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yukika Saga
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naotoshi Iwahara
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Tatekoshi
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryo Numazawa
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
38
|
Nakamura J, Yamamoto T, Takabatake Y, Namba-Hamano T, Takahashi A, Matsuda J, Minami S, Sakai S, Yonishi H, Maeda S, Matsui S, Kawai H, Matsui I, Yamamuro T, Edahiro R, Takashima S, Takasawa A, Okada Y, Yoshimori T, Ballabio A, Isaka Y. Age-related TFEB downregulation in proximal tubules causes systemic metabolic disorders and occasional apolipoprotein A4-related amyloidosis. JCI Insight 2024; 10:e184451. [PMID: 39699959 PMCID: PMC11948592 DOI: 10.1172/jci.insight.184451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
With the aging of society, the incidence of chronic kidney disease (CKD), a common cause of death, has been increasing. Transcription factor EB (TFEB), the master transcriptional regulator of the autophagy/lysosomal pathway, is regarded as a promising candidate for preventing various age-related diseases. However, whether TFEB in the proximal tubules plays a significant role in elderly patients with CKD remains unknown. First, we found that nuclear TFEB localization in proximal tubular epithelial cells (PTECs) declined with age in both mice and humans. Next, we generated PTEC-specific Tfeb-deficient mice and bred them for up to 24 months. We found that TFEB deficiency in the proximal tubules caused metabolic disorders and occasionally led to apolipoprotein A4 (APOA4) amyloidosis. Supporting this result, we identified markedly decreased nuclear TFEB localization in the proximal tubules of elderly patients with APOA4 amyloidosis. The metabolic disturbances were accompanied by mitochondrial dysfunction due to transcriptional changes involved in fatty acid oxidation and oxidative phosphorylation pathways, as well as decreased mitochondrial clearance. This decreased clearance was reflected by the accumulation of mitochondria-lysosome-related organelles, which depended on lysosomal function. These results shed light on the presumptive mechanisms of APOA4 amyloidosis pathogenesis and provide a therapeutic strategy for CKD-related metabolic disorders and APOA4 amyloidosis.
Collapse
Affiliation(s)
- Jun Nakamura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shihomi Maeda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sho Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideaki Kawai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Yamamuro
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ryuya Edahiro
- Department of Statistical Genetics and
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akira Takasawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics and
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe) and
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Tamotsu Yoshimori
- Health Promotion System Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Via Pansini 5, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
39
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Garavaglia B, Nasca A, Mitola S, Ingrassia R. WDR45-dependent impairment of cell cycle in fibroblasts of patients with beta propeller protein-associated neurodegeneration (BPAN). BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119842. [PMID: 39265886 DOI: 10.1016/j.bbamcr.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
De novo mutations in the WDR45 gene have been found in patients affected by Neurodegeneration with Brain Iron Accumulation type 5 (NBIA5 or BPAN), with Non-Transferrin Bound Iron (NTBI) accumulation in the basal ganglia and WDR45-dependent impairment of autophagy. Here we show the downregulation of TFEB and cell cycle impairment in BPAN primary fibroblasts. Noteworthy, TFEB overexpression rescued this impairment, depicting a novel WDR45-dependent cell cycle phenotype.
Collapse
Affiliation(s)
- Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit - Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Alessia Nasca
- Medical Genetics and Neurogenetics Unit - Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Stefania Mitola
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosaria Ingrassia
- Section of Biotechnologies, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
41
|
Keshri S, Vicinanza M, Takla M, Rubinsztein DC. USP7 protects TFEB from proteasome-mediated degradation. Cell Rep 2024; 43:114872. [PMID: 39412987 DOI: 10.1016/j.celrep.2024.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy. We identify a distinct nuclear interactome of TFEB, with ubiquitin-specific protease 7 (USP7) emerging as a key post-translational modulator of TFEB. Genetic depletion and inhibition of USP7 reveal its critical role in preserving TFEB stability within both nuclear and cytoplasmic compartments. Specifically, USP7 is identified as the deubiquitinase responsible for removing the K48-linked polyubiquitination signal from TFEB at lysine residues K116, K264, and K274, thereby preventing its proteasomal degradation. Functional assays demonstrate the involvement of USP7 in preserving TFEB-mediated transcriptional responses to nutrient deprivation while also modulating autophagy flux and lysosome biogenesis. As USP7 is a deubiquitinase that protects TFEB from proteasomal degradation, these findings provide the foundation for therapeutic targeting of the USP7-TFEB axis in conditions characterized by TFEB dysregulation and metabolic abnormalities, particularly in certain cancers.
Collapse
Affiliation(s)
- Swati Keshri
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Mariella Vicinanza
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
42
|
Schmuckli-Maurer J, Bindschedler AF, Wacker R, Würgler OM, Rehmann R, Lehmberg T, Murphy LO, Nguyen TN, Lazarou M, Monfregola J, Ballabio A, Heussler VT. Plasmodium berghei liver stage parasites exploit host GABARAP proteins for TFEB activation. Commun Biol 2024; 7:1554. [PMID: 39572689 PMCID: PMC11582615 DOI: 10.1038/s42003-024-07242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
Plasmodium, the causative agent of malaria, infects hepatocytes prior to establishing a symptomatic blood stage infection. During this liver stage development, parasites reside in a parasitophorous vacuole (PV), whose membrane acts as the critical interface between the parasite and the host cell. It is well-established that host cell autophagy-related processes significantly impact the development of Plasmodium liver stages. Expression of genes related to autophagy and lysosomal biogenesis is orchestrated by transcription factor EB (TFEB). In this study, we explored the activation of host cell TFEB in Plasmodium berghei-infected cells during the liver stage of the parasite. Our results unveiled a critical role of proteins belonging to the Gamma-aminobutyric acid receptor-associated protein subfamily (GABARAP) of ATG8 proteins (GABARAP/L1/L2 and LC3A/B/C) in recruiting the TFEB-blocking FLCN-FNIP (Folliculin-Folliculin-interacting protein) complex to the PVM. Remarkably, the sequestration of FLCN-FNIP resulted in a robust activation of TFEB, reliant on conjugation of ATG8 proteins to single membranes (CASM) and GABARAP proteins. Our findings provide novel mechanistic insights into host cell signaling occurring at the PVM, shedding light on the complex interplay between Plasmodium parasites and the host cell during the liver stage of infection.
Collapse
Affiliation(s)
| | - Annina F Bindschedler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver M Würgler
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Timothy Lehmberg
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA, 02139, USA
| | - Leon O Murphy
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA, 02139, USA
| | - Thanh N Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
| | - Andrea Ballabio
- Casma Therapeutics, 400 Technology Sq, Cambridge, MA, 02139, USA
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | | |
Collapse
|
43
|
Zwakenberg S, Westland D, van Es RM, Rehmann H, Anink J, Ciapaite J, Bosma M, Stelloo E, Liv N, Sobrevals Alcaraz P, Verhoeven-Duif NM, Jans JJM, Vos HR, Aronica E, Zwartkruis FJT. mTORC1 restricts TFE3 activity by auto-regulating its presence on lysosomes. Mol Cell 2024; 84:4368-4384.e6. [PMID: 39486419 DOI: 10.1016/j.molcel.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 11/04/2024]
Abstract
To stimulate cell growth, the protein kinase complex mTORC1 requires intracellular amino acids for activation. Amino-acid sufficiency is relayed to mTORC1 by Rag GTPases on lysosomes, where growth factor signaling enhances mTORC1 activity via the GTPase Rheb. In the absence of amino acids, GATOR1 inactivates the Rags, resulting in lysosomal detachment and inactivation of mTORC1. We demonstrate that in human cells, the release of mTORC1 from lysosomes depends on its kinase activity. In accordance with a negative feedback mechanism, activated mTOR mutants display low lysosome occupancy, causing hypo-phosphorylation and nuclear localization of the lysosomal substrate TFE3. Surprisingly, mTORC1 activated by Rheb does not increase the cytoplasmic/lysosomal ratio of mTORC1, indicating the existence of mTORC1 pools with distinct substrate specificity. Dysregulation of either pool results in aberrant TFE3 activity and may explain nuclear accumulation of TFE3 in epileptogenic malformations in focal cortical dysplasia type II (FCD II) and tuberous sclerosis (TSC).
Collapse
Affiliation(s)
- Susan Zwakenberg
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Denise Westland
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Holger Rehmann
- Department of Energy and Life Science, Flensburg University of Applied Sciences, Flensburg, Germany
| | - Jasper Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Jolita Ciapaite
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Marjolein Bosma
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Ellen Stelloo
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, 3584 EA Utrecht, the Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Fried J T Zwartkruis
- Center for Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
44
|
Moradi N, Sanfrancesco VC, Champsi S, Hood DA. Regulation of lysosomes in skeletal muscle during exercise, disuse and aging. Free Radic Biol Med 2024; 225:323-332. [PMID: 39332541 DOI: 10.1016/j.freeradbiomed.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Lysosomes play a critical role as a terminal organelle in autophagy flux and in regulating protein degradation, but their function and adaptability in skeletal muscle is understudied. Lysosome functions include both housekeeping and signaling functions essential for cellular homeostasis. This review focuses on the regulation of lysosomes in skeletal muscle during exercise, disuse, and aging, with a consideration of sex differences as well as the role of lysosomes in mediating the degradation of mitochondria, termed mitophagy. Exercise enhances mitophagy during elevated mitochondrial stress and energy demand. A critical response to this deviation from homeostasis is the activation of transcription factors TFEB and TFE3, which drive the expression of lysosomal and autophagic genes. Conversely, during muscle disuse, the suppression of lysosomal activity contributes to the accumulation of defective mitochondria and other cellular debris, impairing muscle function. Aging further exacerbates these effects by diminishing lysosomal efficacy, leading to the accumulation of damaged cellular components. mTORC1, a key nutrient sensor, modulates lysosomal activity by inhibiting TFEB/TFE3 translocation to the nucleus under nutrient-rich conditions, thereby suppressing autophagy. During nutrient deprivation or exercise, AMPK activation inhibits mTORC1, facilitating TFEB/TFE3 nuclear translocation and promoting lysosomal biogenesis and autophagy. TRPML1 activation by mitochondrial ROS enhances lysosomal calcium release, which is essential for autophagy and maintaining mitochondrial quality. Overall, the intricate regulation of lysosomal functions and signaling pathways in skeletal muscle is crucial for adaptation to physiological demands, and disruptions in these processes during disuse and aging underscore the ubiquitous power of exercise-induced adaptations, and also highlight the potential for targeted therapeutic interventions to preserve muscle health.
Collapse
Affiliation(s)
- N Moradi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - V C Sanfrancesco
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - S Champsi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - D A Hood
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada.
| |
Collapse
|
45
|
Cunha MR, Do Amaral BS, Takarada JE, Valderrama GV, Batista ANL, Batista JM, Cass QB, Couñago RM, Massirer KB. (S)-ML-SA1 Activates Autophagy via TRPML1-TFEB Pathway. Chembiochem 2024; 25:e202400506. [PMID: 38923811 DOI: 10.1002/cbic.202400506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Bruno S Do Amaral
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
- Federal Institute of Education, Science and Technology of São Paulo, Av. Mutinga 951, São Paulo, 05110-000, Brazil
| | - Jéssica E Takarada
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Gabriel V Valderrama
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Andrea N L Batista
- Chemistry Institute, Fluminense Federal University, Outeiro de São João Batista s/n, Niterói, 24020-141, Brazil
| | - João M Batista
- Institute of Science and Technology, Federal University of São Paulo, Talim Street 330, São José dos Campos, 12231-280, Brazil
| | - Quezia B Cass
- SEPARARE-Chromatography Research Center, Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz, s/n Km 235, São Carlos, 13565-095, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Pharmacy Lane 301, North Carolina, 27599, United States
| | - Katlin B Massirer
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| |
Collapse
|
46
|
Smiles WJ, Ovens AJ, Kemp BE, Galic S, Petersen J, Oakhill JS. New developments in AMPK and mTORC1 cross-talk. Essays Biochem 2024; 68:321-336. [PMID: 38994736 PMCID: PMC12055038 DOI: 10.1042/ebc20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Metabolic homeostasis and the ability to link energy supply to demand are essential requirements for all living cells to grow and proliferate. Key to metabolic homeostasis in all eukaryotes are AMPK and mTORC1, two kinases that sense nutrient levels and function as counteracting regulators of catabolism (AMPK) and anabolism (mTORC1) to control cell survival, growth and proliferation. Discoveries beginning in the early 2000s revealed that AMPK and mTORC1 communicate, or cross-talk, through direct and indirect phosphorylation events to regulate the activities of each other and their shared protein substrate ULK1, the master initiator of autophagy, thereby allowing cellular metabolism to rapidly adapt to energy and nutritional state. More recent reports describe divergent mechanisms of AMPK/mTORC1 cross-talk and the elaborate means by which AMPK and mTORC1 are activated at the lysosome. Here, we provide a comprehensive overview of current understanding in this exciting area and comment on new evidence showing mTORC1 feedback extends to the level of the AMPK isoform, which is particularly pertinent for some cancers where specific AMPK isoforms are implicated in disease pathogenesis.
Collapse
Affiliation(s)
- William J Smiles
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Bruce E Kemp
- Protein Chemistry and Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University, Fitzroy, Vic 3065, Vic. Australia
| | - Sandra Galic
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Metabolic Physiology, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
47
|
Huang Y, Luo G, Peng K, Song Y, Wang Y, Zhang H, Li J, Qiu X, Pu M, Liu X, Peng C, Neculai D, Sun Q, Zhou T, Huang P, Liu W. Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity. J Cell Biol 2024; 223:e202308099. [PMID: 39196068 PMCID: PMC11354204 DOI: 10.1083/jcb.202308099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 04/03/2024] [Indexed: 08/29/2024] Open
Abstract
The transcription factor TFEB is a major regulator of lysosomal biogenesis and autophagy. There is growing evidence that posttranslational modifications play a crucial role in regulating TFEB activity. Here, we show that lactate molecules can covalently modify TFEB, leading to its lactylation and stabilization. Mechanically, lactylation at K91 prevents TFEB from interacting with E3 ubiquitin ligase WWP2, thereby inhibiting TFEB ubiquitination and proteasome degradation, resulting in increased TFEB activity and autophagy flux. Using a specific antibody against lactylated K91, enhanced TFEB lactylation was observed in clinical human pancreatic cancer samples. Our results suggest that lactylation is a novel mode of TFEB regulation and that lactylation of TFEB may be associated with high levels of autophagy in rapidly proliferating cells, such as cancer cells.
Collapse
Affiliation(s)
- Yewei Huang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Gan Luo
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Kesong Peng
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yue Song
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yusha Wang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hongtao Zhang
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jin Li
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xiangmin Qiu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Maomao Pu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Xinchang Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dante Neculai
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiming Sun
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianhua Zhou
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Pintong Huang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Saffi GT, To L, Kleine N, Melo CM, Chen K, Genc G, Lee KD, Chow JTS, Jang GH, Gallinger S, Botelho RJ, Salmena L. INPP4B promotes PDAC aggressiveness via PIKfyve and TRPML-1-mediated lysosomal exocytosis. J Cell Biol 2024; 223:e202401012. [PMID: 39120584 PMCID: PMC11317760 DOI: 10.1083/jcb.202401012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Aggressive solid malignancies, including pancreatic ductal adenocarcinoma (PDAC), can exploit lysosomal exocytosis to modify the tumor microenvironment, enhance motility, and promote invasiveness. However, the molecular pathways through which lysosomal functions are co-opted in malignant cells remain poorly understood. In this study, we demonstrate that inositol polyphosphate 4-phosphatase, Type II (INPP4B) overexpression in PDAC is associated with PDAC progression. We show that INPP4B overexpression promotes peripheral dispersion and exocytosis of lysosomes resulting in increased migratory and invasive potential of PDAC cells. Mechanistically, INPP4B overexpression drives the generation of PtdIns(3,5)P2 on lysosomes in a PIKfyve-dependent manner, which directs TRPML-1 to trigger the release of calcium ions (Ca2+). Our findings offer a molecular understanding of the prognostic significance of INPP4B overexpression in PDAC through the discovery of a novel oncogenic signaling axis that orchestrates migratory and invasive properties of PDAC via the regulation of lysosomal phosphoinositide homeostasis.
Collapse
Affiliation(s)
- Golam T. Saffi
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Lydia To
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Nicholas Kleine
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Ché M.P. Melo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Keyue Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Gizem Genc
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - K.C. Daniel Lee
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
| | - Roberto J. Botelho
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
49
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
50
|
Jiang C, Tan X, Liu N, Yan P, Hou T, Wei W. Nutrient sensing of mTORC1 signaling in cancer and aging. Semin Cancer Biol 2024; 106-107:1-12. [PMID: 39153724 DOI: 10.1016/j.semcancer.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.
Collapse
Affiliation(s)
- Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ning Liu
- International Research Center for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Peiqiang Yan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Hou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|