1
|
Ngo D, Tinajero J, Otoukesh S, Sandhu K, Ali H, Arslan S, Modi B, Amanam I, Nakamura R, Salhotra A. Role of ROCK2 inhibitors in the treatment of chronic graft-versus-host disease. Expert Opin Investig Drugs 2025:1-10. [PMID: 40407836 DOI: 10.1080/13543784.2025.2510667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) is the most common cause of late non-relapse mortality after allogeneic hematopoietic cell transplantation (allo-HCT). Rho-associated coiled-coiled kinases (ROCK) inhibitors have been shown to balance the pro-inflammatory and regulatory T-cell subsets in addition to reducing fibrosis in cGVHD, resulting in the development of multiple ROCK2 inhibitors including belumosudil. AREAS COVERED We describe the pathophysiology of cGVHD and the role of ROCK2 in cGVHD. This includes a review of the current and ongoing clinical data with belumosudil, and an overview of current ROCK2 inhibitors in development for cGVHD, including rovadicitinib, zelasudil, and GV-101. EXPERT OPINION Many of the recent novel agents with unique mechanisms such as ROCK2 inhibitors (i.e. belumosudil) provide high response rates but rarely yield complete responses in cGVHD. The future of management of cGVHD will rely on investigating combination therapy upfront that may achieve deeper complete responses, developing newer preventative therapies, and advancements in biomarker detection/risk stratification for cGVHD.
Collapse
Affiliation(s)
- Dat Ngo
- Department of Pharmacy, City of Hope, Duarte, CA, USA
| | - Jose Tinajero
- Department of Pharmacy, City of Hope, Duarte, CA, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Karamjeet Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Badri Modi
- Department of Dermatology, City of Hope, Duarte, CA, USA
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| |
Collapse
|
2
|
Wang X, Hong Y, Zou J, Zhu B, Jiang C, Lu L, Tian J, Yang J, Rui K. The role of BATF in immune cell differentiation and autoimmune diseases. Biomark Res 2025; 13:22. [PMID: 39876010 PMCID: PMC11776340 DOI: 10.1186/s40364-025-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
As a member of the Activator Protein-1 (AP-1) transcription factor family, the Basic Leucine Zipper Transcription Factor (BATF) mediates multiple biological functions of immune cells through its involvement in protein interactions and binding to DNA. Recent studies have demonstrated that BATF not only plays pivotal roles in innate and adaptive immune responses but also acts as a crucial factor in the differentiation and function of various immune cells. Lines of evidence indicate that BATF is associated with the onset and progression of allergic diseases, graft-versus-host disease, tumors, and autoimmune diseases. This review summarizes the roles of BATF in the development and function of innate and adaptive immune cells, as well as its immunoregulatory effects in the development of autoimmune diseases, which may enhance the current understanding of the pathogenesis of autoimmune diseases and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jinmei Zou
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China
| | - Bo Zhu
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chao Jiang
- Department of Orthopaedics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Jing Yang
- Department of Rheumatology, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, China.
| | - Ke Rui
- Department of Laboratory Medicine, Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Vadakkel G, Eng S, Proli A, Ponce DM. Updates in chronic graft-versus-host disease: novel treatments and best practices in the current era. Bone Marrow Transplant 2024; 59:1360-1368. [PMID: 39080470 PMCID: PMC11917373 DOI: 10.1038/s41409-024-02370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 10/06/2024]
Abstract
Chronic graft-versus-host disease (cGVHD) is a serious complication of allogeneic hematopoietic cell transplant. The development of cGVHD involves a complex, multistep process that is characterized by early inflammation and tissue injury, followed by chronic inflammation, aberrant tissue repair, and fibrosis. Systemic corticosteroids remain the first line of treatment for cGVHD. New treatments for patients with cGVHD for whom treatment has failed or who develop steroid-dependent cGVHD are now available; these include ibrutinib, ruxolitinib, and belumosudil. Treatment selection may be based on the patient's individual needs, graft-versus-host disease organ involvement, and comorbidities. However, as therapeutic options for patients without a treatment response or with only a partial response remain an unmet need, new agents are under investigation. Furthermore, patients with cGVHD can develop multiorgan involvement and frequently require specialized care. A multidisciplinary team approach that focuses on the individual's needs and quality of life is strongly encouraged.
Collapse
Affiliation(s)
- Grashma Vadakkel
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Stephen Eng
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Doris M Ponce
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Wang Y, Wu D, Zhang X, Li Y, He Y, Liu Q, Xuan L, Li Z, Qi K, Sun Y, Wang S, Mo W, Gao L, Hua Y, Wang Y, Zhang Y. A phase II study of belumosudil for chronic graft-versus-host disease in patients who failed at least one line of systemic therapy in China. BMC Med 2024; 22:142. [PMID: 38532458 PMCID: PMC10964632 DOI: 10.1186/s12916-024-03348-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Chronic graft-versus-host disease (cGVHD) is an immune-related disorder that is the most common complication post-allogenic hematopoietic stem cell transplant. Corticosteroids with or without calcineurin inhibitors (CNIs) remain the mainstay of cGVHD treatment for first-line therapy. However, for many patients, cGVHD symptoms cannot be effectively managed and thus require second-line therapy. Currently, there is no approved treatment for second-line cGVHD treatment in China. In this study, belumosudil, a highly selective and potent rho-associated coiled-coil-containing protein kinase-2 inhibitor demonstrated to be effective for cGVHD in the United States and other Western countries, is investigated in patients with cGVHD in China for its overall benefit-risk balance. METHODS This multicenter, open-label phase II study evaluated the safety, efficacy, and pharmacokinetics of oral belumosudil 200 mg once daily in cGVHD patients who had been treated with at least one line of systemic therapy in China. The primary endpoint was overall response rate (ORR); each individual patient's response was assessed by the investigator using the 2014 National Institutes of Health consensus criteria. Secondary endpoints were duration of response (DOR), time to response (TTR), changes in Lee Symptom Scale (LSS) score, organ response rate, corticosteroid dose change, CNI dose change, failure-free survival, time-to-next-treatment, overall survival, and safety. RESULTS Thirty patients were enrolled in the study with a median follow-up time of 12.9 months. ORR was 73.3% (95% confidence interval: 54.1-87.7%) and all responders achieved partial response. Median DOR among responders was not reached and median TTR was 4.3 weeks (range: 3.9-48.1). Fifteen patients (50.0%) achieved clinically meaningful response in terms of reduction in LSS score by ≥ 7 points from baseline. Corticosteroid and CNI dose reductions were reported in 56.7% (17/30) and 35.0% (7/20) of patients, respectively. Most treatment-emergent adverse events (TEAEs) were mild to moderate in severity, with 11 patients (36.7%) experiencing grade ≥ 3 TEAEs. The most common grade ≥ 3 TEAE was pneumonia (n = 5, 16.7%). CONCLUSIONS Belumosudil treatment demonstrated a favorable benefit-risk balance in treating cGVHD patients who previously have had standard corticosteroid therapy in China where approved second-line setting is absent. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04930562.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Soochow University, No.188, Shizi Street, Gusu District, Suzhou, 215006, China
| | - Depei Wu
- The First Affiliated Hospital of Soochow University, No.188, Shizi Street, Gusu District, Suzhou, 215006, China.
| | - Xiang Zhang
- The First Affiliated Hospital of Soochow University, No.188, Shizi Street, Gusu District, Suzhou, 215006, China
| | - Yuhua Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Nanfang Hospital, Guangzhou, Guangdong, China
| | - Li Xuan
- Nanfang Hospital, Guangzhou, Guangdong, China
| | - Zhenyu Li
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kunming Qi
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuqian Sun
- Peking University People's Hospital, Beijing, China
| | | | - Wenjian Mo
- Guangzhou First People's Hospital, Guangzhou, China
| | - Lei Gao
- Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Ye Hua
- BioNova Pharmaceuticals (Shanghai) Limited, Shanghai, China
| | - Yu Wang
- BioNova Pharmaceuticals (Shanghai) Limited, Shanghai, China
| | - Ying Zhang
- BioNova Pharmaceuticals (Shanghai) Limited, Shanghai, China
| |
Collapse
|
5
|
Fang G, Wen X, Jiang Z, Du X, Liu R, Zhang C, Huang G, Liao W, Zhang Z. FUNDC1/PFKP-mediated mitophagy induced by KD025 ameliorates cartilage degeneration in osteoarthritis. Mol Ther 2023; 31:3594-3612. [PMID: 37838829 PMCID: PMC10727975 DOI: 10.1016/j.ymthe.2023.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/12/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, but no disease-modifying drugs have been approved for OA treatment. Mitophagy participates in mitochondrial homeostasis regulation by selectively clearing dysfunctional mitochondria, which might contribute to cartilage degeneration in OA. Here, we provide evidence of impaired mitophagy in OA chondrocytes, which exacerbates chondrocyte degeneration. Among the several classic mitophagy-regulating pathways and receptors, we found that FUNDC1 plays a key role in preserving chondrocyte homeostasis by inducing mitophagy. FUNDC1 knockdown in vitro and knockout in vivo decreased mitophagy and exacerbated mitochondrial dysfunction, exacerbating chondrocyte degeneration and OA progression. FUNDC1 overexpression via intra-articular injection of adeno-associated virus alleviated cartilage degeneration in OA. Mechanistically, our study demonstrated that PFKP interacts with and dephosphorylates FUNDC1 to induce mitophagy in chondrocytes. Further analysis identified KD025 as a candidate drug for restoring chondrocyte mitophagy by increasing the FUNDC1-PFKP interaction and thus alleviating cartilage degeneration in mice with DMM-induced OA. Our study highlights the role of the FUNDC1-PFKP interaction in chondrocyte homeostasis via mitophagy induction and identifies KD025 as a promising agent for treating OA by increasing chondrocyte mitophagy.
Collapse
Affiliation(s)
- Guibin Fang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China; Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xingzhao Wen
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China; Department of Medicine, Solna, Karolinska Institutet, and Centre for Molecular Medicine, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Zongrui Jiang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China
| | - Xue Du
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China
| | - Ruonan Liu
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China
| | - Chengyun Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China
| | - Guiwu Huang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China
| | - Weiming Liao
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China
| | - Zhiqi Zhang
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
6
|
Fracchia A, Khare D, Da’na S, Or R, Buxboim A, Nachmias B, Barkatz C, Golan-Gerstl R, Tiwari S, Stepensky P, Nevo Y, Benyamini H, Elgavish S, Almogi-Hazan O, Avni B. Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Modulate Apoptosis, TNF Alpha and Interferon Gamma Response Gene mRNA Expression in T Lymphocytes. Int J Mol Sci 2023; 24:13689. [PMID: 37761990 PMCID: PMC10530670 DOI: 10.3390/ijms241813689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have highlighted the therapeutic potential of small extracellular bodies derived from mesenchymal stem cells (MSC-sEVs) for various diseases, notably through their ability to alter T-cell differentiation and function. The current study aimed to explore immunomodulatory pathway alterations within T cells through mRNA sequencing of activated T cells cocultured with bone marrow-derived MSC-sEVs. mRNA profiling of activated human T cells cocultured with MSC-sEVs or vehicle control was performed using the QIAGEN Illumina sequencing platform. Pathway networks and biological functions of the differentially expressed genes were analyzed using Ingenuity pathway analysis (IPA)® software, KEGG pathway, GSEA and STRING database. A total of 364 differentially expressed genes were identified in sEV-treated T cells. Canonical pathway analysis highlighted the RhoA signaling pathway. Cellular development, movement, growth and proliferation, cell-to-cell interaction and inflammatory response-related gene expression were altered. KEGG enrichment pathway analysis underscored the apoptosis pathway. GSEA identified enrichment in downregulated genes associated with TNF alpha and interferon gamma response, and upregulated genes related to apoptosis and migration of lymphocytes and T-cell differentiation gene sets. Our findings provide valuable insights into the mechanisms by which MSC-sEVs implement immunomodulatory effects on activated T cells. These findings may contribute to the development of MSC-sEV-based therapies.
Collapse
Affiliation(s)
- Andrea Fracchia
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Drirh Khare
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Samar Da’na
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
| | - Reuven Or
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Amnon Buxboim
- Department of Cell and Developmental Biology, Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Boaz Nachmias
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Department of Hematology, Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Claudine Barkatz
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
| | - Regina Golan-Gerstl
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel;
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India;
| | - Polina Stepensky
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.N.); (H.B.); (S.E.)
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.N.); (H.B.); (S.E.)
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (Y.N.); (H.B.); (S.E.)
| | - Osnat Almogi-Hazan
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
| | - Batia Avni
- Department of Bone Marrow Transplantation & Cancer Immunotherapy, Hadassah Medical Center, Jerusalem 9112001, Israel; (A.F.); (D.K.); (S.D.); (R.O.); (P.S.); (O.A.-H.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
7
|
Holtan SG, Savid-Frontera C, Walton K, Eaton AA, Demorest C, Hoeschen A, Zhang L, Reid K, Kurian T, Sayegh Z, Julia E, Maakaron J, Bachanova V, Jurdi NE, MacMillan ML, Weisdorf DJ, Felices M, Miller JS, Blazar BR, Davila ML, Betts BC. Human Effectors of Acute and Chronic GVHD Overexpress CD83 and Predict Mortality. Clin Cancer Res 2023; 29:1114-1124. [PMID: 36622700 PMCID: PMC10011883 DOI: 10.1158/1078-0432.ccr-22-2837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
PURPOSE Acute and chronic GVHD remain major causes of transplant-related morbidity and mortality (TRM) after allogeneic hematopoietic cell transplantation (alloHCT). We have shown CD83 chimeric antigen receptor (CAR) T cells prevent GVHD and kill myeloid leukemia cell lines. In this pilot study, we investigate CD83 expression on GVHD effector cells, correlate these discoveries with clinical outcomes, and evaluate critical therapeutic implications for transplant recipients. EXPERIMENTAL DESIGN CD83 expression was evaluated among circulating CD4+ T cells, B-cell subsets, T follicular helper (Tfh) cells, and monocytes from patients with/without acute or chronic GVHD (n = 48 for each group), respectively. CD83 expression was correlated with survival, TRM, and relapse after alloHCT. Differential effects of GVHD therapies on CD83 expression was determined. RESULTS CD83 overexpression on CD4+ T cells correlates with reduced survival and increased TRM. Increased CD83+ B cells and Tfh cells, but not monocytes, are associated with poor posttransplant survival. CD83 CAR T eliminate autoreactive CD83+ B cells isolated from patients with chronic GVHD, without B-cell aplasia as observed with CD19 CAR T. We demonstrate robust CD83 antigen density on human acute myeloid leukemia (AML), and confirm potent antileukemic activity of CD83 CAR T in vivo, without observed myeloablation. CONCLUSIONS CD83 is a promising diagnostic marker of GVHD and warrants further investigation as a therapeutic target of both GVHD and AML relapse after alloHCT.
Collapse
Affiliation(s)
- Shernan G. Holtan
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Constanza Savid-Frontera
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anne A. Eaton
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Connor Demorest
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Hoeschen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kayla Reid
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Tony Kurian
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Zena Sayegh
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Estefania Julia
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Najla El Jurdi
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Margaret L. MacMillan
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J. Weisdorf
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marco L. Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
8
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
9
|
Wei L, Shi J. Insight Into Rho Kinase Isoforms in Obesity and Energy Homeostasis. Front Endocrinol (Lausanne) 2022; 13:886534. [PMID: 35769086 PMCID: PMC9234286 DOI: 10.3389/fendo.2022.886534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and associated complications increasingly jeopardize global health and contribute to the rapidly rising prevalence of type 2 diabetes mellitus and obesity-related diseases. Developing novel methods for the prevention and treatment of excess body adipose tissue expansion can make a significant contribution to public health. Rho kinase is a Rho-associated coiled-coil-containing protein kinase (Rho kinase or ROCK). The ROCK family including ROCK1 and ROCK2 has recently emerged as a potential therapeutic target for the treatment of metabolic disorders. Up-regulated ROCK activity has been involved in the pathogenesis of all aspects of metabolic syndrome including obesity, insulin resistance, dyslipidemia and hypertension. The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in both white and beige adipogenesis. Studies using ROCK pan-inhibitors in animal models of obesity, diabetes, and associated complications have demonstrated beneficial outcomes. Studies via genetically modified animal models further established isoform-specific roles of ROCK in the pathogenesis of metabolic disorders including obesity. However, most reported studies have been focused on ROCK1 activity during the past decade. Due to the progress in developing ROCK2-selective inhibitors in recent years, a growing body of evidence indicates more attention should be devoted towards understanding ROCK2 isoform function in metabolism. Hence, studying individual ROCK isoforms to reveal their specific roles and principal mechanisms in white and beige adipogenesis, insulin sensitivity, energy balancing regulation, and obesity development will facilitate significant breakthroughs for systemic treatment with isoform-selective inhibitors. In this review, we give an overview of ROCK functions in the pathogenesis of obesity and insulin resistance with a particular focus on the current understanding of ROCK isoform signaling in white and beige adipogenesis, obesity and thermogenesis in adipose tissue and other major metabolic organs involved in energy homeostasis regulation.
Collapse
Affiliation(s)
- Lei Wei
- *Correspondence: Lei Wei, ; Jianjian Shi,
| | | |
Collapse
|
10
|
Nalkurthi C, Schroder WA, Melino M, Irvine KM, Nyuydzefe M, Chen W, Liu J, Teng MWL, Hill GR, Bertolino P, Blazar BR, Miller GC, Clouston AD, Zanin-Zhorov A, MacDonald KPA. ROCK2 inhibition attenuates profibrogenic immune cell function to reverse thioacetamide-induced liver fibrosis. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2021; 4:100386. [PMID: 34917911 PMCID: PMC8645924 DOI: 10.1016/j.jhepr.2021.100386] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Background & Aims Fibrosis, the primary cause of morbidity in chronic liver disease, is induced by pro-inflammatory cytokines, immune cell infiltrates, and tissue resident cells that drive excessive myofibroblast activation, collagen production, and tissue scarring. Rho-associated kinase 2 (ROCK2) regulates key pro-fibrotic pathways involved in both inflammatory reactions and altered extracellular matrix remodelling, implicating this pathway as a potential therapeutic target. Methods We used the thioacetamide-induced liver fibrosis model to examine the efficacy of administration of the selective ROCK2 inhibitor KD025 to prevent or treat liver fibrosis and its impact on immune composition and function. Results Prophylactic and therapeutic administration of KD025 effectively attenuated thioacetamide-induced liver fibrosis and promoted fibrotic regression. KD025 treatment inhibited liver macrophage tumour necrosis factor production and disrupted the macrophage niche within fibrotic septae. ROCK2 targeting in vitro directly regulated macrophage function through disruption of signal transducer and activator of transcription 3 (STAT3)/cofilin signalling pathways leading to the inhibition of pro-inflammatory cytokine production and macrophage migration. In vivo, KDO25 administration significantly reduced STAT3 phosphorylation and cofilin levels in the liver. Additionally, livers exhibited robust downregulation of immune cell infiltrates and diminished levels of retinoic acid receptor-related orphan receptor gamma (RORγt) and B-cell lymphoma 6 (Bcl6) transcription factors that correlated with a significant reduction in liver IL-17, splenic germinal centre numbers and serum IgG. Conclusions As IL-17 and IgG–Fc binding promote pathogenic macrophage differentiation, together our data demonstrate that ROCK2 inhibition prevents and reverses liver fibrosis through direct and indirect effects on macrophage function and highlight the therapeutic potential of ROCK2 inhibition in liver fibrosis. Lay summary By using a clinic-ready small-molecule inhibitor, we demonstrate that selective ROCK2 inhibition prevents and reverses hepatic fibrosis through its pleiotropic effects on pro-inflammatory immune cell function. We show that ROCK2 mediates increased IL-17 production, antibody production, and macrophage dysregulation, which together drive fibrogenesis in a model of chemical-induced liver fibrosis. Therefore, in this study, we not only highlight the therapeutic potential of ROCK2 targeting in chronic liver disease but also provide previously undocumented insights into our understanding of cellular and molecular pathways driving the liver fibrosis pathology. ROCK2 inhibition with the small-molecule inhibitor KD025 prevents and reverses hepatoxin-induced liver fibrosis. ROCK2 inhibition attenuates profibrogenic immune function. KD025 exerts direct effects on liver macrophages resulting in decreased TNF secretion and impeded migration. KD025 administration attenuates T cell IL-17 production and B-cell IgG production, which indirectly contributes to downregulation of profibrogenic macrophage function.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- B cells
- BMDM, bone marrow-derived macrophages
- Bcl6, B-cell lymphoma 6
- CLD, chronic liver disease
- Col1a2, collagen type α1
- DR, ductular reaction
- ECM, extracellular matrix
- GC, germinal centre
- HCC, hepatocellular carcinoma
- HSC, hepatic stellate cell
- IHC, immunohistochemical
- IL-17
- Inflammation
- LPS, lipopolysaccharide
- Liver fibrosis
- MMP, matrix metalloproteinase
- Macrophages
- NASH, non-alcoholic steatohepatitis
- RAR, retinoic acid receptor
- ROCK, Rho-associated coiled-coil forming protein kinases
- ROCK2
- ROCK2, Rho-associated kinase 2
- RORγt, RAR-related orphan receptor gamma
- SR, Sirius red
- STAT3, signal transducer and activator of transcription 3
- TAA, thioacetamide
- TGF-β, transforming growth factor-beta
- TNF, tumour necrosis factor
- Tfh, T follicular helper
- Th17, T helper 17
- Therapy
- cGVHD, chronic graft-vs-host disease
- pCofilin, phosphorylated cofilin
- pMac, peritoneal macrophages
- pSTAT3, phosphorylated signal transducer and activator of transcription
- qRT-PCR, quantitative real-time PCR
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Christina Nalkurthi
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, QLD, Australia
| | | | - Michelle Melino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Katharine M Irvine
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, Australia
| | | | - Wei Chen
- Kadmon Corporation LLC, New York, NY, USA
| | - Jing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA
| | | | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
11
|
Cyanidin restores Th17/Treg balance and inhibits T follicular helper cell differentiation via modulation of ROCK2 signaling in an experimental model of rheumatoid arthritis. Int Immunopharmacol 2021; 101:108359. [PMID: 34863656 DOI: 10.1016/j.intimp.2021.108359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/10/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023]
Abstract
Disturbed Th17/Treg balance is a critical pathological event in the disease progression of rheumatoid arthritis (RA). Recently, emerging studies have demonstrated that CD4 + T helper follicular (Tfh) cells exacerbates the pathogenic manifestations of RA. Contrarily, our previous report has shown that cyanidin, a flavonoid compound, attenuates disease severity of RA. Howbeit, this study investigated the therapeutic efficacy of cyanidin in relation to Th17/Treg balance and pathogenic Tfh cells in RA. Onto results, cyanidin inhibited increased Th17 cell differentiation and reciprocally improved FoxP3 + Treg cells both in-vivo and in-vitro. Concomitantly, cyanidin abated the detrimental effects of IL-17 via restoration of IL-10 secretion in adjuvant induced arthritic (AIA) rats. Furthermore, cyanidin reduced Tfh cells proportion and IgG levels in AIA rats, thus rectifying Tfh and follicular regulatory T (Tfr) cell ratio. Mechanistically, the restoring effect of cyanidin was associated with blunted activation of ROCK2/STAT3 signaling axis and reciprocal increase in the level of STAT-5 activity. Notwithstanding, cyanidin therapeutic efficacy correlated with specific oral ROCK2 inhibitor KD025 in-vitro. Collectively, these results demonstrate a dual promising therapeutic role of cyanidin via regulating Th17/Treg ratio and Tfh cell differentiation in an experimental model of RA.
Collapse
|
12
|
Critical regulation of follicular helper T cell differentiation and function by Gα 13 signaling. Proc Natl Acad Sci U S A 2021; 118:2108376118. [PMID: 34663730 PMCID: PMC8639339 DOI: 10.1073/pnas.2108376118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
Optimal follicular helper T (Tfh) cell differentiation and function are required for effective humoral immunity against infection, while improper Tfh cell responses are associated with autoimmunity and allergy. We demonstrate that Gα13—a Gα protein subunit known to be involved in mediating signals related to cytoskeletal integrity, chemotaxis, and migration—acts as an essential positive regulator in Tfh cell development and function. The deletion of Gα13 in T cells results in dampened germinal center reactions in immunization and viral infection models. Mechanistically, Gα13-RhoA-ROCK2 axis is responsible for the Tfh cell differentiation from naïve precursors, and Rho agonists recuperate hampered Tfh cell function in Gα13-deficient mice. Such mechanistic insight underscores the possibility of targeting Gα13-mediated signaling to maneuver Tfh cell responses. GPCR-Gα protein–mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell–specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell–specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.
Collapse
|
13
|
Zanin-Zhorov A, Blazar BR. ROCK2, a critical regulator of immune modulation and fibrosis has emerged as a therapeutic target in chronic graft-versus-host disease. Clin Immunol 2021; 230:108823. [PMID: 34400321 PMCID: PMC8456981 DOI: 10.1016/j.clim.2021.108823] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an immune-mediated disorder characterized by chronic inflammation and fibrosis. Rho-associated coiled-coil-containing protein kinases (ROCKs) are key coordinators of tissue response to injury, regulating multiple functions, such as gene expression and cell migration, proliferation and survival. Relevant to cGVHD and autoimmunity, only the ROCK2 isoform drives a pro-inflammatory type 17 helper T (Th17) cell response. Moreover, ROCK2 inhibition shifts the Th17/regulatory T (Treg) cell balance toward Treg cells and restores immune homeostasis in animal models of autoimmunity and cGVHD. Furthermore, the selective inhibition of ROCK2 by belumosudil reduces fibrosis by downregulating both transforming growth factor-β signaling and profibrotic gene expression, thereby impeding the creation of focal adhesions. Consistent with its anti-inflammatory and antifibrotic activities, belumosudil has demonstrated efficacy in clinical studies, resulting in an overall response rate of >70% in patients with cGVHD who failed 2 to 5 prior lines of systemic therapy. In summary, selective ROCK2 inhibition has emerged as a promising novel therapeutic approach for treating cGVHD and other immunologic diseases with unique mechanisms of action, targeting both immune imbalance and detrimental fibrotic responses.
Collapse
Affiliation(s)
| | - Bruce R Blazar
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Beurier P, Ricard L, Eshagh D, Malard F, Siblany L, Fain O, Mohty M, Gaugler B, Mekinian A. TFH cells in systemic sclerosis. J Transl Med 2021; 19:375. [PMID: 34461933 PMCID: PMC8407089 DOI: 10.1186/s12967-021-03049-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis is an autoimmune disease characterized by excessive dermal fibrosis with progression to internal organs, vascular impairment and immune dysregulation evidenced by the infiltration of inflammatory cells in affected tissues and the production of auto antibodies. While the pathogenesis remains unclear, several data highlight that T and B cells deregulation is implicated in the disease pathogenesis. Over the last decade, aberrant responses of circulating T follicular helper cells, a subset of CD4 T cells which are able to localise predominantly in the B cell follicles through a high level of chemokine receptor CXCR5 expression are described in pathogenesis of several autoimmune diseases and chronic graft-versus-host-disease. In the present review, we summarized the observed alteration of number and frequency of circulating T follicular helper cells in systemic sclerosis. We described their role in aberrant B cell activation and differentiation though interleukine-21 secretion. We also clarified T follicular helper-like cells involvement in fibrogenesis in both human and mouse model. Finally, because T follicular helper cells are involved in both fibrosis and autoimmune abnormalities in systemic sclerosis patients, we presented the different strategies could be used to target T follicular helper cells in systemic sclerosis, the therapeutic trials currently being carried out and the future perspectives from other auto-immune diseases and graft-versus-host-disease models.
Collapse
Affiliation(s)
- Pauline Beurier
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Laure Ricard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Deborah Eshagh
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Florent Malard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Lama Siblany
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Olivier Fain
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Mohamad Mohty
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Béatrice Gaugler
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France
| | - Arsène Mekinian
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France. .,Sorbonne Université, Paris, France. .,Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), AP-HP, Hôpital Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
15
|
Yang M, Yi P, Jiang J, Zhao M, Wu H, Lu Q. Dysregulated translational factors and epigenetic regulations orchestrate in B cells contributing to autoimmune diseases. Int Rev Immunol 2021; 42:1-25. [PMID: 34445929 DOI: 10.1080/08830185.2021.1964498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
B cells play a crucial role in antigen presentation, antibody production and pro-/anti-inflammatory cytokine secretion in adaptive immunity. Several translational factors including transcription factors and cytokines participate in the regulation of B cell development, with the cooperation of epigenetic regulations. Autoimmune diseases are generally characterized with autoreactive B cells and high-level pathogenic autoantibodies. The success of B cell depletion therapy in mouse model and clinical trials has proven the role of B cells in pathogenesis of autoimmune diseases. The failure of B cell tolerance in immune checkpoints results in accumulated autoreactive naïve B (BN) cells with aberrant B cell receptor signaling and dysregulated B cell response, contributing to self-antibody-mediated autoimmune reaction. Dysregulation of translational factors and epigenetic alterations in B cells has been demonstrated to correlate with aberrant B cell compartment in autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren's syndrome, multiple sclerosis, diabetes mellitus and pemphigus. This review is intended to summarize the interaction of translational factors and epigenetic regulations that are involved with development and differentiation of B cells, and the mechanism of dysregulation in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Cutler C. Treating Inflammation and Fibrosis in Chronic GVHD: Two Birds, One ROCK. J Clin Oncol 2021; 39:1942-1945. [PMID: 33877859 DOI: 10.1200/jco.21.00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
18
|
Liu L, Hu L, Yang L, Jia S, Du P, Min X, Wu J, Wu H, Long H, Lu Q, Zhao M. UHRF1 downregulation promotes T follicular helper cell differentiation by increasing BCL6 expression in SLE. Clin Epigenetics 2021; 13:31. [PMID: 33568199 PMCID: PMC7874639 DOI: 10.1186/s13148-021-01007-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background Transcription factor B cell lymphoma 6 (BCL6) is a master regulator of T follicular helper (Tfh) cells, which play a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanisms by which BCL6 expression is regulated are poorly understood. Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an important epigenetic factor that regulates DNA methylation and histone modifications. In the present study, we assessed whether UHRF1 can regulate BCL6 expression and influence the differentiation and proliferation of Tfh cells. Results Compared to healthy controls, the mean fluorescence intensity of UHRF1 (UHRF1-MFI) in Tfh cells from SLE patients was significantly downregulated, whereas that of BCL6 (BCL6-MFI) was significantly upregulated. In vitro, UHRF1 knockdown led to BCL6 overexpression and promoted Tfh cell differentiation. In contrast, UHRF1 overexpression led to BCL6 downregulation and decreased Tfh cell differentiation. In vivo, conditional UHRF1 gene knockout (UHRF1-cKO) in mouse T cells revealed that UHRF1 depletion can enhance the proportion of Tfh cells and induce an augmented GC reaction in mice treated with NP-keyhole limpet hemocyanin (NP-KLH). Mechanistically, UHRF1 downregulation can decrease DNA methylation and H3K27 trimethylation (H3K27me3) levels in the BCL6 promoter region of Tfh cells. Conclusions Our results demonstrated that UHRF1 downregulation leads to increased BCL6 expression by decreasing DNA methylation and H3K27me3 levels, promoting Tfh cell differentiation in vitro and in vivo. This finding reveals the role of UHRF1 in regulating Tfh cell differentiation and provides a potential target for SLE therapy.
Collapse
Affiliation(s)
- Limin Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Linxuan Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Sujie Jia
- Department of Pharmacy, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Xiaoli Min
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Jiali Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China. .,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-Related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, Hunan, China.
| |
Collapse
|
19
|
Assmann JC, Farthing DE, Saito K, Maglakelidze N, Oliver B, Warrick KA, Sourbier C, Ricketts CJ, Meyer TJ, Pavletic SZ, Linehan WM, Krishna MC, Gress RE, Buxbaum NP. Glycolytic metabolism of pathogenic T cells enables early detection of GVHD by 13C-MRI. Blood 2021; 137:126-137. [PMID: 32785680 PMCID: PMC7808015 DOI: 10.1182/blood.2020005770] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (AHSCT). Definitive diagnosis of GVHD is invasive, and biopsies of involved tissues pose a high risk of bleeding and infection. T cells are central to GVHD pathogenesis, and our previous studies in a chronic GVHD mouse model showed that alloreactive CD4+ T cells traffic to the target organs ahead of overt symptoms. Because increased glycolysis is an early feature of T-cell activation, we hypothesized that in vivo metabolic imaging of glycolysis would allow noninvasive detection of liver GVHD as activated CD4+ T cells traffic into the organ. Indeed, hyperpolarized 13C-pyruvate magnetic resonance imaging detected high rates of conversion of pyruvate to lactate in the liver ahead of animals becoming symptomatic, but not during subsequent overt chronic GVHD. Concomitantly, CD4+ T effector memory cells, the predominant pathogenic CD4+ T-cell subset, were confirmed to be highly glycolytic by transcriptomic, protein, metabolite, and ex vivo metabolic activity analyses. Preliminary data from single-cell sequencing of circulating T cells in patients undergoing AHSCT also suggested that increased glycolysis may be a feature of incipient acute GVHD. Metabolic imaging is being increasingly used in the clinic and may be useful in the post-AHSCT setting for noninvasive early detection of GVHD.
Collapse
Affiliation(s)
| | - Don E Farthing
- Experimental Transplantation and Immunotherapy Branch and
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | | - Carole Sourbier
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | | | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Steven Z Pavletic
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ronald E Gress
- Experimental Transplantation and Immunotherapy Branch and
| | | |
Collapse
|
20
|
Ricker E, Chinenov Y, Pannellini T, Flores-Castro D, Ye C, Gupta S, Manni M, Liao JK, Pernis AB. Serine-threonine kinase ROCK2 regulates germinal center B cell positioning and cholesterol biosynthesis. J Clin Invest 2020; 130:3654-3670. [PMID: 32229726 PMCID: PMC7324193 DOI: 10.1172/jci132414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Germinal center (GC) responses require B cells to respond to a dynamic set of intercellular and microenvironmental signals that instruct B cell positioning, differentiation, and metabolic reprogramming. RHO-associated coiled-coil-containing protein kinase 2 (ROCK2), a serine-threonine kinase that can be therapeutically targeted by ROCK inhibitors or statins, is a key downstream effector of RHOA GTPases. Although RHOA-mediated pathways are emerging as critical regulators of GC responses, the role of ROCK2 in B cells is unknown. Here, we found that ROCK2 was activated in response to key T cell signals like CD40 and IL-21 and that it regulated GC formation and maintenance. RNA-Seq analyses revealed that ROCK2 controlled a unique transcriptional program in GC B cells that promoted optimal GC polarization and cholesterol biosynthesis. ROCK2 regulated this program by restraining AKT activation and subsequently enhancing FOXO1 activity. ATAC-Seq (assay for transposase-accessible chromatin with high-throughput sequencing) and biochemical analyses revealed that the effects of ROCK2 on cholesterol biosynthesis were instead mediated via a novel mechanism. ROCK2 directly phosphorylated interferon regulatory factor 8 (IRF8), a crucial mediator of GC responses, and promoted its interaction with sterol regulatory element-binding transcription factor 2 (SREBP2) at key regulatory regions controlling the expression of cholesterol biosynthetic enzymes, resulting in optimal recruitment of SREBP2 at these sites. These findings thus uncover ROCK2 as a multifaceted and therapeutically targetable regulator of GC responses.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery (HSS), New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | | | - Tania Pannellini
- Research Division and
- Precision Medicine Laboratory, HSS, New York, New York, USA
| | - Danny Flores-Castro
- Autoimmunity and Inflammation Program, Hospital for Special Surgery (HSS), New York, New York, USA
| | - Chao Ye
- Autoimmunity and Inflammation Program, Hospital for Special Surgery (HSS), New York, New York, USA
| | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery (HSS), New York, New York, USA
| | - Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery (HSS), New York, New York, USA
| | - James K. Liao
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery (HSS), New York, New York, USA
- David Z. Rosensweig Genomics Research Center
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Behrmann A, Zhong D, Li L, Cheng SL, Mead M, Ramachandran B, Sabaeifard P, Goodarzi M, Lemoff A, Kronenberg HM, Towler DA. PTH/PTHrP Receptor Signaling Restricts Arterial Fibrosis in Diabetic LDLR -/- Mice by Inhibiting Myocardin-Related Transcription Factor Relays. Circ Res 2020; 126:1363-1378. [PMID: 32160132 PMCID: PMC7524585 DOI: 10.1161/circresaha.119.316141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR-/- mice. OBJECTIVE To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR-/- mice (PTH1R-VKO) and Cre-negative controls. METHODS AND RESULTS Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout. PTH1R-VKO cohorts exhibited increased aortic collagen accumulation in vivo, and VSM cultures from PTH1R-VKO mice elaborated more collagen (2.5-fold; P=0.01) with elevated Col3a1 and Col1a1 expression. To better understand these profibrotic responses, we performed mass spectrometry on nuclear proteins extracted from Cre-negative controls and PTH1R-VKO VSM. PTH1R deficiency reduced Gata6 but upregulated the MADS (MCM1, Agamous, Deficiens, and Srf DNA-binding domain)-box transcriptional co-regulator, Mkl-1 (megakaryoblastic leukemia [translocation] 1). Co-transfection assays (Col3a1 promoter-luciferase reporter) confirmed PTH1R-mediated inhibition and Mkl-1-mediated activation of Col3a1 transcription. Regulation mapped to a conserved hybrid CT(A/T)6GG MADS-box cognate in the Col3a1 promoter. Mutations of C/G in this motif markedly reduced Col3a1 transcriptional regulation by PTH1R and Mkl-1. Upregulation of Col3a1 and Col1a1 in PTH1R-VKO VSM was inhibited by small interfering RNA targeting Mkl1 and by treatment with the Mkl-1 antagonist CCG1423 or the Rock (Rho-associated coiled-coil containing protein kinase)-2 inhibitor KD025. Chromatin precipitation demonstrated that VSM PTH1R deficiency increased Mkl-1 binding to Col3a1 and Col1a1, but not TNF, promoters. Proteomic studies of plasma extracellular vesicles and VSM from PTH1R-VKO mice identified C1r (complement component 1, r) and C1s (complement component 1, s), complement proteins involved in vascular collagen metabolism, as potential biomarkers. VSM C1r protein and C1r message were increased with PTH1R deficiency, mediated by Mkl-1-dependent transcription and inhibited by CCG1423 or KD025. CONCLUSIONS PTH1R signaling restricts collagen production in the VSM lineage, in part, via Mkl-1 regulatory circuits that control collagen gene transcription. Strategies that maintain homeostatic VSM PTH1R signaling, as reflected in extracellular vesicle biomarkers of VSM PTH1R/Mkl-1 action, may help mitigate arteriosclerosis and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Diet, High-Fat
- Disease Models, Animal
- Fibrosis
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Parathyroid Hormone/metabolism
- Rats
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Remodeling
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Dalian Zhong
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Li Li
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Su-Li Cheng
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Megan Mead
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Bindu Ramachandran
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Parastoo Sabaeifard
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114
| | - Dwight A. Towler
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
22
|
Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2020; 42:101307. [PMID: 31604532 DOI: 10.1016/j.smim.2019.101307] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 12/20/2022]
Abstract
Overcoming exhaustion-associated dysfunctions and generating antigen-specific CD8 T cells with the ability to persist in the host and mediate effective long-term anti-tumor immunity is the final aim of cancer immunotherapy. To achieve this goal, immuno-modulatory properties of the common gamma-chain (γc) family of cytokines, that includes IL-2, IL-7, IL-15 and IL-21, have been used to fine-tune and/or complement current immunotherapeutic protocols. These agents potentiate CD8 T cell expansion and functions particularly in the context of immune checkpoint (IC) blockade, shape their differentiation, improve their persistence in vivo and alternatively, influence distinct aspects of the T cell exhaustion program. Despite these properties, the intrinsic impact of cytokines on CD8 T cell exhaustion has remained largely unexplored impeding optimal therapeutic use of these agents. In this review, we will discuss current knowledge regarding the influence of relevant γc cytokines on CD8 T cell differentiation and function based on clinical data and preclinical studies in murine models of cancer and chronic viral infection. We will restate the place of these agents in current immunotherapeutic regimens such as IC checkpoint blockade and adoptive cell therapy. Finally, we will discuss how γc cytokine signaling pathways regulate T cell immunity during cancer and whether targeting these pathways may sustain an effective and durable T cell response in patients.
Collapse
Affiliation(s)
- Mitra Shourian
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoîte Bourdin
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Wang M, Chen H, Qiu J, Yang HX, Zhang CY, Fei YY, Zhao LD, Zhou JX, Wang L, Wu QJ, Zhou YZ, Zhang W, Zhang FC, Zhang X, Lipsky PE. Antagonizing miR-7 suppresses B cell hyperresponsiveness and inhibits lupus development. J Autoimmun 2020; 109:102440. [PMID: 32201226 DOI: 10.1016/j.jaut.2020.102440] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES The objective of this study was to address the biological function of miR-7 in an animal model of systemic lupus erythematosus. METHODS MRLlpr/lpr lupus mice were administrated antagomiR-7 or a scramble control by tail vein for 5weeks. Three groups of animals' tissues were assessed for lupus manifestations by immunofluorescence and immunohistochemistry, and serum was examined for levels of autoantibodies and inflammatory cytokines. Splenic B cell subsets were assessed for intracellular expression of PI3K signaling by FACS. Finally, the ability of the miR-7 antagomir to regulate the expansion of T follicular helper (Tfh) cells and B cell hyperresponsiveness was further explored. RESULTS We found that miR-7 was up-regulated in MRLlpr/lpr lupus mice and directly targeted PTEN mRNA in B cells. Up-regulated miR-7 in MRLlpr/lpr lupus B cells was negatively correlated with PTEN expression. Notably, miR-7 antagomir treatment reduced lupus manifestations in MRLlpr/lpr lupus mice. miR-7-mediated down-regulation of PTEN/AKT signaling promoted B cell differentiation into plasmablasts/plasma cells and spontaneous germinal center (GC) formation, whereas miR-7 antagomir normalized splenic B cell subtypes. Besides suppressing the activation of B cells, miR-7 antagomir intervention also down-regulated STAT3 phosphorylation and production of IL-21 and reduced Tfh expansion. CONCLUSION The above data have demonstrated the critical roles of miR-7 not only in regulating PTEN expression and also B cell and Tfh cell function in lupus-prone MRLlpr/lpr lupus mice. Furthermore, the disease manifestations in MRLlpr/lpr lupus mice are efficiently improved by miR-7 antagomir, indicating miR-7 as a potential treatment strategy in SLE.
Collapse
Affiliation(s)
- Min Wang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hua Chen
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Jia Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Henan University of Science and Technology, Henan, 471003, China
| | - Hua-Xia Yang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Chun-Yan Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yun-Yun Fei
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Li-Dan Zhao
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Jia-Xin Zhou
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Li Wang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Qing-Jun Wu
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Yang-Zhong Zhou
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Feng-Chun Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, The Ministry of Education Key Laboratory, Beijing, 100730, China; Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Peter E Lipsky
- RILITE Research Institute and AMPEL BioSolutions, Charlottesville, VA, USA.
| |
Collapse
|
24
|
Wei L, Surma M, Yang Y, Tersey S, Shi J. ROCK2 inhibition enhances the thermogenic program in white and brown fat tissue in mice. FASEB J 2019; 34:474-493. [PMID: 31914704 DOI: 10.1096/fj.201901174rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/09/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The RhoA/ROCK-mediated actin cytoskeleton dynamics have been implicated in adipogenesis. The two ROCK isoforms, ROCK1 and ROCK2, are highly homologous. The contribution of ROCK2 to adipogenesis in vivo has not been elucidated. The present study aimed at the in vivo and in vitro roles of ROCK2 in the regulation of adipogenesis and the development of obesity. We performed molecular, histological, and metabolic analyses in ROCK2+/- and ROCK2+/KD mouse models, the latter harboring an allele with a kinase-dead (KD) mutation. Both ROCK2+/- and ROCK2+/KD mouse models showed a lean body mass phenotype during aging, associated with increased amounts of beige cells in subcutaneous white adipose tissue (sWAT) and increased thermogenic gene expression in all fat depots. ROCK2+/- mice on a high-fat diet showed increased energy expenditure accompanying by reduced obesity, and improved insulin sensitivity. In vitro differentiated ROCK2+/- stromal-vascular (SV) cells revealed increased beige adipogenesis associated with increased thermogenic gene expressions. Treatment with a selective ROCK2 inhibitor, KD025, to inhibit ROCK2 activity in differentiated SV cells reproduced the pro-beige phenotype of ROCK2+/- SV cells. In conclusion, ROCK2 activity-mediated actin cytoskeleton dynamics contribute to the inhibition of beige adipogenesis in WAT, and also promotes age-related and diet-induced fat mass gain and insulin resistance.
Collapse
Affiliation(s)
- Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michelle Surma
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yang Yang
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Tersey
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
25
|
Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation. Aging (Albany NY) 2019; 11:8911-8924. [PMID: 31655796 PMCID: PMC6834404 DOI: 10.18632/aging.102346] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
Objective: To investigate the mechanism of immature dendritic cells-derived exosomes (imDECs) in the regulation of T cell differentiation and immune tolerance in renal allograft model mice. Results: imDECs significantly improved the percent of survival, relieved inflammatory response, and reduced CD4+T cell infiltration. In addition, imDECs reduced the rejection associated cytokines in allograft mice, and increased the percentage of Foxp3+CD4+T cells in spleen and kidney tissues. imDECs suppressed the IL17+CD4+T cells and promoted the Foxp3+CD4+T cells under Th17 polarization condition. Moreover, miR-682 was found to be highly expressed in imDECs which suppressed the IL17+CD4+T cells and promoted the Foxp3+CD4+T cells. Luciferase reporter assay showed ROCK2 was a target of miR-682, and ROCK mRNA level was negative correlated with miR-682 mRNA level. Conclusion: miR-682 was highly expressed in imDECs, and imDECs-secreted miR-682 promoted Treg cell differentiation by negatively regulating ROCK2 to promote immune tolerance in renal allograft model mice. Methods: Renal allograft model mice were established, and imDECs or mature dendritic cells-derived exosomes (mDECs) were injected into model mice. Rejection associated cytokines IFN-γ, IL-2, IL-17 levels in plasma were detected by ELISA. IL-17A, Foxp3, miR-682, ROCK2, p-STAT3, p-STAT5 expressions were measured by qRT-PCR or western blot.
Collapse
|
26
|
Dang WZ, Li H, Jiang B, Nandakumar KS, Liu KF, Liu LX, Yu XC, Tan HJ, Zhou C. Therapeutic effects of artesunate on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2-STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152965. [PMID: 31129432 DOI: 10.1016/j.phymed.2019.152965] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/27/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Anti-malarial drug artesunate (ART), a semi-synthetic derivative of artemisnin, has immunosuppressive effects on several autoimmune diseases, including Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), and Colitis. However, molecular mechanisms of ART, especially on follicular helper T cells (Tfh), central players in SLE pathology, are far from clear. PURPOSE The object for this work is to investigate the therapeutic effect of ART on lupus-prone MRL/lpr mice and its regulatory function on Tfh cells. STUDY DESIGN AND METHODS MRL/lpr mice were used to explore therapeutic effects of ART on lupus-prone MRL/lpr mice and its regulatory functions on Tfh cells. Then, experiments of renal function were accomplished using the biochemical kits. Effects of ART on histopathology of kidneys, inflammatory factors and autoantibodies were examined using H&E staining, ELISA and real-time PCR. Flow cytometry and western blot analysis were used to examine effects of ART on Tfh differentiation and Jak2-Stat3 signaling pathway. RESULTS Upon oral administration, ART significantly prolonged the survival of MRL/lpr mice, ameliorated the lupus nephritis symptoms, decreased the levels of anti-dsDNA antibodies deposited in the kidney, and the levels of pathogenic cytokines (IL-6, IFN-γ and IL-21). After ART treatment, T-cell compartment in the spleen of MRL/lpr mice was restored in terms of reduction in the number of Tfh cells and in the maintenance of the ratio of Tfr to follicular regulatory T cells (Tfh). In addition, ART has significantly inhibited the phosphorylation levels of Jak2 and Stat3 in the MRL/lpr mice. CONCLUSION ART showed therapeutic effects on lupus-prone MRL/lpr mice by inhibiting the differentiation of Tfh cells as well as altering the activation status of Jak2-Stat3 signaling cascade.
Collapse
Affiliation(s)
- Wen-Zhen Dang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bing Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology of Chinese Material Medical, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kutty Selva Nandakumar
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Kai-Fei Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Li-Xin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao-Chen Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui-Jing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
27
|
Li X, Gao Q, Feng Y, Zhang X. Developing role of B cells in the pathogenesis and treatment of chronic GVHD. Br J Haematol 2018; 184:323-336. [PMID: 30585319 PMCID: PMC6590173 DOI: 10.1111/bjh.15719] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a major complication affecting the long-term survival of patients after allogeneic haematopoietic stem cell transplantation. The mechanism of cGVHD is unclear, and while previous studies have primarily focused on T cells, the role of B cells in the pathogenesis of cGVHD has been less reported. However, current studies on cGVHD are increasingly focused on the important role of B cells. In this review, we will introduce the newest studies and examine the role of B cells in cGVHD in detail with respect to the following aspects: altered B cell subpopulations, aberrant B cell signalling pathways, autoantibodies and T-B cell interactions. Treatment strategies for the targeting of B cells during cGVHD will also be discussed.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology College of Basic Medicine, Third Military Medicine University, Chongqing, China
| | - Yimei Feng
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xi Zhang
- Department of Haematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
28
|
Han L, Yang X, Yu Y, Wan W, Lv L, Zou H. Associations of circulating CXCR3 -PD-1 +CD4 +T cells with disease activity of systemic lupus erythematosus. Mod Rheumatol 2018; 29:461-469. [PMID: 29694256 DOI: 10.1080/14397595.2018.1469581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Which helper CD4+ T cell subset contributes to autoantibodies generation and severity of end-organ involvement in lupus patients remains to be explored. Our research aims to investigate the roles of circulating Tfh (cTfh) cell subsets and corresponding CXCR5- Th cells in lupus patients and their correlation with SLE disease activity index 2000 (SLEDAI). METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from blood of systemic lupus erythematosus (SLE) patients as well as healthy donors. The proportion of Th cell subsets classified from cell surface markers (CD45RO, CXCR5, CXCR3, CCR6, PD-1, ICOS, and CCR7) is detected by flow cytometry. RESULTS We found no difference in the frequency of CD45RO+CXCR5+CD4+ T cells between SLE patients and health controls. As previously reported, SLE patients showed an increase in the percentage of CXCR5+PD-1+, CXCR5+ICOS+PD-1+ and CXCR5+CCR7loPD-1hi cTfh subset, however, none of these populations had correlation with SLEDAI. Therefore, we further investigated the CXCR5- subsets, and surprisingly we found that the frequency of CXCR3-PD-1+ subset was correlated with SLEDAI, ds-DNA IgG, anti-nucleosome antibody, C3, and C4 independent of CXCR5. Consistently, CXCR3-PD-1+CD45RO+CD4+T cells expressed factors associated with B-cell-help for the autoantibody production. CONCLUSION CXCR3-PD-1+CD4+T cells are a sensitive indicator to assess SLE disease activity and might contribute B cell help and the generation of autoantibodies in patients.
Collapse
Affiliation(s)
- Lei Han
- a Divison of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| | - Xue Yang
- a Divison of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| | - Yiyun Yu
- a Divison of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| | - Weiguo Wan
- a Divison of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| | - Ling Lv
- a Divison of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| | - Hejian Zou
- a Divison of Rheumatology, Huashan Hospital , Fudan University , Shanghai , China
| |
Collapse
|
29
|
Chen W, Nyuydzefe MS, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A. ROCK2, but not ROCK1 interacts with phosphorylated STAT3 and co-occupies TH17/TFH gene promoters in TH17-activated human T cells. Sci Rep 2018; 8:16636. [PMID: 30413785 PMCID: PMC6226480 DOI: 10.1038/s41598-018-35109-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/30/2018] [Indexed: 02/04/2023] Open
Abstract
Rho-associated coiled-coil kinase (ROCK)2 targeting down-regulates autoimmune responses in animal models and patients, however the underlying molecular mechanism is still an enigma. We report that ROCK2 binds phosphorylated-STAT3 and its kinase activity controls the formation of ROCK2/STAT3/JAK2 complex and optimal STAT3 phosphorylation in human CD4+ T cells during T helper 17 (TH17)-skewing. Moreover, chromatin-immunoprecipitation sequencing (ChIP-seq) analysis revealed that, genome-wide, about 70% of ROCK2 and STAT3 peaks overlapped and co-localized to several key genes controlling TH17 and T follicular helper (TFH) cell functions. Specifically, the co-occupancy of ROCK2 and STAT3 on the Irf4 and Bcl6 genes was validated by ChIP-qPCR analysis. Furthermore, the binding of ROCK2 to both the Irf4 and Bcl6 promoters was attenuated by STAT3 silencing as well as by selective ROCK2 inhibitor. Thus, the present study demonstrated previously unidentified evidence that ROCK2-mediated signaling in the cytosol provides a positive feed-forward signal for nuclear ROCK2 to be recruited to the chromatin by STAT3 and potentially regulates TH17/TFH gene transcription.
Collapse
Affiliation(s)
- Wei Chen
- Kadmon Corporation, LLC, New York, NY, 10016, USA
| | | | | | - Jingya Zhang
- Kadmon Corporation, LLC, New York, NY, 10016, USA
| | - Samuel D Waksal
- Kadmon Corporation, LLC, New York, NY, 10016, USA.,Current Weill Cornell Medicine, New York, NY, 10021, USA
| | | |
Collapse
|
30
|
Tengesdal IW, Kitzenberg D, Li S, Nyuydzefe MS, Chen W, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A, Dinarello CA. The selective ROCK2 inhibitor KD025 reduces IL-17 secretion in human peripheral blood mononuclear cells independent of IL-1 and IL-6. Eur J Immunol 2018; 48:1679-1686. [PMID: 30098001 DOI: 10.1002/eji.201847652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 01/07/2023]
Abstract
Reducing the activities of the pro-inflammatory cytokine IL-17 is an effective treatment strategy for several chronic autoimmune disorders. Rho-associated coiled-coil containing kinase 2 (ROCK2) is a member of the serine-threonine protein kinase family that regulates IL-17 secretion in T cells via signal transducer and activator of transcription 3 (STAT3)-dependent mechanism. We reported here that the selective ROCK2 inhibitor KD025 significantly reduced in vitro production of IL-17 in unfractionated human peripheral blood mononuclear cells (PBMCs) stimulated with the dectin-1 agonist Candida albicans. C. albicans induced IL-17 was reduced by 70% (p < 0.0001); a similar reduction (80%) was observed in PBMC stimulated with the Toll-like receptor 2 agonist Staphylococcus epidermidis (p < 0.0001). Treatment of PBMC with KD025 was not associated with a reduction in IL-1β, IL-6 or IL-1α levels; in contrast, a 1.5 fold increase in the level of IL-1 receptor antagonist (IL-1Ra) was observed (p < 0.001). KD025 down-regulated C. albicans-induced Myosin Light Chain and STAT3, whereas STAT5 phosphorylation increased. Using anti-CD3/CD28 activation of the TCR, KD025 similarly suppressed IL-17 independent of a reduction in IL-1β. Thus, ROCK2 directly regulates IL-17 secretion independent of endogenous IL-1 and IL-6 supporting development of selective ROCK2 inhibitors for treatment of IL-17-driven inflammatory diseases.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Suzhao Li
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Wei Chen
- Kadmon Corporation, LLC, New York, NY, USA
| | | | | | | | | | - Charles A Dinarello
- Dept. Medicine, University of Colorado Denver, Aurora, CO, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Emerging areas for therapeutic discovery in SLE. Curr Opin Immunol 2018; 55:1-8. [PMID: 30245241 DOI: 10.1016/j.coi.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Recent advances in the field of autoimmunity have identified numerous dysfunctional pathways in Systemic Lupus Erythematosus (SLE), including aberrant clearance of nucleic-acid-containing debris and immune complexes, excessive innate immune activation leading to overactive type I IFN signalling, and abnormal B and T cell activation. On the background of genetic polymorphisms that reset thresholds for immune responses, multiple immune cells contribute to inflammatory amplification circuits. Neutrophils activated by immune complexes are a rich source of immunogenic nucleic acids. Identification of new B subsets suggests several mechanisms for induction of autoantibody producing effector cells. Disordered T cell regulation involves both CD4 and CD8 cells. An imbalance in immunometabolism in immune cells amplifies autoimmunity and inflammation. These new advances in understanding of disease pathogenesis provide fertile ground for therapeutic development.
Collapse
|
32
|
Katsuyama T, Tsokos GC, Moulton VR. Aberrant T Cell Signaling and Subsets in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1088. [PMID: 29868033 PMCID: PMC5967272 DOI: 10.3389/fimmu.2018.01088] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-organ debilitating autoimmune disease, which mainly afflicts women in the reproductive years. A complex interaction of genetics, environmental factors and hormones result in the breakdown of immune tolerance to "self" leading to damage and destruction of multiple organs, such as the skin, joints, kidneys, heart and brain. Both innate and adaptive immune systems are critically involved in the misguided immune response against self-antigens. Dendritic cells, neutrophils, and innate lymphoid cells are important in initiating antigen presentation and propagating inflammation at lymphoid and peripheral tissue sites. Autoantibodies produced by B lymphocytes and immune complex deposition in vital organs contribute to tissue damage. T lymphocytes are increasingly being recognized as key contributors to disease pathogenesis. CD4 T follicular helper cells enable autoantibody production, inflammatory Th17 subsets promote inflammation, while defects in regulatory T cells lead to unchecked immune responses. A better understanding of the molecular defects including signaling events and gene regulation underlying the dysfunctional T cells in SLE is necessary to pave the path for better management, therapy, and perhaps prevention of this complex disease. In this review, we focus on the aberrations in T cell signaling in SLE and highlight therapeutic advances in this field.
Collapse
Affiliation(s)
| | | | - Vaishali R. Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Kulling PM, Olson KC, Hamele CE, Toro MF, Tan SF, Feith DJ, Loughran TP. Dysregulation of the IFN-γ-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS One 2018; 13:e0193429. [PMID: 29474442 PMCID: PMC5825082 DOI: 10.1371/journal.pone.0193429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/09/2018] [Indexed: 02/04/2023] Open
Abstract
T cell large granular lymphocyte leukemia (T-LGLL) is a rare incurable disease that is characterized by defective apoptosis of cytotoxic CD8+ T cells. Chronic activation of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a hallmark of T-LGLL. One manifestation is the constitutive phosphorylation of tyrosine 701 of STAT1 (p-STAT1). T-LGLL patients also exhibit elevated serum levels of the STAT1 activator, interferon-γ (IFN-γ), thus contributing to an inflammatory environment. In normal cells, IFN-γ production is tightly controlled through induction of IFN-γ negative regulators. However, in T-LGLL, IFN-γ signaling lacks this negative feedback mechanism as evidenced by excessive IFN-γ production and decreased levels of suppressors of cytokine signaling 1 (SOCS1), a negative regulator of IFN-γ. Here we characterize the IFN-γ-STAT1 pathway in TL-1 cells, a cell line model of T-LGLL. TL-1 cells exhibited lower IFN-γ receptor protein and mRNA expression compared to an IFN-γ responsive cell line. Furthermore, IFN-γ treatment did not induce JAK2 or STAT1 activation or transcription of IFN-γ-inducible gene targets. However, IFN-β induced p-STAT1 and subsequent STAT1 gene transcription, demonstrating a specific IFN-γ signaling defect in TL-1 cells. We utilized siRNA targeting of STAT1, STAT3, and STAT5b to probe their role in IL-2-mediated IFN-γ regulation. These studies identified STAT5b as a positive regulator of IFN-γ production. We also characterized the relationship between STAT1, STAT3, and STAT5b proteins. Surprisingly, p-STAT1 was positively correlated with STAT3 levels while STAT5b suppressed the activation of both STAT1 and STAT3. Taken together, these results suggest that the dysregulation of the IFN-γ-STAT1 signaling pathway in TL-1 cells likely results from low levels of the IFN-γ receptor. The resulting inability to induce negative feedback regulators explains the observed elevated IL-2 driven IFN-γ production. Future work will elucidate the best way to target this pathway, with the ultimate goal to find a better therapeutic for T-LGLL.
Collapse
Affiliation(s)
- Paige M. Kulling
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
- Department of Pathology, University of Virginia; Charlottesville, VA United States of America
| | - Kristine C. Olson
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Cait E. Hamele
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Mariella F. Toro
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia; Charlottesville, VA United States of America
- Department of Medicine, Division of Hematology/Oncology, University of Virginia; Charlottesville, VA United States of America
- * E-mail:
| |
Collapse
|
34
|
B-cell targeting in chronic graft-versus-host disease. Blood 2018; 131:1399-1405. [PMID: 29437591 DOI: 10.1182/blood-2017-11-784017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/25/2018] [Indexed: 01/08/2023] Open
Abstract
Over the last decade, our understanding of the pathophysiology of chronic graft-versus-host disease (cGVHD) has improved considerably. In this spotlight, we discuss emerging insights into the pathophysiology of cGVHD with a focus on B cells. First, we summarize supporting evidence derived from mouse and human studies. Next, novel cGVHD therapy approaches that target B cells will be covered to provide treating physicians with an overview of the rationale behind the emerging armamentarium against cGVHD.
Collapse
|
35
|
Affiliation(s)
- Robert Zeiser
- From the Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University, Freiburg, Germany (R.Z.); and the Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis (B.R.B.)
| | - Bruce R Blazar
- From the Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Freiburg University, Freiburg, Germany (R.Z.); and the Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis (B.R.B.)
| |
Collapse
|
36
|
|
37
|
Forcade E, Paz K, Flynn R, Griesenauer B, Amet T, Li W, Liu L, Bakoyannis G, Jiang D, Chu HW, Lobera M, Yang J, Wilkes DS, Du J, Gartlan K, Hill GR, MacDonald KP, Espada EL, Blanco P, Serody JS, Koreth J, Cutler CS, Antin JH, Soiffer RJ, Ritz J, Paczesny S, Blazar BR. An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition. JCI Insight 2017; 2:92111. [PMID: 28614794 DOI: 10.1172/jci.insight.92111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/16/2017] [Indexed: 01/13/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17-blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.
Collapse
Affiliation(s)
- Edouard Forcade
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France.,Department of Hematology and Cell Therapy, University Hospital, Bordeaux, France
| | - Katelyn Paz
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Flynn
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brad Griesenauer
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tohti Amet
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei Li
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liangyi Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Giorgos Bakoyannis
- Department of Biostatistics, Indiana University Fairbanks School of Public Health and School of Medicine, Indiana, USA
| | - Di Jiang
- National Jewish Health, Denver, Colorado, USA
| | | | | | | | - David S Wilkes
- Dean, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| | - Jing Du
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kate Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kelli Pa MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Eduardo L Espada
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Blanco
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| | - Jonathan S Serody
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John Koreth
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Corey S Cutler
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H Antin
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J Soiffer
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Jerome Ritz
- Division of Hematologic Malignancies and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Herman B. Wells Center for Pediatric Research.,Department of Microbiology and Immunology, and.,Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
38
|
The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine Growth Factor Rev 2017; 37:29-45. [PMID: 28606734 DOI: 10.1016/j.cytogfr.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Abstract
Rho associated coiled-coil containing kinases (ROCKs) respond to defined extra- and intracellular stimuli to control cell migration, cell proliferation, and apoptosis. Histone deacetylases (HDACs) are epigenetic modifiers that regulate nuclear and cytoplasmic signaling through the deacetylation of histones and non-histone proteins. ROCK and HDAC functions are important compounds of basic and applied research interests. Recent evidence suggests a physiologically important interplay between HDACs and ROCKs in various cells and organisms. Here we summarize the crosstalk between these enzymatic families and its implications for cancer and neurodegeneration.
Collapse
|
39
|
Zanin-Zhorov A, Weiss JM, Trzeciak A, Chen W, Zhang J, Nyuydzefe MS, Arencibia C, Polimera S, Schueller O, Fuentes-Duculan J, Bonifacio KM, Kunjravia N, Cueto I, Soung J, Fleischmann RM, Kivitz A, Lebwohl M, Nunez M, Woodson J, Smith SL, West RF, Berger M, Krueger JG, Ryan JL, Waksal SD. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. THE JOURNAL OF IMMUNOLOGY 2017; 198:3809-3814. [PMID: 28389592 DOI: 10.4049/jimmunol.1602142] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022]
Abstract
Targeted inhibition of Rho-associated kinase (ROCK)2 downregulates the proinflammatory T cell response while increasing the regulatory arm of the immune response in animals models of autoimmunity and Th17-skewing human cell culture in vitro. In this study, we report that oral administration of a selective ROCK2 inhibitor, KD025, reduces psoriasis area and severity index scores by 50% from baseline in 46% of patients with psoriasis vulgaris, and it decreases epidermal thickness as well as T cell infiltration in the skin. We observed significant reductions of IL-17 and IL-23, but not IL-6 and TNF-α, whereas IL-10 levels were increased in peripheral blood of clinical responders after 12 wk of treatment with KD025. Collectively, these data demonstrate that an orally available selective ROCK2 inhibitor downregulates the Th17-driven autoimmune response and improved clinical symptoms in psoriatic patients via a defined molecular mechanism that involves concurrent modulation of cytokines without deleterious impact on the rest of the immune system.
Collapse
Affiliation(s)
| | | | | | - Wei Chen
- Kadmon Corporation, LLC, New York, NY 10016
| | | | | | | | | | | | | | - Kathleen M Bonifacio
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY 10065
| | - Norma Kunjravia
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY 10065
| | - Inna Cueto
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY 10065
| | - Jennifer Soung
- Southern California Dermatology, Inc., Santa Ana, CA 92701
| | | | - Alan Kivitz
- Altoona Center for Clinical Research, Duncanville, PA 16635
| | - Mark Lebwohl
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | | | - Shondra L Smith
- Dermatology & Advanced Aesthetics, Lake Charles, LA 70605; and
| | | | | | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY 10065
| | | | | |
Collapse
|
40
|
Rozo C, Chinenov Y, Maharaj RK, Gupta S, Leuenberger L, Kirou KA, Bykerk VP, Goodman SM, Salmon JE, Pernis AB. Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE. Ann Rheum Dis 2017; 76:740-747. [PMID: 28283529 PMCID: PMC5839171 DOI: 10.1136/annrheumdis-2016-209850] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/04/2016] [Accepted: 10/09/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Deregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells. METHODS ROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology. RESULTS ROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors. CONCLUSIONS ROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches.
Collapse
Affiliation(s)
- Cristina Rozo
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, NY, NY, USA
| | - Yurii Chinenov
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, NY, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, NY, NY, USA
| | | | - Sanjay Gupta
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, NY, NY, USA
| | - Laura Leuenberger
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, NY, NY, USA
| | - Kyriakos A. Kirou
- Department of Rheumatology, Hospital for Special Surgery, NY, NY, USA
| | - Vivian P. Bykerk
- Department of Rheumatology, Hospital for Special Surgery, NY, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, NY, NY, USA
| | - Susan M. Goodman
- Department of Rheumatology, Hospital for Special Surgery, NY, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, NY, NY, USA
| | - Jane E. Salmon
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, NY, NY, USA
- Department of Rheumatology, Hospital for Special Surgery, NY, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, NY, NY, USA
| | - Alessandra B. Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, NY, NY, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, NY, NY, USA
- Department of Medicine, Weill Cornell Medical College, Cornell University, NY, NY, USA
| |
Collapse
|
41
|
Abstract
Effective immune responses require the precise regulation of dynamic interactions between hematopoietic and non-hematopoietic cells. The Rho subfamily of GTPases, which includes RhoA, is rapidly activated downstream of a diverse array of biochemical and biomechanical signals, and is emerging as an important mediator of this cross-talk. Key downstream effectors of RhoA are the Rho kinases, or ROCKs. The ROCKs are two serine-threonine kinases that can act as global coordinators of a tissue’s response to stress and injury because of their ability to regulate a wide range of biological processes. Although the RhoA-ROCK pathway has been extensively investigated in the non-hematopoietic compartment, its role in the immune system is just now becoming appreciated. In this commentary, we provide a brief overview of recent findings that highlight the contribution of this pathway to lymphocyte development and activation, and the impact that dysregulation in the activation of RhoA and/or the ROCKs may exert on a growing list of autoimmune and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, 10065, USA
| | - Luvana Chowdhury
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA
| | - Woelsung Yi
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, 10021, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, 10021, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, 10065, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, New York, 10021, USA
| |
Collapse
|