1
|
Brito S, Heo H, Kim J, Cha B, Jeong Y, Choi W, Shrestha C, Lee GH, Park SJ, Yoon KB, Oh-Hashi K, Kim ST, Chae S, Cho SK, Weon BM, Kim J, Bin BH. Age-associated interplay between zinc deficiency and Golgi stress hinders microtubule-dependent cellular signaling and epigenetic control. Dev Cell 2025; 60:1304-1320.e7. [PMID: 39765234 DOI: 10.1016/j.devcel.2024.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 08/07/2024] [Accepted: 12/11/2024] [Indexed: 05/08/2025]
Abstract
Golgi abnormalities have been linked to aging and age-related diseases, yet the underlying causes and functional consequences remain poorly understood. This study identifies the interaction between age-associated zinc deficiency and Golgi stress as a critical factor in cellular aging. Senescent Golgi bodies from human fibroblasts show a fragmented Golgi structure, associated with a decreased interaction of the zinc-dependent Golgi-stacking protein complex Golgin45-GRASP55. Golgi stress is increased, and functions such as glycosylation and vesicle transport are impaired. These disturbances promote Golgi and perinuclear microtubule disassembly and subsequent mislocalization of intracellular proteins associated with cellular signaling and epigenetic control. Pharmacological induction of Golgi stress or zinc deficiency, or ablation of the Golgi-associated zinc transporter gene Zip13 in mouse fibroblasts, replicate the characteristics of cellular senescence, emphasizing the critical role of Golgi-zinc homeostasis. These findings highlight the importance of adequate zinc intake and suggest targeting Golgi dysfunction as a therapeutic strategy for alleviating age-related cellular decline.
Collapse
Affiliation(s)
- Sofia Brito
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyojin Heo
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Jinyoung Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea
| | - Byungsun Cha
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Youngdo Jeong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea
| | - Wooseon Choi
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea
| | - Chandani Shrestha
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea
| | - Gang Hyoung Lee
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Sun Ju Park
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Ki Bok Yoon
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced study, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, South Korea; Department of Nanoscience and Engineering, Inje University, Gimhae 50834, South Korea
| | - Sehyun Chae
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sung Kweon Cho
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Byung Mook Weon
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jiyoon Kim
- Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea; Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, South Korea; Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| | - Bum-Ho Bin
- Department of Biological Sciences, Ajou University, Suwon 16499, South Korea.
| |
Collapse
|
2
|
Park JY, Ha ES, Lee J, Brun PJ, Kim Y, Chung SS, Hwang D, Lee SA, Park KS. The brown fat-specific overexpression of RBP4 improves thermoregulation and systemic metabolism by activating the canonical adrenergic signaling pathway. Exp Mol Med 2025; 57:554-566. [PMID: 40025173 PMCID: PMC11958748 DOI: 10.1038/s12276-025-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 03/04/2025] Open
Abstract
Retinol-binding protein 4 (RBP4), the sole specific carrier for retinol (vitamin A) in circulation, is highly expressed in liver and adipose tissues. Previous studies have demonstrated that RBP4 plays a role in cold-mediated adipose tissue browning and thermogenesis. However, the role of RBP4 in brown adipose tissue and its metabolic significance remain unclear. Here we generated and studied transgenic mice that express human RBP4 (hRBP4), specifically in brown adipocytes (UCP1-RBP4 mice), to better understand these uncertainties. When fed a chow diet, these mice presented significantly lower body weights and fat mass than their littermate controls. The UCP1-RBP4 mice also showed significant improvements in glucose clearance, enhanced energy expenditure and increased thermogenesis in response to a cold challenge. This was associated with increased lipolysis and fatty acid oxidation in brown adipose tissue, which was attributed to the activation of canonical adrenergic signaling pathways. In addition, high-performance liquid chromatography analysis revealed that plasma RBP4 and retinol levels were elevated in the UCP1-RBP4 mice, whereas their hepatic retinol levels decreased in parallel with a chow diet. Steady-state brown fat levels of total retinol were significantly elevated in the UCP1-RBP4 mice, suggesting that their retinol uptake was increased in RBP4-expressing brown adipocytes when fed a chow diet. These findings reveal a critical role for RBP4 in canonical adrenergic signaling that promotes lipid mobilization and oxidation in brown adipocytes, where the harnessed energy is dissipated as heat by adaptive thermogenesis.
Collapse
Affiliation(s)
- Jong Yoen Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Eun Sun Ha
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Pierre-Jacques Brun
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeri Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung Soo Chung
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Bioinformatics Institute, Bio-MAX, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ah Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- ProGen Co. Ltd., 07789, Seoul, Republic of Korea.
| | - Kyong Soo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
4
|
Kim H, Huh S, Park J, Han Y, Ahn KG, Noh Y, Lee SJ, Chu H, Kim SS, Jung HS, Yun WG, Cho YJ, Kwon W, Jang JY, Kang UB. Development of a Fit-For-Purpose Multi-Marker Panel for Early Diagnosis of Pancreatic Ductal Adenocarcinoma. Mol Cell Proteomics 2024; 23:100824. [PMID: 39097268 PMCID: PMC11406441 DOI: 10.1016/j.mcpro.2024.100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) suffers from a lack of an effective diagnostic method, which hampers improvement in patient survival. Carbohydrate antigen 19-9 (CA19-9) is the only FDA-approved blood biomarker for PDAC, yet its clinical utility is limited due to suboptimal performance. Liquid chromatography-mass spectrometry (LC-MS) has emerged as a burgeoning technology in clinical proteomics for the discovery, verification, and validation of novel biomarkers. A plethora of protein biomarker candidates for PDAC have been identified using LC-MS, yet few has successfully transitioned into clinical practice. This translational standstill is owed partly to insufficient considerations of practical needs and perspectives of clinical implementation during biomarker development pipelines, such as demonstrating the analytical robustness of proposed biomarkers which is critical for transitioning from research-grade to clinical-grade assays. Moreover, the throughput and cost-effectiveness of proposed assays ought to be considered concomitantly from the early phases of the biomarker pipelines for enhancing widespread adoption in clinical settings. Here, we developed a fit-for-purpose multi-marker panel for PDAC diagnosis by consolidating analytically robust biomarkers as well as employing a relatively simple LC-MS protocol. In the discovery phase, we comprehensively surveyed putative PDAC biomarkers from both in-house data and prior studies. In the verification phase, we developed a multiple-reaction monitoring (MRM)-MS-based proteomic assay using surrogate peptides that passed stringent analytical validation tests. We adopted a high-throughput protocol including a short gradient (<10 min) and simple sample preparation (no depletion or enrichment steps). Additionally, we developed our assay using serum samples, which are usually the preferred biospecimen in clinical settings. We developed predictive models based on our final panel of 12 protein biomarkers combined with CA19-9, which showed improved diagnostic performance compared to using CA19-9 alone in discriminating PDAC from non-PDAC controls including healthy individuals and patients with benign pancreatic diseases. A large-scale clinical validation is underway to demonstrate the clinical validity of our novel panel.
Collapse
Affiliation(s)
- Hyeonji Kim
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | - Sunghyun Huh
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | | | - Youngmin Han
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Geun Ahn
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | - Yiyoung Noh
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | - Seong-Jae Lee
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | - Hyosub Chu
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | - Sung-Soo Kim
- Manufacturing and Technology Division, Bertis Inc, Gyeonggi-do, Republic of Korea
| | - Hye-Sol Jung
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Gun Yun
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Jae Cho
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Wooil Kwon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Un-Beom Kang
- Bertis R&D Division, Bertis Inc, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
5
|
Shao M, Li L, Ma L, Song C, Li W, Zhang Y, Cheng W, Chen Y, Yang Y, Wang Q, Li C, Wang Q, Wang W, Wang Y. Activation of RXRα exerts cardioprotection through transcriptional upregulation of Ndufs4 in heart failure. Sci Bull (Beijing) 2024; 69:1202-1207. [PMID: 38310046 DOI: 10.1016/j.scib.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/05/2024]
Affiliation(s)
- Mingyan Shao
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Ma
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chao Song
- School of Computer/School of Software, University of South China, Hengyang 421001, China
| | - Weili Li
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yun Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ye Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qi Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510700, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Key Laboratory of Syndrome and Formula, Guangzhou 510700, China.
| | - Yong Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Syndrome and Formula, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
6
|
Yoon KH, Chu H, Kim H, Huh S, Kim EK, Kang UB, Shin HC. Comparative profiling by data-independent acquisition mass spectrometry reveals featured plasma proteins in breast cancer: a pilot study. Ann Surg Treat Res 2024; 106:195-202. [PMID: 38586559 PMCID: PMC10995839 DOI: 10.4174/astr.2024.106.4.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Breast cancer is known to be influenced by genetic and environmental factors, and several susceptibility genes have been discovered. Still, the majority of genetic contributors remain unknown. We aimed to analyze the plasma proteome of breast cancer patients in comparison to healthy individuals to identify differences in protein expression profiles and discover novel biomarkers. Methods This pilot study was conducted using bioresources from Seoul National University Bundang Hospital's Human Bioresource Center. Serum samples from 10 breast cancer patients and 10 healthy controls were obtained. Liquid chromatography-mass spectrometry analysis was performed to identify differentially expressed proteins. Results We identified 891 proteins; 805 were expressed in the breast cancer group and 882 in the control group. Gene set enrichment and differential expression analysis identified 30 upregulated and 100 downregulated proteins in breast cancer. Among these, 10 proteins were selected as potential biomarkers. Three proteins were upregulated in breast cancer patients, including cluster of differentiation 44, eukaryotic translation initiation factor 2-α kinase 3, and fibronectin 1. Seven proteins downregulated in breast cancer patients were also selected: glyceraldehyde-3-phosphate dehydrogenase, α-enolase, heat shock protein member 8, integrin-linked kinase, tissue inhibitor of metalloproteinases-1, vasodilator-stimulated phosphoprotein, and 14-3-3 protein gamma. All proteins had been previously reported to be related to tumor development and progression. Conclusion The findings suggest that plasma proteome profiling can reveal potential diagnostic biomarkers for breast cancer and may contribute to early detection and personalized treatment strategies. A further validation study with a larger sample cohort of breast cancer patients is planned.
Collapse
Affiliation(s)
- Kyung-Hwak Yoon
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyosub Chu
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Hyeonji Kim
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Sunghyun Huh
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Eun-Kyu Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Un-Beom Kang
- Bertis R&D Division, Bertis Inc., Seongnam, Korea
| | - Hee-Chul Shin
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
7
|
Doser RL, Knight KM, Deihl EW, Hoerndli FJ. Activity-dependent mitochondrial ROS signaling regulates recruitment of glutamate receptors to synapses. eLife 2024; 13:e92376. [PMID: 38483244 PMCID: PMC10990490 DOI: 10.7554/elife.92376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial reactive oxygen species (mitoROS) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitoROS signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ uniporter (MCU-1) that results in an upregulation of mitoROS production. We also observed that mitochondria are positioned in close proximity to synaptic clusters of GLR-1, the C. elegans ortholog of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that synaptic recruitment of GLR-1 is upregulated when MCU-1 function is pharmacologically or genetically impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mitochondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing excitotoxicity and energy depletion.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
- Department of Health and Exercise Sciences, Colorado State UniversityFort CollinsUnited States
| | - Kaz M Knight
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
- Cellular and Molecular Biology Graduate Program, Colorado State UniversityFort CollinsUnited States
| | - Ennis W Deihl
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
8
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
9
|
Min SH, Kang GM, Park JW, Kim MS. Beneficial Effects of Low-Grade Mitochondrial Stress on Metabolic Diseases and Aging. Yonsei Med J 2024; 65:55-69. [PMID: 38288646 PMCID: PMC10827639 DOI: 10.3349/ymj.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024] Open
Abstract
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Collapse
Affiliation(s)
- Se Hee Min
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Jae Woo Park
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Diabetes Center, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, Korea.
| |
Collapse
|
10
|
Wang J, Yan D, Cui H, Zhang R, Ma X, Chen L, Hu C, Wu J. Identification of eight genomic protective alleles for mitochondrial diabetes by Kinship-graph convolutional network. J Diabetes Investig 2024; 15:52-62. [PMID: 38157301 PMCID: PMC10759726 DOI: 10.1111/jdi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
AIMS Nearly 85% of maternally inherited diabetes and deafness (MIDD) are caused by the m.3243A>G mutation in the mitochondrial DNA. However, the clinical phenotypes of MIDD may also be influenced by the nuclear genome, this study aimed to investigate nuclear genome variants that influence clinical phenotypes associated with m.3243A>G mutation in MIDD based on whole-genome sequencing of the patients belonging to pedigrees. MATERIALS AND METHODS We analyzed a whole-genome sequencing (WGS) dataset from blood samples of 38 MIDD patients with the m.3243A > G mutation belonging to 10 pedigrees, by developing a Kinship-graph convolutional network approach, called Ki-GCN, integrated with the conventional genome-wide association study (GWAS) methods. RESULTS We identified eight protective alleles in the nuclear genome that have protective effects against the onset of MIDD, related deafness, and also type 2 diabetes. Based on these eight protective alleles, we constructed an effective logistic regression model to predict the early or late onset of MIDD patients. CONCLUSIONS There are protective alleles in the nuclear genome that are associated with the onset-age of MIDD patients and might also provide protective effects on the deafness derived from MIDD patients.
Collapse
Affiliation(s)
- Jiahao Wang
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dandan Yan
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Haoyue Cui
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaojing Ma
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Luonan Chen
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiangChina
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Institute for Metabolic DiseaseFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
| | - Jiarui Wu
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
11
|
Ying Z, Ye N, Ma Q, Chen F, Li N, Zhen X. Targeted to neuronal organelles for CNS drug development. Adv Drug Deliv Rev 2023; 200:115025. [PMID: 37516410 DOI: 10.1016/j.addr.2023.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Significant evidences indicate that sub-cellular organelle dynamics is critical for both physiological and pathological events and therefore may be attractive drug targets displaying great therapeutic potential. Although the basic biological mechanism underlying the dynamics of intracellular organelles has been extensively studied, relative drug development is still limited. In the present review, we show that due to the development of technical advanced imaging tools, especially live cell imaging methods, intracellular organelle dynamics (including mitochondrial dynamics and membrane contact sites) can be dissected at the molecular level. Based on these identified molecular targets, we review and discuss the potential of drug development to target organelle dynamics, especially mitochondria dynamics and ER-organelle membrane contact dynamics, in the central nervous system for treating human diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
12
|
Rath E. PKR activation in mitochondrial unfolded protein response-mitochondrial dsRNA might do the trick. Front Cell Dev Biol 2023; 11:1270341. [PMID: 37705516 PMCID: PMC10495569 DOI: 10.3389/fcell.2023.1270341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Affiliation(s)
- Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
13
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
14
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
15
|
Zhang HF, Liu HM, Xiang JY, Zhou XC, Wang D, Chen RY, Tan WL, Liang LQ, Liu LL, Shi MJ, Zhang F, Xiao Y, Zhou YX, Zhang T, Tang L, Guo B, Wang YY. Alpha lipoamide inhibits diabetic kidney fibrosis via improving mitochondrial function and regulating RXRα expression and activation. Acta Pharmacol Sin 2023; 44:1051-1065. [PMID: 36347997 PMCID: PMC10104876 DOI: 10.1038/s41401-022-00997-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022]
Abstract
Previous studies have shown mitochondrial dysfunction in various acute kidney injuries and chronic kidney diseases. Lipoic acid exerts potent effects on oxidant stress and modulation of mitochondrial function in damaged organ. In this study we investigated whether alpha lipoamide (ALM), a derivative of lipoic acid, exerted a renal protective effect in a type 2 diabetes mellitus mouse model. 9-week-old db/db mice were treated with ALM (50 mg·kg-1·d-1, i.g) for 8 weeks. We showed that ALM administration did not affect blood glucose levels in db/db mice, but restored renal function and significantly improved fibrosis of kidneys. We demonstrated that ALM administration significantly ameliorated mitochondrial dysfunction and tubulointerstitial fibrotic lesions, along with increased expression of CDX2 and CFTR and decreased expression of β-catenin and Snail in kidneys of db/db mice. Similar protective effects were observed in rat renal tubular epithelial cell line NRK-52E cultured in high-glucose medium following treatment with ALM (200 μM). The protective mechanisms of ALM in diabetic kidney disease (DKD) were further explored: Autodock Vina software predicted that ALM could activate RXRα protein by forming stable hydrogen bonds. PROMO Database predicted that RXRα could bind the promoter sequences of CDX2 gene. Knockdown of RXRα expression in NRK-52E cells under normal glucose condition suppressed CDX2 expression and promoted phenotypic changes in renal tubular epithelial cells. However, RXRα overexpression increased CDX2 expression which in turn inhibited high glucose-mediated renal tubular epithelial cell injury. Therefore, we reveal the protective effect of ALM on DKD and its possible potential targets: ALM ameliorates mitochondrial dysfunction and regulates the CDX2/CFTR/β-catenin signaling axis through upregulation and activation of RXRα. Schematic figure illustrating that ALM alleviates diabetic kidney disease by improving mitochondrial function and upregulation and activation of RXRα, which in turn upregulated CDX2 to exert an inhibitory effect on β-catenin activation and nuclear translocation. RTEC renal tubular epithelial cell. ROS Reactive oxygen species. RXRα Retinoid X receptor-α. Mfn1 Mitofusin 1. Drp1 dynamic-related protein 1. MDA malondialdehyde. 4-HNE 4-hydroxynonenal. T-SOD Total-superoxide dismutase. CDX2 Caudal-type homeobox transcription factor 2. CFTR Cystic fibrosis transmembrane conductance regulator. EMT epithelial mesenchymal transition. α-SMA Alpha-smooth muscle actin. ECM extracellular matrix. DKD diabetic kidney disease. Schematic figure was drawn by Figdraw ( www.figdraw.com ).
Collapse
Affiliation(s)
- Hui-Fang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Hui-Ming Liu
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jia-Yi Xiang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Xing-Cheng Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Dan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Rong-Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Wan-Lin Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Lu-Qun Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Ling-Ling Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Ming-Jun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Fan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Ying Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Yu-Xia Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Tian Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Tang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550025, China.
| | - Bing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025, China.
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
| | - Yuan-Yuan Wang
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
16
|
Choi BY, Hong DK, Kang BS, Lee SH, Choi S, Kim HJ, Lee SM, Suh SW. Engineered Mesenchymal Stem Cells Over-Expressing BDNF Protect the Brain from Traumatic Brain Injury-Induced Neuronal Death, Neurological Deficits, and Cognitive Impairments. Pharmaceuticals (Basel) 2023; 16:ph16030436. [PMID: 36986535 PMCID: PMC10054459 DOI: 10.3390/ph16030436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Traumatic brain injury (TBI) causes transitory or permanent neurological and cognitive impairments, which can intensify over time due to secondary neuronal death. However, no therapy currently exists that can effectively treat brain injury following TBI. Here, we evaluate the therapeutic potential of irradiated engineered human mesenchymal stem cells over-expressing brain-derived neurotrophic factor (BDNF), which we denote by BDNF-eMSCs, in protecting the brain against neuronal death, neurological deficits, and cognitive impairment in TBI rats. BDNF-eMSCs were administered directly into the left lateral ventricle of the brain in rats that received TBI damage. A single administration of BDNF-eMSCs reduced TBI-induced neuronal death and glial activation in the hippocampus, while repeated administration of BDNF-eMSCs reduced not only glial activation and delayed neuronal loss but also enhanced hippocampal neurogenesis in TBI rats. In addition, BDNF-eMSCs reduced the lesion area in the damaged brain of the rats. Behaviorally, BDNF-eMSC treatment improved the neurological and cognitive functions of the TBI rats. The results presented in this study demonstrate that BDNF-eMSCs can attenuate TBI-induced brain damage through the suppression of neuronal death and increased neurogenesis, thus enhancing functional recovery after TBI, indicating the significant therapeutic potential of BDNF-eMSCs in the treatment of TBI.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sports Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Beom Seok Kang
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Si Hyun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Seunghyuk Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Hyo-Jin Kim
- SL BiGen, Inc., SL BIGEN Research Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Soon Min Lee
- SL BiGen, Inc., SL BIGEN Research Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
- Correspondence: (S.M.L.); (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
- Correspondence: (S.M.L.); (S.W.S.)
| |
Collapse
|
17
|
Viscomi C, Zeviani M. Experimental therapy for mitochondrial diseases. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:259-277. [PMID: 36813318 DOI: 10.1016/b978-0-12-821751-1.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are extremely heterogeneous genetic disorders due to faulty oxidative phosphorylation (OxPhos). No cure is currently available for these conditions, beside supportive interventions aimed at relieving complications. Mitochondria are under a double genetic control carried out by the mitochondrial DNA (mtDNA) and by nuclear DNA. Thus, not surprisingly, mutations in either genome can cause mitochondrial disease. Although mitochondria are usually associated with respiration and ATP synthesis, they play fundamental roles in a large number of other biochemical, signaling, and execution pathways, each being a potential target for therapeutic interventions. These can be classified as general therapies, i.e., potentially applicable to a number of different mitochondrial conditions, or therapies tailored to a single disease, i.e., personalized approaches, such as gene therapy, cell therapy, and organ replacement. Mitochondrial medicine is a particularly lively research field, and the last few years witnessed a steady increase in the number of clinical applications. This chapter will present the most recent therapeutic attempts emerged from preclinical work and an update of the currently ongoing clinical applications. We think that we are starting a new era in which the etiologic treatment of these conditions is becoming a realistic option.
Collapse
Affiliation(s)
- Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
18
|
Kidere D, Zayakin P, Livcane D, Makrecka-Kuka M, Stavusis J, Lace B, Lin TK, Liou CW, Inashkina I. Impact of the m.13513G>A Variant on the Functions of the OXPHOS System and Cell Retrograde Signaling. Curr Issues Mol Biol 2023; 45:1794-1809. [PMID: 36975485 PMCID: PMC10047405 DOI: 10.3390/cimb45030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.
Collapse
Affiliation(s)
- Dita Kidere
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Pawel Zayakin
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Diana Livcane
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | | | - Janis Stavusis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Baiba Lace
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Children’s Clinical University Hospital, LV-1004 Riga, Latvia
| | - Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83305, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chia-Wei Liou
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83305, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Inna Inashkina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence:
| |
Collapse
|
19
|
Prazdnova EV, Mazanko MS, Chistyakov VA, Bogdanova AA, Refeld AG, Kharchenko EY, Chikindas ML. Antimutagenic Activity as a Criterion of Potential Probiotic Properties. Probiotics Antimicrob Proteins 2022; 14:1094-1109. [PMID: 35028920 DOI: 10.1007/s12602-021-09870-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/25/2022]
Abstract
The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. Besides, an antimutagenic activity can be associated with probiotics' broader systemic effects, such as geroprotective activity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant criterion for the selection of probiotic strains.
Collapse
Affiliation(s)
- Evgeniya V Prazdnova
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia. .,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.
| | - Maria S Mazanko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Evolutionary Biomedicine Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Aleksandr G Refeld
- Cell Biophysics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, Russia
| | - Evgeniya Y Kharchenko
- Academy of Biology and Biotechnologies, Southern Federal University, Prospect Stachki, 194/1, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
20
|
Octopamine signaling via OctαR is essential for a well-orchestrated climbing performance of adult Drosophila melanogaster. Sci Rep 2022; 12:14024. [PMID: 35982189 PMCID: PMC9388497 DOI: 10.1038/s41598-022-18203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The biogenic amine octopamine (OA) orchestrates many behavioural processes in insects. OA mediates its function by binding to OA receptors belonging to the G protein-coupled receptors superfamily. Despite the potential relevance of OA, our knowledge about the role of each octopaminergic receptor and how signalling through these receptors controls locomotion still limited. In this study, RNA interference (RNAi) was used to knockdown each OA receptor type in almost all Drosophila melanogaster tissues using a tubP-GAL4 driver to investigate the loss of which receptor affects the climbing ability of adult flies. The results demonstrated that although all octopaminergic receptors are involved in normal negative geotaxis but OctαR-deficient flies had impaired climbing ability more than those deficient in other OA receptors. Mutation in OA receptors coding genes develop weak climbing behaviour. Directing knockdown of octαR either in muscular system or nervous system or when more specifically restricted to motor and gravity sensing neurons result in similar impaired climbing phenotype, indicating that within Drosophila legs, OA through OctαR orchestrated the nervous system control and muscular tissue responses. OctαR-deficient adult males showed morphometric changes in the length and width of leg parts. Leg parts morphometric changes were also observed in Drosophila mutant in OctαR. Transmission electron microscopy revealed that the leg muscles OctαR-deficient flies have severe ultrastructural changes compared to those of control flies indicating the role played by OctαR signalling in normal muscular system development. The severe impairment in the climbing performance of OctαR-deficient flies correlates well with the completely distorted leg muscle ultrastructure in these flies. Taken together, we could conclude that OA via OctαR plays an important multifactorial role in controlling locomotor activity of Drosophila.
Collapse
|
21
|
Huh S, Kang C, Park JE, Nam D, Kim SI, Seol A, Choi K, Hwang D, Yu MH, Chung HH, Lee SW, Kang UB. Novel Diagnostic Biomarkers for High-Grade Serous Ovarian Cancer Uncovered by Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2022; 21:2146-2159. [PMID: 35939567 DOI: 10.1021/acs.jproteome.2c00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) represents the major histological type of ovarian cancer, and the lack of effective screening tools and early detection methods significantly contributes to the poor prognosis of HGSOC. Currently, there are no reliable diagnostic biomarkers for HGSOC. In this study, we performed liquid chromatography data-independent acquisition tandem mass spectrometry (MS) on depleted serum samples from 26 HGSOC cases and 24 healthy controls (HCs) to discover potential HGSOC diagnostic biomarkers. A total of 1,847 proteins were identified across all samples, among which 116 proteins showed differential expressions between HGSOC patients and HCs. Network modeling showed activations of coagulation and complement cascades, platelet activation and aggregation, neutrophil extracellular trap formation, toll-like receptor 4, insulin-like growth factor, and transforming growth factor β signaling, as well as suppression of lipoprotein assembly and Fc gamma receptor activation in HGSOC. Based on the network model, we prioritized 28 biomarker candidates and validated 18 of them using targeted MS assays in an independent cohort. Predictive modeling showed a sensitivity of 1 and a specificity of 0.91 in the validation cohort. Finally, in vitro functional assays on four potential biomarkers (FGA, VWF, ARHGDIB, and SERPINF2) suggested that they may play an important role in cancer cell proliferation and migration in HGSOC. All raw data were deposited in PRIDE (PXD033169).
Collapse
Affiliation(s)
- Sunghyun Huh
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Chaewon Kang
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Ji Eun Park
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Dowoon Nam
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Aeran Seol
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul 02843, Republic of Korea
| | - Kyerim Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Bioinformatics Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeong-Hee Yu
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul 136-701, Republic of Korea
| | - Un-Beom Kang
- Bertis R&D Division, Bertis Inc., Seongnam-si, Gyeonggi-do 13605, Republic of Korea
| |
Collapse
|
22
|
Sikander R, Arif M, Ghulam A, Worachartcheewan A, Thafar MA, Habib S. Identification of the ubiquitin-proteasome pathway domain by hyperparameter optimization based on a 2D convolutional neural network. Front Genet 2022; 13:851688. [PMID: 35937990 PMCID: PMC9355632 DOI: 10.3389/fgene.2022.851688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The major mechanism of proteolysis in the cytosol and nucleus is the ubiquitin-proteasome pathway (UPP). The highly controlled UPP has an effect on a wide range of cellular processes and substrates, and flaws in the system can lead to the pathogenesis of a number of serious human diseases. Knowledge about UPPs provide useful hints to understand the cellular process and drug discovery. The exponential growth in next-generation sequencing wet lab approaches have accelerated the accumulation of unannotated data in online databases, making the UPP characterization/analysis task more challenging. Thus, computational methods are used as an alternative for fast and accurate identification of UPPs. Aiming this, we develop a novel deep learning-based predictor named "2DCNN-UPP" for identifying UPPs with low error rate. In the proposed method, we used proposed algorithm with a two-dimensional convolutional neural network with dipeptide deviation features. To avoid the over fitting problem, genetic algorithm is employed to select the optimal features. Finally, the optimized attribute set are fed as input to the 2D-CNN learning engine for building the model. Empirical evidence or outcomes demonstrates that the proposed predictor achieved an overall accuracy and AUC (ROC) value using 10-fold cross validation test. Superior performance compared to other state-of-the art methods for discrimination the relations UPPs classification. Both on and independent test respectively was trained on 10-fold cross validation method and then evaluated through independent test. In the case where experimentally validated ubiquitination sites emerged, we must devise a proteomics-based predictor of ubiquitination. Meanwhile, we also evaluated the generalization power of our trained modal via independent test, and obtained remarkable performance in term of 0.862 accuracy, 0.921 sensitivity, 0.803 specificity 0.803, and 0.730 Matthews correlation coefficient (MCC) respectively. Four approaches were used in the sequences, and the physical properties were calculated combined. When used a 10-fold cross-validation, 2D-CNN-UPP obtained an AUC (ROC) value of 0.862 predicted score. We analyzed the relationship between UPP protein and non-UPP protein predicted score. Last but not least, this research could effectively analyze the large scale relationship between UPP proteins and non-UPP proteins in particular and other protein problems in general and our research work might improve computational biological research. Therefore, we could utilize the latest features in our model framework and Dipeptide Deviation from Expected Mean (DDE) -based protein structure features for the prediction of protein structure, functions, and different molecules, such as DNA and RNA.
Collapse
Affiliation(s)
- Rahu Sikander
- School of Computer Science and Technology, Xidian University, Xi’an, China
| | - Muhammad Arif
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Ali Ghulam
- Computerization and Network Section, Sindh Agriculture University, Tando Jam, Pakistan
| | - Apilak Worachartcheewan
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Maha A. Thafar
- Department of Computer Science, Collage of Computer and Information Technology, Taif University, Taif, Saudi Arabia
| | - Shabana Habib
- Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
23
|
Yang EJ, Park JH, Cho HJ, Hwang JA, Woo SH, Park CH, Kim SY, Park JT, Park SC, Hwang D, Lee YS. Co-inhibition of ATM and ROCK synergistically improves cell proliferation in replicative senescence by activating FOXM1 and E2F1. Commun Biol 2022; 5:702. [PMID: 35835838 PMCID: PMC9283421 DOI: 10.1038/s42003-022-03658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 12/30/2022] Open
Abstract
The multifaceted nature of senescent cell cycle arrest necessitates the targeting of multiple factors arresting or promoting the cell cycle. We report that co-inhibition of ATM and ROCK by KU-60019 and Y-27632, respectively, synergistically increases the proliferation of human diploid fibroblasts undergoing replicative senescence through activation of the transcription factors E2F1 and FOXM1. Time-course transcriptome analysis identified FOXM1 and E2F1 as crucial factors promoting proliferation. Co-inhibition of the kinases ATM and ROCK first promotes the G2/M transition via FOXM1 activation, leading to accumulation of cells undergoing the G1/S transition via E2F1 activation. The combination of both inhibitors increased this effect more significantly than either inhibitor alone, suggesting synergism. Our results demonstrate a FOXM1- and E2F1-mediated molecular pathway enhancing cell cycle progression in cells with proliferative potential under replicative senescence conditions, and treatment with the inhibitors can be tested for senomorphic effect in vivo.
Collapse
Affiliation(s)
- Eun Jae Yang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Hyun-Ji Cho
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeong-A Hwang
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Seung-Hwa Woo
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Chi Hyun Park
- Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, 05029, Korea
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sang Chul Park
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61469, Republic of Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea.
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.
- New Biology Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
24
|
Coordination of mitochondrial and nuclear gene expression regulation in health, evolution and disease. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Brito S, Baek JM, Cha B, Heo H, Lee SH, Lei L, Jung SY, Lee SM, Lee SH, Kwak BM, Chae S, Lee MG, Bin BH. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling. J Dermatol Sci 2022; 106:159-169. [DOI: 10.1016/j.jdermsci.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
|
26
|
Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing. Biochim Biophys Acta Gen Subj 2022; 1866:130171. [DOI: 10.1016/j.bbagen.2022.130171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
|
27
|
Jung M, Lee K, Im Y, Seok SH, Chung H, Kim DY, Han D, Lee CH, Hwang EH, Park SY, Koh J, Kim B, Nikas IP, Lee H, Hwang D, Ryu HS. Nicotinamide (niacin) supplement increases lipid metabolism and ROS‐induced energy disruption in triple‐negative breast cancer: potential for drug repositioning as an anti‐tumor agent. Mol Oncol 2022; 16:1795-1815. [PMID: 35278276 PMCID: PMC9067146 DOI: 10.1002/1878-0261.13209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Metabolic dysregulation is an important hallmark of cancer. Nicotinamide (NAM), a water‐soluble amide form of niacin (vitamin B3), is currently available as a supplement for maintaining general physiologic functions. NAM is a crucial regulator of mitochondrial metabolism and redox reactions. In this study, we aimed to identify the mechanistic link between NAM‐induced metabolic regulation and the therapeutic efficacy of NAM in triple‐negative breast cancer (TNBC). The combined analysis using multiomics systems biology showed that NAM decreased mitochondrial membrane potential and ATP production, but increased the activities of reverse electron transport (RET), fatty acid β‐oxidation and glycerophospholipid/sphingolipid metabolic pathways in TNBC, collectively leading to an increase in the levels of reactive oxygen species (ROS). The increased ROS levels triggered apoptosis and suppressed tumour growth and metastasis of TNBC in both human organoids and xenograft mouse models. Our results showed that NAM treatment leads to cancer cell death in TNBC via mitochondrial dysfunction and activation of ROS by bifurcating metabolic pathways (RET and lipid metabolism); this provides insights into the repositioning of NAM supplement as a next‐generation anti‐metabolic agent for TNBC treatment.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Department of Pathology Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Kyung‐Min Lee
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
| | - Yebin Im
- School of Biological Sciences Seoul National University Seoul Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Da Young Kim
- Department of Microbiology and Immunology and Department of Biomedical Sciences Seoul National University College of Medicine Seoul Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
| | - Cheng Hyun Lee
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Eun Hye Hwang
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
| | - Soo Young Park
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Jiwon Koh
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Bohyun Kim
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| | - Ilias P Nikas
- School of Medicine European University Cyprus 2404 Nicosia Cyprus
| | - Hyebin Lee
- Department of Radiation Oncology Kangbuk Samsung Hospital Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences Seoul National University Seoul Republic of Korea
| | - Han Suk Ryu
- Department of Pathology Seoul National University College of Medicine Seoul Republic of Korea
- Center for Medical Innovation Biomedical Research Institute Seoul National University Hospital Seoul Republic of Korea
- Department of Pathology Seoul National University Hospital Seoul Republic of Korea
| |
Collapse
|
28
|
Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front Cell Dev Biol 2022; 10:826981. [PMID: 35265618 PMCID: PMC8898899 DOI: 10.3389/fcell.2022.826981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/06/2022] Open
Abstract
Skeletal muscle fibers contain a large number of mitochondria, which produce ATP through oxidative phosphorylation (OXPHOS) and provide energy for muscle contraction. In this process, mitochondria also produce several types of "reactive species" as side product, such as reactive oxygen species and reactive nitrogen species which have attracted interest. Mitochondria have been proven to have an essential role in the production of skeletal muscle reactive oxygen/nitrogen species (RONS). Traditionally, the elevation in RONS production is related to oxidative stress, leading to impaired skeletal muscle contractility and muscle atrophy. However, recent studies have shown that the optimal RONS level under the action of antioxidants is a critical physiological signal in skeletal muscle. Here, we will review the origin and physiological functions of RONS, mitochondrial structure and function, mitochondrial dynamics, and the coupling between RONS and mitochondrial oxidative stress. The crosstalk mechanism between mitochondrial function and RONS in skeletal muscle and its regulation of muscle stem cell fate and myogenesis will also be discussed. In all, this review aims to describe a comprehensive and systematic network for the interaction between skeletal muscle mitochondrial function and RONS.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
SENP2 suppresses browning of white adipose tissues by de-conjugating SUMO from C/EBPβ. Cell Rep 2022; 38:110408. [PMID: 35196497 DOI: 10.1016/j.celrep.2022.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
The adipose tissue is a key site regulating energy metabolism. One of the contributing factors behind this is browning of white adipose tissue (WAT). However, knowledge of the intracellular determinants of the browning process remains incomplete. By generating adipocyte-specific Senp2 knockout (Senp2-aKO) mice, here we show that SENP2 negatively regulates browning by de-conjugating small ubiquitin-like modifiers from C/EBPβ. Senp2-aKO mice are resistant to diet-induced obesity due to increased energy expenditure and heat production. Senp2 knockout promotes beige adipocyte accumulation in inguinal WAT by upregulation of thermogenic gene expression. In addition, SENP2 knockdown promotes thermogenic adipocyte differentiation of precursor cells isolated from inguinal and epididymal WATs. Mechanistically, sumoylated C/EBPβ, a target of SENP2, suppresses expression of HOXC10, a browning inhibitor, by recruiting a transcriptional repressor DAXX. These findings indicate that a SENP2-C/EBPβ-HOXC10 axis operates for the control of beige adipogenesis in inguinal WAT.
Collapse
|
30
|
Abstract
Regulatory RNAs like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) control vascular and immune cells' phenotype and thus play a crucial role in atherosclerosis. Moreover, the mutual interactions between miRNAs and lncRNAs link both types of regulatory RNAs in a functional network that affects lesion formation. In this review, we deduce novel concepts of atherosclerosis from the analysis of the current data on regulatory RNAs' role in endothelial cells (ECs) and macrophages. In contrast to arterial ECs, which adopt a stable phenotype by adaptation to high shear stress, macrophages are highly plastic and quickly change their activation status. At predilection sites of atherosclerosis, such as arterial bifurcations, ECs are exposed to disturbed laminar flow, which generates a dysadaptive stress response mediated by miRNAs. Whereas the highly abundant miR-126-5p promotes regenerative proliferation of dysadapted ECs, miR-103-3p stimulates inflammatory activation and impairs endothelial regeneration by aberrant proliferation and micronuclei formation. In macrophages, miRNAs are essential in regulating energy and lipid metabolism, which affects inflammatory activation and foam cell formation.Moreover, lipopolysaccharide-induced miR-155 and miR-146 shape inflammatory macrophage activation through their oppositional effects on NF-kB. Most lncRNAs are not conserved between species, except a small group of very long lncRNAs, such as MALAT1, which blocks numerous miRNAs by providing non-functional binding sites. In summary, regulatory RNAs' roles are highly context-dependent, and therapeutic approaches that target specific functional interactions of miRNAs appear promising against cardiovascular diseases.
Collapse
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - Saffiyeh Saboor Maleki
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
31
|
Salazar C, Barros M, Elorza AA, Ruiz LM. Dynamic Distribution of HIG2A between the Mitochondria and the Nucleus in Response to Hypoxia and Oxidative Stress. Int J Mol Sci 2021; 23:ijms23010389. [PMID: 35008815 PMCID: PMC8745331 DOI: 10.3390/ijms23010389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial respiratory supercomplex formation requires HIG2A protein, which also has been associated with cell proliferation and cell survival under hypoxia. HIG2A protein localizes in mitochondria and nucleus. DNA methylation and mRNA expression of the HIGD2A gene show significant alterations in several cancers, suggesting a role for HIG2A in cancer biology. The present work aims to understand the dynamics of the HIG2A subcellular localization under cellular stress. We found that HIG2A protein levels increase under oxidative stress. H2O2 shifts HIG2A localization to the mitochondria, while rotenone shifts it to the nucleus. HIG2A protein colocalized at a higher level in the nucleus concerning the mitochondrial network under normoxia and hypoxia (2% O2). Hypoxia (2% O2) significantly increases HIG2A nuclear colocalization in C2C12 cells. In HEK293 cells, chemical hypoxia with CoCl2 (>1% O2) and FCCP mitochondrial uncoupling, the HIG2A protein decreased its nuclear localization and shifted to the mitochondria. This suggests that the HIG2A distribution pattern between the mitochondria and the nucleus depends on stress and cell type. HIG2A protein expression levels increase under cellular stresses such as hypoxia and oxidative stress. Its dynamic distribution between mitochondria and the nucleus in response to stress factors suggests a new communication system between the mitochondria and the nucleus.
Collapse
Affiliation(s)
- Celia Salazar
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Miriam Barros
- Confocal Microscopy Laboratory, Universidad Andres Bello, Santiago 8370146, Chile;
| | - Alvaro A. Elorza
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago 8370146, Chile;
- Institute of Biomedical Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8331150, Chile
| | - Lina María Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Correspondence:
| |
Collapse
|
32
|
Wang SF, Chang YL, Tzeng YD, Wu CL, Wang YZ, Tseng LM, Chen S, Lee HC. Mitochondrial stress adaptation promotes resistance to aromatase inhibitor in human breast cancer cells via ROS/calcium up-regulated amphiregulin-estrogen receptor loop signaling. Cancer Lett 2021; 523:82-99. [PMID: 34610415 DOI: 10.1016/j.canlet.2021.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Many breast cancer patients harbor high estrogen receptor (ER) expression in tumors that can be treated with endocrine therapy, which includes aromatase inhibitors (AI); unfortunately, resistance often occurs. Mitochondrial dysfunction has been thought to contribute to progression and to be related to hormone receptor expression in breast tumors. Mitochondrial alterations in AI-resistant breast cancer have not yet been defined. In this study, we characterized mitochondrial alterations and their roles in AI resistance. MCF-7aro AI-resistant breast cancer cells were shown to have significant changes in mitochondria. Low expressions of mitochondrial genes and proteins could be poor prognostic factors for breast cancer patients. Long-term mitochondrial inhibitor treatments-mediated mitochondrial stress adaptation could induce letrozole resistance. ERα-amphiregulin (AREG) loop signaling was activated and contributed to mitochondrial stress adaptation-mediated letrozole resistance. The up-regulation of AREG-epidermal growth factor receptor (EGFR) crosstalk activated the PI3K/Akt/mTOR and ERK pathways and was responsible for ERα activation. Moreover, mitochondrial stress adaptation-increased intracellular levels of reactive oxygen species (ROS) and calcium were shown to induce AREG expression and secretion. In conclusion, our results support the claim that mitochondrial stress adaptation contributes to AI resistance via ROS/calcium-mediated AREG-ERα loop signaling and provide possible treatment targets for overcoming AI resistance.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yen-Dun Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan
| | - Chun-Ling Wu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Yuan-Zhong Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA, 91010, USA
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, 112, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA, 91010, USA.
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
33
|
Hyun DH, Lee J. A New Insight into an Alternative Therapeutic Approach to Restore Redox Homeostasis and Functional Mitochondria in Neurodegenerative Diseases. Antioxidants (Basel) 2021; 11:antiox11010007. [PMID: 35052511 PMCID: PMC8772965 DOI: 10.3390/antiox11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases are accompanied by oxidative stress and mitochondrial dysfunction, leading to a progressive loss of neuronal cells, formation of protein aggregates, and a decrease in cognitive or motor functions. Mitochondrial dysfunction occurs at the early stage of neurodegenerative diseases. Protein aggregates containing oxidatively damaged biomolecules and other misfolded proteins and neuroinflammation have been identified in animal models and patients with neurodegenerative diseases. A variety of neurodegenerative diseases commonly exhibits decreased activity of antioxidant enzymes, lower amounts of antioxidants, and altered cellular signalling. Although several molecules have been approved clinically, there is no known cure for neurodegenerative diseases, though some drugs are focused on improving mitochondrial function. Mitochondrial dysfunction is caused by oxidative damage and impaired cellular signalling, including that of peroxisome proliferator-activated receptor gamma coactivator 1α. Mitochondrial function can also be modulated by mitochondrial biogenesis and the mitochondrial fusion/fission cycle. Mitochondrial biogenesis is regulated mainly by sirtuin 1, NAD+, AMP-activated protein kinase, mammalian target of rapamycin, and peroxisome proliferator-activated receptor γ. Altered mitochondrial dynamics, such as increased fission proteins and decreased fusion products, are shown in neurodegenerative diseases. Due to the restrictions of a target-based approach, a phenotype-based approach has been performed to find novel proteins or pathways. Alternatively, plasma membrane redox enzymes improve mitochondrial function without the further production of reactive oxygen species. In addition, inducers of antioxidant response elements can be useful to induce a series of detoxifying enzymes. Thus, redox homeostasis and metabolic regulation can be important therapeutic targets for delaying the progression of neurodegenerative diseases.
Collapse
|
34
|
Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation. Nat Commun 2021; 12:6409. [PMID: 34737295 PMCID: PMC8568893 DOI: 10.1038/s41467-021-26746-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Mutations of the mitochondrial genome (mtDNA) cause a range of profoundly debilitating clinical conditions for which treatment options are very limited. Most mtDNA diseases show heteroplasmy – tissues express both wild-type and mutant mtDNA. While the level of heteroplasmy broadly correlates with disease severity, the relationships between specific mtDNA mutations, heteroplasmy, disease phenotype and severity are poorly understood. We have carried out extensive bioenergetic, metabolomic and RNAseq studies on heteroplasmic patient-derived cells carrying the most prevalent disease related mtDNA mutation, the m.3243 A > G. These studies reveal that the mutation promotes changes in metabolites which are associated with the upregulation of the PI3K-Akt-mTORC1 axis in patient-derived cells and tissues. Remarkably, pharmacological inhibition of PI3K, Akt, or mTORC1 reduced mtDNA mutant load and partially rescued cellular bioenergetic function. The PI3K-Akt-mTORC1 axis thus represents a potential therapeutic target that may benefit people suffering from the consequences of the m.3243 A > G mutation. Heteroplasmic mtDNA mutations cause disease in humans. Here, Chung et al find the PI3K-Akt-mTORC1 pathway constitutively activated in cells with the heteroplasmic m.3243 A > G mutation, and inhibition of the pathway cell autonomously reduces mutant mtDNA load and rescues mitochondrial bioenergetics.
Collapse
|
35
|
Keerthiga R, Pei DS, Fu A. Mitochondrial dysfunction, UPR mt signaling, and targeted therapy in metastasis tumor. Cell Biosci 2021; 11:186. [PMID: 34717757 PMCID: PMC8556915 DOI: 10.1186/s13578-021-00696-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
In modern research, mitochondria are considered a more crucial energy plant in cells. Mitochondrial dysfunction, including mitochondrial DNA (mtDNA) mutation and denatured protein accumulation, is a common feature of tumors. The dysfunctional mitochondria reprogram molecular metabolism and allow tumor cells to proliferate in the hostile microenvironment. One of the crucial signaling pathways of the mitochondrial dysfunction activation in the tumor cells is the retrograde signaling of mitochondria-nucleus interaction, mitochondrial unfolded protein response (UPRmt), which is initiated by accumulation of denatured protein and excess ROS production. In the process of UPRmt, various components are activitated to enhance the mitochondria-nucleus retrograde signaling to promote carcinoma progression, including hypoxia-inducible factor (HIF), activating transcription factor ATF-4, ATF-5, CHOP, AKT, AMPK. The retrograde signaling molecules of overexpression ATF-5, SIRT3, CREB, SOD1, SOD2, early growth response protein 1 (EGR1), ATF2, CCAAT/enhancer-binding protein-d, and CHOP also involved in the process. Targeted blockage of the UPRmt pathway could obviously inhibit tumor proliferation and metastasis. This review indicates the UPRmt pathways and its crucial role in targeted therapy of metastasis tumors.
Collapse
Affiliation(s)
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
36
|
Lee HE, Jung MK, Noh SG, Choi HB, Chae SH, Lee JH, Mun JY. Iron Accumulation and Changes in Cellular Organelles in WDR45 Mutant Fibroblasts. Int J Mol Sci 2021; 22:ijms222111650. [PMID: 34769084 PMCID: PMC8584078 DOI: 10.3390/ijms222111650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Iron overload in the brain, defined as excess stores of iron, is known to be associated with neurological disorders. In neurodegeneration accompanied by brain iron accumulation, we reported a specific point mutation, c.974-1G>A in WD Repeat Domain 45 (WDR45), showing iron accumulation in the brain, and autophagy defects in the fibroblasts. In this study, we investigated whether fibroblasts with mutated WDR45 accumulated iron, and other effects on cellular organelles. We first identified the main location of iron accumulation in the mutant fibroblasts and then investigated the effects of this accumulation on cellular organelles, including lipid droplets, mitochondria and lysosomes. Ultrastructure analysis using transmission electron microscopy (TEM) and confocal microscopy showed structural changes in the organelles. Increased numbers of lipid droplets, fragmented mitochondria and increased numbers of lysosomal vesicles with functional disorder due to WDR45 deficiency were observed. Based on correlative light and electron microscopy (CLEM) findings, most of the iron accumulation was noted in the lysosomal vesicles. These changes were associated with defects in autophagy and defective protein and organelle turnover. Gene expression profiling analysis also showed remarkable changes in lipid metabolism, mitochondrial function, and autophagy-related genes. These data suggested that functional and structural changes resulted in impaired lipid metabolism, mitochondrial disorder, and unbalanced autophagy fluxes, caused by iron overload.
Collapse
Affiliation(s)
- Hye Eun Lee
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Korea; (H.E.L.); (M.K.J.); (S.G.N.)
| | - Min Kyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Korea; (H.E.L.); (M.K.J.); (S.G.N.)
| | - Seul Gi Noh
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Korea; (H.E.L.); (M.K.J.); (S.G.N.)
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Hye Bin Choi
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Se hyun Chae
- Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41068, Korea;
- Correspondence: (S.h.C.); (J.Y.M.); Tel.: +82-53-980-8410 (J.Y.M.)
| | - Jae Hyeok Lee
- Department of Neurology, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
- Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41068, Korea; (H.E.L.); (M.K.J.); (S.G.N.)
- Correspondence: (S.h.C.); (J.Y.M.); Tel.: +82-53-980-8410 (J.Y.M.)
| |
Collapse
|
37
|
Cheon Y, Han S, Kim T, Hwang D, Lee D. The chromatin remodeler Ino80 mediates RNAPII pausing site determination. Genome Biol 2021; 22:294. [PMID: 34663418 PMCID: PMC8524862 DOI: 10.1186/s13059-021-02500-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Promoter-proximal pausing of RNA polymerase II (RNAPII) is a critical step for the precise regulation of gene expression. Despite the apparent close relationship between promoter-proximal pausing and nucleosome, the role of chromatin remodeler governing this step has mainly remained elusive. RESULTS Here, we report highly confined RNAPII enrichments downstream of the transcriptional start site in Saccharomyces cerevisiae using PRO-seq experiments. This non-uniform distribution of RNAPII exhibits both similar and different characteristics with promoter-proximal pausing in Schizosaccharomyces pombe and metazoans. Interestingly, we find that Ino80p knockdown causes a significant upstream transition of promoter-proximal RNAPII for a subset of genes, relocating RNAPII from the main pausing site to the alternative pausing site. The proper positioning of RNAPII is largely dependent on nucleosome context. We reveal that the alternative pausing site is closely associated with the + 1 nucleosome, and nucleosome architecture around the main pausing site of these genes is highly phased. In addition, Ino80p knockdown results in an increase in fuzziness and a decrease in stability of the + 1 nucleosome. Furthermore, the loss of INO80 also leads to the shift of promoter-proximal RNAPII toward the alternative pausing site in mouse embryonic stem cells. CONCLUSIONS Based on our collective results, we hypothesize that the highly conserved chromatin remodeler Ino80p is essential in establishing intact RNAPII pausing during early transcription elongation in various organisms, from budding yeast to mouse.
Collapse
Affiliation(s)
- Youngseo Cheon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Sungwook Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
38
|
Yoon KS, Kwack SJ. In vitro and in vivo estrogenic activity of triclosan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:800-809. [PMID: 34193021 DOI: 10.1080/15287394.2021.1944940] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent used in many consumer products and exhibits a chemical structure similar to non-steroidal estrogen, which is known to induce endocrine disruption. Triclosan has been found in human plasma, urine, and breast milk, and the safety of TCS-containing products has been disputed. Although studies attempted to determine the estrogenic activity of TCS, no clear results have emerged. The aim of the present study was to examine estrogenic activity of TCS using an in vitro E-screen assay and an in vivo uterotrophic assay. The in vitro E-screen assay demonstrated that TCS significantly enhanced proliferation of MCF-7 breast cancer cells, although not in a concentration-dependent manner. The in vivo uterotrophic results showed no significant change in the weight of uteri obtained from TCS-administered Sprague-Dawley rats. Further, to understand the estrogenic activity attributed to TCS at the molecular level, gene-expression profiling of uterus samples was performed from both TCS- or estrogen-treated rats and the genes and cellular processes affected by TCS or estrogen were compared. Data demonstrated that both the genes and cellular processes affected by TCS or estrogen were significantly similar, indicating the possibility that TCS-mediated estrogenic activity occurred at the global transcriptome level. In conclusion, in vitro and gene-profiling results suggested that TCS exhibited estrogenic activity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon Republic of Korea
| |
Collapse
|
39
|
Park J, Lee S, Park G, Cho H, Choi D, Umeda M, Choi Y, Hwang D, Hwang I. CYTOKININ-RESPONSIVE GROWTH REGULATOR regulates cell expansion and cytokinin-mediated cell cycle progression. PLANT PHYSIOLOGY 2021; 186:1734-1746. [PMID: 33909905 PMCID: PMC8260111 DOI: 10.1093/plphys/kiab180] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/31/2021] [Indexed: 05/23/2023]
Abstract
The cytokinin (CK) phytohormones have long been known to activate cell proliferation in plants. However, how CKs regulate cell division and cell expansion remains unclear. Here, we reveal that a basic helix-loop-helix transcription factor, CYTOKININ-RESPONSIVE GROWTH REGULATOR (CKG), mediates CK-dependent regulation of cell expansion and cell cycle progression in Arabidopsis thaliana. The overexpression of CKG increased cell size in a ploidy-independent manner and promoted entry into the S phase of the cell cycle, especially at the seedling stage. Furthermore, CKG enhanced organ growth in a pleiotropic fashion, from embryogenesis to reproductive stages, particularly of cotyledons. In contrast, ckg loss-of-function mutants exhibited smaller cotyledons. CKG mainly regulates the expression of genes involved in the regulation of the cell cycle including WEE1. We propose that CKG provides a regulatory module that connects cell cycle progression and organ growth to CK responses.
Collapse
Affiliation(s)
- Joonghyuk Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seungchul Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Geuntae Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Hyunwoo Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 151-747, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
40
|
Lim SA, Moon Y, Shin MH, Kim TJ, Chae S, Yee C, Hwang D, Park H, Lee KM. Hypoxia-Driven HIF-1α Activation Reprograms Pre-Activated NK Cells towards Highly Potent Effector Phenotypes via ERK/STAT3 Pathways. Cancers (Basel) 2021; 13:cancers13081904. [PMID: 33920906 PMCID: PMC8071270 DOI: 10.3390/cancers13081904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In patients with advanced cancer, hypoxic stress shapes NK cells toward tumor-resistant and immunosuppressive phenotypes. Therefore, a strategy to restore NK cell function within hypoxia would be crucial for successful tumor immunotherapy. By manipulating pO2 exposure to naïve vs. pre-activated NK cells, we found that HIF-1α-dependent metabolic reprogramming of NK cells is the key to overcoming hypoxia-mediated NK cell impairment. Exposure of pre-activated NK cells to hypoxia with 1.5% pO2 initiated metabolic shift from oxidative phosphorylation to glycolysis and reduction of p21/p53-dependent apoptotic pathways, with concomitant upregulation of cell cycle-promoting genes and downregulation of cell cycle-arrest genes via HIF-1a/ERK/STAT3 activation. Furthermore, upregulation of NKp44 activating receptor in hypoxia-exposed pre-activated NK cells elevated cytotoxicity of K562, CEM, and A375 tumor cells, in both in-vitro and in-vivo tumor-clearance assays. Therefore, HIF-1α-mediated metabolic reprogramming of NK cells could reverse their impaired phenotype, generating functionally robust NK cells for adoptive therapy and clinical evaluation. Abstract NK cells are the predominant innate lymphocyte subsets specialized to kill malignant tumor cells. In patients with advanced cancer, hypoxic stress shapes NK cells toward tumor-resistant and immunosuppressive phenotypes, hence a strategy to restore NK function is critical for successful tumor immunotherapy. Here, we present evidence that pre-activation and subsequent HIF-1α-dependent metabolic shift of NK cells from oxidative phosphorylation into glycolysis are keys to overcome hypoxia-mediated impairment in NK cell survival, proliferation, and tumor cytotoxicity. Specifically, exposing NK cells to 7–9 days of normoxic culture followed by a pO2 of 1.5% hypoxia led to a highly potent effector phenotype via HIF-1α stabilization and upregulation of its target genes, BNIP3, PDK1, VEGF, PKM2, and LDHA. RNA sequencing and network analyses revealed that concomitant reduction of p21/p53 apoptotic pathways along with upregulation of cell cycle-promoting genes, CCNE1, CDC6, CDC20, and downregulation of cell cycle-arrest genes, CDKN1A, GADD45A, and MDM2 were accountable for superior expansion of NK cells via ERK/STAT3 activation. Furthermore, HIF-1α-dependent upregulation of the NKp44 receptor in hypoxia-exposed NK cells resulted in increased killing against K562, CEM, and A375 tumor targets both in-vitro and in-vivo tumor clearance assays. Therefore, hypoxic exposure on pre-activated proliferating NK cells triggered HIF-1α-dependent pathways to initiate coordinated regulation of cell cycle, apoptosis, and cytotoxicity at the global gene transcription level. Our results uncover a previously unidentified role of HIF-1α-mediated metabolic reprogramming that can reverse impaired NK effector phenotypes to generate requisite numbers of functionally robust NK cells for adoptive cellular therapy for clinical evaluation.
Collapse
Affiliation(s)
- Seon Ah Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
| | - Yunwon Moon
- Department of Life Science, University of Seoul, Seoul 02504, Korea;
| | - Min Hwa Shin
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
| | - Tae-Jin Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute, Daegu 41068, Korea;
| | - Cassian Yee
- Departments of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX 77054, USA;
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul 08826, Korea;
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea;
- Correspondence: (H.P.); (K.-M.L.); Tel.: +82-2-6490-2670 (H.P.); +82-2-920-6251 (K-M.L.)
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea; (S.A.L.); (M.H.S.); (T.-J.K.)
- Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA
- Correspondence: (H.P.); (K.-M.L.); Tel.: +82-2-6490-2670 (H.P.); +82-2-920-6251 (K-M.L.)
| |
Collapse
|
41
|
Integrative analysis of transcriptomic data for identification of T-cell activation-related mRNA signatures indicative of preterm birth. Sci Rep 2021; 11:2392. [PMID: 33504832 PMCID: PMC7841165 DOI: 10.1038/s41598-021-81834-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Preterm birth (PTB), defined as birth at less than 37 weeks of gestation, is a major determinant of neonatal mortality and morbidity. Early diagnosis of PTB risk followed by protective interventions are essential to reduce adverse neonatal outcomes. However, due to the redundant nature of the clinical conditions with other diseases, PTB-associated clinical parameters are poor predictors of PTB. To identify molecular signatures predictive of PTB with high accuracy, we performed mRNA sequencing analysis of PTB patients and full-term birth (FTB) controls in Korean population and identified differentially expressed genes (DEGs) as well as cellular pathways represented by the DEGs between PTB and FTB. By integrating the gene expression profiles of different ethnic groups from previous studies, we identified the core T-cell activation pathway associated with PTB, which was shared among all previous datasets, and selected three representative DEGs (CYLD, TFRC, and RIPK2) from the core pathway as mRNA signatures predictive of PTB. We confirmed the dysregulation of the candidate predictors and the core T-cell activation pathway in an independent cohort. Our results suggest that CYLD, TFRC, and RIPK2 are potentially reliable predictors for PTB.
Collapse
|
42
|
Comparative analysis on the anti-inflammatory/immune effect of mesenchymal stem cell therapy for the treatment of pulmonary arterial hypertension. Sci Rep 2021; 11:2012. [PMID: 33479312 PMCID: PMC7820276 DOI: 10.1038/s41598-021-81244-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the advancement of targeted therapy for pulmonary arterial hypertension (PAH), poor prognosis remains a reality. Mesenchymal stem cells (MSCs) are one of the most clinically feasible alternative treatment options. We compared the treatment effects of adipose tissue (AD)-, bone marrow (BD)-, and umbilical cord blood (UCB)-derived MSCs in the rat monocrotaline-induced pulmonary hypertension (PH) model. The greatest improvement in the right ventricular function was observed in the UCB-MSCs treated group. The UCB-MSCs treated group also exhibited the greatest improvement in terms of the largest decrease in the medial wall thickness, perivascular fibrosis, and vascular cell proliferation, as well as the lowest levels of recruitment of innate and adaptive immune cells and associated inflammatory cytokines. Gene expression profiling of lung tissue confirmed that the UCB-MSCs treated group had the most notably attenuated immune and inflammatory profiles. Network analysis further revealed that the UCB-MSCs group had the greatest therapeutic effect in terms of the normalization of all three classical PAH pathways. The intravenous injection of the UCB-MSCs, compared with those of other MSCs, showed superior therapeutic effects in the PH model for the (1) right ventricular function, (2) vascular remodeling, (3) immune/inflammatory profiles, and (4) classical PAH pathways.
Collapse
|
43
|
Sun D, Niu Z, Zheng HX, Wu F, Jiang L, Han TQ, Wei Y, Wang J, Jin L. A Mitochondrial DNA Variant Elevates the Risk of Gallstone Disease by Altering Mitochondrial Function. Cell Mol Gastroenterol Hepatol 2020; 11:1211-1226.e15. [PMID: 33279689 PMCID: PMC8053626 DOI: 10.1016/j.jcmgh.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gallstone disease (cholelithiasis) is a cholesterol-related metabolic disorders with strong familial predisposition. Mitochondrial DNA (mtDNA) variants accumulated during human evolution are associated with some metabolic disorders related to modified mitochondrial function. The mechanistic links between mtDNA variants and gallstone formation need further exploration. METHODS In this study, we explored the possible associations of mtDNA variants with gallstone disease by comparing 104 probands and 300 controls in a Chinese population. We constructed corresponding cybrids using trans-mitochondrial technology to investigate the underlying mechanisms of these associations. Mitochondrial respiratory chain complex activity and function and cholesterol metabolism were assessed in the trans-mitochondrial cell models. RESULTS Here, we found a significant association of mtDNA 827A>G with an increased risk of familial gallstone disease in a Chinese population (odds ratio [OR]: 4.5, 95% confidence interval [CI]: 2.1-9.4, P=1.2×10-4). Compared with 827A cybrids (haplogroups B4a and B4c), 827G cybrids (haplogroups B4b and B4d) had impaired mitochondrial respiratory chain complex activity and function and activated JNK and AMPK signaling pathways. Additionally, the 827G cybrids showed disturbances in cholesterol transport and accelerated development of gallstones. Specifically, cholesterol transport through the transporter ABCG5/8 was increased via activation of the AMPK signaling pathway in 827G cybrids. CONCLUSIONS Our findings reveal that mtDNA 827A>G induces aberrant mitochondrial function and abnormal cholesterol transport, resulting in increased occurrence of gallstones. The results provide an important biological basis for the clinical diagnosis and prevention of gallstone disease in the future.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Academy of Science and Technology, Shanghai, China
| | - Hong-Xiang Zheng
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Liuyiqi Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Tian-Quan Han
- Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| |
Collapse
|
44
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
45
|
RUNX3 methylation drives hypoxia-induced cell proliferation and antiapoptosis in early tumorigenesis. Cell Death Differ 2020; 28:1251-1269. [PMID: 33116296 PMCID: PMC8027031 DOI: 10.1038/s41418-020-00647-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Inactivation of tumor suppressor Runt-related transcription factor 3 (RUNX3) plays an important role during early tumorigenesis. However, posttranslational modifications (PTM)-based mechanism for the inactivation of RUNX3 under hypoxia is still not fully understood. Here, we demonstrate a mechanism that G9a, lysine-specific methyltransferase (KMT), modulates RUNX3 through PTM under hypoxia. Hypoxia significantly increased G9a protein level and G9a interacted with RUNX3 Runt domain, which led to increased methylation of RUNX3 at K129 and K171. This methylation inactivated transactivation activity of RUNX3 by reducing interactions with CBFβ and p300 cofactors, as well as reducing acetylation of RUNX3 by p300, which is involved in nucleocytoplasmic transport by importin-α1. G9a-mediated methylation of RUNX3 under hypoxia promotes cancer cell proliferation by increasing cell cycle or cell division, while suppresses immune response and apoptosis, thereby promoting tumor growth during early tumorigenesis. Our results demonstrate the molecular mechanism of RUNX3 inactivation by G9a-mediated methylation for cell proliferation and antiapoptosis under hypoxia, which can be a therapeutic or preventive target to control tumor growth during early tumorigenesis.
Collapse
|
46
|
Sun D, Yao S, Wu F, Deng W, Ma Y, Jin L, Wang J, Wang X. Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population. Front Genet 2020; 11:577795. [PMID: 33193696 PMCID: PMC7645148 DOI: 10.3389/fgene.2020.577795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.
Collapse
Affiliation(s)
- Dayan Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shun Yao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Fei Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan Deng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Machado-Oliveira G, Ramos C, Marques ARA, Vieira OV. Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells 2020; 9:E2146. [PMID: 32977446 PMCID: PMC7598292 DOI: 10.3390/cells9102146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.
Collapse
Affiliation(s)
- Gisela Machado-Oliveira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| | | | | | - Otília V. Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| |
Collapse
|
48
|
Jo W, Min BS, Yang HY, Park NH, Kang KK, Lee S, Chae S, Ma ES, Son WC. Sappanone A Prevents Left Ventricular Dysfunction in a Rat Myocardial Ischemia Reperfusion Injury Model. Int J Mol Sci 2020; 21:ijms21186935. [PMID: 32967328 PMCID: PMC7555706 DOI: 10.3390/ijms21186935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/29/2022] Open
Abstract
The incidence of myocardial infarction, among the causes of cardiovascular morbidity and mortality, is increasing globally. In this study, left ventricular (LV) dysfunction, including LV systolic and diastolic function, was investigated in a rat myocardial ischemia/reperfusion injury model with echocardiography. The homoisoflavanone sappanone A is known for its anti-inflammatory effects. Using echocardiography, we found that sappanone A administration significantly improved LV systolic and diastolic function in a rat myocardial ischemia/reperfusion injury model, especially in the early phase development of myocardial infarction. Based on myocardial infarct size, serum cardiac marker assay, and histopathological evaluation, sappanone A showed higher efficacy at the doses used in our experiments than curcumin and was evaluated for its potential to improve LV function.
Collapse
Affiliation(s)
- Woori Jo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Byung Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Na-Hye Park
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sehyun Chae
- Korea Brain Bank, Korean Brain Research Institute, Daegu 41062, Korea
| | - Eun Sook Ma
- College of Pharmacy, Catholic University of Daegu, Gyeongsan 38430, Korea
| | - Woo-Chan Son
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
49
|
Mitochondrial Respiratory Defect Enhances Hepatoma Cell Invasiveness via STAT3/NFE2L1/STX12 Axis. Cancers (Basel) 2020; 12:cancers12092632. [PMID: 32942643 PMCID: PMC7565734 DOI: 10.3390/cancers12092632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Mitochondria are essential organelles responsible for aerobic ATP production in eukaryotes. However, many solid tumor cells harbor an impaired mitochondrial ATP production system: oxidative phosphorylation (OXPHOS). The aim of this study was to elucidate the involvement of the mitochondrial OXPHOS defect in cancer cell activity, especially focusing on hepatoma cell invasiveness. We demonstrated that NADH:Ubiquinone Oxidoreductase Subunit A9 (NDUFA9) depletion was an upstream driver of the OXPHOS defect and nuclear factor-erythroid 2 like 1 (NFE2L1) upregulation in HCC tumors. NFE2L1 is the key transcription factor to enhance hepatoma cell invasiveness via STX12 expression. Our study presents a novel mitochondrial dysfunction-mediated retrograde signaling pathway and the resulting transcriptomic reprogramming in liver cancer progression, providing the NDUFA9/NFE2L1/STX12 axis as a key prognostic marker of aggressive liver cancer with mitochondrial defects. Abstract Mitochondrial respiratory defects have been implicated in cancer progression and metastasis, but how they control tumor cell aggressiveness remains unclear. Here, we demonstrate that a mitochondrial respiratory defect induces nuclear factor-erythroid 2 like 1 (NFE2L1) expression at the transcriptional level via reactive oxygen species (ROS)-mediated STAT3 activation. We identified syntaxin 12 (STX12) as an effective downstream target of NFE2L1 by performing cDNA microarray analysis after the overexpression and depletion of NFE2L1 in hepatoma cells. Bioinformatics analysis of The Cancer Genome Atlas Liver Hepatocellular carcinoma (TCGA-LIHC) open database (n = 371) also revealed a significant positive association (r = 0.3, p = 2.49 × 10−9) between NFE2L1 and STX12 expression. We further demonstrated that STX12 is upregulated through the ROS/STAT3/NFE2L1 axis and is a key downstream effector of NFE2L1 in modulating hepatoma cell invasiveness. In addition, gene enrichment analysis of TCGA-LIHC also showed that epithelial–mesenchymal transition (EMT)-related core genes are significantly upregulated in tumors co-expressing NFE2L1 and STX12. The positive association between NFE2L1 and STX12 expression was validated by immunohistochemistry of the hepatocellular carcinoma tissue array. Finally, higher EMT gene enrichment and worse overall survival (p = 0.043) were observed in the NFE2L1 and STX12 co-expression group with mitochondrial defect, as indicated by low NDUFA9 expression. Collectively, our results indicate that NFE2L1 is a key mitochondrial retrograde signaling-mediated primary gene product enhancing hepatoma cell invasiveness via STX12 expression and promoting liver cancer progression.
Collapse
|
50
|
Karakaidos P, Rampias T. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel) 2020; 10:life10090173. [PMID: 32878185 PMCID: PMC7555762 DOI: 10.3390/life10090173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, mitochondria originated in an α-proteobacterial endosymbiont. Although these organelles harbor their own genome, the large majority of genes, originally encoded in the endosymbiont, were either lost or transferred to the nucleus. As a consequence, mitochondria have become semi-autonomous and most of their processes require the import of nuclear-encoded components to be functional. Therefore, the mitochondrial-specific translation has evolved to be coordinated by mitonuclear interactions to respond to the energetic demands of the cell, acquiring unique and mosaic features. However, mitochondrial-DNA-encoded genes are essential for the assembly of the respiratory chain complexes. Impaired mitochondrial function due to oxidative damage and mutations has been associated with numerous human pathologies, the aging process, and cancer. In this review, we highlight the unique features of mitochondrial protein synthesis and provide a comprehensive insight into the mitonuclear crosstalk and its co-evolution, as well as the vulnerabilities of the animal mitochondrial genome.
Collapse
|