1
|
Kanai SM, Garcia CR, Augustus MR, Sharafeldeen SA, Brooks EP, Sucharov J, Lencer ES, Nichols JT, Clouthier DE. The Gq/11 family of Gα subunits is necessary and sufficient for lower jaw development. Development 2025; 152:dev204396. [PMID: 40171762 DOI: 10.1242/dev.204396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Vertebrate jaw development is coordinated by highly conserved ligand-receptor systems such as the peptide ligand Endothelin 1 (Edn1) and Endothelin receptor type A (Ednra), which are required for patterning of lower jaw structures. The Edn1/Ednra signaling pathway establishes the identity of lower jaw progenitor cells by regulating expression of numerous patterning genes, but the intracellular signaling mechanisms linking receptor activation to gene regulation remain poorly understood. As a first step towards elucidating this mechanism, we examined the function of the Gq/11 family of Gα subunits in zebrafish using pharmacological inhibition and genetic ablation of Gq/11 activity, and transgenic induction of a constitutively active Gq protein in edn1-/- embryos. Genetic loss of Gq/11 activity fully recapitulated the edn1-/- phenotype, with genes encoding G11 being most essential. Furthermore, inducing Gq activity in edn1-/- embryos not only restored Edn1/Ednra-dependent jaw structures and gene expression signatures but also caused homeosis of the upper jaw structure into a lower jaw-like structure. These results indicate that Gq/11 is necessary and sufficient to mediate the lower jaw patterning mechanism for Ednra in zebrafish.
Collapse
Affiliation(s)
- Stanley M Kanai
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Chloe R Garcia
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - MaCalia R Augustus
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Shujan A Sharafeldeen
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Elliott P Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - Ezra S Lencer
- Department of Biology, Lafayette College, Easton, PA 18042, USA
| | - James T Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| | - David E Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80108, USA
| |
Collapse
|
2
|
Ferreira PA. Personal essay of a rookie's journey with Bill Pak and his legacy: tales and perspectives on PI-PLC, NorpA and cyclophilin, NinaA - William L. Pak, PhD., 1932-2023: in memoriam. J Neurogenet 2024; 38:165-174. [PMID: 38913811 DOI: 10.1080/01677063.2024.2366455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
The neurogenetics and vision community recently mourned William L. Pak, PhD, whose pioneering work spearheaded the genetic, electrophysiological, and molecular bases of biological processes underpinning vision. This essay provides a historical background to the daunting challenges and personal experiences that carved the path to seminal findings. It also reflects on the intellectual framework, mentoring philosophy, and inspirational legacy of Bill Pak's research. An emphasis and perspectives are placed on the discoveries and implications to date of the phosphatidylinositol-specific phospholipase C (PI-PLC), NorpA, and the cyclophilin, NinaA of the fruit fly, Drosophila melanogaster, and their respective mammalian homologues, PI-PLCβ4, and cyclophilin-related protein, Ran-binding protein 2 (Ranbp2) in critical biological processes and diseases of photoreceptors and other neurons.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Ham H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, et alHam H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, Lenardo MJ, Su HC. Germline mutations in a G protein identify signaling cross-talk in T cells. Science 2024; 385:eadd8947. [PMID: 39298586 PMCID: PMC11811912 DOI: 10.1126/science.add8947] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Ian T. Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Megan M. Kober
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
| | - Yamina A. Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH; Bethesda, MD 20892, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Carlos R. Ferreira
- Skeletal Genomics Unit, Metabolic Medicine Branch, DIR, National Human Genome Research Institute (NHGRI), NIH; Bethesda, MD, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Peter J. Mustillo
- Nationwide Children’s Hospital; Columbus, OH, USA
- The Ohio State University College of Medicine; Columbus, OH, USA
| | - Juliana Teo
- Department of Haematology, The Children’s Hospital Westmead; Sydney, New South Wales, Australia
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U12045 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders; FHU-G4 Génomique, F-76000, Rouen, France
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
- Pediatric Immunology, University of Zurich; Zurich, Switzerland
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU); Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University; Kuwait City, Kuwait
- Department of Pediatrics, Al-Sabah Hospital; Kuwait City, Kuwait
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine and Health; Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München; Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich; Munich, Germany
| | - Paulien A. Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht; 3584EA Utrecht, the Netherlands
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Vincent Barlogis
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, EA 3279 Research Unit; Marseille, France
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals, NHS Foundation Trust; Headington, Oxford OX3 7HE, UK
| | - Petra Loid
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Boris Keren
- Genetic Departement, Assistance Publique - Hôpitaux de Paris.Sorbonne University; Paris, France
- SeqOIA Laboratory, FMG2025, Paris; France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center; Nijmegen, The Netherlands
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Katharina Vill
- LMU University Hospital I Department of Pediatrics I Division of Pediatric Neurology I MUC iSPZ Hauner - Munich University Center for Children with Medical and Developmental Complexity I Dr. von Hauner Children’s Hospital; Munich, Germany
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, USA
- Texas Children’s Hospital; Houston, Texas, USA
| | - Kenneth N. Olivier
- Pulmonary Branch, Division of Intramural Research, DIR, National Heart Lung and Blood Institute (NHLBI), NIH; Bethesda, MD, USA
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
| | - Melanie Wong
- Department of Allergy and Immunology, The Children’s Hospital at Westmead; Sydney, New South Wales, Australia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Maud Tusseau
- Genetics Department, Lyon University Hospital; Lyon, France
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL; Lyon, France
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, DIR, National Institute of Dental and Craniofacial Research (NIDCR), NIH; Bethesda, MD, USA
| | - Helen F. Matthews
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney; Sydney, NSW, Australia
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
| | - Ryan J. Taft
- Institute for Molecular Bioscience, University of Queensland; St. Lucia, Queensland, Australia
- Illumina, Inc, San Diego; CA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke (NINDS), NIH; Bethesda, MD, USA
| | - Etienne Masle-Farquhar
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney; Sydney, NSW, Australia
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH; Bethesda, MD, USA
| | - Robert Brink
- St Vincent’s Clinical School, UNSW; Sydney, NSW, Australia
- B cell Biology Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
| | - Danielle L. Fink
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH; Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Woo Sung Kim
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Kazuyuki Meguro
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH; Bethesda, MD, USA
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust; Oxford, Oxfordshire, UK
| | - Maria Slack
- Division of Allergy and Immunology, Department of Pediatrics, University of Rochester Medical Center and Golisano Children’s Hospital; Rochester, NY, USA
| | - Giampaolo Trivellin
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne; Dijon, France
| | - Maarja Soomann
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
| | - Samuel Li
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University; West Lafayette, IN, USA
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | | | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Marita Lipsanen-Nyman
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
| | - Paul Saultier
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, INSERM; INRAe, C2VN, Marseille, France
| | - Rashmi Jain
- Clinical Immunology, Oxford University Hospitals NHS Foundation Trust; Oxford, OX3 9DU, UK
| | - Daphne Lehalle
- AP-HP Sorbonne Université, UF de Génétique Clinique, Centre de Référence Maladies Rares des anomalies du développement et syndromes malformatifs, Hôpital Trousseau; Paris, France
| | - Daniel Torres
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Kathleen E. Sullivan
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Sébastien Barbarot
- Nantes Université, Department of Dermatology, CHU Nantes, INRAE; UMR 1280, PhAN, F-44000 Nantes, France
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Yannis Duffourd
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Morgan Similuk
- Centralized Sequencing Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | | | | | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Raif S. Geha
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
- Howard Hughes Medical Institute; New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children; Paris, France
| | - Outi M. Makitie
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1; Lyon, France
| | - John Christodoulou
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne; Melbourne, Australia
- Specialty of Child & Adolescent Health, University of Sydney; Sydney, Australia
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Christopher C. Goodnow
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute; Sydney, NSW, Australia
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics; Stockholm, Sweden
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University; 690090 Vladivostok, Russia
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Michael J. Lenardo
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
4
|
Kanai SM, Garcia CR, Augustus MR, Sharafeldeen SA, Brooks EP, Sucharov J, Lencer ES, Nichols JT, Clouthier DE. The Gq/11 family of Gα subunits is necessary and sufficient for lower jaw development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.611698. [PMID: 39345358 PMCID: PMC11430119 DOI: 10.1101/2024.09.17.611698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrate jaw development is coordinated by highly conserved ligand-receptor systems such as the peptide ligand Endothelin 1 (Edn1) and Endothelin receptor type A (Ednra), which are required for patterning of lower jaw structures. The Edn1/Ednra signaling pathway establishes the identity of lower jaw progenitor cells by regulating expression of numerous patterning genes, but the intracellular signaling mechanisms linking receptor activation to gene regulation remain poorly understood. As a first step towards elucidating this mechanism, we examined the function of the Gq/11 family of Gα subunits in zebrafish using pharmacological inhibition and genetic ablation of Gq/11 activity and transgenic induction of a constitutively active Gq protein in edn1 -/- embryos. Genetic loss of Gq/11 activity fully recapitulated the edn1 -/- phenotype, with genes encoding G11 being most essential. Furthermore, inducing Gq activity in edn1 -/- embryos not only restored Edn1/Ednra-dependent jaw structures and gene expression signatures but also caused homeosis of the upper jaw structure into a lower jaw-like structure. These results indicate that Gq/11 is necessary and sufficient to mediate the lower jaw patterning mechanism for Ednra in zebrafish.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Chloe R. Garcia
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - MaCalia R. Augustus
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Shujan A. Sharafeldeen
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Ezra S. Lencer
- Department of Biology, Lafayette College, Easton, PA USA
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - David E. Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
5
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
6
|
Roy S, Sinha S, Silas AJ, Ghassemian M, Kufareva I, Ghosh P. Growth factor-dependent phosphorylation of Gα i shapes canonical signaling by G protein-coupled receptors. Sci Signal 2024; 17:eade8041. [PMID: 38833528 PMCID: PMC11328959 DOI: 10.1126/scisignal.ade8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
A long-standing question in the field of signal transduction is how distinct signaling pathways interact with each other to control cell behavior. Growth factor receptors and G protein-coupled receptors (GPCRs) are the two major signaling hubs in eukaryotes. Given that the mechanisms by which they signal independently have been extensively characterized, we investigated how they may cross-talk with each other. Using linear ion trap mass spectrometry and cell-based biophysical, biochemical, and phenotypic assays, we found at least three distinct ways in which epidermal growth factor affected canonical G protein signaling by the Gi-coupled GPCR CXCR4 through the phosphorylation of Gαi. Phosphomimicking mutations in two residues in the αE helix of Gαi (tyrosine-154/tyrosine-155) suppressed agonist-induced Gαi activation while promoting constitutive Gβγ signaling. Phosphomimicking mutations in the P loop (serine-44, serine-47, and threonine-48) suppressed Gi activation entirely, thus completely segregating growth factor and GPCR pathways. As expected, most of the phosphorylation events appeared to affect intrinsic properties of Gαi proteins, including conformational stability, nucleotide binding, and the ability to associate with and to release Gβγ. However, one phosphomimicking mutation, targeting the carboxyl-terminal residue tyrosine-320, promoted mislocalization of Gαi from the plasma membrane, a previously uncharacterized mechanism of suppressing GPCR signaling through G protein subcellular compartmentalization. Together, these findings elucidate not only how growth factor and chemokine signals cross-talk through the phosphorylation-dependent modulation of Gαi but also how such cross-talk may generate signal diversity.
Collapse
Affiliation(s)
- Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Saptarshi Sinha
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Ananta James Silas
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
| | - Majid Ghassemian
- Department of Chemistry and Biochemistry, Biomolecular and Proteomics Mass Spectrometry Facility, University of California San Diego, San Diego, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, CA 92093, USA
- Moore’s Comprehensive Cancer Center, University of California San Diego, CA 92093, USA
| |
Collapse
|
7
|
Janicot R, Maziarz M, Park JC, Zhao J, Luebbers A, Green E, Philibert CE, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. Cell 2024; 187:1527-1546.e25. [PMID: 38412860 PMCID: PMC10947893 DOI: 10.1016/j.cell.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Eva Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Janicot R, Maziarz M, Park JC, Luebbers A, Green E, Zhao J, Philibert C, Zhang H, Layne MD, Wu JC, Garcia-Marcos M. Direct interrogation of context-dependent GPCR activity with a universal biosensor platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573921. [PMID: 38260348 PMCID: PMC10802303 DOI: 10.1101/2024.01.02.573921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Marcin Maziarz
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Elena Green
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jingyi Zhao
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Clementine Philibert
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mathew D. Layne
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Knight KM, Obarow EG, Wei W, Mani S, Esteller MI, Cui M, Ma N, Martin SA, Brinson E, Hewitt N, Soden GM, Logothetis DE, Vaidehi N, Dohlman HG. Molecular annotation of G protein variants in a neurological disorder. Cell Rep 2023; 42:113462. [PMID: 37980565 PMCID: PMC10872635 DOI: 10.1016/j.celrep.2023.113462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/04/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
Heterotrimeric G proteins transduce extracellular chemical messages to generate appropriate intracellular responses. Point mutations in GNAO1, encoding the G protein αo subunit, have been implicated in a pathogenic condition characterized by seizures, movement disorders, intellectual disability, and developmental delay (GNAO1 disorder). However, the effects of these mutations on G protein structure and function are unclear. Here, we report the effects of 55 mutations on Gαo conformation, thermostability, nucleotide binding, and hydrolysis, as well as interaction with Gβγ subunits, receptors, and effectors. Our effort reveals four functionally distinct groups of mutants, including one group that sequesters receptors and another that sequesters Gβγ, both acting in a genetically dominant manner. These findings provide a more comprehensive understanding of disease-relevant mutations and reveal that GNAO1 disorder is likely composed of multiple mechanistically distinct disorders that will likely require multiple therapeutic strategies.
Collapse
Affiliation(s)
- Kevin M Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth G Obarow
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wenyuan Wei
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sepehr Mani
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Maria I Esteller
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sarah A Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily Brinson
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaby M Soden
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | - Henrik G Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Kanai SM, Clouthier DE. Endothelin signaling in development. Development 2023; 150:dev201786. [PMID: 38078652 PMCID: PMC10753589 DOI: 10.1242/dev.201786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
El Fizazi K, Bouramtane A, Abbassi M, El Asri YA, Askander O, El Fahime M, Ouldim K, Ridal M, Bouguenouch L. A homozygous missense variant in the PLCB4 gene causes severe phenotype of auriculocondylar syndrome type 2. Am J Med Genet A 2023; 191:2673-2678. [PMID: 37596802 DOI: 10.1002/ajmg.a.63375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Auriculocondylar syndrome (ARCND) is a rare craniofacial birth defect characterized by malformations in the mandible and external ear (Question Mark Ear). Genetically, three distinct subtypes of ARCND (ARCND1, ARCND2, and ARCND3) have been identified. ARCND2 is linked to pathogenic variants in the PLCB4 gene (phospholipase C β4). PLCB4 is a key effector of the EDN1-EDNRA pathway involved in craniofacial development via the induction, migration, and maintenance of neural crest cells. ARCND2 is typically inherited in an autosomal dominant pattern, with recessive inheritance pattern being rare. In this study, we report the first homozygous missense variant (NM_000933.4: c.2050G>A: p.(Gly684Arg)) in the PLCB4 gene causing ARCND in a 3-year-old patient with a severe clinical phenotype of the syndrome. The patient presented with typical craniofacial ARCND features, in addition to intestinal transit defect, macropenis, and hearing loss. These findings further delineate the phenotypic spectrum of ARCND associated with autosomal recessive PLCB4 loss of function variants. Notably, our results provide further evidence that these variants can result in a more severe and diverse manifestations of the syndrome. Clinicians should consider the rare features of this condition for better management of patients.
Collapse
Affiliation(s)
- Khawla El Fizazi
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Abdelhamid Bouramtane
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Meriame Abbassi
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Yasser Ali El Asri
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Omar Askander
- Superior Institute of Biological and Paramedical Sciences, Faculty of Medical Sciences, Mohamed VI Polytechnic University, Benguerir, Morocco
| | - Mustapha El Fahime
- National Center for Scientific and Technological Research, Rabat, Morocco
| | - Karim Ouldim
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Mohammed Ridal
- Department of Otorhinolaryngology, Hassan II University Hospital, Fez, Morocco
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Anatomy, Microsurgery and Experimental Surgery, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| |
Collapse
|
12
|
Padhy AA, Mavor D, Sahoo S, Bolon DNA, Mishra P. Systematic profiling of dominant ubiquitin variants reveals key functional nodes contributing to evolutionary selection. Cell Rep 2023; 42:113064. [PMID: 37656625 DOI: 10.1016/j.celrep.2023.113064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Dominant-negative mutations can help to investigate the biological mechanisms and to understand the selective pressures for multifunctional proteins. However, most studies have focused on recessive mutant effects that occur in the absence of a second functional gene copy, which overlooks the fact that most eukaryotic genomes contain more than one copy of many genes. We have identified dominant effects on yeast growth rate among all possible point mutations in ubiquitin expressed alongside a wild-type allele. Our results reveal more than 400 dominant-negative mutations, indicating that dominant-negative effects make a sizable contribution to selection acting on ubiquitin. Cellular and biochemical analyses of individual ubiquitin variants show that dominant-negative effects are explained by varied accumulation of polyubiquitinated cellular proteins and/or defects in conjugation of ubiquitin variants to ubiquitin ligases. Our approach to identify dominant-negative mutations is general and can be applied to other proteins of interest.
Collapse
Affiliation(s)
- Amrita Arpita Padhy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - David Mavor
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Subhashree Sahoo
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Parul Mishra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Telangana 500046, India.
| |
Collapse
|
13
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
14
|
Janicot R, Park JC, Garcia-Marcos M. Detecting GPCR Signals With Optical Biosensors of Gα-GTP in Cell Lines and Primary Cell Cultures. Curr Protoc 2023; 3:e796. [PMID: 37310083 PMCID: PMC10266833 DOI: 10.1002/cpz1.796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors and mediate a wide variety of physiological processes. GPCRs respond to a plethora of extracellular ligands and initiate signaling pathways inside cells via heterotrimeric G proteins (Gαβγ). Because of the critical role GPCRs play in regulating biological processes and as pharmacological targets, the availability of tools to measure their signaling activity are of high interest. Live-cell biosensors that detect the activity of G proteins in response to GPCR stimulation have emerged as a powerful approach to investigate GPCR/G protein signaling. Here, we detail methods to monitor G protein activity through direct measurement of GTP-bound Gα subunits using optical biosensors based on bioluminescence resonance energy transfer (BRET). More specifically, this article describes the use of two types of complementary biosensors. The first protocol explains how to use a multicomponent BRET biosensor that relies on expression of exogenous G proteins in cell lines. This protocol yields robust responses that are compatible with endpoint measurements of dose-dependent ligand effects or with kinetic measurements of subsecond resolution. The second protocol describes the implementation of unimolecular biosensors that detect the activation of endogenous G proteins in cell lines expressing exogenous GPCRs or in primary cells upon stimulation of endogenous GPCRs. Overall, using the biosensors as described in this article will help users characterize the mechanisms of action of many pharmacological agents and natural ligands that modulate GPCR and G protein signaling with high precision. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Using bimolecular BRET biosensors to monitor Gα-GTP formation of tagged Gα in live cells Alternate Protocol 1: Measuring GPCR dose-dependent Gα-GTP responses in endpoint format Basic Protocol 2: Using unimolecular BRET biosensors to study endogenous G protein activity Alternate Protocol 2: Using unimolecular BRET biosensors to study endogenous G protein activity in mouse cortical neurons.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Jong-Chan Park
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts
- Department of Biology, Boston University College of Arts & Sciences, Boston, Massachusetts
| |
Collapse
|
15
|
Kurihara Y, Ekimoto T, Gordon CT, Uchijima Y, Sugiyama R, Kitazawa T, Iwase A, Kotani R, Asai R, Pingault V, Ikeguchi M, Amiel J, Kurihara H. Mandibulofacial dysostosis with alopecia results from ETAR gain-of-function mutations via allosteric effects on ligand binding. J Clin Invest 2023; 133:151536. [PMID: 36637912 PMCID: PMC9927936 DOI: 10.1172/jci151536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Mutations of G protein-coupled receptors (GPCRs) cause various human diseases, but the mechanistic details are limited. Here, we establish p.E303K in the gene encoding the endothelin receptor type A (ETAR/EDNRA) as a recurrent mutation causing mandibulofacial dysostosis with alopecia (MFDA), with craniofacial changes similar to those caused by p.Y129F. Mouse models carrying either of these missense mutations exhibited a partial maxillary-to-mandibular transformation, which was rescued by deleting the ligand endothelin 3 (ET3/EDN3). Pharmacological experiments confirmed the causative ETAR mutations as gain of function, dependent on ET3. To elucidate how an amino acid substitution far from the ligand binding site can increase ligand affinity, we used molecular dynamics (MD) simulations. E303 is located at the intracellular end of transmembrane domain 6, and its replacement by a lysine increased flexibility of this portion of the helix, thus favoring G protein binding and leading to G protein-mediated enhancement of agonist affinity. The Y129F mutation located under the ligand binding pocket reduced the sodium-water network, thereby affecting the extracellular portion of helices in favor of ET3 binding. These findings provide insight into the pathogenesis of MFDA and into allosteric mechanisms regulating GPCR function, which may provide the basis for drug design targeting GPCRs.
Collapse
Affiliation(s)
- Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | | | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Sugiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kitazawa
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyasu Iwase
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Risa Kotani
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima, Japan
| | - Rieko Asai
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Véronique Pingault
- Department of Genomic Medicine for Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Center for Computational Science, RIKEN, Yokohama, Japan
| | - Jeanne Amiel
- INSERM UMR 1163, Institut Imagine and Université Paris-Cité, Paris, France.,Department of Genomic Medicine for Rare Diseases, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Kanai SM, Heffner C, Cox TC, Cunningham ML, Perez FA, Bauer AM, Reigan P, Carter C, Murray SA, Clouthier DE. Auriculocondylar syndrome 2 results from the dominant-negative action of PLCB4 variants. Dis Model Mech 2022; 15:dmm049320. [PMID: 35284927 PMCID: PMC9066496 DOI: 10.1242/dmm.049320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022] Open
Abstract
Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C β4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Timothy C. Cox
- Departments of Oral and Craniofacial Sciences and Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Michael L. Cunningham
- University of Washington, Department of Pediatrics, Division of Craniofacial Medicine and Seattle Children's Craniofacial Center, Seattle, WA 98105, USA
| | - Francisco A. Perez
- University of Washington, Department of Radiology and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Aaron M. Bauer
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cristan Carter
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - David E. Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Vegas N, Demir Z, Gordon CT, Breton S, Romanelli Tavares V, Moisset H, Zechi-Ceide R, Kokitsu-Nakata NM, Kido Y, Marlin S, Gherbi Halem S, Meerschaut I, Callewaert B, Chung B, Revencu N, Lehalle D, Petit F, Propst EJ, Papsin BC, Phillips JH, Jakobsen L, Le Tanno P, Thévenon J, McGaughran J, Gerkes EH, Leoni C, Kroisel P, Yang Tan T, Henderson A, Terhal P, Basel-Salmon L, Alkindy A, White SM, Passos Bueno MR, Pingault V, De Pontual L, Amiel J. Further delineation of Auriculocondylar syndrome based on 14 novel cases and reassessment of 25 published cases. Hum Mutat 2022; 43:582-594. [PMID: 35170830 DOI: 10.1002/humu.24349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signalling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbour mutation(s) in PLCB4, GNAI3 or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental and genital anomalies, and provides management and monitoring recommendations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Zeynep Demir
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Unité d'hépatologie pédiatrie et transplantation, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Sylvain Breton
- Service d'imagerie pédiatrie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vanessa Romanelli Tavares
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hugo Moisset
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Roseli Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Yasuhiro Kido
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Sandrine Marlin
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Souad Gherbi Halem
- Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Brian Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Daphné Lehalle
- Centre de génétique- centre de référence des maladies rares, anomalies du développement et syndrome malformatifs, Centre Hospitalo-Universitaire de Dijon, Bourgogne, France.,UF de Génétique Médicale, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Florence Petit
- CHU Lille, clinique de Génétique Guy Fontaine, F-59000, Lille, France
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Blake C Papsin
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - John H Phillips
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Linda Jakobsen
- Department of Plastic Surgery, Copenhagen University Hospital, Herlev, Denmark
| | - Pauline Le Tanno
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julien Thévenon
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston and the University of Queensland, St Lucia, Brisbane, Australia
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, IRCCS, Italy
| | - Peter Kroisel
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lina Basel-Salmon
- Pediatric Genetics, Schneider Children's Medical Center of Israel and Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Adila Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Rita Passos Bueno
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Véronique Pingault
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Loïc De Pontual
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Service de pédiatrie, Hôpital Jean Verdier, Bondy, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| |
Collapse
|
18
|
Liu X, Sun W, Wang J, Chu G, He R, Zhang B, Zhao Y. Prenatal diagnosis of auriculocondylar syndrome with a novel missense variant of GNAI3: a case report. BMC Pregnancy Childbirth 2021; 21:780. [PMID: 34789173 PMCID: PMC8597305 DOI: 10.1186/s12884-021-04238-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ACS) is a rare disorder characterized by micrognathia, mandibular condyle hypoplasia, and auricular abnormalities. Only 6 pathogenic variants of GNAI3 have been identified associated with ACS so far. Here, we report a case of prenatal genetic diagnosis of ACS carrying a novel GNAI3 variant. CASE PRESENTATION A woman with 30 weeks of gestation was referred to genetic counseling for polyhydramnios and fetal craniofacial anomaly. Severe micrognathia and mandibular hypoplasia were identified on ultrasonography. The mandibular length was 2.4 cm, which was markedly smaller than the 95th percentile. The ears were low-set with no cleft or notching between the lobe and helix. The face was round with prominent cheeks. Whole-exome sequencing identified a novel de novo missense variant of c.140G > A in the GNAI3 gene. This mutation caused an amino acid substitution of p.Ser47Asn in the highly conserved G1 motif, which was predicted to impair the guanine nucleotide-binding function. All ACS cases with GNAI3 mutations were literature reviewed, revealing female-dominated severe cases and right-side-prone deformities. CONCLUSION Severe micrognathia and mandibular hypoplasia accompanied by polyhydramnios are prenatal indicators of ACS. We expanded the mutation spectrum of GNAI3 and summarized clinical features to promote awareness of ACS.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Ultrasonography, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guoming Chu
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong He
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bijun Zhang
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Maruta N, Trusov Y, Urano D, Chakravorty D, Assmann SM, Jones AM, Botella JR. GTP binding by Arabidopsis extra-large G protein 2 is not essential for its functions. PLANT PHYSIOLOGY 2021; 186:1240-1253. [PMID: 33729516 PMCID: PMC8195506 DOI: 10.1093/plphys/kiab119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 05/06/2023]
Abstract
The extra-large guanosine-5'-triphosphate (GTP)-binding protein 2, XLG2, is an unconventional Gα subunit of the Arabidopsis (Arabidopsis thaliana) heterotrimeric GTP-binding protein complex with a major role in plant defense. In vitro biochemical analyses and molecular dynamic simulations show that affinity of XLG2 for GTP is two orders of magnitude lower than that of the conventional Gα, AtGPA1. Here we tested the physiological relevance of GTP binding by XLG2. We generated an XLG2(T476N) variant with abolished GTP binding, as confirmed by in vitro GTPγS binding assay. Yeast three-hybrid, bimolecular fluorescence complementation, and split firefly-luciferase complementation assays revealed that the nucleotide-depleted XLG2(T476N) retained wild-type XLG2-like interactions with the Gβγ dimer and defense-related receptor-like kinases. Both wild-type and nucleotide-depleted XLG2(T476N) restored the defense responses against Fusarium oxysporum and Pseudomonas syringae compromised in the xlg2 xlg3 double mutant. Additionally, XLG2(T476N) was fully functional restoring stomatal density, root growth, and sensitivity to NaCl, but failed to complement impaired germination and vernalization-induced flowering. We conclude that XLG2 is able to function in a GTP-independent manner and discuss its possible mechanisms of action.
Collapse
Affiliation(s)
- Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alan M Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Author for communication:
| |
Collapse
|
20
|
Garcia-Marcos M. Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. eLife 2021; 10:65620. [PMID: 33787494 PMCID: PMC8034979 DOI: 10.7554/elife.65620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/30/2021] [Indexed: 01/14/2023] Open
Abstract
It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| |
Collapse
|
21
|
Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, Patel PP, Garcia-Marcos M. Revealing the Activity of Trimeric G-proteins in Live Cells with a Versatile Biosensor Design. Cell 2020; 182:770-785.e16. [PMID: 32634377 DOI: 10.1016/j.cell.2020.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Heterotrimeric G-proteins (Gαβγ) are the main transducers of signals from GPCRs, mediating the action of countless natural stimuli and therapeutic agents. However, there are currently no robust approaches to directly measure the activity of endogenous G-proteins in cells. Here, we describe a suite of optical biosensors that detect endogenous active G-proteins with sub-second resolution in live cells. Using a modular design principle, we developed genetically encoded, unimolecular biosensors for endogenous Gα-GTP and free Gβγ: the two active species of heterotrimeric G-proteins. This design was leveraged to generate biosensors with specificity for different heterotrimeric G-proteins or for other G-proteins, such as Rho GTPases. Versatility was further validated by implementing the biosensors in multiple contexts, from characterizing cancer-associated G-protein mutants to neurotransmitter signaling in primary neurons. Overall, the versatile biosensor design introduced here enables studying the activity of endogenous G-proteins in live cells with high fidelity, temporal resolution, and convenience.
Collapse
Affiliation(s)
- Marcin Maziarz
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jong-Chan Park
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Alberto Garcia-Lopez
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Prachi P Patel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
22
|
Maruta N, Trusov Y, Chakravorty D, Urano D, Assmann SM, Botella JR. Nucleotide exchange-dependent and nucleotide exchange-independent functions of plant heterotrimeric GTP-binding proteins. Sci Signal 2019; 12:12/606/eaav9526. [PMID: 31690635 DOI: 10.1126/scisignal.aav9526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which are composed of α, β, and γ subunits, are versatile, guanine nucleotide-dependent, molecular on-off switches. In animals and fungi, the exchange of GDP for GTP on Gα controls G protein activation and is crucial for normal cellular responses to diverse extracellular signals. The model plant Arabidopsis thaliana has a single canonical Gα subunit, AtGPA1. We found that, in planta, the constitutively active, GTP-bound AtGPA1(Q222L) mutant and the nucleotide-free AtGPA1(S52C) mutant interacted with Gβγ1 and Gβγ2 dimers with similar affinities, suggesting that G protein heterotrimer formation occurred independently of nucleotide exchange. In contrast, AtGPA1(Q222L) had a greater affinity than that of AtGPA1(S52C) for Gβγ3, suggesting that the GTP-bound conformation of AtGPA1(Q222L) is distinct and tightly associated with Gβγ3. Functional analysis of transgenic lines expressing either AtGPA1(S52C) or AtGPA1(Q222L) in the gpa1-null mutant background revealed various mutant phenotypes that were complemented by either AtGPA1(S52C) or AtGPA1(Q222L). We conclude that, in addition to the canonical GDP-GTP exchange-dependent mechanism, plant G proteins can function independently of nucleotide exchange.
Collapse
Affiliation(s)
- Natsumi Maruta
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - David Chakravorty
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jose R Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia. .,State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
23
|
Quach D, Parameswaran N, McCabe L, Britton RA. Characterizing how probiotic Lactobacillus reuteri 6475 and lactobacillic acid mediate suppression of osteoclast differentiation. Bone Rep 2019; 11:100227. [PMID: 31763377 PMCID: PMC6864341 DOI: 10.1016/j.bonr.2019.100227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis is a disease that impacts over 200 million people worldwide. The probiotic bacterium Lactobacillus reuteri (L. reuteri) has been shown to prevent bone loss during estrogen deficiency. Lactobacillic acid is important for L. reuteri-induced suppression of in vitro osteoclastogenesis. Osteoclastogenesis was inhibited by L. reuteri and lactobacillic acid via GPR120 signaling.
Osteoporosis is a disease that impacts over 200 million people worldwide. Taking into consideration the side effects stemming from medications used to treat this illness, investigators have increased their efforts to develop novel therapeutics for osteoporosis. In a previous study, we demonstrated that ovariectomy-induced bone loss in mice was prevented by treatment with the probiotic bacterium Lactobacillus reuteri 6475 (L. reuteri), an effect that correlated with reduced osteoclastogenesis in the bone marrow of L. reuteri treated mice. We also demonstrated that L. reuteri directly inhibited osteoclastogenesis in vitro. To better understand how L. reuteri impacts osteoclast formation, we used additional in vitro analyses to identify that conditioned supernatant from L. reuteri inhibited osteoclastogenesis at the intermediate stage of fused polykaryons. To elucidate the effect of L. reuteri treatment on host cell physiology, we performed RNAseq at multiple time points during in vitro osteoclastogenesis and established that L. reuteri downregulated several KEGG pathways including osteoclast differentiation as well as TNF-α, NF-κB, and MAP kinase signaling. These results were consistent with Western Blot data demonstrating that NF-κB and p38 activation were decreased by L. reuteri treatment. We further identified that lactobacillic acid (LA), a cyclopropane fatty acid produced by L. reuteri, contributed significantly to the suppression of osteoclastogenesis. Additionally, we demonstrated that L. reuteri is signaling through the long chain fatty acid receptor, GPR120, to impact osteoclastogenesis. Overall, these studies provide both bacterial and host mechanisms by which L. reuteri impacts osteoclastogenesis and suggest that long chain fatty acid receptors could be targets for preventing osteoclastogenesis.
Collapse
Affiliation(s)
- Darin Quach
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Laura McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Robert A. Britton
- Baylor College of Medicine, Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
24
|
Li Z, Liu T, Gilmore A, Gómez NM, Mitchell CH, Li YP, Oursler MJ, Yang S. Regulator of G Protein Signaling Protein 12 (Rgs12) Controls Mouse Osteoblast Differentiation via Calcium Channel/Oscillation and Gαi-ERK Signaling. J Bone Miner Res 2019; 34:752-764. [PMID: 30489658 PMCID: PMC7675783 DOI: 10.1002/jbmr.3645] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/11/2022]
Abstract
Bone homeostasis intimately relies on the balance between osteoblasts (OBs) and osteoclasts (OCs). Our previous studies have revealed that regulator of G protein signaling protein 12 (Rgs12), the largest protein in the Rgs super family, is essential for osteoclastogenesis from hematopoietic cells and OC precursors. However, how Rgs12 regulates OB differentiation and function is still unknown. To understand that, we generated an OB-targeted Rgs12 conditional knockout (CKO) mice model by crossing Rgs12fl/fl mice with Osterix (Osx)-Cre transgenic mice. We found that Rgs12 was highly expressed in both OB precursor cells (OPCs) and OBs of wild-type (WT) mice, and gradually increased during OB differentiation, whereas Rgs12-CKO mice (OsxCre/+ ; Rgs12fl/fl ) exhibited a dramatic decrease in both trabecular and cortical bone mass, with reduced numbers of OBs and increased apoptotic cell population. Loss of Rgs12 in OPCs in vitro significantly inhibited OB differentiation and the expression of OB marker genes, resulting in suppression of OB maturation and mineralization. Further mechanism study showed that deletion of Rgs12 in OPCs significantly inhibited guanosine triphosphatase (GTPase) activity and cyclic adenosine monophosphate (cAMP) level, and impaired Calcium (Ca2+ ) oscillations via restraints of major Ca2+ entry sources (extracellular Ca2+ influx and intracellular Ca2+ release from endoplasmic reticulum), partially contributed by the blockage of L-type Ca2+ channel mediated Ca2+ influx. Downstream mediator extracellular signal-related protein kinase (ERK) was found inactive in OBs of OsxCre/+ ; Rgs12fl/fl mice and in OPCs after Rgs12 deletion, whereas application of pertussis toxin (PTX) or overexpression of Rgs12 could rescue the defective OB differentiation via restoration of ERK phosphorylation. Our findings reveal that Rgs12 is an important regulator during osteogenesis and highlight Rgs12 as a potential therapeutic target for bone disorders. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ziqing Li
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | - Tongjun Liu
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14215, USA
- Department of Implantology, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University
- Department of Stomatology, the Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong province 250000, China
| | - Alyssa Gilmore
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14215, USA
| | - Néstor Más Gómez
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | - Claire H Mitchell
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Department of Physiology, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | - Yi-ping Li
- Department of Pathology, University of Alabama in Birmingham, Birmingham, AL 35294, USA
| | - Merry J Oursler
- Department of Medicine, Endocrine Research Unit, Mayo Clinic, Rochester, MN 55905, USA
| | - Shuying Yang
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, University of Pennsylvania Philadelphia, PA 19104, USA
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14215, USA
| |
Collapse
|
25
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
26
|
Maziarz M, Leyme A, Marivin A, Luebbers A, Patel PP, Chen Z, Sprang SR, Garcia-Marcos M. Atypical activation of the G protein Gα q by the oncogenic mutation Q209P. J Biol Chem 2018; 293:19586-19599. [PMID: 30352874 DOI: 10.1074/jbc.ra118.005291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
The causative role of G protein-coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gβγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Anthony Leyme
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Arthur Marivin
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Prachi P Patel
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Zhe Chen
- the Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Stephen R Sprang
- the Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
27
|
Maziarz M, Broselid S, DiGiacomo V, Park JC, Luebbers A, Garcia-Navarrete L, Blanco-Canosa JB, Baillie GS, Garcia-Marcos M. A biochemical and genetic discovery pipeline identifies PLCδ4b as a nonreceptor activator of heterotrimeric G-proteins. J Biol Chem 2018; 293:16964-16983. [PMID: 30194280 DOI: 10.1074/jbc.ra118.003580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.
Collapse
Affiliation(s)
- Marcin Maziarz
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Jong-Chan Park
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Alex Luebbers
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Lucia Garcia-Navarrete
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Juan B Blanco-Canosa
- the Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain, and
| | - George S Baillie
- the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
28
|
Cleator JH, Wells CA, Dingus J, Kurtz DT, Hildebrandt JD. The N54- αs Mutant Has Decreased Affinity for βγ and Suggests a Mechanism for Coupling Heterotrimeric G Protein Nucleotide Exchange with Subunit Dissociation. J Pharmacol Exp Ther 2018; 365:219-225. [PMID: 29491039 PMCID: PMC5870480 DOI: 10.1124/jpet.117.245779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
Ser54 of Gsα binds guanine nucleotide and Mg2+ as part of a conserved sequence motif in GTP binding proteins. Mutating the homologous residue in small and heterotrimeric G proteins generates dominant-negative proteins, but by protein-specific mechanisms. For αi/o, this results from persistent binding of α to βγ, whereas for small GTP binding proteins and αs this results from persistent binding to guanine nucleotide exchange factor or receptor. This work examined the role of βγ interactions in mediating the properties of the Ser54-like mutants of Gα subunits. Unexpectedly, WT-αs or N54-αs coexpressed with α1B-adrenergic receptor in human embryonic kidney 293 cells decreased receptor stimulation of IP3 production by a cAMP-independent mechanism, but WT-αs was more effective than the mutant. One explanation for this result would be that αs, like Ser47 αi/o, blocks receptor activation by sequestering βγ; implying that N54-αS has reduced affinity for βγ since it was less effective at blocking IP3 production. This possibility was more directly supported by the observation that WT-αs was more effective than the mutant in inhibiting βγ activation of phospholipase Cβ2. Further, in vitro synthesized N54-αs bound biotinylated-βγ with lower apparent affinity than did WT-αs The Cys54 mutation also decreased βγ binding but less effectively than N54-αs Substitution of the conserved Ser in αo with Cys or Asn increased βγ binding, with the Cys mutant being more effective. This suggests that Ser54 of αs is involved in coupling changes in nucleotide binding with altered subunit interactions, and has important implications for how receptors activate G proteins.
Collapse
Affiliation(s)
- John H Cleator
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Christopher A Wells
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - Jane Dingus
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - David T Kurtz
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| | - John D Hildebrandt
- Department of Pharmacology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
29
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
30
|
Romanelli Tavares VL, Zechi-Ceide RM, Bertola DR, Gordon CT, Ferreira SG, Hsia GSP, Yamamoto GL, Ezquina SAM, Kokitsu-Nakata NM, Vendramini-Pittoli S, Freitas RS, Souza J, Raposo-Amaral CA, Zatz M, Amiel J, Guion-Almeida ML, Passos-Bueno MR. Targeted molecular investigation in patients within the clinical spectrum of Auriculocondylar syndrome. Am J Med Genet A 2017; 173:938-945. [PMID: 28328130 DOI: 10.1002/ajmg.a.38101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022]
Abstract
Auriculocondylar syndrome, mainly characterized by micrognathia, small mandibular condyle, and question mark ears, is a rare disease segregating in an autosomal dominant pattern in the majority of the families reported in the literature. So far, pathogenic variants in PLCB4, GNAI3, and EDN1 have been associated with this syndrome. It is caused by a developmental abnormality of the first and second pharyngeal arches and it is associated with great inter- and intra-familial clinical variability, with some patients not presenting the typical phenotype of the syndrome. Moreover, only a few patients of each molecular subtype of Auriculocondylar syndrome have been reported and sequenced. Therefore, the spectrum of clinical and genetic variability is still not defined. In order to address these questions, we searched for alterations in PLCB4, GNAI3, and EDN1 in patients with typical Auriculocondylar syndrome (n = 3), Pierre Robin sequence-plus (n = 3), micrognathia with additional craniofacial malformations (n = 4), or non-specific auricular dysplasia (n = 1), which could represent subtypes of Auriculocondylar syndrome. We found novel pathogenic variants in PLCB4 only in two of three index patients with typical Auriculocondylar syndrome. We also performed a detailed comparative analysis of the patients presented in this study with those previously published, which showed that the pattern of auricular abnormality and full cheeks were associated with molecularly characterized individuals with Auriculocondylar syndrome. Finally, our data contribute to a better definition of a set of parameters for clinical classification that may be used as a guidance for geneticists ordering molecular testing for Auriculocondylar syndrome. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanessa L Romanelli Tavares
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roseli M Zechi-Ceide
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Debora R Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Simone G Ferreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriella S P Hsia
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme L Yamamoto
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Suzana A M Ezquina
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Nancy M Kokitsu-Nakata
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Siulan Vendramini-Pittoli
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Josiane Souza
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Cesar A Raposo-Amaral
- Hospital de Crânio e Face, Sociedade Brasileira de Pesquisa e Assistência para Reabilitação Craniofacial (SOBRAPAR), Campinas, São Paulo, Brazil
| | - Mayana Zatz
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maria L Guion-Almeida
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Parag-Sharma K, Leyme A, DiGiacomo V, Marivin A, Broselid S, Garcia-Marcos M. Membrane Recruitment of the Non-receptor Protein GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Is Sufficient for Activating Heterotrimeric G Protein Signaling. J Biol Chem 2016; 291:27098-27111. [PMID: 27864364 DOI: 10.1074/jbc.m116.764431] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.
Collapse
Affiliation(s)
- Kshitij Parag-Sharma
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Anthony Leyme
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Vincent DiGiacomo
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Arthur Marivin
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Stefan Broselid
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Mikel Garcia-Marcos
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
32
|
Garcia-Marcos M, VanHook AM. Science Signaling
Podcast for 12 April 2016: G proteins in auriculo-condylar syndrome. Sci Signal 2016. [DOI: 10.1126/scisignal.aaf7740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mutations that cause a GPCR to couple to the wrong G protein cause auriculo-condylar syndrome.
Collapse
Affiliation(s)
- Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|