1
|
Davis E, Ermi AG, Sarkar D. Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH): A Promising Molecular Marker and Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:1375. [PMID: 40282551 PMCID: PMC12025727 DOI: 10.3390/cancers17081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. The 5-year survival rate has been estimated to be less than 20% while its incidence rates have more than tripled since the 1980s. Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) has been demonstrated to have an influential role in HCC progression and the development of an aggressive phenotype. AEG-1 has been shown to be upregulated in many cancers, including HCC. Studies have shown that it plays a crucial role in the proliferation, invasion and metastasis, and evasion of apoptosis in HCC. Its relationship with proteins and pathways, such as MYC, SND1, PI3K/AKT, and other signaling pathways demonstrates its pertinent role in oncogenic development and relevance as a biomarker and therapeutic target. Recent studies have shown that AEG-1 is present in tumor tissues, and the anti-AEG-1 antibody is detected in the blood of cancer patients, demonstrating its viability as a diagnostic/prognostic marker. This review paper shines light on recent findings regarding the molecular implications of AEG-1, with emphasis on its role of regulating metabolic dysfunction-associated steatohepatitis (MASH), a key predisposing factor for HCC, new treatment strategies targeting AEG-1, and challenges associated with analyzing this intriguing molecule.
Collapse
Affiliation(s)
- Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ali Gawi Ermi
- Department of Cellular, Molecular and Genetic Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Cellular, Molecular and Genetic Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Mckiver BD, Herz SM, Patel S, Bryan T, Mann J, Poklis JL, Bigbee JW, Windle JJ, Salem AK, Sarkar D, Damaj MI. Astrocyte elevated gene-1 (AEG-1) in myeloid cells is a key driver for the development of chemotherapy-induced peripheral neuropathy. Brain Behav Immun 2025; 127:329-340. [PMID: 40101807 DOI: 10.1016/j.bbi.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/20/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect of chemotherapy treatment, often resulting in the discontinuation of treatment. Paclitaxel activates peripheral macrophages, generating a neuroinflammatory response that contributes to CIPN development and maintenance. Astrocyte Elevated Gene-1 (AEG-1), also known as Metadherin or LYRIC, is a multifunctional protein that modulates macrophage activity and regulates inflammation through direct interaction with NF-κB, a transcriptional regulator of proinflammatory cytokine/chemokine (PIC) expression. We aimed to determine whether AEG-1 contributes to the development and maintenance of CIPN pathologies by using both global (AEG-1 KO) and myelocyte-specific knockout (AEG-1ΔMAC) transgenic mouse strains in an animal model of CIPN that replicates specific human clinical phenotypes. We hypothesized that inhibition of AEG1 expression in myeloid cells, such as monocytes and macrophages, would prevent the development and maintenance of CIPN. Our results showed that global AEG-1 deletion prevented the development of CIPN pathologies induced by PAC, as well as oxaliplatin (OHP). PAC treatment was found to increase AEG-1 and PIC expression in the DRGs of WT mice and in peritoneal macrophages isolated from C57BL/6J mice. However, in the absence of AEG-1 expression, PAC-induced neuroinflammation was completely halted in the DRGs of AEG-1 KO mice. This preventative phenotype and PIC expression profile was mirrored in AEG-1ΔMAC mice, which also displayed reduced NF-κB protein levels and F4/80+ macrophages trafficked to the lumbar DRGs following PAC treatment. In summary, our results are the first to demonstrate the biological role AEG-1, particularly in myeloid cells, in development of CIPN.
Collapse
Affiliation(s)
- Bryan D Mckiver
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA
| | - Sara M Herz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shivani Patel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tayla Bryan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jared Mann
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - John W Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
3
|
Lafont E, Chevet E. Ubiquitin and Ubiquitin-Like Modifications in Organelle Stress Signaling: Ub, Ub, Ub, Ub, Stayin' Alive, Stayin' Alive. Bioessays 2025; 47:e202400230. [PMID: 39600056 PMCID: PMC11755688 DOI: 10.1002/bies.202400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Due to various intracellular and external cues, cellular organelles are frequently stressed in both physiological and pathological conditions. Sensing these stresses initiates various signaling pathways which may lead to adaptation of the stressed cells or trigger its their death. At the unicellular level, this stress signaling involves a crosstalk between different organelles. At the multicellular level, such pathways can contribute to indicate the presence of a stressed cell to its neighboring cells. Here, we highlight the crucial and diverse roles played by Ubiquitin and Ubiquitin-like modification in organelle stress signaling.
Collapse
Affiliation(s)
- Elodie Lafont
- INSERM UMR1242 Oncogenesis Stress SignalingUniversité de RennesRennesFrance
| | - Eric Chevet
- INSERM UMR1242 Oncogenesis Stress SignalingUniversité de RennesRennesFrance
| |
Collapse
|
4
|
Saverino A, Qu X, Mendoza RG, Raha S, Manna D, Ermi AG, Subler MA, Windle JJ, Liu J, Sarkar D. Spatial transcriptomics unravels palmitoylation and zonation-dependent gene regulation by AEG-1 in mouse liver. J Biol Chem 2024; 300:107322. [PMID: 38677511 PMCID: PMC11134871 DOI: 10.1016/j.jbc.2024.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.
Collapse
Affiliation(s)
- Alissa Saverino
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xufeng Qu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Suchismita Raha
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Debashri Manna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jinze Liu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, USA; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
5
|
Jiang J, Wang L, Li Q, Wang Y, Wang Z. HIV-1 gp120 amplifies astrocyte elevated gene-1 activity to compromise the integrity of the outer blood-retinal barrier. AIDS 2024; 38:779-789. [PMID: 38578957 DOI: 10.1097/qad.0000000000003844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
OBJECTIVE This study aims to investigate the functions and mechanistic pathways of Astrocyte Elevated Gene-1 (AEG-1) in the disruption of the blood-retinal barrier (BRB) caused by the HIV-1 envelope glycoprotein gp120. DESIGN We utilized ARPE-19 cells challenged with gp120 as our model system. METHODS Several analytical techniques were employed to decipher the intricate interactions at play. These included PCR, Western blot, and immunofluorescence assays for the molecular characterization, and transendothelial electrical resistance (TEER) measurements to evaluate barrier integrity. RESULTS We observed that AEG-1 expression was elevated, whereas the expression levels of tight junction proteins ZO-1, Occludin, and Claudin5 were downregulated in gp120-challenged cells. TEER measurements corroborated these findings, indicating barrier dysfunction. Additional mechanistic studies revealed that the activation of NFκB and MMP2/9 pathways mediated the AEG-1-induced barrier destabilization. Through the use of lentiviral vectors, we engineered cell lines with modulated AEG-1 expression levels. Silencing AEG-1 alleviated gp120-induced downregulation of tight junction proteins and barrier impairment while concurrently inhibiting the NFκB and MMP2/9 pathways. Conversely, overexpression of AEG-1 exacerbated these pathological changes, further compromising the integrity of the BRB. CONCLUSION Gp120 upregulates the expression of AEG-1 and activates the NFκB and MMP2/9 pathways. This in turn leads to the downregulation of tight junction proteins, resulting in the disruption of barrier function.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
6
|
Yi J, Wang L, Du J, Wang M, Shen H, Liu Z, Qin Y, Liu J, Hu G, Xiao R, Ding J, Chen X, Wang H, Huang H, Ouyang G, Liu W. ER-localized JmjC domain-containing protein JMJD8 targets STING to promote immune evasion and tumor growth in breast cancer. Dev Cell 2023; 58:760-778.e6. [PMID: 37054705 DOI: 10.1016/j.devcel.2023.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023]
Abstract
The STING-mediated type I interferon (IFN) signaling pathway has been shown to play critical roles in antitumor immunity. Here, we demonstrate that an endoplasmic reticulum (ER)-localized JmjC domain-containing protein, JMJD8, inhibits STING-induced type I IFN responses to promote immune evasion and breast tumorigenesis. Mechanistically, JMJD8 competes with TBK1 for binding with STING, blocking STING-TBK1 complex formation and restricting type I IFN and IFN-stimulated gene (ISG) expression as well as immune cell infiltration. JMJD8 knockdown improves the efficacy of chemotherapy and immune checkpoint therapy in treating both human and mouse breast cancer cell-derived implanted tumors. The clinical relevance is highlighted in that JMJD8 is highly expressed in human breast tumor samples, and its expression is inversely correlated with that of type I IFN and ISGs as well as immune cell infiltration. Overall, our study found that JMJD8 regulates type I IFN responses, and targeting JMJD8 triggers antitumor immunity.
Collapse
Affiliation(s)
- Jia Yi
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Lei Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jiao Du
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Mingyue Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Haifeng Shen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Zhiying Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yao Qin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jing Liu
- Xiamen University-Amogene Joint R&D Center for Genetic Diagnostics, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Guosheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rongquan Xiao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jiancheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiaoyan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hongjiao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Haihua Huang
- Department of Pathology, The Second Affiliated Hospital, Shantou University Medical College, Dongxia North Road, Shantou, Guangdong 515041, China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China; Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Rajesh Y, Reghupaty SC, Mendoza RG, Manna D, Banerjee I, Subler MA, Weldon K, Lai Z, Giashuddin S, Fisher PB, Sanyal AJ, Martin RK, Dozmorov MG, Windle JJ, Sarkar D. Dissecting the Balance Between Metabolic and Oncogenic Functions of Astrocyte-Elevated Gene-1/Metadherin. Hepatol Commun 2022; 6:561-575. [PMID: 34741448 PMCID: PMC8870024 DOI: 10.1002/hep4.1834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/02/2021] [Indexed: 12/02/2022] Open
Abstract
Obesity is an enormous global health problem, and obesity-induced nonalcoholic steatohepatitis (NASH) is contributing to a rising incidence and mortality for hepatocellular carcinoma (HCC). Increase in de novo lipogenesis and decrease in fatty acid β-oxidation (FAO) underlie hepatic lipid accumulation in NASH. Astrocyte-elevated gene-1/metadherin (AEG-1) overexpression contributes to both NASH and HCC. AEG-1 harbors an LXXLL motif through which it blocks activation of peroxisome proliferator activated receptor α (PPARα), a key regulator of FAO. To better understand the role of LXXLL motif in mediating AEG-1 function, using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, we generated a mouse model (AEG-1-L24K/L25H) in which the LXXLL motif in AEG-1 was mutated to LXXKH. We observed increased activation of PPARα in AEG-1-L24K/L25H livers providing partial protection from high-fat diet-induced steatosis. Interestingly, even with equal gene dosage levels, compared with AEG-1-wild-type livers, AEG-1-L24K/L25H livers exhibited increase in levels of lipogenic enzymes, mitogenic activity and inflammation, which are attributes observed when AEG-1 is overexpressed. These findings indicate that while LXXLL motif favors steatotic activity of AEG-1, it keeps in check inflammatory and oncogenic functions, thus maintaining a homeostasis in AEG-1 function. AEG-1 is being increasingly appreciated as a viable target for ameliorating NASH and NASH-HCC, and as such, in-depth understanding of the functions and molecular attributes of this molecule is essential. Conclusion: The present study unravels the unique role of the LXXLL motif in mediating the balance between the metabolic and oncogenic functions of AEG-1.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | | | - Rachel G Mendoza
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Debashri Manna
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Indranil Banerjee
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Mark A Subler
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Korri Weldon
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center San AntonioSan AntonioTXUSA
| | - Zhao Lai
- Greehey Children's Cancer Research InstituteUniversity of Texas Health Science Center San AntonioSan AntonioTXUSA
| | - Shah Giashuddin
- Department of Pathology and Laboratory MedicineNew York Presbyterian Health System at Weill Cornell Medical CollegeNew YorkNYUSA
| | - Paul B Fisher
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA.,Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA.,VCU Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Arun J Sanyal
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Rebecca K Martin
- Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mikhail G Dozmorov
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Jolene J Windle
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA.,Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA
| | - Devanand Sarkar
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVAUSA.,Massey Cancer CenterVirginia Commonwealth UniversityRichmondVAUSA.,VCU Institute of Molecular MedicineVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
9
|
Chang SC, Zhang BX, Ding JL. E2-E3 ubiquitin enzyme pairing - partnership in provoking or mitigating cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188679. [DOI: 10.1016/j.bbcan.2022.188679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
10
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
11
|
Banerjee I, Fisher PB, Sarkar D. Astrocyte elevated gene-1 (AEG-1): A key driver of hepatocellular carcinoma (HCC). Adv Cancer Res 2021; 152:329-381. [PMID: 34353442 DOI: 10.1016/bs.acr.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An array of human cancers, including hepatocellular carcinoma (HCC), overexpress the oncogene Astrocyte elevated gene-1 (AEG-1). It is now firmly established that AEG-1 is a key driver of carcinogenesis, and enhanced expression of AEG-1 is a marker of poor prognosis in cancer patients. In-depth studies have revealed that AEG-1 positively regulates different hallmarks of HCC progression including growth and proliferation, angiogenesis, invasion, migration, metastasis and resistance to therapeutic intervention. By interacting with a plethora of proteins as well as mRNAs, AEG-1 regulates gene expression at transcriptional, post-transcriptional, and translational levels, and modulates numerous pro-tumorigenic and tumor-suppressive signal transduction pathways. Even though extensive research over the last two decades using various in vitro and in vivo models has established the pivotal role of AEG-1 in HCC, effective targeting of AEG-1 as a therapeutic intervention for HCC is yet to be achieved in the clinic. Targeted delivery of AEG-1 small interfering ribonucleic acid (siRNA) has demonstrated desired therapeutic effects in mouse models of HCC. Peptidomimetic inhibitors based on protein-protein interaction studies has also been developed recently. Continuous unraveling of novel mechanisms in the regulation of HCC by AEG-1 will generate valuable knowledge facilitating development of specific AEG-1 inhibitory strategies. The present review describes the current status of AEG-1 in HCC gleaned from patient-focused and bench-top studies as well as transgenic and knockout mouse models. We also address the challenges that need to be overcome and discuss future perspectives on this exciting molecule to transform it from bench to bedside.
Collapse
Affiliation(s)
- Indranil Banerjee
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
12
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
13
|
Sicari D, Centonze FG, Pineau R, Le Reste PJ, Negroni L, Chat S, Mohtar MA, Thomas D, Gillet R, Hupp T, Chevet E, Igbaria A. Reflux of Endoplasmic Reticulum proteins to the cytosol inactivates tumor suppressors. EMBO Rep 2021; 22:e51412. [PMID: 33710763 PMCID: PMC8724677 DOI: 10.15252/embr.202051412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/03/2022] Open
Abstract
In the past decades, many studies reported the presence of endoplasmic reticulum (ER)‐resident proteins in the cytosol. However, the mechanisms by which these proteins relocate and whether they exert cytosolic functions remain unknown. We find that a subset of ER luminal proteins accumulates in the cytosol of glioblastoma cells isolated from mouse and human tumors. In cultured cells, ER protein reflux to the cytosol occurs upon ER proteostasis perturbation. Using the ER luminal protein anterior gradient 2 (AGR2) as a proof of concept, we tested whether the refluxed proteins gain new functions in the cytosol. We find that refluxed, cytosolic AGR2 binds and inhibits the tumor suppressor p53. These data suggest that ER reflux constitutes an ER surveillance mechanism to relieve the ER from its contents upon stress, providing a selective advantage to tumor cells through gain‐of‐cytosolic functions—a phenomenon we name ER to Cytosol Signaling (ERCYS).
Collapse
Affiliation(s)
- Daria Sicari
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Federica G Centonze
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Raphael Pineau
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Pierre-Jean Le Reste
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France.,Neurosurgery Department, University Hospital of Rennes, Rennes, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.,U1258, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sophie Chat
- CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Univ. Rennes, Rennes, France
| | - M Aiman Mohtar
- Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh, UK
| | - Daniel Thomas
- CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Univ. Rennes, Rennes, France
| | - Reynald Gillet
- CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR6290, Univ. Rennes, Rennes, France
| | - Ted Hupp
- Edinburgh Cancer Research Centre at the Institute of Genetics and Molecular Medicine, Edinburgh University, Edinburgh, UK.,International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Aeid Igbaria
- Inserm U1242, University of Rennes, Rennes, France.,Centre de lutte contre le cancer Eugène Marquis, Rennes, France.,Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
14
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
15
|
Yan H, Fernandez M, Wang J, Wu S, Wang R, Lou Z, Moroney JB, Rivera CE, Taylor JR, Gan H, Zan H, Kolvaskyy D, Liu D, Casali P, Xu Z. B Cell Endosomal RAB7 Promotes TRAF6 K63 Polyubiquitination and NF-κB Activation for Antibody Class-Switching. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1146-1157. [PMID: 31932498 PMCID: PMC7033007 DOI: 10.4049/jimmunol.1901170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022]
Abstract
Upon activation by CD40 or TLR signaling, B lymphocytes activate NF-κB to induce activation-induced cytidine deaminase and, therefore, Ig class switch DNA recombination, as central to the maturation of the Ab and autoantibody responses. In this study, we show that NF-κB activation is boosted by colocalization of engaged immune receptors, such as CD40, with RAB7 small GTPase on mature endosomes, in addition to signals emanating from the receptors localized on the plasma membrane, in mouse B cells. In mature endosomes, RAB7 directly interacts with TRAF6 E3 ubiquitin ligase, which catalyzes K63 polyubiquitination for NF-κB activation. RAB7 overexpression in Cd19+/creRosa26fl-STOP-fl-Rab7 mouse B cells upregulates K63 polyubiquitination activity of TRAF6, enhances NF-κB activation and activation-induced cytidine deaminase induction, and boosts IgG Ab and autoantibody levels. This, together with the extensive intracellular localization of CD40 and the strong correlation of RAB7 expression with NF-κB activation in mouse lupus B cells, shows that RAB7 is an integral component of the B cell NF-κB activation machinery, likely through interaction with TRAF6 for the assembly of "intracellular membrane signalosomes."
Collapse
Affiliation(s)
- Hui Yan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Maria Fernandez
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Jingwei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Shuai Wu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Rui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Zheng Lou
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Justin B Moroney
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Carlos E Rivera
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Julia R Taylor
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Huoqun Gan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Dmytro Kolvaskyy
- Greehey Children's Cancer Research Institute, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; and
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, NJ 07103
| | - Paolo Casali
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229;
| |
Collapse
|
16
|
Robertson CL, Mendoza RG, Jariwala N, Dozmorov M, Mukhopadhyay ND, Subler MA, Windle JJ, Lai Z, Fisher PB, Ghosh S, Sarkar D. Astrocyte Elevated Gene-1 Regulates Macrophage Activation in Hepatocellular Carcinogenesis. Cancer Res 2018; 78:6436-6446. [PMID: 30181179 PMCID: PMC6239947 DOI: 10.1158/0008-5472.can-18-0659] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023]
Abstract
Chronic inflammation is a known hallmark of cancer and is central to the onset and progression of hepatocellular carcinoma (HCC). Hepatic macrophages play a critical role in the inflammatory process leading to HCC. The oncogene Astrocyte elevated gene-1 (AEG-1) regulates NFκB activation, and germline knockout of AEG-1 in mice (AEG-1-/-) results in resistance to inflammation and experimental HCC. In this study, we developed conditional hepatocyte- and myeloid cell-specific AEG-1-/- mice (AEG-1ΔHEP and AEG-1ΔMAC, respectively) and induced HCC by treatment with N-nitrosodiethylamine (DEN) and phenobarbital (PB). AEG-1ΔHEP mice exhibited a significant reduction in disease severity compared with control littermates, while AEG-1ΔMAC mice were profoundly resistant. In vitro, AEG-1-/- hepatocytes exhibited increased sensitivity to stress and senescence. Notably, AEG-1-/- macrophages were resistant to either M1 or M2 differentiation with significant inhibition in migration, endothelial adhesion, and efferocytosis activity, indicating that AEG-1 ablation renders macrophages functionally anergic. These results unravel a central role of AEG-1 in regulating macrophage activation and indicate that AEG-1 is required in both tumor cells and tumor microenvironment to stimulate hepatocarcinogenesis.Significance: These findings distinguish a novel role of macrophage-derived oncogene AEG-1 from hepatocellular AEG-1 in promoting inflammation and driving tumorigenesis. Cancer Res; 78(22); 6436-46. ©2018 AACR.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel G Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Nidhi Jariwala
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Nitai D Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
- VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Thys A, Douanne T, Bidère N. Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma. Front Oncol 2018; 8:498. [PMID: 30474008 PMCID: PMC6237847 DOI: 10.3389/fonc.2018.00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
Piracy of the NF-κB transcription factors signaling pathway, to sustain its activity, is a mechanism often deployed in B-cell lymphoma to promote unlimited growth and survival. The aggressive activated B-cell like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) exploits a multi-protein complex of CARMA1, BCL10, and MALT1 (CBM complex), which normally conveys NF-κB signaling upon antigen receptors engagement. Once assembled, the CBM also unleashes MALT1 protease activity to finely tune the immune response. As a result, ABC DLBCL tumors develop a profound addiction to NF-κB and to MALT1 enzyme, leaving open a breach for therapeutics. However, the pleiotropic nature of NF-κB jeopardizes the success of its targeting and urges us to develop new strategies. In this review, we discuss how post-translational modifications, such as phosphorylation and ubiquitination of the CBM components, as well as, MALT1 proteolytic activity, shape the CBM activity in lymphocytes and ABC DLBCL, and may provide new avenues to restore vulnerability in lymphoma.
Collapse
Affiliation(s)
- An Thys
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Tiphaine Douanne
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Nicolas Bidère
- Team SOAP, CRCINA, Institut National de la Santé et de la Recherche Médicale, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| |
Collapse
|
18
|
Yeo KS, Tan MC, Lim YY, Ea CK. JMJD8 is a novel endoplasmic reticulum protein with a JmjC domain. Sci Rep 2017; 7:15407. [PMID: 29133832 PMCID: PMC5684140 DOI: 10.1038/s41598-017-15676-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022] Open
Abstract
Jumonji C (JmjC) domain-containing proteins have been shown to regulate cellular processes by hydroxylating or demethylating histone and non-histone targets. JMJD8 belongs to the JmjC domain-only family that was recently shown to be involved in angiogenesis and TNF-induced NF-κB signaling. Here, we employed bioinformatic analysis and immunofluorescence microscopy to examine the physiological properties of JMJD8. We demonstrated that JMJD8 localizes to the lumen of endoplasmic reticulum and that JMJD8 forms dimers or oligomers in vivo. Furthermore, we identified potential JMJD8-interacting proteins that are known to regulate protein complex assembly and protein folding. Taken together, this work demonstrates that JMJD8 is the first JmjC domain-containing protein found in the lumen of the endoplasmic reticulum that may function in protein complex assembly and protein folding.
Collapse
Affiliation(s)
- Kok Siong Yeo
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ming Cheang Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Chee-Kwee Ea
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9148, United States.
| |
Collapse
|
19
|
Srivastava J, Robertson CL, Ebeid K, Dozmorov M, Rajasekaran D, Mendoza R, Siddiq A, Akiel MA, Jariwala N, Shen XN, Windle JJ, Subler MA, Mukhopadhyay ND, Giashuddin S, Ghosh S, Lai Z, Chen Y, Fisher PB, Salem AK, Sanyal AJ, Sarkar D. A novel role of astrocyte elevated gene-1 (AEG-1) in regulating nonalcoholic steatohepatitis (NASH). Hepatology 2017; 66:466-480. [PMID: 28437865 PMCID: PMC5519412 DOI: 10.1002/hep.29230] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Nonalcoholic steatohepatitis (NASH) is the most prevalent cause of chronic liver disease in the Western world. However, an optimum therapy for NASH is yet to be established, mandating more in-depth investigation into the molecular pathogenesis of NASH to identify novel regulatory molecules and develop targeted therapies. Here, we unravel a unique function of astrocyte elevated gene-1(AEG-1)/metadherin in NASH using a transgenic mouse with hepatocyte-specific overexpression of AEG-1 (Alb/AEG-1) and a conditional hepatocyte-specific AEG-1 knockout mouse (AEG-1ΔHEP ). Alb/AEG-1 mice developed spontaneous NASH whereas AEG-1ΔHEP mice were protected from high-fat diet (HFD)-induced NASH. Intriguingly, AEG-1 overexpression was observed in livers of NASH patients and wild-type (WT) mice that developed steatosis upon feeding HFD. In-depth molecular analysis unraveled that inhibition of peroxisome proliferator-activated receptor alpha activity resulting in decreased fatty acid β-oxidation, augmentation of translation of fatty acid synthase resulting in de novo lipogenesis, and increased nuclear factor kappa B-mediated inflammation act in concert to mediate AEG-1-induced NASH. Therapeutically, hepatocyte-specific nanoparticle-delivered AEG-1 small interfering RNA provided marked protection from HFD-induced NASH in WT mice. CONCLUSION AEG-1 might be a key molecule regulating initiation and progression of NASH. AEG-1 inhibitory strategies might be developed as a potential therapeutic intervention in NASH patients. (Hepatology 2017;66:466-480).
Collapse
Affiliation(s)
- Jyoti Srivastava
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chadia L. Robertson
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, IA 52242, USA
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devaraja Rajasekaran
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Rachel Mendoza
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ayesha Siddiq
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Maaged A. Akiel
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nidhi Jariwala
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Xue-Ning Shen
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jolene J. Windle
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mark A. Subler
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nitai D. Mukhopadhyay
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Shah Giashuddin
- Department of Pathology and Laboratory Medicine, New York Methodist Hospital, Brooklyn, NY
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Yidong Chen
- Computational Biology and Bioinformatics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229
| | - Paul B. Fisher
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA,Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA,Department of VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Iowa City, IA 52242, USA,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Arun J. Sanyal
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA,Department of Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA,Department of VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA,Corresponding author: Devanand Sarkar, 1220 East Broad St, PO Box 980035, Richmond, VA 23298, Tel: 804-827-2339, Fax: 804-628-1176,
| |
Collapse
|
20
|
Bist P, Cheong WS, Ng A, Dikshit N, Kim BH, Pulloor NK, Khameneh HJ, Hedl M, Shenoy AR, Balamuralidhar V, Malik NBA, Hong M, Neutzner A, Chin KC, Kobayashi KS, Bertoletti A, Mortellaro A, Abraham C, MacMicking JD, Xavier RJ, Sukumaran B. E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nat Commun 2017; 8:15865. [PMID: 28656966 PMCID: PMC5493756 DOI: 10.1038/ncomms15865] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Optimal regulation of the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is essential for controlling bacterial infections and inflammatory disorders. Chronic NOD2 stimulation induces non-responsiveness to restimulation, termed NOD2-induced tolerance. Although the levels of the NOD2 adaptor, RIP2, are reported to regulate both acute and chronic NOD2 signalling, how RIP2 levels are modulated is unclear. Here we show that ZNRF4 induces K48-linked ubiquitination of RIP2 and promotes RIP2 degradation. A fraction of RIP2 localizes to the endoplasmic reticulum (ER), where it interacts with ZNRF4 under either 55 unstimulated and muramyl dipeptide-stimulated conditions. Znrf4 knockdown monocytes have sustained nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and Znrf4 knockdown mice have reduced NOD2-induced tolerance and more effective control of Listeria monocytogenes infection. Our results thus demonstrate E3-ubiquitin ligase ZNRF4-mediated RIP2 degradation as a negative regulatory mechanism of NOD2-induced NF-κB, cytokine and anti-bacterial responses in vitro and in vivo, and identify a ZNRF4-RIP2 axis of fine-tuning NOD2 signalling to promote protective host immunity.
Collapse
Affiliation(s)
- Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Wan Shoo Cheong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Aylwin Ng
- Gastrointestinal Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Bae-Hoon Kim
- HHMI, Yale Systems Biology Institute, Departments of Microbial Pathogenesis and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 065207, USA
| | - Niyas Kudukkil Pulloor
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Matija Hedl
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Avinash R. Shenoy
- HHMI, Yale Systems Biology Institute, Departments of Microbial Pathogenesis and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 065207, USA
- Medical Research Council Centre for Molecular Bacteriology & Infection, Armstrong Rd, Imperial College, London SW7 2AZ, UK
| | | | - Najib Bin Abdul Malik
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Michelle Hong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, Basel 4031, Switzerland
| | - Keh-Chuang Chin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, Singapore 117593, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Koichi S. Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Centre, College Station, Texas 77843-1114, USA
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Clara Abraham
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John D. MacMicking
- HHMI, Yale Systems Biology Institute, Departments of Microbial Pathogenesis and Immunobiology, Yale University School of Medicine, New Haven, Connecticut 065207, USA
| | - Ramnik J. Xavier
- Gastrointestinal Unit, Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Bindu Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
21
|
Weinberg F, Reischmann N, Fauth L, Taromi S, Mastroianni J, Köhler M, Halbach S, Becker AC, Deng N, Schmitz T, Uhl FM, Herbener N, Riedel B, Beier F, Swarbrick A, Lassmann S, Dengjel J, Zeiser R, Brummer T. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior. EBioMedicine 2017; 20:79-97. [PMID: 28499923 PMCID: PMC5478185 DOI: 10.1016/j.ebiom.2017.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022] Open
Abstract
Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany
| | - Nadine Reischmann
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Lisa Fauth
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Sanaz Taromi
- Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Justin Mastroianni
- Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Andrea C Becker
- Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany
| | - Niantao Deng
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany
| | - Franziska Maria Uhl
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Nicola Herbener
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Bianca Riedel
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Fabian Beier
- Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia
| | - Silke Lassmann
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Institute for Surgical Pathology, Medical Center and Faculty of Medicine, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Dengjel
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany; Department of Dermatology, University Medical Center - ALU, Freiburg, Germany; Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Robert Zeiser
- BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; Department of Hematology and Oncology, University Medical Center, ALU, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany; Faculty of Biology, ALU, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, BIOSS, ALU, Germany; German Cancer Consortium (DKTK, Freiburg) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
22
|
Da Costa LS, Arnoult D. Organelle Separation and Cell Signaling. Methods Mol Biol 2017; 1557:111-115. [PMID: 28078587 DOI: 10.1007/978-1-4939-6780-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Recent findings indicate that some signaling hubs coalesce at the surfaces of organelles through the accumulation of ubiquitylated components required for the signal transduction. For instance, ubiquitylated components of the NF-κB pathway accumulated at the endoplasmic reticulum while ubiquitylated components of the IRF3 pathway are found at the Golgi apparatus. Here we describe simple methods to observe and assess these ubiquitylated components by immunoblotting using differential centrifugation and in vitro assays.
Collapse
Affiliation(s)
- Leandro Silva Da Costa
- INSERM, UMR_S 1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
- Université Paris-Saclay, Paris-Saclay, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, 14 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France.
- Université Paris-Saclay, Paris-Saclay, France.
| |
Collapse
|
23
|
Yang YK, Yang C, Chan W, Wang Z, Deibel KE, Pomerantz JL. Molecular Determinants of Scaffold-induced Linear Ubiquitinylation of B Cell Lymphoma/Leukemia 10 (Bcl10) during T Cell Receptor and Oncogenic Caspase Recruitment Domain-containing Protein 11 (CARD11) Signaling. J Biol Chem 2016; 291:25921-25936. [PMID: 27777308 DOI: 10.1074/jbc.m116.754028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Indexed: 11/06/2022] Open
Abstract
The activation of NF-κB downstream of T cell receptor (TCR) engagement is a key signaling step required for normal lymphocyte function during the adaptive immune response. During TCR signaling, the adaptor protein Bcl10 is inducibly recruited to the CARD11 scaffold protein as part of a multicomponent complex that induces IκB kinase (IKK) activity and NF-κB activation. Here, we show that a consequence of this recruitment is the TCR-induced conjugation of Bcl10 with linear-linked polyubiquitin chains to generate the signaling intermediate Lin(Ub)n-Bcl10, which is required for the association of Bcl10 with the NEMO subunit of the IKK complex. The TCR-induced generation of Lin(Ub)n-Bcl10 requires Bcl10 lysines 17, 31, and 63, CARD11, MALT1, and the HOIP subunit of the linear ubiquitin chain assembly complex (LUBAC) but not the HOIP accessory protein SHARPIN. CARD11 promotes signal-induced Lin(Ub)n-Bcl10 generation by co-recruiting Bcl10 with HOIP, thereby bringing substrate to enzyme. The CARD11-HOIP interaction is rendered TCR-inducible by the four autoinhibitory repressive elements in the CARD11 inhibitory domain and involves the CARD11 coiled-coil domain and two independent regions of HOIP. Interestingly, oncogenic CARD11 variants associated with diffuse large B cell lymphoma spontaneously induce Lin(Ub)n-Bcl10 production to extents that correlate with their abilities to activate NF-κB and with their enhanced abilities to bind HOIP and Bcl10. Our results define molecular determinants that control the production of Lin(Ub)n-Bcl10, an important signaling intermediate in TCR and oncogenic CARD11 signaling.
Collapse
Affiliation(s)
- Yong-Kang Yang
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Waipan Chan
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhaoquan Wang
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Katelynn E Deibel
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- From the Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
24
|
Pourcelot M, Zemirli N, Silva Da Costa L, Loyant R, Garcin D, Vitour D, Munitic I, Vazquez A, Arnoult D. The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing. BMC Biol 2016; 14:69. [PMID: 27538435 PMCID: PMC4991008 DOI: 10.1186/s12915-016-0292-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/05/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.
Collapse
Affiliation(s)
- Marie Pourcelot
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Naima Zemirli
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Leandro Silva Da Costa
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Roxane Loyant
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damien Vitour
- ANSES, INRA, ENVA, UPEC, UMR_1161 Virology, LabEx IBEID, Maisons-Alfort, France
| | - Ivana Munitic
- Laboratory of Molecular Immunology, Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Aimé Vazquez
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France
- Université Paris-Saclay, Paris, France
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France.
- Université Paris-Saclay, Paris, France.
- Equipe Labellisée Ligue contre le Cancer, Villejuif, France.
| |
Collapse
|
25
|
Lou Z, Casali P, Xu Z. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response. Front Immunol 2015; 6:537. [PMID: 26579118 PMCID: PMC4620719 DOI: 10.3389/fimmu.2015.00537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes, and autophagosomes) and protein factors specifically associated with these membranes, including Rab7, Atg5, and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, class switch DNA recombination (CSR)/somatic hypermutation (SHM), and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation, and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulating AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.
Collapse
Affiliation(s)
- Zheng Lou
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| | - Zhenming Xu
- Department of Microbiology and Immunology, School of Medicine, The University of Texas Health Science Center , San Antonio, TX , USA
| |
Collapse
|
26
|
Robertson CL, Srivastava J, Rajasekaran D, Gredler R, Akiel MA, Jariwala N, Siddiq A, Emdad L, Fisher PB, Sarkar D. The role of AEG-1 in the development of liver cancer. Hepat Oncol 2015; 2:303-312. [PMID: 26798451 DOI: 10.2217/hep.15.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AEG-1 is an oncogene that is overexpressed in all cancers, including hepatocellular carcinoma. AEG-1 plays a seminal role in promoting cancer development and progression by augmenting proliferation, invasion, metastasis, angiogenesis and chemoresistance, all hallmarks of aggressive cancer. AEG-1 mediates its oncogenic function predominantly by interacting with various protein complexes. AEG-1 acts as a scaffold protein, activating multiple protumorigenic signal transduction pathways, such as MEK/ERK, PI3K/Akt, NF-κB and Wnt/β-catenin while regulating gene expression at transcriptional, post-transcriptional and translational levels. Our recent studies document that AEG-1 is fundamentally required for activation of inflammation. A comprehensive and convincing body of data currently points to AEG-1 as an essential component critical to the onset and progression of cancer. The present review describes the current knowledge gleaned from patient and experimental studies as well as transgenic and knockout mouse models, on the impact of AEG-1 on hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Jyoti Srivastava
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Devaraja Rajasekaran
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Rachel Gredler
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Maaged A Akiel
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Nidhi Jariwala
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Ayesha Siddiq
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA
| | - Luni Emdad
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Paul B Fisher
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Molecular Medicine Research Building 1220 East Broad Street, 7th Floor PO Box 980033, Richmond, VA 23298-0033, USA
| | - Devanand Sarkar
- Department of Human & Molecular Genetics, Virginia Commonwealth University, Sanger Hall, Room 11-0051101 East Marshall Street, PO Box 980033, Richmond, VA 23298-0033, USA; VCU Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Molecular Medicine Research Building 1220 East Broad Street, 7th Floor PO Box 980033, Richmond, VA 23298-0033, USA
| |
Collapse
|
27
|
Srivastava J, Robertson CL, Gredler R, Siddiq A, Rajasekaran D, Akiel MA, Emdad L, Mas V, Mukhopadhyay ND, Fisher PB, Sarkar D. Astrocyte Elevated Gene-1 (AEG-1) Contributes to Non-thyroidal Illness Syndrome (NTIS) Associated with Hepatocellular Carcinoma (HCC). J Biol Chem 2015; 290:15549-15558. [PMID: 25944909 DOI: 10.1074/jbc.m115.649707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/11/2022] Open
Abstract
Non-thyroidal illness syndrome (NTIS), characterized by low serum 3,5,3'-triiodothyronine (T3) with normal l-thyroxine (T4) levels, is associated with malignancy. Decreased activity of type I 5'-deiodinase (DIO1), which converts T4 to T3, contributes to NTIS. T3 binds to thyroid hormone receptor, which heterodimerizes with retinoid X receptor (RXR) and regulates transcription of target genes, such as DIO1. NF-κB activation by inflammatory cytokines inhibits DIO1 expression. The oncogene astrocyte elevated gene-1 (AEG-1) inhibits RXR-dependent transcription and activates NF-κB. Here, we interrogated the role of AEG-1 in NTIS in the context of hepatocellular carcinoma (HCC). T3-mediated gene regulation was analyzed in human HCC cells, with overexpression or knockdown of AEG-1, and primary hepatocytes from AEG-1 transgenic (Alb/AEG-1) and AEG-1 knock-out (AEG-1KO) mice. Serum T3 and T4 levels were checked in Alb/AEG-1 mice and human HCC patients. AEG-1 and DIO1 levels in human HCC samples were analyzed by immunohistochemistry. AEG-1 inhibited T3-mediated gene regulation in human HCC cells and mouse hepatocytes. AEG-1 overexpression repressed and AEG-1 knockdown induced DIO1 expression. An inverse correlation was observed between AEG-1 and DIO1 levels in human HCC patients. Low T3 with normal T4 was observed in the sera of HCC patients and Alb/AEG-1 mice. Inhibition of co-activator recruitment to RXR and activation of NF-κB were identified to play a role in AEG-1-mediated down-regulation of DIO1. AEG-1 thus might play a role in NTIS associated with HCC and other cancers.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Chadia L Robertson
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Rachel Gredler
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ayesha Siddiq
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Devaraja Rajasekaran
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Maaged A Akiel
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Luni Emdad
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Valeria Mas
- Department of Surgery, University of Virginia, Charlottesville, Virginia 22908-0625
| | | | - Paul B Fisher
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Devanand Sarkar
- Departments of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 23298; Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
28
|
Quantitative analysis of the TNF-α-induced phosphoproteome reveals AEG-1/MTDH/LYRIC as an IKKβ substrate. Nat Commun 2015; 6:6658. [PMID: 25849741 PMCID: PMC4396366 DOI: 10.1038/ncomms7658] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/17/2015] [Indexed: 02/07/2023] Open
Abstract
The inhibitor of the nuclear factor-κB (IκB) kinase (IKK) complex is a key regulator of the canonical NF-κB signalling cascade and is crucial for fundamental cellular functions, including stress and immune responses. The majority of IKK complex functions are attributed to NF-κB activation; however, there is increasing evidence for NF-κB pathway-independent signalling. Here we combine quantitative mass spectrometry with random forest bioinformatics to dissect the TNF-α-IKKβ-induced phosphoproteome in MCF-7 breast cancer cells. In total, we identify over 20,000 phosphorylation sites, of which ∼1% are regulated up on TNF-α stimulation. We identify various potential novel IKKβ substrates including kinases and regulators of cellular trafficking. Moreover, we show that one of the candidates, AEG-1/MTDH/LYRIC, is directly phosphorylated by IKKβ on serine 298. We provide evidence that IKKβ-mediated AEG-1 phosphorylation is essential for IκBα degradation as well as NF-κB-dependent gene expression and cell proliferation, which correlate with cancer patient survival in vivo. Inflammatory cytokines such as TNF-α influence inflammation, apoptosis and tumour development through regulation of the kinase IKKβ. Krishnan and Nolte et al. apply quantitative proteomics to identify potential IKKβ targets, and reveal phosphorylation of AEG-1 by IKKβ as a mechanism controlling NF-κB signalling.
Collapse
|
29
|
Pone EJ, Lam T, Lou Z, Wang R, Chen Y, Liu D, Edinger AL, Xu Z, Casali P. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses. THE JOURNAL OF IMMUNOLOGY 2015; 194:3065-78. [PMID: 25740947 DOI: 10.4049/jimmunol.1401896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.
Collapse
Affiliation(s)
- Egest J Pone
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Tonika Lam
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Zheng Lou
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229
| | - Rui Wang
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229; Xiangya Medical School, Central South University of China, 410000 Changsha, Hunan Province, China
| | - Yuhui Chen
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030; and
| | - Dongfang Liu
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030; and
| | - Aimee L Edinger
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Zhenming Xu
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229;
| | - Paolo Casali
- Department of Microbiology and Immunology, School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229;
| |
Collapse
|
30
|
Zemirli N, Pourcelot M, Dogan N, Vazquez A, Arnoult D. The E3 ubiquitin ligase RNF121 is a positive regulator of NF-κB activation. Cell Commun Signal 2014; 12:72. [PMID: 25388546 PMCID: PMC4232610 DOI: 10.1186/s12964-014-0072-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022] Open
Abstract
Background The nuclear factor κB (NF-κB) family members regulate several biological processes as cell proliferation and differentiation, inflammation, immunity and tumor progression. Ubiquitination plays a key role in NF-κB activation and the ubiquitylated transmitters of the NF-κB signaling cascade accumulate in close proximity to endomembranes. Findings We performed an unbiased siRNA library screen targeting the 46 E3 ubiquitin ligases bearing transmembrane domains to uncover new modulators of NF-κB activation, using tumor necrosis factor–α (TNF-α) receptor (TNFR) stimulation as a model. We report here the identification of a new Golgi Apparatus-resident protein, RNF121, as an enhancer of NF-κB promoter activity through the catalytic function of its RING domain. From a molecular standpoint, while knocking down RNF121 did not alter RIP1 ubiquitination and IKK activation, the proteasomal degradation of IκBα was impaired suggesting that this E3 ubiquitin ligase regulates this process. However, RNF121 did not directly ubiquitinate IκBα While they were found in the same complex. Finally, we discovered that RNF121 acts as a broad regulator of NF-κB signaling since its silencing also dampens NF-κB activation following stimulation of Toll-Like Receptors (TLRs), Nod-Like Receptors (NLRs), RIG-I-Like Receptors (RLRs) or after DNA damages. Conclusions These results unveil an unexpected role of Golgi Apparatus and reveal RNF121 as a new player involved in the signaling leading to NF-κB activation. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0072-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naima Zemirli
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Marie Pourcelot
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Neslihan Dogan
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Aimé Vazquez
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| | - Damien Arnoult
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, 94800, France. .,Université Paris-Sud P11, Orsay, 91400, France. .,Equipe Labellisée Ligue contre le Cancer, Villejuif, 94800, France.
| |
Collapse
|
31
|
Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells 2014; 3:1027-88. [PMID: 25396681 PMCID: PMC4276913 DOI: 10.3390/cells3041027] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Modification by Lys63-linked ubiquitin (UbK63) chains is the second most abundant form of ubiquitylation. In addition to their role in DNA repair or kinase activation, UbK63 chains interfere with multiple steps of intracellular trafficking. UbK63 chains decorate many plasma membrane proteins, providing a signal that is often, but not always, required for their internalization. In yeast, plants, worms and mammals, this same modification appears to be critical for efficient sorting to multivesicular bodies and subsequent lysosomal degradation. UbK63 chains are also one of the modifications involved in various forms of autophagy (mitophagy, xenophagy, or aggrephagy). Here, in the context of trafficking, we report recent structural studies investigating UbK63 chains assembly by various E2/E3 pairs, disassembly by deubiquitylases, and specifically recognition as sorting signals by receptors carrying Ub-binding domains, often acting in tandem. In addition, we address emerging and unanticipated roles of UbK63 chains in various recycling pathways that function by activating nucleators required for actin polymerization, as well as in the transient recruitment of signaling molecules at the plasma or ER membrane. In this review, we describe recent advances that converge to elucidate the mechanisms underlying the wealth of trafficking functions of UbK63 chains.
Collapse
Affiliation(s)
- Zoi Erpapazoglou
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Olivier Walker
- Institut des Sciences Analytiques, UMR5280, Université de Lyon/Université Lyon 1, 69100 Villeurbanne, France.
| | - Rosine Haguenauer-Tsapis
- Institut Jacques Monod-CNRS, UMR 7592, Université-Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
32
|
Robertson CL, Srivastava J, Siddiq A, Gredler R, Emdad L, Rajasekaran D, Akiel M, Shen XN, Guo C, Giashuddin S, Wang XY, Ghosh S, Subler MA, Windle JJ, Fisher PB, Sarkar D. Genetic deletion of AEG-1 prevents hepatocarcinogenesis. Cancer Res 2014; 74:6184-93. [PMID: 25193383 DOI: 10.1158/0008-5472.can-14-1357] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of the oncogene AEG-1 (MTDH, LYRIC) has been implicated recently in the development of hepatocellular carcinoma (HCC). In mice, HCC can be initiated by exposure to the carcinogen DEN, which has been shown to rely upon activation of NF-κB in liver macrophages. Because AEG-1 is an essential component of NF-κB activation, we interrogated the susceptibility of mice lacking the AEG-1 gene to DEN-induced hepatocarcinogenesis. AEG-1-deficient mice displayed resistance to DEN-induced HCC and lung metastasis. No difference was observed in the response to growth factor signaling or activation of AKT, ERK, and β-catenin, compared with wild-type control animals. However, AEG-1-deficient hepatocytes and macrophages exhibited a relative defect in NF-κB activation. Mechanistic investigations showed that IL6 production and STAT3 activation, two key mediators of HCC development, were also deficient along with other biologic and epigenetics findings in the tumor microenvironment, confirming that AEG-1 supports an NF-κB-mediated inflammatory state that drives HCC development. Overall, our findings offer in vivo proofs that AEG-1 is essential for NF-κB activation and hepatocarcinogenesis, and they reveal new roles for AEG-1 in shaping the tumor microenvironment for HCC development.
Collapse
Affiliation(s)
- Chadia L Robertson
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia. Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia
| | - Jyoti Srivastava
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Ayesha Siddiq
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel Gredler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Devaraja Rajasekaran
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Maaged Akiel
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shah Giashuddin
- Department of Pathology, New York Hospital Medical Center, Flushing, New York, New York
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia. Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia. Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia. Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
33
|
Participation of the E3-ligase TRIM13 in NF-κB p65 activation and NFAT-dependent activation of c-Rel upon T-cell receptor engagement. Int J Biochem Cell Biol 2014; 54:217-22. [PMID: 25088585 DOI: 10.1016/j.biocel.2014.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/16/2014] [Indexed: 01/24/2023]
Abstract
The nuclear factor κB (NF-κB) family members p65 and c-Rel chiefly orchestrate lymphocytes activation following T-cell receptor (TCR) engagement. In contrast to p65, which is rapidly mobilized, c-Rel activation occurs subsequently as it involves a nuclear factor of activated T-cells (NFAT)-dependent upregulation step. However, how TCR ligation drives p65 and c-Rel activation is not fully understood. Because several ubiquitylated components of NF-κB signaling cascade accumulate in close proximity to membranes, we screened a siRNA library against E3-ligases that contain transmembrane domains on TCR-mediated NF-κB activation. Here, we report the identification of the endoplasmic reticulum resident TRIM13 protein as an enhancer of NF-κB promoter activity. We found that knocking down TRIM13 by RNA interference reduced the activation of p65, while the translocation of c-Rel into the nucleus was blunted. We further observed that c-Rel induction was diminished without TRIM13, as NFAT activation was compromised. These results unveil that TRIM13 is a selective regulator of p65 and of c-Rel activation.
Collapse
|
34
|
Zemirli N, Pourcelot M, Ambroise G, Hatchi E, Vazquez A, Arnoult D. Mitochondrial hyperfusion promotes NF-κB activation via the mitochondrial E3 ligase MULAN. FEBS J 2014; 281:3095-112. [PMID: 24841215 DOI: 10.1111/febs.12846] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 11/27/2022]
Abstract
Mitochondria are dynamic organelles with a morphology resulting from the balance between two opposing processes: fusion and fission. Little is known about the function of mitochondrial fusion, beside its role in the maintenance of mitochondrial DNA. We report here that enforced mitochondrial hyperfusion, due to the expression of a dominant-negative mutant of Drp1 or of MARCH5, promotes NF-κB activation in a TAK1- and IKK-dependent manner, through the mitochondrial E3 ubiquitin ligase MULAN. The capability of MULAN to activate NF-κB depends on its RING domain and on the E3 ubiquitin ligase TRAF2. Under physiological conditions, stress-induced mitochondrial hyperfusion (SIMH) is also accompanied by NF-κB activation, and the prevention of SIMH or the knockdown of MULAN impairs NF-κB activation. During SIMH, MULAN forms a complex with TRAF2 and modulates its ubiquitylation, signifying that TRAF2 may serve as an ubiquitylated transmitter of NF-κB signaling in this pathway. Our results suggest that mitochondria, through their dynamics, convert stress signals into a cell response leading to NF-κB activation.
Collapse
Affiliation(s)
- Naima Zemirli
- INSERM, UMR_S 1014, Hôpital Paul Brousse, Villejuif, France; Université Paris-Sud P11, Orsay, France; Equipe Labellisée Ligue contre le Cancer, Villejuif, France
| | | | | | | | | | | |
Collapse
|
35
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
36
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
37
|
Jacobs JL, Zhu J, Sarkar SN, Coyne CB. Regulation of mitochondrial antiviral signaling (MAVS) expression and signaling by the mitochondria-associated endoplasmic reticulum membrane (MAM) protein Gp78. J Biol Chem 2013; 289:1604-16. [PMID: 24285545 DOI: 10.1074/jbc.m113.520254] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we identified the E3 ubiquitin ligase Gp78 by RNAi high-throughput screening as a gene whose depletion restricted enterovirus infection. In the current study, we show that Gp78, which localizes to the ER-mitochondria interface, is a regulator of RIG-I-like receptor (RLR) antiviral signaling. We show that depletion of Gp78 results in a robust decrease of vesicular stomatitis virus (VSV) infection and a corresponding enhancement of type I interferon (IFN) signaling. Mechanistically, we show that Gp78 modulates type I IFN induction by altering both the expression and signaling of the mitochondria-localized RLR adaptor mitochondrial antiviral signaling (MAVS). Expression of mutants of Gp78 that abolish its E3 ubiquitin ligase and its participation in ER-associated degradation (ERAD) lost their ability to degrade MAVS, but surprisingly maintained their ability to repress RLR signaling. In contrast, Gp78 lacking its entire C terminus lost both its ability to degrade MAVS and repress RLR signaling. We show that Gp78 interacts with both the N- and C-terminal domains of MAVS via its C-terminal RING domain, and that this interaction is required to abrogate Gp78-mediated attenuation of MAVS signaling. Our data thus implicate two parallel pathways by which Gp78 regulates MAVS signaling; one pathway requires its E3 ubiquitin ligase and ERAD activity to directly degrade MAVS, whereas the other pathway occurs independently of these activities, but requires the Gp78 RING domain and occurs via a direct association between this region and MAVS.
Collapse
Affiliation(s)
- Jana L Jacobs
- From the Department of Infectious Diseases and Microbiology, Graduate School of Public Health
| | | | | | | |
Collapse
|