1
|
Alonso-Marañón J, Solé L, Álvarez-Villanueva D, Maqueda M, Lobo-Jarne T, Montoto Á, Yélamos J, Borràs E, Uraga L, Hooper C, Sabidó E, Miyamoto S, Bigas A, Espinosa L. NEMO is essential for directing the kinases IKKα and ATM to the sites of DNA damage. Sci Signal 2025; 18:eadr0128. [PMID: 40067909 PMCID: PMC12070652 DOI: 10.1126/scisignal.adr0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025]
Abstract
The DNA damage repair kinase ATM is phosphorylated by the NF-κB pathway kinase IKKα, resulting in enhanced DNA damage repair through the nonhomologous end-joining pathway. Thus, inhibition of IKKα enhances the efficacy of cancer therapy based on inducing DNA damage. Here, we found a role for the IKK regulatory subunit NEMO in DNA damage repair mediated by ATM and IKKα. Exposure to damaging agents induced the interaction of NEMO with a preformed ATM-IKKα complex, which was required to target active ATM and IKKα to chromatin for efficient DNA damage repair but not for activating ATM. Recognition of damaged DNA by the IKKα-NEMO-ATM complex was facilitated by the interaction between NEMO and histones and depended on the ADP ribosylation of histones by the enzyme PARP1. NEMO-deficient cells showed increased activity of the kinase ATR, and inhibition of ATR potentiated the effect of chemotherapy in cells lacking NEMO or IKKα. Bioinformatic analysis of colorectal cancer datasets demonstrated that the expression of genes encoding IKKα, NEMO, and ATM correlated with poor patient prognosis, suggesting that the mechanism linking these three elements may be clinically relevant.
Collapse
Affiliation(s)
- Josune Alonso-Marañón
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Laura Solé
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Daniel Álvarez-Villanueva
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - María Maqueda
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Teresa Lobo-Jarne
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Ángela Montoto
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Jose Yélamos
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
- Immunology Unit, Department of Pathology, Hospital del Mar, 08003 Barcelona, Spain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Leire Uraga
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Christopher Hooper
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, WI 53705, USA
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, WI 53705, USA
| | - Anna Bigas
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
- Josep Carreras Leukemia Research Institute, Barcelona 08916, Spain
| | - Lluís Espinosa
- Cancer Research Program, Hospital del Mar Research Institute, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
2
|
Żebrowska-Nawrocka M, Szmajda-Krygier D, Krygier A, Jeleń A, Balcerczak E. Bioinformatic Analysis of IKK Complex Genes Expression in Selected Gastrointestinal Cancers. Int J Mol Sci 2024; 25:9868. [PMID: 39337357 PMCID: PMC11432643 DOI: 10.3390/ijms25189868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal cancers account for over a quarter of all cancer cases and are associated with poor prognosis and high mortality rates. The IKK complex (the canonical I kappa B kinase), comprising the CHUK, IKBKB, and IKBKG genes, plays a crucial role in activating the NF-kB signaling pathway. This study aimed to analyze publicly available bioinformatics data to elucidate the oncogenic role of IKK genes in selected gastrointestinal cancers. Our findings reveal that IKBKB and IKBKG are significantly upregulated in all examined cancers, while CHUK is upregulated in esophageal carcinoma and stomach adenocarcinoma. Additionally, the expression of IKK genes varies with histological grade and nodal metastases. For instance, in stomach adenocarcinoma, CHUK and IKBKB are upregulated in higher histological grades and greater lymph node infiltration. Lower expression levels of CHUK, IKBKB, and IKBKG in stomach adenocarcinoma and IKBKB in esophageal squamous cell carcinoma correlate with shorter overall survival. Conversely, in esophageal adenocarcinoma, reduced IKBKG expression is linked to longer overall survival, while higher IKBKB expression in colon adenocarcinoma is associated with longer overall survival. Given the significant role of IKK genes in the development and progression of selected gastrointestinal cancers, they hold potential as prognostic markers and therapeutic targets, offering valuable insights for clinical practice.
Collapse
Affiliation(s)
- Marta Żebrowska-Nawrocka
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- Laboratory of Molecular Diagnostics, Brain Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- Laboratory of Molecular Diagnostics, Brain Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Adrian Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- Laboratory of Molecular Diagnostics, Brain Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
- Laboratory of Molecular Diagnostics, Brain Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
3
|
Riley C, Ammar U, Alsfouk A, Anthony NG, Baiget J, Berretta G, Breen D, Huggan J, Lawson C, McIntosh K, Plevin R, Suckling CJ, Young LC, Paul A, Mackay SP. Design and Synthesis of Novel Aminoindazole-pyrrolo[2,3- b]pyridine Inhibitors of IKKα That Selectively Perturb Cellular Non-Canonical NF-κB Signalling. Molecules 2024; 29:3515. [PMID: 39124921 PMCID: PMC11314561 DOI: 10.3390/molecules29153515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The inhibitory-kappaB kinases (IKKs) IKKα and IKKβ play central roles in regulating the non-canonical and canonical NF-κB signalling pathways. Whilst the proteins that transduce the signals of each pathway have been extensively characterised, the clear dissection of the functional roles of IKKα-mediated non-canonical NF-κB signalling versus IKKβ-driven canonical signalling remains to be fully elucidated. Progress has relied upon complementary molecular and pharmacological tools; however, the lack of highly potent and selective IKKα inhibitors has limited advances. Herein, we report the development of an aminoindazole-pyrrolo[2,3-b]pyridine scaffold into a novel series of IKKα inhibitors. We demonstrate high potency and selectivity against IKKα over IKKβ in vitro and explain the structure-activity relationships using structure-based molecular modelling. We show selective target engagement with IKKα in the non-canonical NF-κB pathway for both U2OS osteosarcoma and PC-3M prostate cancer cells by employing isoform-related pharmacodynamic markers from both pathways. Two compounds (SU1261 [IKKα Ki = 10 nM; IKKβ Ki = 680 nM] and SU1349 [IKKα Ki = 16 nM; IKKβ Ki = 3352 nM]) represent the first selective and potent pharmacological tools that can be used to interrogate the different signalling functions of IKKα and IKKβ in cells. Our understanding of the regulatory role of IKKα in various inflammatory-based conditions will be advanced using these pharmacological agents.
Collapse
Affiliation(s)
- Christopher Riley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Usama Ammar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Aisha Alsfouk
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nahoum G. Anthony
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Jessica Baiget
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Giacomo Berretta
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - David Breen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Judith Huggan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Christopher Lawson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kathryn McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Louise C. Young
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
4
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
5
|
Bosso G, Cintra Herpst AC, Laguía O, Adetchessi S, Serrano R, Blasco MA. Differential contribution for ERK1 and ERK2 kinases in BRAF V600E-triggered phenotypes in adult mouse models. Cell Death Differ 2024; 31:804-819. [PMID: 38698060 PMCID: PMC11165013 DOI: 10.1038/s41418-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The BRAF gene is mutated in a plethora of human cancers. The majority of such molecular lesions result in the expression of a constitutively active BRAF variant (BRAFV600E) which continuously bolsters cell proliferation. Although we recently addressed the early effects triggered by BRAFV600E-activation, the specific contribution of ERK1 and ERK2 in BRAFV600E-driven responses in vivo has never been explored. Here we describe the first murine model suitable for genetically dissecting the ERK1/ERK2 impact in multiple phenotypes induced by ubiquitous BRAFV600E-expression. We unveil that ERK1 is dispensable for BRAFV600E-dependent lifespan shortening and for BRAFV600E-driven tumor growth. We show that BRAFV600E-expression provokes an ERK1-independent lymphocyte depletion which does not rely on p21CIP1-induced cell cycle arrest and is unresponsive to ERK-chemical inhibition. Moreover, we also reveal that ERK1 is dispensable for BRAFV600E-triggered cytotoxicity in lungs and that ERK-chemical inhibition abrogates some of these detrimental effects, such as DNA damage, in Club cells but not in pulmonary lymphocytes. Our data suggest that ERK1/ERK2 contribution to BRAFV600E-driven phenotypes is dynamic and varies dependently on cell type, the biological function, and the level of ERK-pathway activation. Our findings also provide useful insights into the comprehension of BRAFV600E-driven malignancies pathophysiology as well as the consequences in vivo of novel ERK pathway-targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Ana Carolina Cintra Herpst
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Oscar Laguía
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Sarah Adetchessi
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
6
|
Tang J, Lam GT, Brooks RD, Miles M, Useckaite Z, Johnson IR, Ung BSY, Martini C, Karageorgos L, Hickey SM, Selemidis S, Hopkins AM, Rowland A, Vather R, O'Leary JJ, Brooks DA, Caruso MC, Logan JM. Exploring the role of sporadic BRAF and KRAS mutations during colorectal cancer pathogenesis: A spotlight on the contribution of the endosome-lysosome system. Cancer Lett 2024; 585:216639. [PMID: 38290660 DOI: 10.1016/j.canlet.2024.216639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
The highly heterogenous nature of colorectal cancer can significantly hinder its early and accurate diagnosis, eventually contributing to high mortality rates. The adenoma-carcinoma sequence and serrated polyp-carcinoma sequence are the two most common sequences in sporadic colorectal cancer. Genetic alterations in adenomatous polyposis coli (APC), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and tumour protein 53 (TP53) genes are critical in adenoma-carcinoma sequence, whereas v-Raf murine sarcoma viral oncogene homolog B (BRAF) and MutL Homolog1 (MLH1) are driving oncogenes in the serrated polyp-carcinoma sequence. Sporadic mutations in these genes contribute differently to colorectal cancer pathogenesis by introducing distinct alterations in several signalling pathways that rely on the endosome-lysosome system. Unsurprisingly, the endosome-lysosome system plays a pivotal role in the hallmarks of cancer and contributes to specialised colon function. Thus, the endosome-lysosome system might be distinctively influenced by different mutations and these alterations may contribute to the heterogenous nature of sporadic colorectal cancer. This review highlights potential connections between major sporadic colorectal cancer mutations and the diverse pathogenic mechanisms driven by the endosome-lysosome system in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Jingying Tang
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Giang T Lam
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Robert D Brooks
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Mark Miles
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Vic, Australia
| | - Zivile Useckaite
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Ian Rd Johnson
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Ben S-Y Ung
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Carmela Martini
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Litsa Karageorgos
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Shane M Hickey
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, Melbourne, Vic, Australia
| | - Ashley M Hopkins
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Andrew Rowland
- College of Medicine and Public Health, Flinders University, Flinders Drive, Bedford Park, Adelaide, SA, Australia
| | - Ryash Vather
- Colorectal Unit, Department of Surgery, Royal Adelaide Hospital, Adelaide, South Australia, Australia; Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - Douglas A Brooks
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Maria C Caruso
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia
| | - Jessica M Logan
- Clinical and Health Sciences, University of South Australia, North Terrace, Adelaide, South Australia, Australia.
| |
Collapse
|
7
|
Pecharromán I, Solé L, Álvarez‐Villanueva D, Lobo‐Jarne T, Alonso‐Marañón J, Bertran J, Guillén Y, Montoto Á, Martínez‐Iniesta M, García‐Hernández V, Giménez G, Salazar R, Santos C, Garrido M, Borràs E, Sabidó E, Bonfill‐Teixidor E, Iurlaro R, Seoane J, Villanueva A, Iglesias M, Bigas A, Espinosa L. IκB kinase-α coordinates BRD4 and JAK/STAT signaling to subvert DNA damage-based anticancer therapy. EMBO J 2023; 42:e114719. [PMID: 37737566 PMCID: PMC10620764 DOI: 10.15252/embj.2023114719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.
Collapse
Affiliation(s)
- Irene Pecharromán
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Laura Solé
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Daniel Álvarez‐Villanueva
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Teresa Lobo‐Jarne
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Josune Alonso‐Marañón
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Joan Bertran
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Faculty of Science and TechnologyUniversity of Vic – Central University of CataloniaVicSpain
| | - Yolanda Guillén
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ángela Montoto
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - María Martínez‐Iniesta
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Violeta García‐Hernández
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Gemma Giménez
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Marta Garrido
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Ester Bonfill‐Teixidor
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Raffaella Iurlaro
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
- Xenopat S.L., Parc Cientific de Barcelona (PCB)BarcelonaSpain
| | - Mar Iglesias
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONCUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Josep Carreras Leukemia Research InstituteBadalonaSpain
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| |
Collapse
|
8
|
Gao J, Zhu L. IKKα kinase silencing increases doxorubicin-induced apoptosis through regulation of oxidative DNA damage response in colon cancer cells. Chem Biol Drug Des 2022; 101:1089-1095. [PMID: 36515432 DOI: 10.1111/cbdd.14191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
The inhibitor of kappa B kinase alpha (IKKα) is demonstrated to be involved in the various aspects of cancer biology, from its initiation, to progression, metastasis, and drug resistance. The aim of this study was to investigate the role of IKKα in doxorubicin (DOX)-mediated induction in apoptosis in SW-480 colon cancer cells. Cells were transfected with siRNA against IKKα and treated with DOX. MTT assay was applied to measure SW-480 cell proliferation. The mRNA levels of γ-H2AX within cells were assessed by qRT-PCR. 8-Hydroxy-2'-deoxyguanosine was measured by ELISA. The formation of intracellular reactive oxygen species (ROS) was detected by fluorometry. The antioxidant activities of some enzymes were also determined. For evaluation of apoptosis, ELISA assay was applied. IKKα silencing dramatically increased the doxorubicin cytotoxic effects. In addition, IKKα silencing substantially overexpressed γ-H2AX in SW-480 cells. Furthermore, upon IKKα silencing, the levels of ROS were elevated and the antioxidant defense system was significantly weakened. In addition, IKKα silencing led to the enhancement of apoptotic cells in doxorubicin-treated SW-480 cells. Co-treatment of IKKα and doxorubicin led to the enhanced cellular cytotoxicity via robosting ROS formation, inducing oxidative DNA damage, and decreasing cellular antioxidant defense, and finally potent apoptosis induction in cancer cell lines.
Collapse
Affiliation(s)
- Jianen Gao
- Department of Proctology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Lei Zhu
- Department of Pharmacy, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, The First people's Hospital of Yancheng, Yancheng, China
| |
Collapse
|
9
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
10
|
Patel M, Pennel KAF, Quinn JA, Hood H, Chang DK, Biankin AV, Rebus S, Roseweir AK, Park JH, Horgan PG, McMillan DC, Edwards J. Spatial expression of IKK-alpha is associated with a differential mutational landscape and survival in primary colorectal cancer. Br J Cancer 2022; 126:1704-1714. [PMID: 35173303 PMCID: PMC9174220 DOI: 10.1038/s41416-022-01729-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To understand the relationship between key non-canonical NF-κB kinase IKK-alpha(α), tumour mutational profile and survival in primary colorectal cancer. METHODS Immunohistochemical expression of IKKα was assessed in a cohort of 1030 patients who had undergone surgery for colorectal cancer using immunohistochemistry. Mutational tumour profile was examined using a customised gene panel. Immunofluorescence was used to identify the cellular location of punctate IKKα expression. RESULTS Two patterns of IKKα expression were observed; firstly, in the tumour cell cytoplasm and secondly as discrete 'punctate' areas in a juxtanuclear position. Although cytoplasmic expression of IKKα was not associated with survival, high 'punctate' IKKα expression was associated with significantly reduced cancer-specific survival on multivariate analysis. High punctate expression of IKKα was associated with mutations in KRAS and PDGFRA. Dual immunofluorescence suggested punctate IKKα expression was co-located with the Golgi apparatus. CONCLUSIONS These results suggest the spatial expression of IKKα is a potential biomarker in colorectal cancer. This is associated with a differential mutational profile highlighting possible distinct signalling roles for IKKα in the context of colorectal cancer as well as potential implications for future treatment strategies using IKKα inhibitors.
Collapse
Affiliation(s)
- Meera Patel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Kathryn A F Pennel
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hannah Hood
- School of Medicine, Wolfson Medical School Building, University of Glasgow, Glasgow, UK
| | - David K Chang
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Antonia K Roseweir
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
12
|
Combination of chemotherapy with BRAF inhibitors results in effective eradication of malignant melanoma by preventing ATM-dependent DNA repair. Oncogene 2021; 40:5042-5048. [PMID: 34140639 DOI: 10.1038/s41388-021-01879-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023]
Abstract
Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy in advanced stages. Chemotherapy has not demonstrated its efficacy in MM and current treatment for tumors carrying the most frequent BRAFV600E mutation consists of BRAF inhibitors alone or in combination with MAPK pathway inhibitors. We previously found that BRAF inhibition prevents activation of the DNA-damage repair (DDR) pathway in colorectal cancer thus potentiating the effect of chemotherapy. We now show that different chemotherapy agents inflict DNA damage in MM cells, which is efficiently repaired, associated with activation of the ATM-dependent DDR machinery. Pharmacologic inhibition of BRAF impairs ATM and DDR activation in these cells, leading to sustained DNA damage. Combination treatments involving DNA-damaging agents and BRAF inhibitors increase tumor cell death in vitro and in vivo, and impede MM regrowth after treatment cessation. We propose to reconsider the use of chemotherapy in combination with BRAF inhibitors for MM treatment.
Collapse
|
13
|
Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, Ye L, Ren G, Xiang T. Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Am J Cancer Res 2021; 11:5214-5231. [PMID: 33859743 PMCID: PMC8039962 DOI: 10.7150/thno.58322] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Breast cancer (BrCa) is the most common cancer worldwide, and the 5-year relative survival rate has declined in patients diagnosed at stage IV. Advanced BrCa is considered as incurable, which still lack effective treatment strategies. Identifying and characterizing new tumor suppression genes is important to establish effective prognostic biomarkers or therapeutic targets for late-stage BrCa. Methods: RNA-seq was applied in BrCa tissues and normal breast tissues. Through analyzing differentially expressed genes, DRD2 was selected for further analysis. And expression and promoter methylation status of DRD2 were also determined. DRD2 functions were analyzed by various cell biology assays in vitro. Subcutaneous tumor model was used to explore DRD2 effects in vivo. A co-cultivated system was constructed to investigate interactions of DRD2 and macrophages in vitro. WB, IHC, IF, TUNEL, qRT-PCR, Co-IP, Antibody Array, and Mass Spectrum analysis were further applied to determine the detailed mechanism. Results: In BrCa, DRD2 was found to be downregulated due to promoter methylation. Higher expression of DRD2 positively correlated with longer survival times especially in HER2-positive patients. DRD2 also promoted BrCa cells sensitivity to Paclitaxel. Ectopic expression of DRD2 significantly inhibited BrCa tumorigenesis. DRD2 also induced apoptosis as well as necroptosis in vitro and in vivo. DRD2 restricted NF-κB signaling pathway activation through interacting with β-arrestin2, DDX5 and eEF1A2. Interestingly, DRD2 also regulated microenvironment as it facilitated M1 polarization of macrophages, and triggered GSDME-executed pyroptosis. Conclusion: Collectively, this study novelly manifests the role of DRD2 in suppressing BrCa tumorigenesis, predicting prognosis and treatment response. And this study further reveals the critical role of DRD2 in educating M1 macrophages, restricting NF-κB signaling pathway and triggering different processes of programmed cell death in BrCa. Taking together, those findings represent a predictive and therapeutic target for BrCa.
Collapse
|
14
|
Quinn JA, Bennett L, Patel M, Frixou M, Park JH, Roseweir A, Horgan PG, McMillan DC, Edwards J. The relationship between members of the canonical NF-kB pathway, tumour microenvironment and cancer specific survival in colorectal cancer patients. Histol Histopathol 2019; 35:569-578. [PMID: 31592535 DOI: 10.14670/hh-18-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to investigate the role of the upstream kinase TAK1 and the canonical NF-κB pathway colorectal in cancer (CRC). Immunohistochemistry was used to assess the expression of TAK1/pTAK1 and canonical NF-κB pathway members in a tissue microarray of 242 patients. The relationship between expression, the tumour microenvironment and cancer-specific survival were examined. RESULTS All the investigated members of the pathway were expressed in CRC tissue. In addition, cytoplasmic pTAK1 was associated with the tumour microenvironment (P=0.045) and cancer-specific survival (CSS) (P=0.032). When cytoplasmic pTAK1 was stratified by BRAF status, cytoplasmic pTAK1 expression association with CSS was strengthened (P=0.014). Cytoplasmic IKKβ was significantly associated with the inflammatory cell infiltrate (P=0.015) as graded by Klintrup Makinen grade, systemic inflammation as assessed by neutrophil-lymphocyte ratio (P=0.03) and CSS (P=0.046). On multivariate analysis cytoplasmic IKKβ was independently associated with CSS (HR 1.75,95%CI 1.05-2.91, P=0.033). CONCLUSION Cytoplasmic pTAK1 was significantly associated with CSS and this was enhanced in patients with tumours that expressed wild type BRAF. High expression of cytoplasmic IKKβ was significantly associated with decreased CSS and with markers of the tumour microenvironment. These results support the hypothesis that NF-κB pathway members are poor prognostic markers in patients with CRC, but this requires to be validated in a large independent cohort.
Collapse
Affiliation(s)
- Jean A Quinn
- School of Medicine, University of Glasgow, Glasgow, United Kingdom. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lindsay Bennett
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Meera Patel
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Mikaela Frixou
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - James H Park
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Antonia Roseweir
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul G Horgan
- School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
Harrington BS, Annunziata CM. NF-κB Signaling in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11081182. [PMID: 31443240 PMCID: PMC6721592 DOI: 10.3390/cancers11081182] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
The NF-κB signaling pathway is a master and commander in ovarian cancer (OC) that promotes chemoresistance, cancer stem cell maintenance, metastasis and immune evasion. Many signaling pathways are dysregulated in OC and can activate NF-κB signaling through canonical or non-canonical pathways which have both overlapping and distinct roles in tumor progression. The activation of canonical NF-κB signaling has been well established for anti-apoptotic and immunomodulatory functions in response to the tumor microenvironment and the non-canonical pathway in cancer stem cell maintenance and tumor re-initiation. NF-κB activity in OC cells helps to create an immune-evasive environment and to attract infiltrating immune cells with tumor-promoting phenotypes, which in turn, drive constitutive NF-κB activation in OC cells to promote cell survival and metastasis. For these reasons, NF-κB is an attractive target in OC, but current strategies are limited and broad inhibition of this major signaling pathway in normal physiological and immunological functions may produce unwanted side effects. There are some promising pre-clinical outcomes from developing research to target and inhibit NF-κB only in the tumor-reinitiating cancer cell population of OC and concurrently activate canonical NF-κB signaling in immune cells to promote anti-tumor immunity.
Collapse
|
16
|
Colomer C, Margalef P, Villanueva A, Vert A, Pecharroman I, Solé L, González-Farré M, Alonso J, Montagut C, Martinez-Iniesta M, Bertran J, Borràs E, Iglesias M, Sabidó E, Bigas A, Boulton SJ, Espinosa L. IKKα Kinase Regulates the DNA Damage Response and Drives Chemo-resistance in Cancer. Mol Cell 2019; 75:669-682.e5. [PMID: 31302002 PMCID: PMC6715775 DOI: 10.1016/j.molcel.2019.05.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/13/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Phosphorylated IKKα(p45) is a nuclear active form of the IKKα kinase that is induced by the MAP kinases BRAF and TAK1 and promotes tumor growth independent of canonical NF-κB signaling. Insights into the sources of IKKα(p45) activation and its downstream substrates in the nucleus remain to be defined. Here, we discover that IKKα(p45) is rapidly activated by DNA damage independent of ATM-ATR, but dependent on BRAF-TAK1-p38-MAPK, and is required for robust ATM activation and efficient DNA repair. Abolishing BRAF or IKKα activity attenuates ATM, Chk1, MDC1, Kap1, and 53BP1 phosphorylation, compromises 53BP1 and RIF1 co-recruitment to sites of DNA lesions, and inhibits 53BP1-dependent fusion of dysfunctional telomeres. Furthermore, IKKα or BRAF inhibition synergistically enhances the therapeutic potential of 5-FU and irinotecan to eradicate chemotherapy-resistant metastatic human tumors in vivo. Our results implicate BRAF and IKKα kinases in the DDR and reveal a combination strategy for cancer treatment.
Collapse
Affiliation(s)
- Carlota Colomer
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Pol Margalef
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain; DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Alberto Villanueva
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Institut Català d'Oncologia, Hospitalet, Barcelona 08907, Spain
| | - Anna Vert
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Irene Pecharroman
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Laura Solé
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Mónica González-Farré
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONC, Universitat Autònoma de Barcelona, Barcelona 08003, Spain
| | - Josune Alonso
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Clara Montagut
- Department of Oncology, Institut Mar d'Investigacions Mèdiques, Universitat Pompeu Fabra, CIBERONC, Barcelona 08003, Spain
| | - Maria Martinez-Iniesta
- Translational Research Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Institut Català d'Oncologia, Hospitalet, Barcelona 08907, Spain
| | - Joan Bertran
- Faculty of Science and Technology, Bioinformatics and Medical Statistics Group, University of Vic-Central University of Catalonia, Vic 08500, Spain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Mar Iglesias
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONC, Universitat Autònoma de Barcelona, Barcelona 08003, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain; Proteomics Unit, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONC, Hospital del Mar, Doctor Aiguader 88, Barcelona 08003, Spain.
| |
Collapse
|
17
|
Abstract
The global burden of chronic kidney disease will increase during the next century. As NFκB, first described more than 30 years ago, plays a major role in immune and non-immune-mediated diseases and in inflammatory and metabolic disorders, this review article summarizes current knowledge on the role of NFκB in in vivo kidney injury and describes the new and so far not completely understood crosstalk between canonical and non-canonical NFκB pathways in T-lymphocyte activation in renal disease.
Collapse
Affiliation(s)
- Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Paul A, Edwards J, Pepper C, Mackay S. Inhibitory-κB Kinase (IKK) α and Nuclear Factor-κB (NFκB)-Inducing Kinase (NIK) as Anti-Cancer Drug Targets. Cells 2018; 7:E176. [PMID: 30347849 PMCID: PMC6210445 DOI: 10.3390/cells7100176] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular kinases inhibitory-κB kinase (IKK) α and Nuclear Factor-κB (NF-κB)-inducing kinase (NIK) are well recognised as key central regulators and drivers of the non-canonical NF-κB cascade and as such dictate the initiation and development of defined transcriptional responses associated with the liberation of p52-RelB and p52-p52 NF-κB dimer complexes. Whilst these kinases and downstream NF-κB complexes transduce pro-inflammatory and growth stimulating signals that contribute to major cellular processes, they also play a key role in the pathogenesis of a number of inflammatory-based conditions and diverse cancer types, which for the latter may be a result of background mutational status. IKKα and NIK, therefore, represent attractive targets for pharmacological intervention. Here, specifically in the cancer setting, we reflect on the potential pathophysiological role(s) of each of these kinases, their associated downstream signalling outcomes and the stimulatory and mutational mechanisms leading to their increased activation. We also consider the downstream coordination of transcriptional events and phenotypic outcomes illustrative of key cancer 'Hallmarks' that are now increasingly perceived to be due to the coordinated recruitment of both NF-κB-dependent as well as NF-κB⁻independent signalling. Furthermore, as these kinases regulate the transition from hormone-dependent to hormone-independent growth in defined tumour subsets, potential tumour reactivation and major cytokine and chemokine species that may have significant bearing upon tumour-stromal communication and tumour microenvironment it reiterates their potential to be drug targets. Therefore, with the emergence of small molecule kinase inhibitors targeting each of these kinases, we consider medicinal chemistry efforts to date and those evolving that may contribute to the development of viable pharmacological intervention strategies to target a variety of tumour types.
Collapse
Affiliation(s)
- Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK.
| | - Christopher Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK.
| | - Simon Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0NR, UK.
| |
Collapse
|
19
|
NF-κB pathways in the development and progression of colorectal cancer. Transl Res 2018; 197:43-56. [PMID: 29550444 DOI: 10.1016/j.trsl.2018.02.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Nuclear factor-κB (NF-κB) has been widely implicated in the development and progression of cancer. In colorectal cancer (CRC), NF-κB has a key role in cancer-related processes such as cell proliferation, apoptosis, angiogenesis, and metastasis. The role of NF-κB in CRC is complex, owed to the cross talk with other signaling pathways. Although there is sufficient evidence gained from cell lines and animal models that NF-κB is involved in cancer-related processes, because of a lack of studies in human tissue, the clinical evidence of its importance is limited in patients with CRC. This review summarizes evidence relating to how NF-κB is involved in the development and progression of CRC and comments on future work to be carried out.
Collapse
|
20
|
Targeting IκappaB kinases for cancer therapy. Semin Cancer Biol 2018; 56:12-24. [PMID: 29486318 DOI: 10.1016/j.semcancer.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
The inhibitory kappa B kinases (IKKs) and IKK related kinases are crucial regulators of the pro-inflammatory transcription factor, nuclear factor kappa B (NF-κB). The dysregulation in the activities of these kinases has been reported in several cancer types. These kinases are known to regulate survival, proliferation, invasion, angiogenesis, and metastasis of cancer cells. Thus, IKK and IKK related kinases have emerged as an attractive target for the development of cancer therapeutics. Several IKK inhibitors have been developed, few of which have advanced to the clinic. These inhibitors target IKK either directly or indirectly by modulating the activities of other signaling molecules. Some inhibitors suppress IKK activity by disrupting the protein-protein interaction in the IKK complex. The inhibition of IKK has also been shown to enhance the efficacy of conventional chemotherapeutic agents. Because IKK and NF-κB are the key components of innate immunity, suppressing IKK is associated with the risk of immune suppression. Furthermore, IKK inhibitors may hit other signaling molecules and thus may produce off-target effects. Recent studies suggest that multiple cytoplasmic and nuclear proteins distinct from NF-κB and inhibitory κB are also substrates of IKK. In this review, we discuss the utility of IKK inhibitors for cancer therapy. The limitations associated with the intervention of IKK are also discussed.
Collapse
|
21
|
Gallardo F, Bertran J, López-Arribillaga E, González J, Menéndez S, Sánchez I, Colomo L, Iglesias M, Garrido M, Santamaría-Babí LF, Torres F, Pujol RM, Bigas A, Espinosa L. Novel phosphorylated TAK1 species with functional impact on NF-κB and β-catenin signaling in human Cutaneous T-cell lymphoma. Leukemia 2018; 32:2211-2223. [PMID: 29511289 PMCID: PMC6170395 DOI: 10.1038/s41375-018-0066-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/12/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent different subtypes of lymphoproliferative disorders with no curative therapies for the advanced forms of the disease (namely mycosis fungoides and the leukemic variant, Sézary syndrome). Molecular events leading to CTCL progression are heterogeneous, however recent DNA and RNA sequencing studies highlighted the importance of NF-κB and β-catenin pathways. We here show that the kinase TAK1, known as essential in B-cell lymphoma, is constitutively activated in CTCL cells, but tempered by the MYPT1/PP1 phosphatase complex. Blocking PP1 activity, both pharmacologically and genetically, resulted in TAK1 hyperphosphorylation at residues T344, S389, T444, and T511, which have functional impact on canonical NF-κB signaling. Inhibition of TAK1 precluded NF-κB and β-catenin signaling and induced apoptosis of CTCL cell lines and primary Sézary syndrome cells both in vitro and in vivo. Detection of phosphorylated TAK1 at T444 and T344 is associated with the presence of lymphoma in a set of 60 primary human samples correlating with NF-κB and β-catenin activation. These results identified TAK1 as a potential biomarker and therapeutic target for CTCL therapy.
Collapse
Affiliation(s)
- Fernando Gallardo
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Joan Bertran
- Faculty of Sciences and Technology, Bioinformatics and Medical Statistics Group, University of Vic - Central University of Catalonia, 08500, Vic, Spain
| | - Erika López-Arribillaga
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Jéssica González
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Silvia Menéndez
- Molecular Therapy of Cancer Group, Parc de Salut Mar-Hospital del Mar, 08003, Barcelona, Spain
| | - Ignacio Sánchez
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Luis Colomo
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Pathology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Marta Garrido
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain
| | - Luis Francisco Santamaría-Babí
- Translational Immunology, Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Ferran Torres
- Biostatistics and Data Management Platform, IDIBAPS, Hospital Clínic, Biostatistics Unit. Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon M Pujol
- Dermatology Department, Parc de Salut Mar-Hospital del Mar, Barcelona, Spain
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain.
| | - Lluís Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC, Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003, Barcelona, Spain.
| |
Collapse
|
22
|
An J, Wu M, Xin X, Lin Z, Li X, Zheng Q, Gui X, Li T, Pu H, Li H, Lu D. Inflammatory related gene IKKα, IKKβ, IKKγ cooperates to determine liver cancer stem cells progression by altering telomere via heterochromatin protein 1-HOTAIR axis. Oncotarget 2018; 7:50131-50149. [PMID: 27367027 PMCID: PMC5226573 DOI: 10.18632/oncotarget.10321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are associated with tumor recurrence. IKK is a protein kinase that is composed of IKKα, IKKβ, IKKγ. Herein, we demonstrate that IKKα plus IKKβ promoted and IKKγ inhibited liver cancer stem cell growth in vitro and in vivo. Mechanistically, IKKα plus IKKβ enhanced and IKKγ inhibited the interplay among HP1α, HP1β and HP1γ that competes for the interaction among HP1α, SUZ12, HEZ2. Therefore, IKKα plus IKKβ inhibited and IKKγ enhanced the activity of H3K27 methyltransferase SUZ12 and EZH2, which methylates H3K27 immediately sites on HOTAIR promoter region. Therefore, IKKα plus IKKβ increased and IKKγ decreased the HOTAIR expression. Strikingly, IKKα plus IKKβ decreases and IKKγ increases the HP1α interplays with DNA methyltransferase DNMT3b, which increases or decreases TERRA promoter DNA methylation. Thus IKKα plus IKKβ reduces and IKKγ increases to recruit TRF1 and RNA polymerase II deposition and elongation on the TERRA promoter locus, which increases or decreases TERRA expression. Furthermore, IKKα plus IKKβ decreases/increases and IKKγ increases/decreases the interplay between TERT and TRRRA/between TERT and TREC. Ultimately, IKKα plus IKKβ increases and IKKγ decreases the telomerase activity. On the other hand, at the telomere locus, IKKα plus IKKβ increases/drcreases and IKKγ decreases/increases TRF2, POT1, pPOT1, Exo1, pExo1, SNM1B, pSNM1B/CST-AAF binding, which keep active telomere regulatory genes and poised for telomere length. Strikingly, HOTAIR is required for IKKα plus IKKβ and IKKγ to control telomerase activity and telomere length. These observations suggest that HOTAIR operates the action of IKKα, IKKβ, IKKγ in liver cancer stem cells. This study provides a novel basis to elucidate the oncogenic action of IKKα, IKKβ, IKKγ and prompts that IKKα, IKKβ, IKKγ cooperate to HOTAR to be used as a novel therapeutic targets for liver cancer.
Collapse
Affiliation(s)
- Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
23
|
IKKα is required in the intestinal epithelial cells for tumour stemness. Br J Cancer 2018; 118:839-846. [PMID: 29438366 PMCID: PMC5877427 DOI: 10.1038/bjc.2017.459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Colorectal cancer is a common cause of death in developed countries. Progression from adenoma to invasive carcinoma requires accumulation of mutations starting with the Adenomatous Polyposis Coli (Apc) gene. NF-κB signalling is a key element in cancer, mainly related to the activity of IKKβ. IKKα kinase also participates in this process by mechanisms that are primarily unknown. Methods: We generated a compound mouse model with mutation in Apc and lacking intestinal epithelial IKKα, produced intestinal organoids and tumour spheroids with different genetic backgrounds, and performed immunohistochemistry and RNA-seq analysis. Results: Deficiency of IKKα prevents adenoma formation, with adenomas lacking IKKα showing reduced proliferation. In contrast, IKKα status did not affect normal intestinal function. The same divergent phenotype was found in the organoid–spheroid model. We also found that epithelial IKKα controls stemness, proliferation and apoptosis-related expression. Conclusions: IKKα is a potential therapeutic target for Apc mutant colorectal cancer patients.
Collapse
|
24
|
Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB Members Left Home: NF-κB-Independent Roles in Cancer. Biomedicines 2017; 5:biomedicines5020026. [PMID: 28587092 PMCID: PMC5489812 DOI: 10.3390/biomedicines5020026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Nuclear factor-κB (NF-κB) has been long considered a master regulator of inflammation and immune responses. Additionally, aberrant NF-κB signaling has been linked with carcinogenesis in many types of cancer. In recent years, the study of NF-κB members in NF-κB unrelated pathways provided novel attractive targets for cancer therapy, specifically linked to particular pathologic responses. Here we review specific functions of IκB kinase complexes (IKKs) and IκBs, which have distinctly tumor promoting or suppressing activities in cancer. Understanding how these proteins are regulated in a tumor-related context will provide new opportunities for drug development.
Collapse
Affiliation(s)
- Carlota Colomer
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Laura Marruecos
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Vert
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Anna Bigas
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| | - Lluis Espinosa
- Stem Cells and Cancer Research Laboratory, CIBERONC. Institut Hospital del Mar Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain.
| |
Collapse
|
25
|
Bennett L, Quinn J, McCall P, Mallon EA, Horgan PG, McMillan DC, Paul A, Edwards J. High IKKα expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer. Int J Cancer 2017; 140:1633-1644. [PMID: 28006839 DOI: 10.1002/ijc.30578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/11/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
The aim of our study was to examine the relationship between tumour IKKα expression and breast cancer recurrence and survival. Immunohistochemistry was employed in a discovery and a validation tissue microarray to assess the association of tumour IKKα expression and clinico-pathological characteristics. After siRNA-mediated silencing of IKKα, cell viability and apoptosis were assessed in MCF7 and MDA-MB-231 breast cancer cells. In both the discovery and validation cohorts, associations observed between IKKα and clinical outcome measures were potentiated in oestrogen receptor (ER) positive Luminal A tumours. In the discovery cohort, cytoplasmic IKKα was associated with disease-free survival (p = 0.029) and recurrence-free survival on tamoxifen (p < 0.001) in Luminal A tumours. Nuclear IKKα and a combination of cytoplasmic and nuclear IKKα (total tumour cell IKKα) were associated with cancer-specific survival (p = 0.012 and p = 0.007, respectively) and recurrence-free survival on tamoxifen (p = 0.013 and p < 0.001, respectively) in Luminal A tumours. In the validation cohort, cytoplasmic IKKα was associated with cancer-specific survival (p = 0.023), disease-free survival (p = 0.002) and recurrence-free survival on tamoxifen (p = 0.009) in Luminal A tumours. Parallel experiment with breast cancer cells in vitro demonstrated the non-canonical NF-κB pathway was inducible by exposure to lymphotoxin in ER-positive MCF7 cells and not in ER-negative MDA-MB-231 cells. Reduction in IKKα expression by siRNA transfection increased levels of apoptosis and reduced cell viability in MCF7 but not in MDA-MB-231 cells. IKKα is an important determinant of poor outcome in patients with ER-positive invasive ductal breast cancer and thus may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Lindsay Bennett
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jean Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pamela McCall
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Elizabeth A Mallon
- Department of Pathology, Southern General Hospital, Glasgow, Scotland, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
26
|
Espinosa L. Endosomal acidification inhibitors for the treatment of BRAF mutant tumors. Mol Cell Oncol 2016; 3:e1062073. [PMID: 27308590 PMCID: PMC4905373 DOI: 10.1080/23723556.2015.1062073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 06/06/2023]
Abstract
Mutations in KRAS and BRAF genes are commonly found in several types of cancer associated with poor prognosis and therapy resistance. We have identified phosphorylated p45-IKKα as an essential mediator of BRAF-induced tumorigenesis. Importantly, endosomal acidification inhibitors preclude phosphorylation of p45-IKKα and abolish the metastatic capacity of BRAF mutant cancer cells.
Collapse
Affiliation(s)
- Lluís Espinosa
- Institut Hospital del Mar d'Investigacions Mediques, Barcelona, Spain
| |
Collapse
|
27
|
Stasyk T, Huber LA. Spatio-Temporal Parameters of Endosomal Signaling in Cancer: Implications for New Treatment Options. J Cell Biochem 2015; 117:836-43. [PMID: 26506511 PMCID: PMC4949996 DOI: 10.1002/jcb.25418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 02/03/2023]
Abstract
The endo/lysosomal system in cells provides membranous platforms to assemble specific signaling complexes and to terminate signal transduction, thus, is essential for physiological signaling. Endocytic organelles can significantly extend signaling of activated cell surface receptors, and may additionally provide distinct locations for the generation of specific signaling outputs. Failures of regulation at different levels of endocytosis, recycling, degradation as well as aberrations in specific endo/lysosomal signaling pathways, such as mTORC1, might lead to different diseases including cancer. Therefore, a better understanding of spatio‐temporal compartmentalization of sub‐cellular signaling might provide an opportunity to interfere with aberrant signal transduction in pathological processes by novel combinatorial therapeutic approaches. J. Cell. Biochem. 117: 836–843, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Taras Stasyk
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Austria
| | - Lukas A Huber
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Austria.,ADSI - Austrian Drug Screening Institute, Innsbruck, Austria
| |
Collapse
|