1
|
Krukenberg S, Möckl F, Weiß M, Dekiert P, Hofmann M, Gerlach F, Winterberg KJ, Kovacevic D, Khansahib I, Troost B, Hinrichs M, Granato V, Nawrocki M, Hub T, Tsvilovskyy V, Medert R, Woelk LM, Förster F, Li H, Werner R, Altfeld M, Huber S, Clarke OB, Freichel M, Diercks BP, Meier C, Guse AH. MASTER-NAADP: a membrane permeable precursor of the Ca 2+ mobilizing second messenger NAADP. Nat Commun 2024; 15:8008. [PMID: 39271671 PMCID: PMC11399135 DOI: 10.1038/s41467-024-52024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Upon stimulation of membrane receptors, nicotinic acid adenine dinucleotide phosphate (NAADP) is formed as second messenger within seconds and evokes Ca2+ signaling in many different cell types. Here, to directly stimulate NAADP signaling, MASTER-NAADP, a Membrane permeAble, STabilized, bio-rEversibly pRotected precursor of NAADP is synthesized and release of its active NAADP mimetic, benzoic acid C-nucleoside, 2'-phospho-3'F-adenosine-diphosphate, by esterase digestion is confirmed. In the presence of NAADP receptor HN1L/JPT2 (hematological and neurological expressed 1-like protein, HN1L, also known as Jupiter microtubule-associated homolog 2, JPT2), this active NAADP mimetic releases Ca2+ and increases the open probability of type 1 ryanodine receptor. When added to intact cells, MASTER-NAADP initially evokes single local Ca2+ signals of low amplitude. Subsequently, also global Ca2+ signaling is observed in T cells, natural killer cells, and Neuro2A cells. In contrast, control compound MASTER-NADP does not stimulate Ca2+ signaling. Likewise, in cells devoid of HN1L/JPT2, MASTER-NAADP does not affect Ca2+ signaling, confirming that the product released from MASTER-NAADP is a bona fide NAADP mimetic.
Collapse
Affiliation(s)
- Sarah Krukenberg
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Franziska Möckl
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mariella Weiß
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Patrick Dekiert
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Melanie Hofmann
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Fynn Gerlach
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kai J Winterberg
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dejan Kovacevic
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Imrankhan Khansahib
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Berit Troost
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Macarena Hinrichs
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Viviana Granato
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tobis Hub
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Rebekka Medert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lena-Marie Woelk
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Fritz Förster
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Huan Li
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - René Werner
- Department of Applied Medical Informatics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcus Altfeld
- Department of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Oliver Biggs Clarke
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Gil Montoya DC, Ornelas-Guevara R, Diercks BP, Guse AH, Dupont G. T cell Ca 2+ microdomains through the lens of computational modeling. Front Immunol 2023; 14:1235737. [PMID: 37860008 PMCID: PMC10582754 DOI: 10.3389/fimmu.2023.1235737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Cellular Ca2+ signaling is highly organized in time and space. Locally restricted and short-lived regions of Ca2+ increase, called Ca2+ microdomains, constitute building blocks that are differentially arranged to create cellular Ca2+ signatures controlling physiological responses. Here, we focus on Ca2+ microdomains occurring in restricted cytosolic spaces between the plasma membrane and the endoplasmic reticulum, called endoplasmic reticulum-plasma membrane junctions. In T cells, these microdomains have been finely characterized. Enough quantitative data are thus available to develop detailed computational models of junctional Ca2+ dynamics. Simulations are able to predict the characteristics of Ca2+ increases at the level of single channels and in junctions of different spatial configurations, in response to various signaling molecules. Thanks to the synergy between experimental observations and computational modeling, a unified description of the molecular mechanisms that create Ca2+ microdomains in the first seconds of T cell stimulation is emerging.
Collapse
Affiliation(s)
- Diana C. Gil Montoya
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roberto Ornelas-Guevara
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Faculté des Sciences CP231, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Patel S, Zissimopoulos S, Marchant JS. Endo-Lysosomal Two-Pore Channels and Their Protein Partners. Handb Exp Pharmacol 2023; 278:199-214. [PMID: 35902438 DOI: 10.1007/164_2022_601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Two-pore channels are ion channels expressed on acidic organelles such as the various vesicles that constitute the endo-lysosomal system. They are permeable to Ca2+ and Na+ and activated by the second messenger NAADP as well as the phosphoinositide, PI(3,5)P2 and/or voltage. Here, we review the proteins that interact with these channels including recently identified NAADP receptors.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Guse AH. NAADP-Evoked Ca 2+ Signaling: The DUOX2-HN1L/JPT2-Ryanodine Receptor 1 Axis. Handb Exp Pharmacol 2023; 278:57-70. [PMID: 36443544 DOI: 10.1007/164_2022_623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing second messenger known to date. Major steps elucidating metabolism and Ca2+ mobilizing activity of NAADP are reviewed, with emphasis on a novel redox cycle between the inactive reduced form, NAADPH, and the active oxidized form, NAADP. Oxidation from NAADPH to NAADP is catalyzed in cell free system by (dual) NADPH oxidases NOX5, DUOX1, and DUOX2, whereas reduction from NAADP to NAADPH is catalyzed by glucose 6-phosphate dehydrogenase. Using different knockout models for NOX and DUOX isozymes, DUOX2 was identified as NAADP forming enzyme in early T-cell activation.Recently, receptors or binding proteins for NAADP were identified: hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule associated homolog 2 (JPT2) and Lsm12 are small cytosolic proteins that bind NAADP. In addition, they interact with NAADP-sensitive Ca2+ channels, such as ryanodine receptor type 1 (RYR1) or two-pore channels (TPC).Due to its role as Ca2+ mobilizing second messenger in T cells, NAADP's involvement in inflammation is also reviewed. In the central nervous system (CNS), NAADP regulates autoimmunity because NAADP antagonism affects a couple of T-cell migration and re-activation events, e.g. secretion of the pro-inflammatory cytokine interleukin-17. Further, the role of NAADP in transdifferentiation of IL-17-producing Th17 cells into T regulatory type 1 cells in vitro and in vivo is discussed.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Li G, Huang D, Li P, Yuan X, Yarotskyy V, Li PL. Regulation of exosome release by lysosomal acid ceramidase in coronary arterial endothelial cells: Role of TRPML1 channel. CURRENT TOPICS IN MEMBRANES 2022; 90:37-63. [PMID: 36368874 PMCID: PMC9842397 DOI: 10.1016/bs.ctm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysosomal acid ceramidase (AC) has been reported to determine multivesicular body (MVB) fate and exosome secretion in different mammalian cells including coronary arterial endothelial cells (CAECs). However, this AC-mediated regulation of exosome release from CAECs and associated underlying mechanism remain poorly understood. In the present study, we hypothesized that AC controls lysosomal Ca2+ release through TRPML1 channel to regulate exosome release in murine CAECs. To test this hypothesis, we isolated and cultured CAECs from WT/WT and endothelial cell-specific Asah1 gene (gene encoding AC) knockout mice. Using these CAECs, we first demonstrated a remarkable increase in exosome secretion and significant reduction of lysosome-MVB interaction in CAECs lacking Asah1 gene compared to those cells from WT/WT mice. ML-SA1, a TRPML1 channel agonist, was found to enhance lysosome trafficking and increase lysosome-MVB interaction in WT/WT CAECs, but not in CAECs lacking Asah1 gene. However, sphingosine, an AC-derived sphingolipid, was able to increase lysosome movement and lysosome-MVB interaction in CAECs lacking Asah1 gene, leading to reduced exosome release from these cells. Moreover, Asah1 gene deletion was shown to substantially inhibit lysosomal Ca2+ release through suppression of TRPML1 channel activity in CAECs. Sphingosine as an AC product rescued the function of TRPML1 channel in CAECs lacking Asah1 gene. These results suggest that Asah1 gene defect and associated deficiency of AC activity may inhibit TRPML1 channel activity, thereby reducing MVB degradation by lysosome and increasing exosome release from CAECs. This enhanced exosome release from CAECs may contribute to the development of coronary arterial disease under pathological conditions.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pengyang Li
- Division of Cardiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Viktor Yarotskyy
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
6
|
Role of Microglia and Astrocytes in Alzheimer’s Disease: From Neuroinflammation to Ca2+ Homeostasis Dysregulation. Cells 2022; 11:cells11172728. [PMID: 36078138 PMCID: PMC9454513 DOI: 10.3390/cells11172728] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia worldwide, with a complex, poorly understood pathogenesis. Cerebral atrophy, amyloid-β (Aβ) plaques, and neurofibrillary tangles represent the main pathological hallmarks of the AD brain. Recently, neuroinflammation has been recognized as a prominent feature of the AD brain and substantial evidence suggests that the inflammatory response modulates disease progression. Additionally, dysregulation of calcium (Ca2+) homeostasis represents another early factor involved in the AD pathogenesis, as intracellular Ca2+ concentration is essential to ensure proper cellular and neuronal functions. Although growing evidence supports the involvement of Ca2+ in the mechanisms of neurodegeneration-related inflammatory processes, scant data are available on its contribution in microglia and astrocytes functioning, both in health and throughout the AD continuum. Nevertheless, AD-related aberrant Ca2+ signalling in astrocytes and microglia is crucially involved in the mechanisms underpinning neuroinflammatory processes that, in turn, impact neuronal Ca2+ homeostasis and brain function. In this light, we attempted to provide an overview of the current understanding of the interactions between the glia cells-mediated inflammatory responses and the molecular mechanisms involved in Ca2+ homeostasis dysregulation in AD.
Collapse
|
7
|
Shah KR, Guan X, Yan J. Diversity of two-pore channels and the accessory NAADP receptors in intracellular Ca 2+ signaling. Cell Calcium 2022; 104:102594. [PMID: 35561646 PMCID: PMC9645597 DOI: 10.1016/j.ceca.2022.102594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 05/04/2022] [Indexed: 02/03/2023]
Abstract
Intracellular Ca2+ signaling via changes or oscillation in cytosolic Ca2+ concentration controls almost every aspect of cellular function and physiological processes, such as gene transcription, cell motility and proliferation, muscle contraction, and learning and memory. Two-pore channels (TPCs) are a class of eukaryotic cation channels involved in intracellular Ca2+ signaling, likely present in a multitude of organisms from unicellular organisms to mammals. Accumulated evidence indicates that TPCs play a critical role in Ca2+ mobilization from intracellular stores mediated by the second messenger molecule, nicotinic acid adenine dinucleotide phosphate (NAADP). In recent years, significant progress has been made regarding our understanding of the structures and function of TPCs, including Cryo-EM structure determination of mammalian TPCs and characterization of a plastid TPC in a single-celled parasite.. The recent identification of Lsm12 and JPT2 as NAADP-binding proteins provides a new molecular basis for understanding NAADP-evoked Ca2+ signaling. In this review, we summarize basic structural and functional aspects of TPCs and highlight the most recent studies on the newly discovered TPC in a parasitic protozoan and the NAADP-binding proteins LSM12 and JPT2 as new key players in NAADP signaling.
Collapse
Affiliation(s)
- Kunal R. Shah
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Guan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiusheng Yan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA,Neuroscience and Biochemistry and Cell Biology Programs, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA,Corresponding author at: Department of Anesthesiology & Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA., (J. Yan)
| |
Collapse
|
8
|
NAADP Signaling: New Kids on the Block. Cells 2022; 11:cells11061054. [PMID: 35326505 PMCID: PMC8947471 DOI: 10.3390/cells11061054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a universal Ca2+ mobilizing second messenger essential for initiation of Ca2+ signaling. Recently, novel molecular mechanisms of both its rapid formation upon receptor stimulation and its mode of action were discovered. Dual NADPH oxidase 2 (DUOX2) and hematological and neurological expressed 1-like protein (HN1L)/Jupiter microtubule-associated homolog 2 (JPT2) were discovered as NAADP-forming enzyme and NAADP receptor/binding protein—the new kids on the block. These novel aspects are reviewed and integrated into the previous view of NAADP signaling.
Collapse
|
9
|
Marchant JS, Gunaratne GS, Cai X, Slama JT, Patel S. NAADP-binding proteins find their identity. Trends Biochem Sci 2022; 47:235-249. [PMID: 34810081 PMCID: PMC8840967 DOI: 10.1016/j.tibs.2021.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from endosomes and lysosomes by activating ion channels called two-pore channels (TPCs). However, no NAADP-binding site has been identified on TPCs. Rather, NAADP activates TPCs indirectly by engaging NAADP-binding proteins (NAADP-BPs) that form part of the TPC complex. After a decade of searching, two different NAADP-BPs were recently identified: Jupiter microtubule associated homolog 2 (JPT2) and like-Sm protein 12 (LSM12). These discoveries bridge the gap between NAADP generation and NAADP activation of TPCs, providing new opportunity to understand and manipulate the NAADP-signaling pathway. The unmasking of these NAADP-BPs will catalyze future studies to define the molecular choreography of NAADP action.
Collapse
Affiliation(s)
- Jonathan S. Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA,Correspondence: (J.S. Marchant) and (S. Patel)
| | - Gihan S. Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Xinjiang Cai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - James T. Slama
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
10
|
Roles of cADPR and NAADP in pancreatic beta cell signalling. Cell Calcium 2022; 103:102562. [DOI: 10.1016/j.ceca.2022.102562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/19/2022]
|
11
|
Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know. Cell Calcium 2022; 103:102543. [PMID: 35123238 PMCID: PMC9552313 DOI: 10.1016/j.ceca.2022.102543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/31/2022]
Abstract
Two-pore channels are ancient members of the voltage-gated ion channel superfamily that are expressed predominantly on acidic organelles such as endosomes and lysosomes. Here we review recent advances in understanding how TPCs are activated by their ligands and identify five salient features: (1) TPCs are Ca2+-permeable non-selective cation channels gated by NAADP. (2) NAADP activation is indirect through associated NAADP receptors. (3) TPCs are also Na+-selective channels gated by PI(3,5)P2. (4) PI(3,5)P2 activation is direct through a structurally-resolved binding site. (5) TPCs switch their ion selectivity in an agonist-dependent manner.
Collapse
|
12
|
Abstract
Nicotinic acid adenine dinucleotide 2'-phosphate (NAADP) is a naturally occurring nucleotide that has been shown to be involved in the release of Ca2+ from intracellular stores in a wide variety of cell types, tissues and organisms. Current evidence suggests that NAADP may function as a trigger to initiate a Ca2+ signal that is then amplified by other Ca2+ release mechanisms. A fundamental question that remains unanswered is the identity of the NAADP receptor. Our recent studies have identified HN1L/JPT2 as a high affinity NAADP binding protein that is essential for the modulation of Ca2+ channels.
Collapse
Affiliation(s)
- Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Lsm12 is an NAADP receptor and a two-pore channel regulatory protein required for calcium mobilization from acidic organelles. Nat Commun 2021; 12:4739. [PMID: 34362892 PMCID: PMC8346516 DOI: 10.1038/s41467-021-24735-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-mobilizing second messenger which uniquely mobilizes Ca2+ from acidic endolysosomal organelles. However, the molecular identity of the NAADP receptor remains unknown. Given the necessity of the endolysosomal two-pore channel (TPC1 or TPC2) in NAADP signaling, we performed affinity purification and quantitative proteomic analysis of the interacting proteins of NAADP and TPCs. We identified a Sm-like protein Lsm12 complexed with NAADP, TPC1, and TPC2. Lsm12 directly binds to NAADP via its Lsm domain, colocalizes with TPC2, and mediates the apparent association of NAADP to isolated TPC2 or TPC2-containing membranes. Lsm12 is essential and immediately participates in NAADP-evoked TPC activation and Ca2+ mobilization from acidic stores. These findings reveal a putative RNA-binding protein to function as an NAADP receptor and a TPC regulatory protein and provides a molecular basis for understanding the mechanisms of NAADP signaling. Nicotinic acid adenine dinucleotide phosphate (NAADP) potent Ca2+ mobilizing second messenger which uniquely triggers Ca2+ release from acidic endolysosomal organelles. Here the authors identify Lsm12 as an NAADP receptor essential for NAADP-evoked Ca2+ release from lysosomes via NAADP binding on its Lsm domain.
Collapse
|
14
|
Gunaratne GS, Brailoiu E, He S, Unterwald EM, Patel S, Slama JT, Walseth TF, Marchant JS. Essential requirement for JPT2 in NAADP-evoked Ca 2+ signaling. Sci Signal 2021; 14:14/675/eabd5605. [PMID: 33758061 DOI: 10.1126/scisignal.abd5605] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that releases Ca2+ from acidic organelles through the activation of two-pore channels (TPCs) to regulate endolysosomal trafficking events. NAADP action is mediated by NAADP-binding protein(s) of unknown identity that confer NAADP sensitivity to TPCs. Here, we used a "clickable" NAADP-based photoprobe to isolate human NAADP-binding proteins and identified Jupiter microtubule-associated homolog 2 (JPT2) as a TPC accessory protein required for endogenous NAADP-evoked Ca2+ signaling. JPT2 was also required for the translocation of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus through the endolysosomal system. Thus, JPT2 is a component of the NAADP receptor complex that is essential for TPC-dependent Ca2+ signaling and control of coronaviral entry.
Collapse
Affiliation(s)
- Gihan S Gunaratne
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shijun He
- Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Ellen M Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - James T Slama
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, 312 Church Street, Minneapolis, MN 55455, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
15
|
Roggenkamp HG, Khansahib I, Hernandez C LC, Zhang Y, Lodygin D, Krüger A, Gu F, Möckl F, Löhndorf A, Wolters V, Woike D, Rosche A, Bauche A, Schetelig D, Werner R, Schlüter H, Failla AV, Meier C, Fliegert R, Walseth TF, Flügel A, Diercks BP, Guse AH. HN1L/JPT2: A signaling protein that connects NAADP generation to Ca 2+ microdomain formation. Sci Signal 2021; 14:14/675/eabd5647. [PMID: 33758062 DOI: 10.1126/scisignal.abd5647] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NAADP-evoked Ca2+ release through type 1 ryanodine receptors (RYR1) is a major mechanism underlying the earliest signals in T cell activation, which are the formation of Ca2+ microdomains. In our characterization of the molecular machinery underlying NAADP action, we identified an NAADP-binding protein, called hematological and neurological expressed 1-like protein (HN1L) [also known as Jupiter microtubule-associated homolog 2 (JPT2)]. Gene deletion of Hn1l/Jpt2 in human Jurkat and primary rat T cells resulted in decreased numbers of initial Ca2+ microdomains and delayed the onset and decreased the amplitude of global Ca2+ signaling. Photoaffinity labeling demonstrated direct binding of NAADP to recombinant HN1L/JPT2. T cell receptor/CD3-dependent coprecipitation of HN1L/JPT2 with RYRs and colocalization of these proteins suggest that HN1L/JPT2 connects NAADP formation with the activation of RYR channels within the first seconds of T cell activation. Thus, HN1L/JPT2 enables NAADP to activate Ca2+ release from the endoplasmic reticulum through RYR.
Collapse
Affiliation(s)
- Hannes G Roggenkamp
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Imrankhan Khansahib
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lola C Hernandez C
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Yunpeng Zhang
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dmitri Lodygin
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Aileen Krüger
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Feng Gu
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Möckl
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anke Löhndorf
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Valerie Wolters
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Woike
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anette Rosche
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas Bauche
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniel Schetelig
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Antonio V Failla
- Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Ralf Fliegert
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455-0217, USA
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Björn-Philipp Diercks
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Andreas H Guse
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. Pharmacol Ther 2020; 220:107713. [PMID: 33141027 DOI: 10.1016/j.pharmthera.2020.107713] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
The old Greek saying "Panta Rhei" ("everything flows") is true for all life and all living things in general. It also becomes nicely evident when looking closely into cells. There, material from the extracellular space is taken up by endocytic processes and transported to endosomes where it is sorted either for recycling or degradation. Cargo is also packaged for export through exocytosis involving the Golgi network, lysosomes and other organelles. Everything in this system is in constant motion and many proteins are necessary to coordinate transport along the different intracellular pathways to avoid chaos. Among these proteins are ion channels., in particular TRPML channels (mucolipins) and two-pore channels (TPCs) which reside on endosomal and lysosomal membranes to speed up movement between organelles, e.g. by regulating fusion and fission; they help readjust pH and osmolarity changes due to such processes, or they promote exocytosis of export material. Pathophysiologically, these channels are involved in neurodegenerative, metabolic, retinal and infectious diseases, cancer, pigmentation defects, and immune cell function, and thus have been proposed as novel pharmacological targets, e.g. for the treatment of lysosomal storage disorders, Duchenne muscular dystrophy, or different types of cancer. Here, we discuss the similarities but also differences of TPCs and TRPMLs in regulating phagocytosis, autophagy and lysosomal exocytosis, and we address the contradictions and open questions in the field relating to the roles TPCs and TRPMLs play in these different processes.
Collapse
|
17
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
18
|
Hermann J, Bender M, Schumacher D, Woo MS, Shaposhnykov A, Rosenkranz SC, Kuryshev V, Meier C, Guse AH, Friese MA, Freichel M, Tsvilovskyy V. Contribution of NAADP to Glutamate-Evoked Changes in Ca 2+ Homeostasis in Mouse Hippocampal Neurons. Front Cell Dev Biol 2020; 8:496. [PMID: 32676502 PMCID: PMC7333232 DOI: 10.3389/fcell.2020.00496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger that evokes calcium release from intracellular organelles by the engagement of calcium release channels, including members of the Transient Receptor Potential (TRP) family, such as TRPML1, the (structurally) related Two Pore Channel type 1 (TPC1) and TPC2 channels as well as Ryanodine Receptors type 1 (RYR1; Guse, 2012). NAADP evokes calcium release from acidic calcium stores of many cell types (Guse, 2012), and NAADP-sensitive Ca2+ stores have been described in hippocampal neurons of the rat (Bak et al., 1999; McGuinness et al., 2007). Glutamate triggers Ca2+-mediated neuronal excitotoxicity in inflammation-induced neurodegenerative pathologies such as Multiple Sclerosis (MS; Friese et al., 2014), and when applied extracellularly to neurons glutamate can elevate NAADP levels in these cells. Accordingly, glutamate-evoked Ca2+ signals from intracellular organelles were inhibited by preventing organelle acidification (Pandey et al., 2009). Analysis of reported RNA sequencing experiments of cultured hippocampal neurons revealed the abundance of Mcoln1 (encoding TRPML1), Tpcn1, and Tpcn2 (encoding TPC1 and TPC2, respectively) as potential NAADP target channels in these cells. Transcripts encoding Ryr1 were not found in contrast to Ryr2 and Ryr3. To study the contribution of NAADP signaling to glutamate-evoked calcium transients in murine hippocampal neurons we used the NAADP antagonists Ned-19 (Naylor et al., 2009) and BZ194 (Dammermann et al., 2009). Our results show that both NAADP antagonists significantly reduce glutamate-evoked calcium transients. In addition to extracellular glutamate application, we studied synchronized calcium oscillations in the cells of the neuronal cultures evoked by addition of the GABAA receptor antagonist bicuculline. Pretreatment with Ned-19 (50 μM) or BZ194 (100 μM) led to an increase in the frequency of bicuculline-induced calcium oscillations at the cost of calcium transient amplitudes. Interestingly, Ned-19 triggered a rise in intracellular calcium concentrations 25 min after bicuculline stimulation, leading to the question whether NAADP acts as a neuroprotective messenger in hippocampal neurons. Taken together, our results are in agreement with the concept that NAADP signaling significantly contributes to glutamate evoked Ca2+ rise in hippocampal neurons and to the amplitude and frequency of synchronized Ca2+ oscillations triggered by spontaneous glutamate release events.
Collapse
Affiliation(s)
- Julia Hermann
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Melanie Bender
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Marcel S Woo
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
19
|
Moccia F, Zuccolo E, Di Nezza F, Pellavio G, Faris PS, Negri S, De Luca A, Laforenza U, Ambrosone L, Rosti V, Guerra G. Nicotinic acid adenine dinucleotide phosphate activates two-pore channel TPC1 to mediate lysosomal Ca 2+ release in endothelial colony-forming cells. J Cell Physiol 2020; 236:688-705. [PMID: 32583526 DOI: 10.1002/jcp.29896] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Estella Zuccolo
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pawan S Faris
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
20
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
21
|
Penny CJ, Vassileva K, Jha A, Yuan Y, Chee X, Yates E, Mazzon M, Kilpatrick BS, Muallem S, Marsh M, Rahman T, Patel S. Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1151-1161. [PMID: 30408544 PMCID: PMC7114365 DOI: 10.1016/j.bbamcr.2018.10.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/04/2023]
Abstract
Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Christopher J Penny
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kristin Vassileva
- Department of Cell and Developmental Biology, University College London, London, UK; MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Xavier Chee
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Elizabeth Yates
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Michela Mazzon
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Bethan S Kilpatrick
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
22
|
Padamsey Z, Foster WJ, Emptage NJ. Intracellular Ca 2+ Release and Synaptic Plasticity: A Tale of Many Stores. Neuroscientist 2019; 25:208-226. [PMID: 30014771 DOI: 10.1177/1073858418785334] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ca2+ is an essential trigger for most forms of synaptic plasticity. Ca2+ signaling occurs not only by Ca2+ entry via plasma membrane channels but also via Ca2+ signals generated by intracellular organelles. These organelles, by dynamically regulating the spatial and temporal extent of Ca2+ elevations within neurons, play a pivotal role in determining the downstream consequences of neural signaling on synaptic function. Here, we review the role of three major intracellular stores: the endoplasmic reticulum, mitochondria, and acidic Ca2+ stores, such as lysosomes, in neuronal Ca2+ signaling and plasticity. We provide a comprehensive account of how Ca2+ release from these stores regulates short- and long-term plasticity at the pre- and postsynaptic terminals of central synapses.
Collapse
Affiliation(s)
- Zahid Padamsey
- 1 Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, 15 George Square, Edinburgh, UK
| | - William J Foster
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| | - Nigel J Emptage
- 2 Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, Oxfordshire, UK
| |
Collapse
|
23
|
Faris P, Pellavio G, Ferulli F, Di Nezza F, Shekha M, Lim D, Maestri M, Guerra G, Ambrosone L, Pedrazzoli P, Laforenza U, Montagna D, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca 2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040542. [PMID: 30991693 PMCID: PMC6521149 DOI: 10.3390/cancers11040542] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) gates two-pore channels 1 and 2 (TPC1 and TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced EL Ca2+ signals may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release mechanism (CICR). Herein, we aimed at assessing for the first time the role of EL Ca2+ signaling in primary cultures of human metastatic colorectal carcinoma (mCRC) by exploiting Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide (GPN), and nigericin, which dissipates the ΔpH which drives Ca2+ refilling of acidic organelles, caused massive Ca2+ release in the presence of a functional inositol-1,4,5-trisphosphate (InsP3)-sensitive ER Ca2+ store. Liposomal delivery of NAADP induced a transient Ca2+ release that was reduced by GPN and NED-19, a selective TPC antagonist. Pharmacological and genetic manipulations revealed that the Ca2+ response to NAADP was triggered by TPC1, the most expressed TPC isoform in mCRC cells, and required ER-embedded InsP3 receptors. Finally, NED-19 and genetic silencing of TPC1 reduced fetal calf serum-induced Ca2+ signals, proliferation, and extracellular signal-regulated kinase and Akt phoshorylation in mCRC cells. These data demonstrate that NAADP-gated TPC1 could be regarded as a novel target for alternative therapies to treat mCRC.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Giorgia Pellavio
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Mudhir Shekha
- Research Centre, Salahaddin University-Erbil, 44001 Erbil, Kurdistan-Region of Iraq, Iraq.
- Department of Pathological Analysis, College of Science, Knowledge University, 074016 Erbil, Kurdistan-Region of Iraq, Iraq.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Maestri
- Unit of General Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy.
| | - Paolo Pedrazzoli
- Medical Oncology, oundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Umberto Laforenza
- Human Physiology Unit, via Forlanini 6, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
24
|
Adenine nucleotides as paracrine mediators and intracellular second messengers in immunity and inflammation. Biochem Soc Trans 2019; 47:329-337. [PMID: 30674608 DOI: 10.1042/bst20180419] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Adenine nucleotides (AdNs) play important roles in immunity and inflammation. Extracellular AdNs, such as adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD) and their metabolites, act as paracrine messengers by fine-tuning both pro- and anti-inflammatory processes. Moreover, intracellular AdNs derived from ATP or NAD play important roles in many cells of the immune system, including T lymphocytes, macrophages, neutrophils and others. These intracellular AdNs are signaling molecules that transduce incoming signals into meaningful cellular responses, e.g. activation of immune responses against pathogens.
Collapse
|
25
|
Zuccolo E, Kheder DA, Lim D, Perna A, Nezza FD, Botta L, Scarpellino G, Negri S, Martinotti S, Soda T, Forcaia G, Riboni L, Ranzato E, Sancini G, Ambrosone L, D'Angelo E, Guerra G, Moccia F. Glutamate triggers intracellular Ca 2+ oscillations and nitric oxide release by inducing NAADP- and InsP 3 -dependent Ca 2+ release in mouse brain endothelial cells. J Cell Physiol 2018; 234:3538-3554. [PMID: 30451297 DOI: 10.1002/jcp.26953] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+ ]i ) in the target cells, which activates the Ca2+ /Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+ ]i and NO production. The current study assessed whether and how glutamate drives Ca2+ -dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+ ]i , which was maximally activated at 200 μM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3 -sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+ -dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Dlzar A Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy.,Department of Biology, University of Zakho, Duhok, Kurdistan-Region of Iraq
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Eastern Piedmont "Amedeo Avogadro,", Novara, Italy
| | - Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesca Di Nezza
- Department of Bioscience and Territory (DIBT), University of Molise, Contrada Lappone Pesche, Isernia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Teresa Soda
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Greta Forcaia
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Segrate, Milan, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, Alessandria, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", Centre of Nanomedicine, University of Molise, Campobasso, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio,", University of Molise, Campobasso, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
26
|
Guse AH, Diercks BP. Integration of nicotinic acid adenine dinucleotide phosphate (NAADP)-dependent calcium signalling. J Physiol 2018; 596:2735-2743. [PMID: 29635794 DOI: 10.1113/jp275974] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/15/2018] [Indexed: 11/08/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is currently the most potent endogenous Ca2+ mobilizing second messenger. Upon specific extracellular stimulation, rapid production of NAADP has been observed in different cell types from sea urchin eggs to mammalian cells. More than 20 years after the discovery of NAADP, there is still controversy surrounding its metabolism and target receptors/ion channels and organelles. This article briefly reviews recent developments in the NAADP field. Besides the metabolism of NAADP, this review focuses on assumed organelles and putative targets, e.g. ion channels, with special emphasis on ryanodine receptor type 1 (RyR1) and two-pore channels (TPCs). The role of NAADP as a Ca2+ trigger is also discussed and the importance of NAADP in the formation of initial Ca2+ microdomains is highlighted.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany
| |
Collapse
|
27
|
Plattner H, Verkhratsky A. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0419. [PMID: 27377729 DOI: 10.1098/rstb.2015.0419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/01/2023] Open
Abstract
From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca(2+) to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca(2+) as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca(2+) as a universal signalling ion; similarly, Ca(2+) is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca(2+) started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca(2+) interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca(2+) low forced cells to restrict Ca(2+) signals in space and time and to develop energetically favourable Ca(2+) signalling and Ca(2+) microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca(2+)-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca(2+) signalling. Similar to atmospheric oxygen, Ca(2+) must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca(2+) homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca(2+) and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Alexei Verkhratsky
- Faculty of Biological Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
28
|
Suárez-Cortés P, Gambara G, Favia A, Palombi F, Alano P, Filippini A. Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum. Malar J 2017; 16:366. [PMID: 28899381 PMCID: PMC5596470 DOI: 10.1186/s12936-017-2013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/04/2017] [Indexed: 11/26/2022] Open
Abstract
Background Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. Results This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca2+ levels. Conclusions This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca2+ oscillations suggests a potential role of NAADP in regulating Ca2+ signalling of P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2013-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Suárez-Cortés
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena n. 299, 00161, Rome, Italy.,Department of Vector Biology, Max-Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Guido Gambara
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Annarita Favia
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.,Nucleic Acids Laboratory, Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Department of Biology and Biotechnologies, Sapienza University, Rome, Italy
| | - Fioretta Palombi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena n. 299, 00161, Rome, Italy.
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
29
|
Abstract
Early Ca2+ signaling is characterized by occurrence of Ca2+ microdomains formed by opening of single or clusters of Ca2+ channels, thereby initiating first signaling and subsequently activating global Ca2+ signaling mechanisms. However, only few data are available focusing on the first seconds and minutes of Ca2+ microdomain formation and related signaling pathways in activated T-lymphocytes. In this review, we condense current knowledge on Ca2+ microdomain formation in T-lymphocytes and early Ca2+ signaling, function of Ca2+ microdomains, and microdomain organization. Interestingly, considering the first seconds of T cell activation, a triphasic Ca2+ signal is becoming apparent: (i) initial Ca2+ microdomains occurring in the first second of T cell activation, (ii) amplification of Ca2+ microdomains by recruitment of further channels in the next 5-10 s, and (iii) a transition to global Ca2+ increase. Apparently, the second messenger nicotinic acid adenine dinucleotide phosphate is the first second messenger involved in initiation of Ca2+ microdomains. Ryanodine receptors type 1 act as initial Ca2+ release channels in CD4+ T-lymphocytes. Regarding the temporal correlation of Ca2+ microdomains with other molecular events of T cell activation, T cell receptor-dependent microdomain organization of signaling molecules Grb2 and Src homology [SH2] domain-containing leukocyte protein of 65 kDa was observed within the first 20 s. In addition, fast cytoskeletal changes are initiated. Furthermore, the involvement of additional Ca2+ channels and organelles, such as the Ca2+ buffering mitochondria, is discussed. Future research developments will comprise analysis of the causal relation between these temporally coordinated signaling events. Taken together, high-resolution Ca2+ imaging techniques applied to T cell activation in the past years paved the way to detailed molecular understanding of initial Ca2+ signaling mechanisms in non-excitable cells.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
30
|
Cao Q, Yang Y, Zhong XZ, Dong XP. The lysosomal Ca 2+ release channel TRPML1 regulates lysosome size by activating calmodulin. J Biol Chem 2017; 292:8424-8435. [PMID: 28360104 DOI: 10.1074/jbc.m116.772160] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/29/2017] [Indexed: 01/01/2023] Open
Abstract
Intracellular lysosomal membrane trafficking, including fusion and fission, is crucial for cellular homeostasis and normal cell function. Both fusion and fission of lysosomal membrane are accompanied by lysosomal Ca2+ release. We recently have demonstrated that the lysosomal Ca2+ release channel P2X4 regulates lysosome fusion through a calmodulin (CaM)-dependent mechanism. However, the molecular mechanism underlying lysosome fission remains uncertain. In this study, we report that enlarged lysosomes/vacuoles induced by either vacuolin-1 or P2X4 activation are suppressed by up-regulating the lysosomal Ca2+ release channel transient receptor potential mucolipin 1 (TRPML1) but not the lysosomal Na+ release channel two-pore channel 2 (TPC2). Activation of TRPML1 facilitated the recovery of enlarged lysosomes/vacuoles. Moreover, the effects of TRPML1 on lysosome/vacuole size regulation were eliminated by Ca2+ chelation, suggesting a requirement for TRPML1-mediated Ca2+ release. We further demonstrate that the prototypical Ca2+ sensor CaM is required for the regulation of lysosome/vacuole size by TRPML1, suggesting that TRPML1 may promote lysosome fission by activating CaM. Given that lysosome fission is implicated in both lysosome biogenesis and reformation, our findings suggest that TRPML1 may function as a key lysosomal Ca2+ channel controlling both lysosome biogenesis and reformation.
Collapse
Affiliation(s)
- Qi Cao
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yiming Yang
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xi Zoë Zhong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
31
|
Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong R, Hedegaard A, Hart ML, Emptage NJ. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines. Neuron 2016; 93:132-146. [PMID: 27989455 PMCID: PMC5222721 DOI: 10.1016/j.neuron.2016.11.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 11/28/2022]
Abstract
Lysosomes have traditionally been viewed as degradative organelles, although a growing body of evidence suggests that they can function as Ca2+ stores. Here we examined the function of these stores in hippocampal pyramidal neurons. We found that back-propagating action potentials (bpAPs) could elicit Ca2+ release from lysosomes in the dendrites. This Ca2+ release triggered the fusion of lysosomes with the plasma membrane, resulting in the release of Cathepsin B. Cathepsin B increased the activity of matrix metalloproteinase 9 (MMP-9), an enzyme involved in extracellular matrix (ECM) remodelling and synaptic plasticity. Inhibition of either lysosomal Ca2+ signaling or Cathepsin B release prevented the maintenance of dendritic spine growth induced by Hebbian activity. This impairment could be rescued by exogenous application of active MMP-9. Our findings suggest that activity-dependent exocytosis of Cathepsin B from lysosomes regulates the long-term structural plasticity of dendritic spines by triggering MMP-9 activation and ECM remodelling. Back-propagating action potentials induce Ca2+ release from lysosomes in neurons Lysosomal Ca2+ release triggers exocytosis of the lysosomal protease Cathepsin B Cathepsin B maintains activity-dependent dendritic spine growth by activating MMP-9
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lindsay McGuinness
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Scott J Bardo
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Marcia Reinhart
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anne Hedegaard
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Michael L Hart
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
32
|
Hreniukh V, Bychkova S, Kulachkovsky O, Babsky A. Effect of bafilomycin and NAADP on membrane-associated ATPases and respiration of isolated mitochondria of the murine Nemeth-Kellner lymphoma. Cell Biochem Funct 2016; 34:579-587. [PMID: 27862060 DOI: 10.1002/cbf.3231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/13/2016] [Accepted: 10/03/2016] [Indexed: 01/05/2023]
Abstract
The goal of the study was to estimate the effect of a selective V-type H+ -ATPase inhibitor bafilomycin A1 and nicotinic acid adenine dinucleotide phosphate (NAADP) on energetic processes in NK/Ly cell by directly measuring the respiration of isolated mitochondria and ATPase activities. NAADP (7 μM) increased the activity of Na+ /K+ -ATPase in the postmitochondrial fraction of NK/Ly cells, but lower concentration of NAADP decreased it (0.1 and 1 μM). The increase the activity of plasma membrane Ca2+ ATPase (PMCA) under NAADP application (1 and 7 μM) was observed. However, NAADP (1 μM) decreased activities of sarcoendoplasmic reticulum Ca2+ -ATPase (SERCA) and basal Mg2+ -ATPase. Bafilomycin A1 (1 μM) increased the activity of Na+ /K+ -ATPase and potentiated the effect of NAADP (1 μM) on this pump. At the same time, bafilomycin A1 (1 μM) completely prevented all effects of NAADP (1 μM) on activities of PMCA, SERCA, and basal Mg2+ -ATPase, confirming that these effects are dependent on acidic stores. Bafilomycin A1 or NAADP decreased respiratory and oxidative phosphorylation rates in NK/Ly mitochondria when α-ketoglutarate was used as substrate in contrast to succinate. Thus, α-ketoglutarate oxidation is more sensitive to bafilomycin A1 and NAADP influences compared with succinate oxidation. However, bafilomycin A1 + NAADP and any of these compounds separately lead to full uncoupling of mitochondria after ADP addition irrespectively to substrate used. Bafilomycin A1 affects isolated tumor mitochondria more effectively in combination with NAADP. Bafilomycin and NAADP alter some membrane-associated ATPases and inhibit respiration in mitochondria of the Nemeth-Kellner lymphoma. SIGNIFICANCE OF RESEARCH PARAGRAPH Bafilomycin A1 potentiates the effect of NAADP by inhibiting the mitochondrial energetic process in lymphoma cells and activity of Na+ /K+ -ATPase. The obtained data show promising possibility to use bafilomycin A1 and NAADP as chemotherapeutic agents for lymphoma cells treatment. This is important because lymphomas are seventh most common form of cancer. Today the lymphoma mortality is 15% to 30%, whereas the effectiveness of malignant neoplasms treatment is less than 50%.
Collapse
Affiliation(s)
- V Hreniukh
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - S Bychkova
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - O Kulachkovsky
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| | - A Babsky
- Ivan Franko National University of Lviv, 4, Hrushevskyi St., Lviv, 79005, Ukraine
| |
Collapse
|
33
|
Zuccolo E, Dragoni S, Poletto V, Catarsi P, Guido D, Rappa A, Reforgiato M, Lodola F, Lim D, Rosti V, Guerra G, Moccia F. Arachidonic acid-evoked Ca 2+ signals promote nitric oxide release and proliferation in human endothelial colony forming cells. Vascul Pharmacol 2016; 87:159-171. [PMID: 27634591 DOI: 10.1016/j.vph.2016.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/10/2016] [Accepted: 09/10/2016] [Indexed: 02/04/2023]
Abstract
Arachidonic acid (AA) stimulates endothelial cell (EC) proliferation through an increase in intracellular Ca2+ concentration ([Ca2+]i), that, in turn, promotes nitric oxide (NO) release. AA-evoked Ca2+ signals are mainly mediated by Transient Receptor Potential Vanilloid 4 (TRPV4) channels. Circulating endothelial colony forming cells (ECFCs) represent the only established precursors of ECs. In the present study, we, therefore, sought to elucidate whether AA promotes human ECFC (hECFC) proliferation through an increase in [Ca2+]i and the following activation of the endothelial NO synthase (eNOS). AA induced a dose-dependent [Ca2+]i raise that was mimicked by its non-metabolizable analogue eicosatetraynoic acid. AA-evoked Ca2+ signals required both intracellular Ca2+ release and external Ca2+ inflow. AA-induced Ca2+ release was mediated by inositol-1,4,5-trisphosphate receptors from the endoplasmic reticulum and by two pore channel 1 from the acidic stores of the endolysosomal system. AA-evoked Ca2+ entry was, in turn, mediated by TRPV4, while it did not involve store-operated Ca2+ entry. Moreover, AA caused an increase in NO levels which was blocked by preventing the concomitant increase in [Ca2+]i and by inhibiting eNOS activity with NG-nitro-l-arginine methyl ester (l-NAME). Finally, AA per se did not stimulate hECFC growth, but potentiated growth factors-induced hECFC proliferation in a Ca2+- and NO-dependent manner. Therefore, AA-evoked Ca2+ signals emerge as an additional target to prevent cancer vascularisation, which may be sustained by ECFC recruitment.
Collapse
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Silvia Dragoni
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Daniele Guido
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alessandra Rappa
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marta Reforgiato
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Biotechnology Research Laboratory, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Francesco Moccia
- Department of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, United Kingdom.
| |
Collapse
|
34
|
Brailoiu GC, Brailoiu E. Modulation of Calcium Entry by the Endo-lysosomal System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:423-47. [PMID: 27161239 DOI: 10.1007/978-3-319-26974-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic β-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, 901 Walnut St, Rm 916, Philadelphia, PA, 19107, USA.
| | - Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, 3500 N. Broad Street, Room 848, Philadelphia, PA, 19140, USA
| |
Collapse
|
35
|
Imbery JF, Bhattacharya S, Khuder S, Weiss A, Goswamee P, Iqbal AK, Giovannucci DR. cAMP-dependent recruitment of acidic organelles for Ca2+ signaling in the salivary gland. Am J Physiol Cell Physiol 2016; 311:C697-C709. [PMID: 27605449 DOI: 10.1152/ajpcell.00010.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/29/2016] [Indexed: 12/29/2022]
Abstract
Autonomic neural activation of intracellular Ca2+ release in parotid acinar cells induces the secretion of the fluid and protein components of primary saliva critical for maintaining overall oral homeostasis. In the current study, we profiled the role of acidic organelles in shaping the Ca2+ signals of parotid acini using a variety of imaging and pharmacological approaches. Results demonstrate that zymogen granules predominate as an apically polarized population of acidic organelles that contributes to the initial Ca2+ release. Moreover, we provide evidence that indicates a role for the intracellular messenger NAADP in the release of Ca2+ from acidic organelles following elevation of cAMP. Our data are consistent with the "trigger" hypothesis where localized release of Ca2+ sensitizes canonical intracellular Ca2+ channels to enhance signals from the endoplasmic reticulum. Release from acidic stores may be important for initiating saliva secretion at low levels of stimulation and a potential therapeutic target to augment secretory activity in hypofunctioning salivary glands.
Collapse
Affiliation(s)
- John F Imbery
- Department of Neurosciences, University of Toledo Medical Center, Toledo, Ohio
| | - Sumit Bhattacharya
- Department of Neurosciences, University of Toledo Medical Center, Toledo, Ohio
| | - Sura Khuder
- Department of Neurosciences, University of Toledo Medical Center, Toledo, Ohio
| | - Amanda Weiss
- Department of Neurosciences, University of Toledo Medical Center, Toledo, Ohio
| | | | - Azwar K Iqbal
- Department of Neurosciences, University of Toledo Medical Center, Toledo, Ohio
| | - David R Giovannucci
- Department of Neurosciences, University of Toledo Medical Center, Toledo, Ohio
| |
Collapse
|
36
|
Fernández B, Fdez E, Gómez-Suaga P, Gil F, Molina-Villalba I, Ferrer I, Patel S, Churchill GC, Hilfiker S. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy 2016; 12:1487-506. [PMID: 27383256 PMCID: PMC5082776 DOI: 10.1080/15548627.2016.1190072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/19/2022] Open
Abstract
Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load.
Collapse
Affiliation(s)
- Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Elena Fdez
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Patricia Gómez-Suaga
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Granada, Spain
| | - Isabel Molina-Villalba
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Granada, Spain
| | - Isidro Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Llobregat, Spain
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine “López-Neyra,” Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
37
|
Vibhute AM, Konieczny V, Taylor CW, Sureshan KM. Triazolophostins: a library of novel and potent agonists of IP3 receptors. Org Biomol Chem 2016; 13:6698-710. [PMID: 25869535 PMCID: PMC4533600 DOI: 10.1039/c5ob00440c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
IP3R initiate most cellular Ca2+ signaling. AdA is the most potent agonist of IP3R. The structural complexity of AdA makes synthesis of its analogs cumbersome. We report an easy method for generating a library of potent triazole-based analogs of AdA, triazolophostins, which are the most potent AdA analogs devoid of a nucleobase.
IP3 receptors are channels that mediate the release of Ca2+ from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.
Collapse
Affiliation(s)
- Amol M Vibhute
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala-695016, India.
| | | | | | | |
Collapse
|
38
|
Guse AH, Wolf IMA. Ca(2+) microdomains, NAADP and type 1 ryanodine receptor in cell activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1379-84. [PMID: 26804481 DOI: 10.1016/j.bbamcr.2016.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 02/04/2023]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a Ca(2+) mobilizing second messenger that belongs to the superfamily of regulatory adenine nucleotides. Though NAADP has been known since 20 years, several aspects of its metabolism and molecular mode of action are still under discussion. Though the importance of the type 1 ryanodine receptor was discovered and published already in 2002 Hohenegger et al. (2002 Oct 15), recent data re-emphasize these original findings in pancreatic acinar cells and in T-lymphocytes. Here we review recent developments in NAADP formation and metabolism, putative target Ca(2+) channels for NAADP with special emphasis on the type 1 ryanodine receptor, and NAADP binding proteins. The latter are basis for a unifying hypothesis for NAADP action. Finally, the role of NAADP in T cell Ca(2+) signaling and activation is discussed. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
39
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
40
|
Wolf IMA, Diercks BP, Gattkowski E, Czarniak F, Kempski J, Werner R, Schetelig D, Mittrücker HW, Schumacher V, von Osten M, Lodygin D, Flügel A, Fliegert R, Guse AH. Frontrunners of T cell activation: Initial, localized Ca2+ signals mediated by NAADP and the type 1 ryanodine receptor. Sci Signal 2015; 8:ra102. [PMID: 26462735 DOI: 10.1126/scisignal.aab0863] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The activation of T cells is the fundamental on switch for the adaptive immune system. Ca(2+) signaling is essential for T cell activation and starts as initial, short-lived, localized Ca(2+) signals. The second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) forms rapidly upon T cell activation and stimulates early Ca(2+) signaling. We developed a high-resolution imaging technique using multiple fluorescent Ca(2+) indicator dyes to characterize these early signaling events and investigate the channels involved in NAADP-dependent Ca(2+) signals. In the first seconds of activation of either primary murine T cells or human Jurkat cells with beads coated with an antibody against CD3, we detected Ca(2+) signals with diameters close to the limit of detection and that were close to the activation site at the plasma membrane. In Jurkat cells in which the ryanodine receptor (RyR) was knocked down or in primary T cells from RyR1(-/-) mice, either these early Ca(2+) signals were not detected or the number of signals was markedly reduced. Local Ca(2+) signals observed within 20 ms upon microinjection of Jurkat cells with NAADP were also sensitive to RyR knockdown. In contrast, TRPM2 (transient receptor potential channel, subtype melastatin 2), a potential NAADP target channel, was not required for the formation of initial Ca(2+) signals in primary T cells. Thus, through our high-resolution imaging method, we characterized early Ca(2+) release events in T cells and obtained evidence for the involvement of RyR and NAADP in such signals.
Collapse
Affiliation(s)
- Insa M A Wolf
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ellen Gattkowski
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Frederik Czarniak
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jan Kempski
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Daniel Schetelig
- Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Valéa Schumacher
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Manuel von Osten
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany. Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Dimitri Lodygin
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany. Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Alexander Flügel
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany. Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Ralf Fliegert
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
41
|
Arredouani A, Ruas M, Collins SC, Parkesh R, Clough F, Pillinger T, Coltart G, Rietdorf K, Royle A, Johnson P, Braun M, Zhang Q, Sones W, Shimomura K, Morgan AJ, Lewis AM, Chuang KT, Tunn R, Gadea J, Teboul L, Heister PM, Tynan PW, Bellomo EA, Rutter GA, Rorsman P, Churchill GC, Parrington J, Galione A. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. J Biol Chem 2015; 290:21376-21392. [PMID: 26152717 PMCID: PMC4571866 DOI: 10.1074/jbc.m115.671248] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/03/2015] [Indexed: 12/02/2022] Open
Abstract
Pancreatic β cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic β cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the β cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in β cells.
Collapse
Affiliation(s)
- Abdelilah Arredouani
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Margarida Ruas
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Stephan C Collins
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Raman Parkesh
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Frederick Clough
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Toby Pillinger
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - George Coltart
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Katja Rietdorf
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Andrew Royle
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Paul Johnson
- the Nuffield Department of Surgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, United Kingdom
| | - Matthias Braun
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Quan Zhang
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - William Sones
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Kenju Shimomura
- the Henry Wellcome Centre for Gene Function, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | - Anthony J Morgan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Alexander M Lewis
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Kai-Ting Chuang
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ruth Tunn
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Joaquin Gadea
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell, Oxfordshire OX11 0RD, United Kingdom
| | - Paula M Heister
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Patricia W Tynan
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Elisa A Bellomo
- the Centre des Sciences du Gout et de l'Alimentation, Equipe 5, 9E Boulevard Jeanne d'Arc 21000 Dijon, France
| | - Guy A Rutter
- the Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Medicine, Imperial College London, Hammersmith Hospital, du Cane Road, London W12 0NN, United Kingdom, and
| | - Patrik Rorsman
- the The Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | - Grant C Churchill
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - John Parrington
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| | - Antony Galione
- From the Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom,
| |
Collapse
|
42
|
Abstract
Two-pore channels (TPCs) are evolutionarily important members of the voltage-gated ion channel superfamily. TPCs localize to acidic Ca(2+) stores within the endolysosomal system. Most evidence indicate that TPCs mediate Ca(2+) signals through the Ca(2+)-mobilizing messenger nicotinic acid adenine dinucleotide phosphate (NAADP) to control a range of Ca(2+)-dependent events. Recent studies clarify the mechanism of TPC activation and identify roles for TPCs in disease, highlighting the regulation of endolysosomal membrane traffic by local Ca(2+) fluxes. Chemical targeting of TPCs to maintain endolysosomal "well-being" may be beneficial in disorders as diverse as Parkinson's disease, fatty liver disease, and Ebola virus infection.
Collapse
Affiliation(s)
- Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK. E-mail:
| |
Collapse
|
43
|
Gerasimenko JV, Charlesworth RM, Sherwood MW, Ferdek PE, Mikoshiba K, Parrington J, Petersen OH, Gerasimenko OV. Both RyRs and TPCs are required for NAADP-induced intracellular Ca²⁺ release. Cell Calcium 2015; 58:237-45. [PMID: 26100948 PMCID: PMC4539342 DOI: 10.1016/j.ceca.2015.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Antibody against RyR1 reduced NAADP-evoked Ca2+ release by 81%. Combined inhibition of RyR1 and RyR3 (or RyR3-KO) reduced responses to NAADP by >90%. Knockout of TPC2 (or antibody against TPC2) reduced responses to NAADP by 64%. Combined inhibition of TPC2 and TPC1 reduced responses by 86%. In acidic stores inhibition of either pair of RyR1/3 or TPC1/2 abolished responses.
Intracellular Ca2+ release is mostly mediated by inositol trisphosphate, but intracellular cyclic-ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) are important messengers in many systems. Whereas cADPR generally activates type 2 ryanodine receptors (RyR2s), the NAADP-activated Ca2+ release mechanism is less clear. Using knockouts and antibodies against RyRs and Two-Pore Channels (TPCs), we have compared their relative importance for NAADP-induced Ca2+ release from two-photon permeabilized pancreatic acinar cells. In these cells, cholecystokinin-elicited Ca2+ release is mediated by NAADP. TPC2-KO reduced NAADP-induced Ca2+ release by 64%, but the combination of TPC2-KO and an antibody against TPC1, significantly reduced Ca2+ release by 86% (64% vs. 86%, p < 0.0002). In RyR3-KO, NAADP-evoked Ca2+ release reduced by ∼50% but, when combined with antibodies against RyR1, responses were 90% inhibited. Antibodies against RyR2 had practically no effect on NAADP-evoked Ca2+ release, but reduced release in response to cADPR by 55%. Antibodies to RyR1 inhibited NAADP-induced Ca2+ liberation by 81%, but only reduced cADPR responses by 30%. We conclude that full NAADP-mediated Ca2+ release requires both TPCs and RyRs. The sequence of relative importance for NAADP-elicited Ca2+ release from the all stores is RyR1 > TPC2 > RyR3 > TPC1 >> RyR2. However, when assessing NAADP-induced Ca2+ release solely from the acidic stores (granules/endosomes/lysosomes), antibodies against TPC2 and TPC1 virtually abolished the Ca2+ liberation as did antibodies against RyR1 and RyR3. Our results indicate that the primary, but very small, NAADP-elicited Ca2+ release via TPCs from endosomes/lysosomes triggers the detectable Ca2+-induced Ca2+ release via RyR1 and RyR3 occurring from the granules and the ER.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Richard M Charlesworth
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Mark W Sherwood
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako City, Saitama, Japan
| | - Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Riken Brain Science Institute, Wako City, Saitama, Japan; Ca(2+) Oscillation Project, ICORP-SORST, JST, Wako City, Saitama, Japan
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Ole H Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
44
|
Davis LC, Platt FM, Galione A. Preferential Coupling of the NAADP Pathway to Exocytosis in T-Cells. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2015; 4:53-66. [PMID: 27330870 PMCID: PMC4910867 DOI: 10.1166/msr.2015.1040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A cytotoxic T-lymphocyte (CTL) kills an infected or tumorigenic cell by Ca2+-dependent exocytosis of cytolytic granules at the immunological synapse formed between the two cells. However, these granules are more than reservoirs of secretory cytolytic proteins but may also serve as unique Ca2+ signaling hubs that autonomously generate their own signals for exocytosis. This review discusses a selective role for the Ca2+-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP) and its molecular targets, two-pore channels (TPCs), in stimulating exocytosis. Given that TPCs reside on the exocytotic granules themselves, these vesicles generate as well as respond to NAADP-dependent Ca2+ signals, which may have wider implications for stimulus-secretion coupling, vesicular fusion, and patho-physiology.
Collapse
Affiliation(s)
- Lianne C. Davis
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| |
Collapse
|
45
|
Nebel M, Zhang B, Odoardi F, Flügel A, Potter BVL, Guse AH. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2015; 4:104-111. [PMID: 27747143 PMCID: PMC5065091 DOI: 10.1166/msr.2015.1045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+] i ). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation.
Collapse
Affiliation(s)
- Merle Nebel
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Bo Zhang
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Francesca Odoardi
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Alexander Flügel
- Institute for Multiple Sclerosis Research, Department of Neuroimmunology, Gemeinnützige Hertie-Stiftung and University Medical Centre Göttingen, 37073 Göttingen, Germany
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Andreas H. Guse
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
46
|
Bychkova SV, Chorna TI. NAADP-sensitive Ca2+ stores in permeabilized rat hepatocytes. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 86:65-73. [PMID: 25816589 DOI: 10.15407/ubj86.05.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a nucleotide that is potent to release calcium from intracellular stores in different cell types. NAADP was shown to target specific type of intracellular store namely endolysosomal system or acidic store. Despite intense studies, its effect on endoplasmatic reticulum (ER) still remains to be elucidated. The main aim of our work was to investigate NAADP-sensitive store in permeabilized rat hepatocytes monitoring the level of Ca2+ inside intracellular organelles using chlorotetracycline (CTC). We have shown that NAADP triggered changes of stored Ca2+ in rat hepatocytes are dependent on concentration of EGTA-Ca2+-buffer in cell incubation medium, i.e. the higher is the EGTA concentration in incubation medium the smaller or absent is the effect of NAADP. Besides, the effect of NAADP was more pronounced upon cells pretreatment with the inhibitory concentration of ryanodine (100 μM). This might suggest that the effect of NAADP is dependent on ER luminal calcium. We have also found that NAADP-evoked Ca2+ release in permeabilized hepatocytes is sensitive to nigericin, bafilomycin A and thapsigargin. Additionally, NAADP triggered changes in stored Ca2+ were completely abolished by NED-19 as antagonist of NAADP.
Collapse
|
47
|
Ruas M, Davis LC, Chen CC, Morgan AJ, Chuang KT, Walseth TF, Grimm C, Garnham C, Powell T, Platt N, Platt FM, Biel M, Wahl-Schott C, Parrington J, Galione A. Expression of Ca²⁺-permeable two-pore channels rescues NAADP signalling in TPC-deficient cells. EMBO J 2015; 34:1743-58. [PMID: 25872774 PMCID: PMC4516428 DOI: 10.15252/embj.201490009] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/11/2015] [Indexed: 01/26/2023] Open
Abstract
The second messenger NAADP triggers Ca2+ release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2−/−), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca2+ responses as assessed by single-cell Ca2+ imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2−/− cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca2+-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca2+ release. High-affinity [32P]NAADP binding still occurs in Tpcn1/2−/− tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca2+-permeable channels indispensable for NAADP signalling.
Collapse
Affiliation(s)
- Margarida Ruas
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Cheng-Chang Chen
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Kai-Ting Chuang
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Timothy F Walseth
- Pharmacology Department, University of Minnesota, Minneapolis, MN, USA
| | - Christian Grimm
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Clive Garnham
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Trevor Powell
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Martin Biel
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - Christian Wahl-Schott
- Center for Integrated Protein Science CIPS-M and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, München, Germany
| | - John Parrington
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Ronco V, Potenza DM, Denti F, Vullo S, Gagliano G, Tognolina M, Guerra G, Pinton P, Genazzani AA, Mapelli L, Lim D, Moccia F. A novel Ca²⁺-mediated cross-talk between endoplasmic reticulum and acidic organelles: implications for NAADP-dependent Ca²⁺ signalling. Cell Calcium 2015; 57:89-100. [PMID: 25655285 DOI: 10.1016/j.ceca.2015.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/01/2015] [Indexed: 12/31/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) serves as the ideal trigger of spatio-temporally complex intracellular Ca(2+) signals. However, the identity of the intracellular Ca(2+) store(s) recruited by NAADP, which may include either the endolysosomal (EL) or the endoplasmic reticulum (ER) Ca(2+) pools, is still elusive. Here, we show that the Ca(2+) response to NAADP was suppressed by interfering with either EL or ER Ca(2+) sequestration. The measurement of EL and ER Ca(2+) levels by using selectively targeted aequorin unveiled that the preventing ER Ca(2+) storage also affected ER Ca(2+) loading and vice versa. This indicates that a functional Ca(2+)-mediated cross-talk exists at the EL-ER interface and exerts profound implications for the study of NAADP-induced Ca(2+) signals. Extreme caution is warranted when dissecting NAADP targets by pharmacologically inhibiting EL and/or the ER Ca(2+) pools. Moreover, Ca(2+) transfer between these compartments might be essential to regulate vital Ca(2+)-dependent processes in both organelles.
Collapse
Affiliation(s)
- Virginia Ronco
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Duilio Michele Potenza
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Federico Denti
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sabrina Vullo
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Gagliano
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialuisa Tognolina
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, ItalyfCentro Fermi, 00184 Roma, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy
| | - Lisa Mapelli
- Laboratory of Neurophysiology, Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy; Centro Fermi, 00184 Roma, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", 28100 Novara, Italy.
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
49
|
Guse AH. Calcium mobilizing second messengers derived from NAD. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1132-7. [PMID: 25534250 DOI: 10.1016/j.bbapap.2014.12.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 11/18/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) has been known since a long period of time as co-factor of oxidoreductases. However, in the past couple of decades further roles have been assigned to NAD. Here, metabolism of NAD to the Ca²⁺ mobilizing second messengers cyclic adenosine diphosphoribose, nicotinic acid adenine dinucleotide phosphate and adenosine diphosphoribose is reviewed. Moreover, the mechanisms of Ca²⁺ mobilization by these adenine nucleotides and their putative target Ca²⁺ channels, ryanodine receptors and transient receptor potential channels are discussed. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Andreas H Guse
- The Calcium Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
50
|
Ramos I, Reich A, Wessel GM. Two-pore channels function in calcium regulation in sea star oocytes and embryos. Development 2014; 141:4598-609. [PMID: 25377554 DOI: 10.1242/dev.113563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities.
Collapse
Affiliation(s)
- Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941, Brazil
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|