1
|
Catalano T, Selvaggi F, Cotellese R, Aceto GM. The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches. Cancers (Basel) 2025; 17:752. [PMID: 40075600 PMCID: PMC11899472 DOI: 10.3390/cancers17050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Altered levels of reactive oxygen species (ROS) are recognized as one of the key factors in mediating tumor cell survival in the tissue microenvironment, where they play a role in the initiation, progression and recurrence/relapse of colorectal cancer (CRC). Tumor cells can adapt to oxidative stress (OS) using genetic or metabolic reprogramming in the long or short term. In addition, tumor cells defend themselves through positive regulation of antioxidant molecules, enhancing ROS-driven proliferation. Balanced oxidative eustress levels can influence chemotherapy resistance, allowing tumor cells to survive treatment. Secondary effects of chemotherapy include increased ROS production and redox stress, which can kill cancer cells and eliminate drug resistance. Anticancer treatments based on manipulating ROS levels could represent the gold standard in CRC therapy. Therefore, exploring the modulation of the response to OS in deregulated signaling pathways may lead to the development of new personalized CRC treatments to overcome therapy resistance. In this review, we explore the role of ROS in the initiation and progression of CRC and their diagnostic implications as biomarkers of disease. Furthermore, we focused on the involvement of ROS in different CRC therapeutic options, such as surgery, radiotherapy, theranostic imaging, chemotherapy and immunotherapy and other precision medicine approaches.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
- Department of Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Kim N, Lee J, Kim J, Kim Y, Cho KH. Canalizing kernel for cell fate determination. Brief Bioinform 2024; 25:bbae406. [PMID: 39171985 PMCID: PMC11339868 DOI: 10.1093/bib/bbae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
The tendency for cell fate to be robust to most perturbations, yet sensitive to certain perturbations raises intriguing questions about the existence of a key path within the underlying molecular network that critically determines distinct cell fates. Reprogramming and trans-differentiation clearly show examples of cell fate change by regulating only a few or even a single molecular switch. However, it is still unknown how to identify such a switch, called a master regulator, and how cell fate is determined by its regulation. Here, we present CAESAR, a computational framework that can systematically identify master regulators and unravel the resulting canalizing kernel, a key substructure of interconnected feedbacks that is critical for cell fate determination. We demonstrate that CAESAR can successfully predict reprogramming factors for de-differentiation into mouse embryonic stem cells and trans-differentiation of hematopoietic stem cells, while unveiling the underlying essential mechanism through the canalizing kernel. CAESAR provides a system-level understanding of how complex molecular networks determine cell fates.
Collapse
Affiliation(s)
- Namhee Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jonghoon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jongwan Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yunseong Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Zeng H, Li S, Chang H, Zhai Y, Wang H, Weng H, Han Z. Circ_002033 Regulates Proliferation, Apoptosis, and Oxidative Damage of Bovine Mammary Epithelial Cells via the miR-199a-5p-MAP3K11 Axis in Heat Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14386-14401. [PMID: 38869955 DOI: 10.1021/acs.jafc.3c09835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat stress is becoming the major factor regarding dairy cow health and milk quality because of global warming. Circular RNAs (circRNAs) represent a special type of noncoding RNAs, which are related to regulating many biological processes. Nonetheless, little is known concerning their effects on heat-stressed bovine mammary epithelial cells (BMECs). Here, this study found a novel circRNA, circ_002033, using RNA sequencing (RNA-seq) and explored the role and underlying regulatory mechanism in proliferation, apoptosis, and oxidative damage in a heat-stressed bovine mammary epithelial cell line (MAC-T). According to the previous RNA-seq analysis, the abundance of circ_002033 in mammary gland tissue of heat-stressed cows increased relative to nonheat-stressed counterparts. This study found that the knockdown of circ_002033 promoted proliferation and alleviated apoptosis and oxidative damage in heat-stressed MAC-T. Mechanistically, circ_002033 localizes to miR-199a-5p in the cytoplasm of MAC-T to regulate mitogen-activated protein kinase kinase 11 (MAP3K11) expression. Meanwhile, miR-199a-5p and MAP3K11 are also involved in regulating the proliferation and apoptosis of heat-stressed MAC-T. Importantly, circ_002033 knockdown promoted the expression of miR-199a-5p while decreasing that of MAP3K11, thereby enhancing proliferation while alleviating apoptosis and oxidative damage in heat-stressed MAC-T. In summary, we found that circ_002033 regulates the proliferation, apoptosis, and oxidative damage of heat-stressed BMECs through the miR-199a-5p/MAP3K11 axis, providing the theoretical molecular foundation for mitigating heat stress of dairy cows.
Collapse
Affiliation(s)
- Hanfang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shujie Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haomiao Chang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunfei Zhai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haihui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hantong Weng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Kim Y, Han Y, Hopper C, Lee J, Joo JI, Gong JR, Lee CK, Jang SH, Kang J, Kim T, Cho KH. A gray box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations. CELL REPORTS METHODS 2024; 4:100773. [PMID: 38744288 PMCID: PMC11133856 DOI: 10.1016/j.crmeth.2024.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Yunseong Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Younghyun Han
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Corbin Hopper
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jonghoon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jae Il Joo
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong-Ryeol Gong
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chun-Kyung Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seong-Hoon Jang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Junsoo Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Taeyoung Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
6
|
Lee J, Kim N, Cho KH. Decoding the principle of cell-fate determination for its reverse control. NPJ Syst Biol Appl 2024; 10:47. [PMID: 38710700 PMCID: PMC11074314 DOI: 10.1038/s41540-024-00372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Understanding and manipulating cell fate determination is pivotal in biology. Cell fate is determined by intricate and nonlinear interactions among molecules, making mathematical model-based quantitative analysis indispensable for its elucidation. Nevertheless, obtaining the essential dynamic experimental data for model development has been a significant obstacle. However, recent advancements in large-scale omics data technology are providing the necessary foundation for developing such models. Based on accumulated experimental evidence, we can postulate that cell fate is governed by a limited number of core regulatory circuits. Following this concept, we present a conceptual control framework that leverages single-cell RNA-seq data for dynamic molecular regulatory network modeling, aiming to identify and manipulate core regulatory circuits and their master regulators to drive desired cellular state transitions. We illustrate the proposed framework by applying it to the reversion of lung cancer cell states, although it is more broadly applicable to understanding and controlling a wide range of cell-fate determination processes.
Collapse
Affiliation(s)
- Jonghoon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Namhee Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- biorevert, Inc., Daejeon, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Kim Y, Choi SR, Cho KH. Reducing State Conflicts between Network Motifs Synergistically Enhances Cancer Drug Effects and Overcomes Adaptive Resistance. Cancers (Basel) 2024; 16:1337. [PMID: 38611015 PMCID: PMC11010870 DOI: 10.3390/cancers16071337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Inducing apoptosis in cancer cells is a primary goal in anti-cancer therapy, but curing cancer with a single drug is unattainable due to drug resistance. The complex molecular network in cancer cells causes heterogeneous responses to single-target drugs, thereby inducing an adaptive drug response. Here, we showed that targeted drug perturbations can trigger state conflicts between multi-stable motifs within a molecular regulatory network, resulting in heterogeneous drug responses. However, we revealed that properly regulating an interconnecting molecule between these motifs can synergistically minimize the heterogeneous responses and overcome drug resistance. We extracted the essential cellular response dynamics of the Boolean network driven by the target node perturbation and developed an algorithm to identify a synergistic combinatorial target that can reduce heterogeneous drug responses. We validated the proposed approach using exemplary network models and a gastric cancer model from a previous study by showing that the targets identified with our algorithm can better drive the networks to desired states than those with other control theories. Of note, our approach suggests a new synergistic pair of control targets that can increase cancer drug efficacy to overcome adaptive drug resistance.
Collapse
Affiliation(s)
| | | | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; (Y.K.); (S.R.C.)
| |
Collapse
|
8
|
Kim D, Hwang CY, Cho KH. The fitness trade-off between growth and stress resistance determines the phenotypic landscape. BMC Biol 2024; 22:62. [PMID: 38475791 PMCID: PMC10935846 DOI: 10.1186/s12915-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND A central challenge in biology is to discover a principle that determines individual phenotypic differences within a species. The growth rate is particularly important for a unicellular organism, and the growth rate under a certain condition is negatively associated with that of another condition, termed fitness trade-off. Therefore, there should exist a common molecular mechanism that regulates multiple growth rates under various conditions, but most studies so far have focused on discovering those genes associated with growth rates under a specific condition. RESULTS In this study, we found that there exists a recurrent gene expression signature whose expression levels are related to the fitness trade-off between growth preference and stress resistance across various yeast strains and multiple conditions. We further found that the genomic variation of stress-response, ribosomal, and cell cycle regulators are potential causal genes that determine the sensitivity between growth and survival. Intriguingly, we further observed that the same principle holds for human cells using anticancer drug sensitivities across multiple cancer cell lines. CONCLUSIONS Together, we suggest that the fitness trade-off is an evolutionary trait that determines individual growth phenotype within a species. By using this trait, we can possibly overcome anticancer drug resistance in cancer cells.
Collapse
Affiliation(s)
- Dongsan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chae Young Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Mordente K, Ryder L, Bekker-Jensen S. Mechanisms underlying sensing of cellular stress signals by mammalian MAP3 kinases. Mol Cell 2024; 84:142-155. [PMID: 38118452 DOI: 10.1016/j.molcel.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.
Collapse
Affiliation(s)
- Kelly Mordente
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Lee SM, Han Y, Cho KH. Deep learning untangles the resistance mechanism of p53 reactivator in lung cancer cells. iScience 2023; 26:108377. [PMID: 38034356 PMCID: PMC10682260 DOI: 10.1016/j.isci.2023.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address this, we developed a deep learning model called AnoDAN (anomalous gene detection using generative adversarial networks and graph neural networks for overcoming drug resistance) that unravels the hidden resistance mechanisms and identifies a combinatorial target to overcome the resistance. Our findings reveal that the TGF-β signaling pathway, alongside the p53 signaling pathway, mediates the resistance, with THBS1 serving as a core regulatory target in both pathways. Experimental validation in lung cancer cells confirms the effects of THBS1 on responsiveness to a p53 reactivator. We further discovered the positive feedback loop between THBS1 and the TGF-β pathway as the main source of resistance. This study enhances our understanding of p53 regulation and offers insights into overcoming drug resistance.
Collapse
Affiliation(s)
- Soo Min Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Younghyun Han
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Jiang Y, Wang BX, Xie Y, Meng L, Li M, Du CP. MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop. Cell Biochem Biophys 2023; 81:469-479. [PMID: 37550525 DOI: 10.1007/s12013-023-01159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.
Collapse
Affiliation(s)
- Yu Jiang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bai-Xue Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yi Xie
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Meng Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Cai-Ping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
12
|
Joo JI, Park H, Cho K. Normalizing Input-Output Relationships of Cancer Networks for Reversion Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207322. [PMID: 37269056 PMCID: PMC10460890 DOI: 10.1002/advs.202207322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Indexed: 06/04/2023]
Abstract
Accumulated genetic alterations in cancer cells distort cellular stimulus-response (or input-output) relationships, resulting in uncontrolled proliferation. However, the complex molecular interaction network within a cell implicates a possibility of restoring such distorted input-output relationships by rewiring the signal flow through controlling hidden molecular switches. Here, a system framework of analyzing cellular input-output relationships in consideration of various genetic alterations and identifying possible molecular switches that can normalize the distorted relationships based on Boolean network modeling and dynamics analysis is presented. Such reversion is demonstrated by the analysis of a number of cancer molecular networks together with a focused case study on bladder cancer with in vitro experiments and patient survival data analysis. The origin of reversibility from an evolutionary point of view based on the redundancy and robustness intrinsically embedded in complex molecular regulatory networks is further discussed.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
biorevert IncDaejeon34051Republic of Korea
| | - Hwa‐Jeong Park
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Present address:
Promega Corporationan affiliate of PromegaSouth Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
13
|
Xu W, Yu Y, Li K, Shen L, Liu X, Chen Y, Feng J, Wang W, Zhao W, Shao J, Ma B, Wu J, Ge S, Liu H, Li J. Surface-Confined Piezocatalysis Inspired by ROS Generation of Mitochondria Respiratory Chain for Ultrasound-Driven Noninvasive Elimination of Implant Infection. ACS NANO 2023; 17:9415-9428. [PMID: 37134103 DOI: 10.1021/acsnano.3c01480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Implant-associated infections (IAI) are great challenges to medical healthcare and human wellness, yet current clinical treatments are limited to the use of antibiotics and physical removal of infected tissue or the implant. Inspired by the protein/membrane complex structure and its generation of reactive oxygen species in the mitochondria respiration process of immune cells during bacteria invasion, we herein propose a metal/piezoelectric nanostructure embedded on the polymer implant surface to achieve efficient piezocatalysis for combating IAI. The piezoelectricity-enabled local electron discharge and the induced oxidative stress generated at the implant-bacteria interface can efficiently inhibit the activity of the attachedStaphylococcus aureusby cell membrane disruption and sugar energy exhaustion, possess high biocompatibility, and eliminate the subcutaneous infection by simply applying the ultrasound stimulation. For further demonstration, the treatment of root canal reinfection with simplified procedures has been achieved by using piezoelectric gutta-percha implanted in ex vivo human teeth. This surface-confined piezocatalysis antibacterial strategy, which takes advantage of the limited infection interspace, easiness of polymer processing, and noninvasiveness of sonodynamic therapy, has potential applications in IAI treatment.
Collapse
Affiliation(s)
- Wenxiu Xu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yang Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Kai Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Lanbo Shen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaoyi Liu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yi Chen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Junkun Feng
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Wenjun Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jinlong Shao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Baojin Ma
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Junling Wu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
14
|
Li M, Guo M, Xu Y, Wu L, Chen M, Dong Y, Zheng L, Chen D, Qiao Y, Ke Z, Shi X. Murine cytomegalovirus employs the mixed lineage kinases family to regulate the spiral ganglion neuron cell death and hearing loss. Neurosci Lett 2023; 793:136990. [PMID: 36455693 DOI: 10.1016/j.neulet.2022.136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Cytomegalovirus (CMV)-induced sensorineural hearing loss (SNHL) is a worldwide epidemic. Recent studies have shown that the degree of spiral ganglion neuron (SGN) loss is correlated with hearing loss after CMV infection. We aimed to better understand the pathological mechanisms of CMV-related SGN death and to search for intervention measures. We found that both apoptosis and pyroptosis are involved in CMV-induced SGN death, which may be caused by the simultaneous activation of the p53/JNK and NLRP3/caspase-1 signaling pathways, respectively. Moreover, considering that mixed lineage kinase family (MLK1/2/3) are host restriction factors against viral infection and upstream regulators of the p53/JNK and inflammatory (including NLRP3-caspase1) signaling pathways, we further demonstrated that the MLKs inhibitor URMC-099 exhibited a protective effect against CMV-induced SGN death and hearing loss. These results indicate that MLKs signaling may be a key regulator and promising novel target for preventing apoptosis and even pyroptosis during the CMV infection of SGN cells and for treating hearing loss.
Collapse
Affiliation(s)
- Menghua Li
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Minyan Guo
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yice Xu
- Department of Otolaryngology-Head and Neck Surgery, Xiaogan Hospital, Wuhan University of Science and Technology, Xiaogan 432000, China
| | - Liyuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | | | - Yanfen Dong
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China
| | - Liting Zheng
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China
| | - Daishi Chen
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuehua Qiao
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China.
| | - Zhaoyang Ke
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Xi Shi
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, China.
| |
Collapse
|
15
|
Inhibition of NADPH Oxidases Prevents the Development of Osteoarthritis. Antioxidants (Basel) 2022; 11:antiox11122346. [PMID: 36552552 PMCID: PMC9774355 DOI: 10.3390/antiox11122346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Increased oxidative stress in osteoarthritis (OA) cartilage mediates catabolic signal transduction leading to extracellular matrix degradation and chondrocyte apoptosis. This study aimed to explore the contribution of NADPH oxidase (NOX), a major source of cellular reactive oxygen species (ROS), to the catabolic process of chondrocytes and to OA. The inhibition of NOX isoforms with a pan-NOX inhibitor, APX-115, significantly decreased IL-1β-induced ROS production in primary chondrocytes and, most potently, suppressed the expression of oxidative stress marker genes and catabolic proteases compared with the inhibition of other ROS sources. Catabolic stimuli by IL-1β treatment and in post-traumatic OA conditions upregulated the expression of NOX2 and NOX4 in chondrocytes. In the post-traumatic OA model, the pharmacologic inhibition of NOX protected mice against OA by modulating the oxidative stress and the expression of MMP-13 and Adamts5 in chondrocytes. Mechanistically, NOX inhibition suppresses Rac1, p38, and JNK MAPK signaling consistently and restores oxidative phosphorylation in IL-1β-treated chondrocytes. In conclusion, NOX inhibition prevented the development of OA by attenuating the catabolic signaling and restoring the mitochondrial metabolism and can thus be a promising class of drug for OA.
Collapse
|
16
|
PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Nat Commun 2022; 13:2793. [PMID: 35589735 PMCID: PMC9120014 DOI: 10.1038/s41467-022-30484-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
Although stromal fibroblasts play a critical role in cancer progression, their identities remain unclear as they exhibit high heterogeneity and plasticity. Here, a master transcription factor (mTF) constructing core-regulatory circuitry, PRRX1, which determines the fibroblast lineage with a myofibroblastic phenotype, is identified for the fibroblast subgroup. PRRX1 orchestrates the functional drift of fibroblasts into myofibroblastic phenotype via TGF-β signaling by remodeling a super-enhancer landscape. Such reprogrammed fibroblasts have myofibroblastic functions resulting in markedly enhanced tumorigenicity and aggressiveness of cancer. PRRX1 expression in cancer-associated fibroblast (CAF) has an unfavorable prognosis in multiple cancer types. Fibroblast-specific PRRX1 depletion induces long-term and sustained complete remission of chemotherapy-resistant cancer in genetically engineered mice models. This study reveals CAF subpopulations based on super-enhancer profiles including PRRX1. Therefore, mTFs, including PRRX1, provide another opportunity for establishing a hierarchical classification system of fibroblasts and cancer treatment by targeting fibroblasts. Cancer associated fibroblasts are an important and highly heterogeneous component of the tumor microenvironment. Here the authors identify PRRX1 as a master transcription factor determining a fibroblast lineage with myofibroblastic phenotype, associated with unfavourable prognosis in several cancer types.
Collapse
|
17
|
Dai C, Zhu J, Huang H. 混合谱系激酶3在心血管疾病中的研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Chen X, Qi G, Fang F, Miao Y, Wang L. Silence of MLK3 alleviates lipopolysaccharide-induced lung epithelial cell injury via inhibiting p53-mediated ferroptosis. J Mol Histol 2022; 53:503-510. [PMID: 35247112 DOI: 10.1007/s10735-022-10064-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
Abstract
Acute lung injury (ALI) is characterized with a high rate of morbidity and mortality. The injury and apoptosis of lung epithelial cells play crucial roles in the progression of ALI. Mixed lineage kinase 3 (MLK3) has been reported to be involved in the regulation of cellular biological functions, such as cell proliferation, apoptosis and ferroptosis. However, the effect of MLK3 exerted on ALI has not been reported. Here, LPS-stimulated MLE12 pulmonary epithelial cells were used as an in vitro model for ALI. In this research, LPS elevated the expression of MLK3 in MLE12 cells. The silence of MLK3 alleviated LPS-induced cell injury. Notably, LPS promoted ferroptosis through enhancing GSH depletion and the productions of MDA and iron, which was attenuated by MLK3 knockdown. Moreover, the silence of MLK3 inhibited p53 expression in LPS-induced cells along with a decrease in the expressions of p21 and Bax, while overexpressing p53 reversed these effects of MLK3 silence. Meanwhile, p53 overexpression reversed the positive effects of MLK3 knockdown on LPS-induced cell ferroptosis and injury. Together, our results confirmed that the silence of MLK3 alleviated LPS-induced lung epithelial cell injury by inhibiting p53-mediated ferroptosis.
Collapse
Affiliation(s)
- Xiangjun Chen
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China
| | - Gangqiang Qi
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China
| | - Fang Fang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China
| | - Yi Miao
- Department of Respiratory Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Li Wang
- The 2nd department of Critical Care Medicine, Xi'an Chest Hospital, 710061, Xi'an, Shaanxi, China.
- East section of Hangtian Avenue, Chang'an District, 710061, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
An Open Question: Is Non-Ionizing Radiation a Tool for Controlling Apoptosis-Induced Proliferation? Int J Mol Sci 2021; 22:ijms222011159. [PMID: 34681819 PMCID: PMC8537877 DOI: 10.3390/ijms222011159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Non-ionizing radiation is commonly used in the clinical setting, despite its known ability to trigger oxidative stress and apoptosis, which can lead to damage and cell death. Although induction of cell death is typically considered harmful, apoptosis can also be beneficial in the right context. For example, cell death can serve as the signal for new tissue growth, such as in apoptosis-induced proliferation. Recent data has shown that exposure to non-ionizing radiation (such as weak static magnetic fields, weak radiofrequency magnetic fields, and weak electromagnetic fields) is able to modulate proliferation, both in cell culture and in living organisms (for example during tissue regeneration). This occurs via in vivo changes in the levels of reactive oxygen species (ROS), which are canonical activators of apoptosis. This review will describe the literature that highlights the tantalizing possibility that non-ionizing radiation could be used to manipulate apoptosis-induced proliferation to either promote growth (for regenerative medicine) or inhibit it (for cancer therapies). However, as uncontrolled growth can lead to tumorigenesis, much more research into this exciting and developing area is needed in order to realize its promise.
Collapse
|
20
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Zhang S, Chen H, Yue D, Blackwell TS, Lv C, Song X. Long non-coding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med 2021; 23:e3318. [PMID: 33533071 PMCID: PMC7988597 DOI: 10.1002/jgm.3318] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary fibrosis is characterized by progressive and irreversible scarring in the lungs with poor prognosis and treatment. It is caused by various factors, including environmental and occupational exposures, and some rheumatic immune diseases. Even the rapid global spread of the COVID‐19 pandemic can also cause pulmonary fibrosis with a high probability. Functions attributed to long non‐coding RNAs (lncRNAs) make them highly attractive diagnostic and therapeutic targets in fibroproliferative diseases. Therefore, an understanding of the specific mechanisms by which lncRNAs regulate pulmonary fibrotic pathogenesis is urgently needed to identify new possibilities for therapy. In this review, we focus on the molecular mechanisms and implications of lncRNAs targeted protein‐coding and non‐coding genes during pulmonary fibrogenesis, and systematically analyze the communication of lncRNAs with various types of RNAs, including microRNA, circular RNA and mRNA. Finally, we propose the potential approach of lncRNA‐based diagnosis and therapy for pulmonary fibrosis. We hope that understanding these interactions between protein‐coding and non‐coding genes will contribute to the development of lncRNA‐based clinical applications for pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Hongbin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Dayong Yue
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | | | - Changjun Lv
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou Medical University, Binzhou, China
| |
Collapse
|
22
|
Liu D, Shu G, Jin F, Qi J, Xu X, Du Y, Yu H, Wang J, Sun M, You Y, Zhu M, Chen M, Zhu L, Shen Q, Ying X, Lou X, Jiang S, Du Y. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. SCIENCE ADVANCES 2020; 6:6/41/eabb7422. [PMID: 33036968 PMCID: PMC7546709 DOI: 10.1126/sciadv.abb7422] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/21/2020] [Indexed: 05/06/2023]
Abstract
The development of drugs with rapid distribution in the kidney and long-term retention in the renal tubule is a breakthrough for enhanced treatment of acute kidney injury (AKI). Here, l-serine-modified chitosan (SC) was synthesized as a potential AKI kidney-targeting agent due to the native cationic property of chitosan and specific interaction between kidney injury molecule-1 (Kim-1) and serine. Results indicated that SC was rapidly accumulated and long-term retained in ischemia-reperfusion-induced AKI kidneys, especially in renal tubules, which was possibly due to the specific interactions between SC and Kim-1. SC-TK-SS31 was then prepared by conjugating SS31, a mitochondria-targeted antioxidant, to SC via reactive oxygen species (ROS)-sensitive thioketal linker. Because of the effective renal distribution combined with ROS-responsive drug release behavior, the administration of SC-TK-SS31 led to an enhanced therapeutic effect of SS31 by protecting mitochondria from damage and reducing the oxidative stress, inflammation, and cell apoptosis.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yan Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Hui Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Jun Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Mingchen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Minxia Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Meixuan Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Qiying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiaoying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Saiping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China.
| |
Collapse
|
23
|
He S, Huang Y, Dong S, Qiao C, Yang G, Zhang S, Wang C, Xu Y, Zheng F, Yan M. MiR-199a-3p/5p participated in TGF-β and EGF induced EMT by targeting DUSP5/MAP3K11 in pterygium. J Transl Med 2020; 18:332. [PMID: 32867783 PMCID: PMC7461358 DOI: 10.1186/s12967-020-02499-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023] Open
Abstract
Background Recently, it has been reported that miRNA is involved in pterygium, however the exact underlying mechanism in pterygium is unrevealed and require further investigation. Methods The differential expression of miRNA in pterygium was profiled using microarray and validated with quantitative real-time polymerase chain reaction (qRT-PCR). Human conjunctival epithelial cells (HCEs) were cultured and treated with transforming growth factor β (TGF-β) and epidermal growth factor (EGF) and transfected with miR-199a-3p/5p mimic and inhibitor. Markers of epithelial-mesenchymal transition (EMT) in HCEs were detected using western blot and immunohistochemistry. Cell migration ability was determined using wound healing and transwell assay, while apoptosis was determined by flow cytometry. The target genes of miR-199a were confirmed by the dual-luciferase reporter assay. Results TGF-β and EGF could induced EMT in HCEs and increase miR-199a-3p/5p but suppress target genes, DUSP5 and MAP3K11. With the occurrence of EMT, cell migration ability was enhanced, and apoptosis was impeded. Promoting miR-199a-3p/5p expression could induce EMT in HCEs without TGF-β and EGF, while suppressing miR-199a-3p/5p could inhibit EMT in TGF-β and EGF induced HCEs. In a word, TGF-β and EGF induced EMT could be regulated with miR-199a-3p/5p-DUSP5/MAP3K11 axes. The validated results in tissues showed that, compared with control conjunctival tissues, miR-199a-3p/5p were more overexpressed in pterygium, while DUSP5/MAP3K11 were lower expressed. In addition, bioinformatics analysis indicated the miR-199a-3p/5p-DUSP5/MAP3K11 was belong to MAPK signalling pathway. Conclusions TGF-β and EGF induce EMT of HCEs through miR-199a-3p/5p-DUSP5/MAP3K11 axes, which explains the pathogenesis of EMT in pterygium and may provide new targets for pterygium prevention and therapy.
Collapse
Affiliation(s)
- Siying He
- Center for Gene Diagnosis, and Clinical Laboratory, Zhongnan Hospital of Wuhan University, Donghu Rd 169#, Wuhan, 430071, China
| | - Yifang Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shiqi Dong
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Chen Qiao
- Department of Corneal, Hankou Aier Eye Hospital, Wuhan, 430024, Hubei, China
| | - Guohua Yang
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shuai Zhang
- Center for Gene Diagnosis, and Clinical Laboratory, Zhongnan Hospital of Wuhan University, Donghu Rd 169#, Wuhan, 430071, China
| | - Chen Wang
- Center for Gene Diagnosis, and Clinical Laboratory, Zhongnan Hospital of Wuhan University, Donghu Rd 169#, Wuhan, 430071, China
| | - Yuting Xu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Fang Zheng
- Center for Gene Diagnosis, and Clinical Laboratory, Zhongnan Hospital of Wuhan University, Donghu Rd 169#, Wuhan, 430071, China.
| | - Ming Yan
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
24
|
Joo JI, Choi M, Jang SH, Choi S, Park SM, Shin D, Cho KH. Realizing Cancer Precision Medicine by Integrating Systems Biology and Nanomaterial Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906783. [PMID: 32253807 DOI: 10.1002/adma.201906783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Indexed: 06/11/2023]
Abstract
Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.
Collapse
Affiliation(s)
- Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Minsoo Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seong-Hoon Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sea Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
25
|
Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S, Wang L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 2020; 11:574. [PMID: 32710001 PMCID: PMC7382480 DOI: 10.1038/s41419-020-02777-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Chronic heart failure (CHF) is the final outcome of many cardiovascular diseases, and is a severe health issue faced by the elderly population. Mixed lineage kinase 3 (MLK3), a member of MAP3K family, is associated with aging, inflammation, oxidative stress, and related diseases, such as CHF. MLK3 has also been reported to play an important role in protecting against cardiomyocyte injury; however, its function in myocardial fibrosis is unknown. To investigate the role of MLK3 in myocardial fibrosis, we inhibited the expression of MLK3, and examined cardiac function and remodeling in TAC mice. In addition, we assessed the expression of MLK3 protein in ventricular cells and its downstream associated protein. We found that MLK3 mainly regulates NF-κB/NLRP3 signaling pathway-mediated inflammation and that pyroptosis causes myocardial fibrosis in the early stages of CHF. Similarly, MLK3 mainly regulates the JNK/p53 signaling pathway-mediated oxidative stress and that ferroptosis causes myocardial fibrosis in the advanced stages of CHF. We also found that promoting the expression of miR-351 can inhibit the expression of MLK3, and significantly improve cardiac function in mice subjected to TAC. These results suggest the pyroptosis and ferroptosis induced by MLK3 signaling in cardiomyocytes are essential for adverse myocardial fibrosis, in response to pressure overload. Furthermore, miR-351, which has a protective effect on ventricular remodeling in heart failure caused by pressure overload, may be a key target for the regulation of MLK3.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Bo Deng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qing Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Weitao Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zheng Zhou
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lu Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Birong Liang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jiaqi He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zixin Chen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
| | - Cui Yan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhongqi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, 510405, China.
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
26
|
Mohi-Ud-Din R, Mir RH, Sawhney G, Dar MA, Bhat ZA. Possible Pathways of Hepatotoxicity Caused by Chemical Agents. Curr Drug Metab 2020; 20:867-879. [PMID: 31702487 DOI: 10.2174/1389200220666191105121653] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions. METHODS The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms. RESULTS The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents. CONCLUSION Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.
Collapse
Affiliation(s)
- Roohi Mohi-Ud-Din
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| | - Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Gifty Sawhney
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu-Tawi, Jammu 180001, India
| | - Mohd Akbar Dar
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Zulfiqar Ali Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Pharmacognosy Division, Hazratbal, Srinagar 190006, Kashmir, India
| |
Collapse
|
27
|
Xie R, Liu Z, Lin Z, Shi P, Chen B, Li S, Li G, Huang L, Lin X, Yao H. Potential mechanism of action of Ixeris sonchifolia extract injection against cardiovascular diseases revealed by combination of HPLC-Q-TOF-MS, virtual screening and systems pharmacology approach. RSC Adv 2020; 10:38497-38504. [PMID: 35517561 PMCID: PMC9057262 DOI: 10.1039/d0ra07038f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
Ixeris sonchifolia extract injection, a Chinese medicine preparation named as Kudiezi injection (KDZI) in China, has been widely used for the treatment of cardiovascular diseases (CVDs) in recent years. Owing to the component complexity of the preparation, the study on the effect mechanism of the herbal medicine against CVDs is a big challenge. In this research, HPLC-Q-TOF-MS was used to analyze the constituents of the preparation, disclosing that the KDZI mainly consists of 10 ingredients, namely 3-caffeoylquinic acid (KDZI-1), 4-caffeoylquinic acid (KDZI-2), 5-caffeoylquinic acid (KDZI-3), apigenin-7-O-β-d-glucuronide (KDZI-4), caffeic acid (KDZI-5), chicoric acid (KDZI-6), caftaric acid (KDZI-7), luteolin-7-O-β-d-gentiobioside (KDZI-8), luteolin-7-O-β-d-glucopyranoside (KDZI-9) and luteolin-7-O-β-d-glucuronide (KDZI-10). Afterwards, target fishing and an integrated systems pharmacology approach combined with molecular docking (Sybyl 1.3 and AutoDock Vina) were adopted to predict the potential targets and pathways for the main ingredients in KDZI. As results, 39 protein targets and 9 KEGG pathways, possessing high relevance to the therapeutic effects of the ingredients of KDZI against CVDs, were screened out reasonably. The integrated pharmacology analysis suggested that KDZI could exert its therapeutic effects against CVDs possibly via multi-targets including EGFR, MAPK10, and SRC and multi-pathways referring to MAPK, focal adhesion, complement and coagulation cascades, etc. This research provides insights into understanding the comprehensive therapeutic effect and mechanism of the KDZI on CVDs. Ixeris sonchifolia extract injection, a Chinese medicine preparation named as Kudiezi injection (KDZI) in China, has been widely used for the treatment of cardiovascular diseases (CVDs) in recent years.![]()
Collapse
|
28
|
Choo SM, Park SM, Cho KH. Minimal intervening control of biomolecular networks leading to a desired cellular state. Sci Rep 2019; 9:13124. [PMID: 31511585 PMCID: PMC6739335 DOI: 10.1038/s41598-019-49571-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
A cell phenotype can be represented by an attractor state of the underlying molecular regulatory network, to which other network states eventually converge. Here, the set of states converging to each attractor is called its basin of attraction. A central question is how to drive a particular cell state toward a desired attractor with minimal interventions on the network system. We develop a general control framework of complex Boolean networks to provide an answer to this question by identifying control targets on which one-time temporary perturbation can induce a state transition to the boundary of a desired attractor basin. Examples are shown to illustrate the proposed control framework which is also applicable to other types of complex Boolean networks.
Collapse
Affiliation(s)
- Sang-Mok Choo
- Department of Mathematics, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
29
|
Ji S, Sun R, Xu K, Man Z, Ji J, Pu Y, Yin L, Zhang J, Pu Y. Prodigiosin induces apoptosis and inhibits autophagy via the extracellular signal-regulated kinase pathway in K562 cells. Toxicol In Vitro 2019; 60:107-115. [PMID: 31077745 DOI: 10.1016/j.tiv.2019.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 01/30/2023]
Abstract
Prodigiosin contains a tripyrrole skeleton and shows impressive anticancer potential in multiple cell lines. Numerous studies have been conducted on prodigiosin-induced apoptosis and the related mechanisms. However, few reports have considered the effects of prodigiosin on autophagy and the relationship between apoptosis and autophagy. Here, we examined whether prodigiosin affected apoptosis and autophagy through the extracellular signal-regulated (ERK) signaling pathway in K562 cells, employing cell proliferation, flow cytometry, caspase activity, and western blot analyses. Inhibition of the ERK signaling pathway with PD184352 was conducted to verify the role of this pathway on prodigiosin-mediated processes. Our findings revealed that prodigiosin inhibited the proliferation of K562 cells, increased reactive oxygen species (ROS), induced apoptosis and inhibited autophagy in K562 cells. Additionally, the ROS scavenger, N-Acetyl-L-cysteine (NAC), partially prevented prodigiosin-induced apoptosis but did not reduce prodigiosin-inhibited autophagy in K562 cells. Furthermore, prodigiosin treatment in K562 cells reduced the phosphorylation of c-Jun N-terminal kinases (JNKs) and P38, and activated ERK signaling pathway. When ERK1/2 phosphorylation was blocked by PD184352, prodigiosin-induced apoptosis and the inhibition of autophagy decreased significantly. Taken together, these results demonstrated that the ERK signaling pathway was involved in prodigiosin-induced apoptosis and prodigiosin-inhibited autophagy.
Collapse
Affiliation(s)
- Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
30
|
Ramachandran A, Jaeschke H. Acetaminophen hepatotoxicity: A mitochondrial perspective. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:195-219. [PMID: 31307587 DOI: 10.1016/bs.apha.2019.01.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) is a highly effective analgesic, which is safe at therapeutic doses. However, an overdose can cause hepatotoxicity and even liver failure. APAP toxicity is currently the most common cause of acute liver failure in the United States. Decades of research on mechanisms of liver injury have established the role of mitochondria as central players in APAP-induced hepatocyte necrosis and this chapter examines the various facets of the organelle's involvement in the process of injury as well as in resolution of damage. The injury process is initiated by formation of a reactive metabolite, which binds to sulfhydryl groups of cellular proteins including mitochondrial proteins. This inhibits the electron transport chain and leads to formation of reactive oxygen species, which induce the activation of redox-sensitive members of the MAP kinase family ultimately causing activation of c-Jun N terminal kinase, JNK. Translocation of JNK to the mitochondria then amplifies mitochondrial dysfunction, ultimately resulting in mitochondrial permeability transition and release of mitochondrial intermembrane proteins, which trigger nuclear DNA fragmentation. Together, these events result in hepatocyte necrosis, while adaptive mechanisms such as mitophagy remove damaged mitochondria and minimize the extent of the injury. This oscillation between recovery and necrosis is predominant in cells at the edge of the necrotic area in the liver, where induction of mitochondrial biogenesis is important for liver regeneration. All these aspects of mitochondria in APAP hepatotoxicity, as well as their relevance to humans with APAP overdose and development of therapeutic approaches will be examined in detail in this chapter.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
31
|
Park SM, Hwang CY, Cho SH, Lee D, Gong JR, Lee S, Nam S, Cho KH. Systems analysis identifies potential target genes to overcome cetuximab resistance in colorectal cancer cells. FEBS J 2019; 286:1305-1318. [PMID: 30719834 DOI: 10.1111/febs.14773] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/08/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Cetuximab (CTX), a monoclonal antibody against epidermal growth factor receptor, is being widely used for colorectal cancer (CRC) with wild-type (WT) KRAS. However, its responsiveness is still very limited and WT KRAS is not enough to indicate such responsiveness. Here, by analyzing the gene expression data of CRC patients treated with CTX monotherapy, we have identified DUSP4, ETV5, GNB5, NT5E, and PHLDA1 as potential targets to overcome CTX resistance. We found that knockdown of any of these five genes can increase CTX sensitivity in KRAS WT cells. Interestingly, we further found that GNB5 knockdown can increase CTX sensitivity even for KRAS mutant cells. We unraveled that GNB5 overexpression contributes to CTX resistance by modulating the Akt signaling pathway from experiments and mathematical simulation. Overall, these results indicate that GNB5 might be a promising target for combination therapy with CTX irrespective of KRAS mutation.
Collapse
Affiliation(s)
- Sang-Min Park
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sung-Hwan Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Daewon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong-Ryeol Gong
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Soobeom Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Sohee Nam
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
32
|
Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene 2018; 37:1031-1040. [PMID: 29084209 PMCID: PMC5823719 DOI: 10.1038/onc.2017.396] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Mixed lineage kinase 3 (MLK3) functions in migration and/or invasion of several human cancers; however, the role of MLK3 in colorectal cancer (CRC) invasion is unknown. MLK3 is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) which activates MAPK pathways through either kinase-dependent or -independent mechanisms. Human colorectal tumors display increased levels of reactive oxygen species (ROS) or oxidative stress. ROS, such as H2O2, are important for carcinogenesis and activate MAPK signaling pathways. In human colorectal carcinoma (HCT116) cells treated with H2O2, extracellular signal-regulated kinases 1 and 2 (ERK1/2) were activated and MLK3 exhibited reduced electrophoretic mobility (shift) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which was eliminated by phosphatase treatment. Pretreatment with the ROS scavenger N-acetyl-L-cysteine, the ERK1/2 inhibitor UO126, or ERK1/2 siRNA knockdown blocked the H2O2-induced shift of MLK3, while MLK3 inhibition with Cep1347 did not. In co-immunoprecipitation experiments performed on H2O2-treated HCT116 cells, endogenous MLK3 associated with endogenous ERK1/2 and B-Raf. Active ERK1 phosphorylated kinase dead FLAG-MLK3 in vitro, whereas ERK1 phosphorylation of kinase dead FLAG-MLK3-S705A-S758A was reduced. Both MLK3 siRNA knockdown and FLAG-MLK3-S705A-S758A expression decreased ERK1/2 activation in H2O2-treated cells. Prolonged H2O2 treatment activated ERK1/2 and promoted invasion of colon cancer cells, which was attenuated by MLK3 siRNA knockdown. Furthermore, S705A-S758A-FLAG-MLK3 demonstrated decreased oxidative-stress induced colon cancer cell invasion, but increased interaction with GST-B-Raf as compared with wild-type-FLAG-MLK3 in H2O2-treated cells. These results suggest oxidative stress stimulates an ERK1/2-dependent phosphorylation of MLK3 on Ser705 and Ser758, which promotes MLK3-dependent B-Raf and ERK1/2 activation; this positive feedback loop enhances the invasion of colon cancer cells.
Collapse
Affiliation(s)
- April L. Schroyer
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Nicholas W. Stimes
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Widian F. Abi Saab
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Deborah N. Chadee
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| |
Collapse
|
33
|
Sidarala V, Kowluru A. The Regulatory Roles of Mitogen-Activated Protein Kinase (MAPK) Pathways in Health and Diabetes: Lessons Learned from the Pancreatic β-Cell. ACTA ACUST UNITED AC 2017; 10:76-84. [PMID: 27779078 DOI: 10.2174/1872214810666161020154905] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Glucose-stimulated insulin secretion (GSIS) from the pancreatic β-cell involves several intracellular metabolic events which lead to the translocation of insulin granules towards the membrane for fusion and release. It is well established that loss of β-cell function and decreased GSIS underlie the pathogenesis of diabetes. Evidence from several laboratories, including our own, demonstrated requisite roles of Rac1 and phagocyte-like NADPH oxidase (Nox2)-derived reactive oxygen species (ROS) in optimal function of the pancreatic β-cell, including GSIS. However, it is becoming increasingly clear that prolonged exposure of β-cells to hyperglycemic conditions, leads to sustained activation of Rac1-Nox2 signaling axis culminating in excessive generation of intracellular ROS (oxidative stress) and β-cell dysregulation and demise. Such "cytotoxic" effects of ROS appear to be mediated via the stress-activated protein kinases/mitogen-activated protein kinases (SAPK/MAPK) signaling pathways. OBJECTIVE This review discusses our current understanding of regulation and functions of the conventional MAPKs, namely, ERK1/2, JNK1/2 and p38MAPK. CONCLUSION The MAPK pathways are activated in the presence of various stress stimuli including intracellular ROS, via distinct signaling cascades. Once activated, MAPKs participate in specific intracellular signaling processes via interaction with several downstream kinases including the MAPKactivated protein kinases (MAPKAPKs) and transcription factors including c-jun and p53. We have provided an overview of existing evidence in the islet β-cell on the regulatory roles of these MAPKs in mediating cellular responses to alterations in intracellularly generated ROS, which is mediated by the Rac1-Nox2 signaling module. Additionally, we enlisted recent patents developed to improve β-cell function in diabetes and novel pharmacological agents that target oxidative stress and MAPK pathways.
Collapse
Affiliation(s)
- Vaibhav Sidarala
- Beta-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201. United States
| | - Anjaneyulu Kowluru
- B-4237 Research Service, John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 48201. United States
| |
Collapse
|
34
|
Liu H, Wang B, Zhang J, Zhang S, Wang Y, Zhang J, Lv C, Song X. A novel lnc-PCF promotes the proliferation of TGF-β1-activated epithelial cells by targeting miR-344a-5p to regulate map3k11 in pulmonary fibrosis. Cell Death Dis 2017; 8:e3137. [PMID: 29072702 PMCID: PMC5682666 DOI: 10.1038/cddis.2017.500] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 08/31/2017] [Indexed: 12/25/2022]
Abstract
Emerging evidence suggests that microRNA (miRNA) and long noncoding RNA (lncRNA) play important roles in disease development. However, the mechanism underlying mRNA interaction with miRNA and lncRNA in idiopathic pulmonary fibrosis (IPF) remains unknown. This study presents a novel lnc-PCF that promotes the proliferation of TGF-β1-activated epithelial cells through the regulation of map3k11 by directly targeting miR-344a-5p during pulmonary fibrogenesis. Bioinformatics and in vitro translation assay were performed to confirm whether or not lnc-PCF is an actual lncRNA. RNA fluorescent in situ hybridization (FISH) and nucleocytoplasmic separation showed that lnc-PCF is mainly expressed in the cytoplasm. Knockdown and knockin of lnc-PCF indicated that lnc-PCF could promote fibrogenesis by regulating the proliferation of epithelial cells activated by TGF-β1 according to the results of xCELLigence real-time cell analysis system, flow cytometry, and western blot analysis. Computational analysis and a dual-luciferase reporter system were used to identify the target gene of miR-344a-5p, whereas RNA pull down, anti-AGO2 RNA immunoprecipitation, and rescue experiments were conducted to confirm the identity of this direct target. Further experiments verified that lnc-PCF promotes the proliferation of activated epithelial cells that were dependent on miR-344a-5p, which exerted its regulatory functions through its target gene map3k11. Finally, adenovirus packaging sh-lnc-PCF was sprayed into rat lung tissues to evaluate the therapeutic effect of lnc-PCF. These findings revealed that lnc-PCF can accelerate pulmonary fibrogenesis by directly targeting miR-344a-5p to regulate map3k11, which may be a potential therapeutic target in IPF.
Collapse
Affiliation(s)
- Huizhu Liu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Bingsi Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Songzi Zhang
- School of Pharmaceutical Sciences, Taishan Medical University, Taian 271016, China
| | - Youlei Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory Medicine, Affiliated Hospital to Binzhou Medical University, Binzhou 256602, China
| | - Xiaodong Song
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
35
|
Kang JH, Cho KH. A novel interaction perturbation analysis reveals a comprehensive regulatory principle underlying various biochemical oscillators. BMC SYSTEMS BIOLOGY 2017; 11:95. [PMID: 29017496 PMCID: PMC5635494 DOI: 10.1186/s12918-017-0472-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Background Biochemical oscillations play an important role in maintaining physiological and cellular homeostasis in biological systems. The frequency and amplitude of oscillations are regulated to properly adapt to environments by numerous interactions within biomolecular networks. Despite the advances in our understanding of biochemical oscillators, the relationship between the network structure of an oscillator and its regulatory function still remains unclear. To investigate such a relationship in a systematic way, we have developed a novel analysis method called interaction perturbation analysis that enables direct modulation of the strength of every interaction and evaluates its consequence on the regulatory function. We have applied this new method to the analysis of three representative types of oscillators. Results The results of interaction perturbation analysis showed different regulatory features according to the network structure of the oscillator: (1) both frequency and amplitude were seldom modulated in simple negative feedback oscillators; (2) frequency could be tuned in amplified negative feedback oscillators; (3) amplitude could be modulated in the incoherently amplified negative feedback oscillators. A further analysis of naturally-occurring biochemical oscillator models supported such different regulatory features according to their network structures. Conclusions Our results provide a clear evidence that different network structures have different regulatory features in modulating the oscillation frequency and amplitude. Our findings may help to elucidate the fundamental regulatory roles of network structures in biochemical oscillations. Electronic supplementary material The online version of this article (10.1186/s12918-017-0472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Hyuk Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea. .,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
36
|
Wang S, Zhang T, Yang Z, Lin J, Cai B, Ke Q, Lan W, Shi J, Wu S, Lin W. Heme oxygenase-1 protects spinal cord neurons from hydrogen peroxide-induced apoptosis via suppression of Cdc42/MLK3/MKK7/JNK3 signaling. Apoptosis 2017; 22:449-462. [PMID: 27864650 DOI: 10.1007/s10495-016-1329-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mechanisms by which oxidative stress induces spinal cord neuron death has not been completely understood. Investigation on the molecular signal pathways involved in oxidative stress-mediated neuronal death is important for development of new therapeutics for oxidative stress-associated spinal cord disorders. In current study we examined the role of heme oxygenase-1 (HO-1) in the modulation of MLK3/MKK7/JNK3 signaling, which is a pro-apoptotic pathway, after treating primary spinal cord neurons with H2O2. We found that MLK3/MKK7/JNK3 signaling was substantially activated by H2O2 in a time-dependent manner, demonstrated by increase of activating phosphorylation of MLK3, MKK7 and JNK3. H2O2 also induced expression of HO-1. Transduction of neurons with HO-1-expressing adeno-associated virus before H2O2 treatment introduced expression of exogenous HO-1 in neurons. Exogenous HO-1 reduced phosphorylation of MLK3, MKK7 and JNK3. Consistent with its inhibitory effect on MLK3/MKK7/JNK3 signaling, exogenous HO-1 decreased H2O2-induced neuronal apoptosis and necrosis. Furthermore, we found that exogenous HO-1 inhibited expression of Cdc42, which is crucial for MLK3 activation. In addition, HO-1-induced down-regulation of MLK3/MKK7/JNK3 signaling might be related to up-regulation of microRNA-137 (mir-137). A mir-137 inhibitor alleviated the inhibitory effect of HO-1 on JNK3 activation. This inhibitor also increased neuronal death even when exogenous HO-1 was expressed. Therefore, our study suggests a novel mechanism by which HO-1 exerted its neuroprotective efficacy on oxidative stress.
Collapse
Affiliation(s)
- Siyuan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Tao Zhang
- Department of Orthopedic Surgery, The Second Hospital of Fuzhou Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Zhen Yang
- Department of Orthopedic Surgery, The People's Hospital of Guizhou Province, Guiyang, 550002, China
| | - Jianhua Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Bin Cai
- Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Qingfeng Ke
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenbin Lan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China
| | - Jinxing Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Shiqiang Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China
| | - Wenping Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Fujian Medical University, 34 North Zhongshan Road, Quanzhou, 362000, China.
| |
Collapse
|
37
|
Context-independent essential regulatory interactions for apoptosis and hypertrophy in the cardiac signaling network. Sci Rep 2017; 7:34. [PMID: 28232733 PMCID: PMC5428364 DOI: 10.1038/s41598-017-00086-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/31/2017] [Indexed: 11/12/2022] Open
Abstract
Apoptosis and hypertrophy of cardiomyocytes are the primary causes of heart failure and are known to be regulated by complex interactions in the underlying intracellular signaling network. Previous experimental studies were successful in identifying some key signaling components, but most of the findings were confined to particular experimental conditions corresponding to specific cellular contexts. A question then arises as to whether there might be essential regulatory interactions that prevail across diverse cellular contexts. To address this question, we have constructed a large-scale cardiac signaling network by integrating previous experimental results and developed a mathematical model using normalized ordinary differential equations. Specific cellular contexts were reflected to different kinetic parameters sampled from random distributions. Through extensive computer simulations with various parameter distributions, we revealed the five most essential context-independent regulatory interactions (between: (1) αAR and Gαq, (2) IP3 and calcium, (3) epac and CaMK, (4) JNK and NFAT, and (5) p38 and NFAT) for hypertrophy and apoptosis that were consistently found over all our perturbation analyses. These essential interactions are expected to be the most promising therapeutic targets across a broad spectrum of individual conditions of heart failure patients.
Collapse
|
38
|
STAT5A-mediated NOX5-L expression promotes the proliferation and metastasis of breast cancer cells. Exp Cell Res 2017; 351:51-58. [DOI: 10.1016/j.yexcr.2016.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 11/22/2022]
|
39
|
Ramachandran A, Jaeschke H. Mechanisms of acetaminophen hepatotoxicity and their translation to the human pathophysiology. J Clin Transl Res 2017; 3:157-169. [PMID: 28670625 PMCID: PMC5489132 DOI: 10.18053/jctres.03.2017s1.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and mechanisms of liver injury induced by APAP overdose have been the focus of extensive investigation. Studies in the mouse model, which closely reproduces the human condition, have shown that hepatotoxicity is initiated by formation of a reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes cellular glutathione and forms protein adducts on mitochondrial proteins. This leads to mitochondrial oxidative and nitrosative stress, accompanied by activation of c-jun N-terminal kinase (JNK) and its translocation to the mitochondria. This then amplifies the mitochondrial oxidant stress, resulting in translocation of Bax and dynamin related protein 1 (Drp1) to the mitochondria, which induces mitochondrial fission, and ultimately induction of the mitochondrial membrane permeability transition (MPT). The induction of MPT triggers release of intermembrane proteins such as apoptosis inducing factor (AIF) and endonuclease G into the cytosol and their translocation to the nucleus, causing nuclear DNA fragmentation and activation of regulated necrosis. Though these cascades of events were primarily identified in the mouse model, studies on human hepatocytes and analysis of circulating biomarkers from patients after APAP overdose, indicate that a number of mechanistic events are identical in mice and humans. Circulating biomarkers also seem to be useful in predicting the course of liver injury after APAP overdose in humans and hold promise for significant clinical use in the near future.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
40
|
Shin SY, Nguyen LK. Dissecting Cell-Fate Determination Through Integrated Mathematical Modeling of the ERK/MAPK Signaling Pathway. Methods Mol Biol 2017; 1487:409-432. [PMID: 27924583 DOI: 10.1007/978-1-4939-6424-6_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past three decades have witnessed an enormous progress in the elucidation of the ERK/MAPK signaling pathway and its involvement in various cellular processes. Because of its importance and complex wiring, the ERK pathway has been an intensive subject for mathematical modeling, which facilitates the unraveling of key dynamic properties and behaviors of the pathway. Recently, however, it became evident that the pathway does not act in isolation but closely interacts with many other pathways to coordinate various cellular outcomes under different pathophysiological contexts. This has led to an increasing number of integrated, large-scale models that link the ERK pathway to other functionally important pathways. In this chapter, we first discuss the essential steps in model development and notable models of the ERK pathway. We then use three examples of integrated, multipathway models to investigate how crosstalk of ERK signaling with other pathways regulates cell-fate decision-making in various physiological and disease contexts. Specifically, we focus on ERK interactions with the phosphoinositide-3 kinase (PI3K), c-Jun N-terminal kinase (JNK), and β-adrenergic receptor (β-AR) signaling pathways. We conclude that integrated modeling in combination with wet-lab experimentation have been and will be instrumental in gaining an in-depth understanding of ERK signaling in multiple biological contexts.
Collapse
Affiliation(s)
- Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia. .,Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
41
|
Dho SH, Kim JY, Kwon ES, Lim JC, Park SS, Kwon KS. NOX5-L can stimulate proliferation and apoptosis depending on its levels and cellular context, determining cancer cell susceptibility to cisplatin. Oncotarget 2016; 6:39235-46. [PMID: 26513170 PMCID: PMC4770769 DOI: 10.18632/oncotarget.5743] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022] Open
Abstract
The NADPH oxidase, NOX5, is known to stimulate cell proliferation in some cancers by generating reactive oxygen species (ROS). We show here that the long form of NOX5 (NOX5-L) also promotes cell death, and thus determines the balance of proliferation and death, in skin, breast and lung cancer cells. Moderate expression of NOX5-L induced cell proliferation accompanied by AKT and ERK phosphorylation, whereas an increase in NOX5-L above a certain threshold promoted cancer cell death accompanied by caspase-3 activation. Notably, cisplatin treatment increased NOX5-L levels through CREB activation and enhanced NOX5-L activity through augmentation of Ca2+ release and c-Abl expression, ultimately triggering ROS-mediated cancer cell death—a distinct pathway absent in normal cells. These results indicate that NOX5-L determines cellular responses in a concentration- and context-dependent manner.
Collapse
Affiliation(s)
- So Hee Dho
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.,Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of Korea
| | - Ji Young Kim
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Eun-Soo Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Jae Cheong Lim
- Radioisotope Research Division, Department of Research Reactor Utilization, Korea Atomic Energy Research Institute, Daejeon 305-353, Republic of Korea
| | - Sung Sup Park
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Ki-Sun Kwon
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-333, Republic of Korea
| |
Collapse
|
42
|
Rubens JR, Selvaggio G, Lu TK. Synthetic mixed-signal computation in living cells. Nat Commun 2016; 7:11658. [PMID: 27255669 PMCID: PMC4895730 DOI: 10.1038/ncomms11658] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/18/2016] [Indexed: 12/31/2022] Open
Abstract
Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells. Digital and analogue gene circuits each have distinct advantages in natural and engineered cells. Here, Rubens et al. engineer synthetic gene circuits that implement mixed-signal digital and analogue computations in living cells.
Collapse
Affiliation(s)
- Jacob R Rubens
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Microbiology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gianluca Selvaggio
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Computational and System Biology Group, Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Microbiology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Center for Microbiome Informatics and Therapeutics, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
43
|
Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin. PLoS Comput Biol 2016; 12:e1004774. [PMID: 26900856 PMCID: PMC4765739 DOI: 10.1371/journal.pcbi.1004774] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/25/2016] [Indexed: 11/29/2022] Open
Abstract
Cellular functions are largely regulated by reversible post-translational modifications of proteins which act as switches. Amongst these, S-palmitoylation is unique in that it confers hydrophobicity. Due to technical difficulties, the understanding of this modification has lagged behind. To investigate principles underlying dynamics and regulation of palmitoylation, we have here studied a key cellular protein, the ER chaperone calnexin, which requires dual palmitoylation for function. Apprehending the complex inter-conversion between single-, double- and non- palmitoylated species required combining experimental determination of kinetic parameters with extensive mathematical modelling. We found that calnexin, due to the presence of two cooperative sites, becomes stably acylated, which not only confers function but also a remarkable increase in stability. Unexpectedly, stochastic simulations revealed that palmitoylation does not occur soon after synthesis, but many hours later. This prediction guided us to find that phosphorylation actively delays calnexin palmitoylation in resting cells. Altogether this study reveals that cells synthesize 5 times more calnexin than needed under resting condition, most of which is degraded. This unused pool can be mobilized by preventing phosphorylation or increasing the activity of the palmitoyltransferase DHHC6. The endoplasmic reticulum (ER) is the largest intracellular organelle of mammalian cells. It is responsible for many fundamental cellular functions, such as folding, quality control of membrane and secreted protein, lipid biosynthesis, control of apoptosis and calcium storage. Recent studies have shown that many ER membrane proteins are lipid modified. We therefore hypothesized that palmitoyltransferases, the enzymes responsible for this modifications, act as a regulator of the mammalian ER, controlling the function of a network of key proteins through reversible acylation. In this work we combine computational methods with experimental determination of parameters to study the mechanisms and properties of ER palmitoylation, using as a model the palmitoylation of the ER protein calnexin. The systematic analysis of the mathematical model, built and calibrated with the help of experimental data, shows that Calnexin palmitoylation leads to a 9-fold increase in half-life and that a long delay separates synthesis from palmitoylation in unstimulated cells. Surprisingly during this delay, 75% of synthesized calnexin is degraded before being palmitoylated. We hypothesize that this unexpected apparent inefficiency is a design principle that provides the cell with a means to post-translationally tune the calnexin content.
Collapse
|
44
|
Hegde RN, Parashuraman S, Iorio F, Ciciriello F, Capuani F, Carissimo A, Carrella D, Belcastro V, Subramanian A, Bounti L, Persico M, Carlile G, Galietta L, Thomas DY, Di Bernardo D, Luini A. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. eLife 2015; 4. [PMID: 26701908 PMCID: PMC4749566 DOI: 10.7554/elife.10365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/26/2015] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether ‘classical’ signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect. DOI:http://dx.doi.org/10.7554/eLife.10365.001 Cystic fibrosis is a genetic disease that commonly affects people of European descent. The condition is caused by mutations in the gene encoding a protein called “cystic fibrosis transmembrane conductance regulator” (or CFTR for short). CFTR forms a channel in the membrane of cells in the lungs that help transport salt across the membrane. Mutated versions of the protein are not as efficient at transporting salts, and eventually this damages the lung tissue. As the damage progresses, individuals become very vulnerable to bacterial infections that further damage the lungs and may eventually lead to death. One of the reasons CFTR mutations are harmful is that they cause the protein to fold up incorrectly and remain trapped inside the cell. Cells have quality control systems that recognize and destroy poorly folded proteins, and so only a few of the mutated CFTR proteins ever make it to the membrane to move salts. New therapies have been developed that improve folding of the protein and/or help the CFTR proteins that make it to the membrane work better. But more and better treatment options are needed. Hegde, Parashuraman et al. have now tested drugs that control how proteins fold and move to the membrane to see how they affect gene expression in cells with the most common cystic fibrosis-causing mutation. These drugs are known to improve the activity of the CFTR mutant, but do so too weakly to be of clinical interest. The experiments revealed that the expression of a few hundred genes was changed in response the drugs. Many of these genes were involved in major signalling pathways that control how CFTR is folded and trafficked within cells. Next, Hegde, Parashuraman et al. tested drugs that inhibit these signalling pathways to see if they improve salt handling in the mutated cells. The experiments demonstrated that these inhibitor drugs efficiently block the breakdown of misfolded CFTR, or boost the likelihood of CFTR making it to the membrane, helping improve salt trafficking in the cells. The inhibitors produced even better results when used in combination with a known CFTR-protecting drug. The results suggest that identifying and targeting signalling pathways involved in the folding, trafficking, and breakdown of CFTR may prove a promising way to treat cystic fibrosis. DOI:http://dx.doi.org/10.7554/eLife.10365.002
Collapse
Affiliation(s)
- Ramanath Narayana Hegde
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Seetharaman Parashuraman
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Francesco Iorio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fabiana Ciciriello
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Biology and Biotechnology Department "Charles Darwin", Sapienza University, Rome, Italy.,Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | | | | | - Diego Carrella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Laura Bounti
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Persico
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Graeme Carlile
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Luis Galietta
- U.O.C. Genetica Medica, Institute of Giannina Gaslini, Genova, Italy
| | - David Y Thomas
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
45
|
Lee J, Kwon G, Lim YH. Elucidating the Mechanism of Weissella-dependent Lifespan Extension in Caenorhabditis elegans. Sci Rep 2015; 5:17128. [PMID: 26601690 PMCID: PMC4658530 DOI: 10.1038/srep17128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
The mechanism whereby lactic acid bacteria extend the lifespan of Caenorhabditis elegans has previously been elucidated. However, the role of Weissella species has yet not been studied. We show that Weissella koreensis and Weissella cibaria significantly (p < 0.05) extend the lifespan of C. elegans compared with Escherichia coli OP50 and induce the expression of several genes related to lifespan extension (daf-16, aak-2, jnk-1, sod-3 and hif-1). Oral administration of Weissella altered reactive oxygen species (ROS) production and lowered the accumulation of lipofuscin and increased locomotor activity (which translates to a delay in ageing). Moreover, Weissella-fed C. elegans had decreased body sizes, brood sizes, ATP levels and pharyngeal pumping rates compared with E. coli OP50-fed worms. Furthermore, mutations in sod-3, hif-1 or skn-1 did not alter lifespan extension compared with wild-type C. elegans. However, C. elegans failed to display lifespan extension in loss-of-function mutants of daf-16, aak-2 and jnk-1, which highlights the potential role of these genes in Weissella-induced longevity in C. elegans. Weissella species extend C. elegans lifespan by activating DAF-16 via the c-Jun N-terminal kinase (JNK) pathway, which is related to stress response, and the AMP-activated protein kinase (AMPK)-pathway that is activated by dietary restriction.
Collapse
Affiliation(s)
- Jiyun Lee
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Gayeung Kwon
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 136-701, Republic of Korea
| | - Young-Hee Lim
- Department of Public Health Science (Brain Korea 21 PLUS program), Graduate School, Korea University, Seoul 136-701, Republic of Korea.,School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea.,Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| |
Collapse
|
46
|
Kang JH, Lee HS, Kang YW, Cho KH. Systems biological approaches to the cardiac signaling network. Brief Bioinform 2015; 17:419-28. [DOI: 10.1093/bib/bbv039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/08/2023] Open
|
47
|
Park SB, Kim B, Bae H, Lee H, Lee S, Choi EH, Kim SJ. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells. PLoS One 2015; 10:e0129931. [PMID: 26042423 PMCID: PMC4456358 DOI: 10.1371/journal.pone.0129931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and estrogen-negative cancer cells, respectively, with plasma. A pyrosequencing analysis of Alu indicated that a specific CpG site was induced to be hypomethylated from 23.4 to 20.3% (p < 0.05) by plasma treatment in the estrogen-negative MDA-MB-231 cells only. A genome-wide methylation analysis identified “cellular movement, connective tissue development and function, tissue development” and “cell-to-cell signaling and interaction, cell death and survival, cellular development” as the top networks. Of the two cell types, the MDA-MB-231 cells underwent a higher rate of apoptosis and a decreased proliferation rate upon plasma treatment. Taken together, these results indicate that plasma induces epigenetic and cellular changes in a cell type-specific manner, suggesting that a careful screening of target cells and tissues is necessary for the potential application of plasma as a cancer treatment option.
Collapse
Affiliation(s)
- Sung-Bin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Byungtak Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
| | - Eun H. Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Korea
- * E-mail:
| |
Collapse
|
48
|
A systems-biological study on the identification of safe and effective molecular targets for the reduction of ultraviolet B-induced skin pigmentation. Sci Rep 2015; 5:10305. [PMID: 25980672 PMCID: PMC4434836 DOI: 10.1038/srep10305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/08/2015] [Indexed: 12/12/2022] Open
Abstract
Melanogenesis is the process of melanin synthesis through keratinocytes-melanocytes interaction, which is triggered by the damaging effect of ultraviolet-B (UVB) rays. It is known that melanogenesis influences diverse cellular responses, including cell survival and apoptosis, via complex mechanisms of feedback and crosstalk. Therefore, an attempt to suppress melanin production by modulating the melanogenesis pathway may induce perturbations in the apoptotic balance of the cells in response to UVB irradiation, which results in various skin diseases such as melasma, vitiligo, and skin cancer. To identify such appropriate target strategies for the reduction of UVB-induced melanin synthesis, we reconstructed the melanogenesis signaling network and developed a Boolean network model. Mathematical simulations of the melanogenesis network model revealed that the inhibition of beta-catenin in the melanocytes effectively reduce melanin production while having minimal influence on the apoptotic balance of the cells. Exposing cells to a beta-catenin inhibitor decreased pigmentation but did not significantly change the B-cell Chronic lymphocytic leukemia/lymphoma 2 expression, a potent regulator of apoptotic balance. Thus, our systems analysis suggests that the inhibition of beta-catenin may be the most appropriate target strategy for the reduction of UVB-induced skin pigmentation.
Collapse
|
49
|
Jeong SG, Cho GW. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun 2015; 460:971-6. [DOI: 10.1016/j.bbrc.2015.03.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/16/2023]
|