1
|
Simerzin A, Ackerman EE, Fujimaki K, Kohler RH, Iwamoto Y, Heltberg MS, Jambhekar A, Weissleder R, Lahav G. Cell confluency affects p53 dynamics in response to DNA damage. Mol Biol Cell 2025; 36:br16. [PMID: 40202833 DOI: 10.1091/mbc.e24-09-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The tumor suppressor protein p53 plays a key role in the cellular response to DNA damage. In response to DNA double-strand breaks (DSB), cultured cells exhibit oscillations of p53 levels, which impact gene expression and cell fate. The dynamics of p53 in vivo have only been studied in fixed tissues or using reporters for p53's transcriptional activity. Here we established breast tumors expressing a fluorescent reporter for p53 levels and employed intravital imaging to quantify its dynamics in response to DSB in vivo. Our findings revealed large heterogeneity among individual cells, with most cells exhibiting a single prolonged pulse. We then tested how p53 dynamics might change under high cell confluency, one factor that differs between cell culture and tissues. We revealed that highly confluent cultured breast cancer cells also show one broad p53 pulse instead of oscillations. Through mathematical modeling, sensitivity analysis, and live-cell imaging, we identified low levels of the phosphatase Wip1, a transcriptional target and negative regulator of p53, as a key contributor to these dynamics. Because high cell confluency better reflects the microenvironment of tissues, the impact of cell confluency on p53 dynamics may have important consequences for cancerous tissues responding to DNA damage-inducing therapies.
Collapse
Affiliation(s)
- Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Emily E Ackerman
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Kotaro Fujimaki
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Mathias S Heltberg
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 2100
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| |
Collapse
|
2
|
Abuetabh Y, Wu HH, Al Yousef H, Persad S, Schlosser MP, Eisenstat DD, Sergi CM, Leng R. Deciphering UBE4B phosphorylation dynamics: a key mechanism in p53 accumulation and cancer cell response to DNA damage. Cell Death Discov 2025; 11:131. [PMID: 40175346 PMCID: PMC11965332 DOI: 10.1038/s41420-025-02441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
The p53 tumor suppressor protein plays a crucial role in detecting and eliminating various oncogenic threats by promoting processes such as cell cycle arrest, DNA repair, senescence, and apoptosis. UBE4B is essential for negatively regulating p53 during normal conditions and following DNA damage. In previous studies, we demonstrated that UBE4B targets phosphorylated p53 for degradation in response to DNA damage. However, the regulation of UBE4B in relation to DNA damage in cancer is not well understood. In this study, we show that the UBE4B protein is regulated through a phosphorylation and dephosphorylation mechanism in response to DNA damage. Phosphorylation of UBE4B reduces its binding affinity to p53, leading to an accumulation of p53 in the cell. Wip1 plays a crucial role in the dephosphorylation of UBE4B, which stabilizes the activity of the UBE4B protein in response to DNA damage. UBE4B is primarily phosphorylated through ATR-mediated signaling, which reduces its binding affinity with p53, resulting in the accumulation and activation of p53. When Wip1 is inhibited, there is a significant increase in UBE4B phosphorylation, leading to more p53 accumulation and a reduction in cell growth. Therefore, understanding how UBE4B is regulated in cancer cells in response to DNA-damaging agents could help develop new therapeutic strategies to improve the prognosis for cancer patients.
Collapse
Affiliation(s)
- Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - H Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Habib Al Yousef
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Sujata Persad
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, AB, T6G 1C9, Canada
| | - Mary-Pat Schlosser
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, AB, T6G 1C9, Canada
| | - David D Eisenstat
- Department of Pediatrics, University of Alberta, 11405 - 87 Ave., Edmonton, AB, T6G 1C9, Canada
- Department of Oncology, Cross Cancer Institute, 11560 University Ave., University of Alberta, Edmonton, AB, T6G 1Z2, Canada
- Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Consolato M Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
3
|
Rogers CB, Leung W, Baxley RM, Kram RE, Wang L, Buytendorp JP, Le K, Largaespada DA, Hendrickson EA, Bielinsky AK. Cell Type Specific Suppression of Hyper-Recombination by Human RAD18 Is Linked to Proliferating Cell Nuclear Antigen K164 Ubiquitination. Biomolecules 2025; 15:150. [PMID: 39858544 PMCID: PMC11763143 DOI: 10.3390/biom15010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus. To investigate this, we examined three independent RAD18-null human cell lines. Our analyses found that loss of RAD18 in HCT116, but neither hTERT RPE-1 nor DLD1 cell lines, resulted in elevated sister chromatid exchange, gene conversion, and gene targeting, i.e., HCT116 mutants were hyper-recombinogenic (hyper-rec). Interestingly, these phenotypes were linked to RAD18's role in PCNA K164 ubiquitination, as HCT116 PCNAK164R/+ mutants were also hyper-rec, consistent with previous studies in rad18-/- and pcnaK164R avian DT40 cells. Importantly, the knockdown of UBC9 to prevent PCNA K164 SUMOylation did not affect hyper-recombination, strengthening the link between increased recombination and RAD18-catalyzed PCNA K164 ubiquitination, but not K164 SUMOylation. We propose that the hierarchy of post-replicative repair and HR, intrinsic to each cell type, dictates whether RAD18 is required for suppression of hyper-recombination and that this function is linked to PCNA K164 ubiquitination.
Collapse
Affiliation(s)
- Colette B. Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy Leung
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryan M. Baxley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel E. Kram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liangjun Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph P. Buytendorp
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Khoi Le
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Departments of Pediatrics and Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Al-Ayoubi C, Rocher O, Naylies C, Lippi Y, Vignard J, Puel S, Puel O, Oswald IP, Soler L. More than a mutagenic Aflatoxin B1 precursor: The multiple cellular targets of Versicolorin A revealed by global gene expression analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125138. [PMID: 39424048 DOI: 10.1016/j.envpol.2024.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Versicolorin A (VerA), a precursor of the potent carcinogen Aflatoxin B1 (AFB1), is an emerging mycotoxin. Recent research has highlighted the mutagenic and genotoxic properties of VerA, yet several facets of its pronounced toxicity remain unexplored. In the present study, we investigated early (6 h) transcriptomic changes induced by VerA in differentiated intestinal cells in non-cytotoxic conditions (1 and 3 μM) and compared its effects to those of AFB1 at 1 μM. Our findings indicated that VerA led to substantial alterations in global gene expression profiles, while AFB1 did not exhibit the same effects. As expected, both toxins caused alterations in gene expression associated with well-known aspects of their toxicity, including mutagenicity, genotoxicity, oxidative stress, and apoptosis. However, we also observed novel features of VerA toxicity, including the ability to cause mitochondrial dysfunction and to trigger a type-1 interferon response, at least partially mediated by cGAS-STING. VerA also induced changes in the expression of genes involved in the regulation of cell shape and adhesion, transcription/translation as well as genes associated with tumor biology. Our results provide new evidence of the high toxicity of VerA and underscore the importance of further assessing the risks associated with its presence in food.
Collapse
Affiliation(s)
- Carine Al-Ayoubi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Ophelie Rocher
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Sylvie Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France
| | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP, Purpan, UPS, 31027, Toulouse, France.
| |
Collapse
|
5
|
Malik MZ, Dashti M, Jangid A, Channanath A, Elsa John S, Singh RKB, Al-Mulla F, Alphonse Thanaraj T. Complex p53 dynamics regulated by miR-125b in cellular responses to reactive oxidative stress and DNA damage. Brief Bioinform 2024; 26:bbae706. [PMID: 39820247 PMCID: PMC11736902 DOI: 10.1093/bib/bbae706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 12/28/2024] [Indexed: 01/19/2025] Open
Abstract
In response to distinct cellular stresses, the p53 exhibits distinct dynamics. These p53 dynamics subsequently control cell fate. However, different stresses can generate the same p53 dynamics with different cell fate outcomes, suggesting that the integration of dynamic information from other pathways is important for cell fate regulation. The interactions between miRNA-125b, p53, and reactive oxygen species (ROS) are significant in the context of cellular stress responses and apoptosis. However, the regulating mechanism of miR-125b with p53 is not fully studied. The dynamics of p53 and its response to the miR-125b regulation are still open questions. In the present study, we try to answer some of these fundamental questions based on basic model built from available experimental reports. The miR-125b-p53 regulatory network is modeled using a set of 11 molecular species variables. The biochemical network of miR-125b-p53, described by 22 reaction channels, is represented by coupled ordinary differential equations (ODEs) using the mass action law of chemical kinetics. These ODEs are solved numerically using the standard fourth-order Runge-Kutta method to analyze the dynamical behavior of the system. The biochemical network model we designed is based on both experimental and theoretical reported data. The p53 dynamics driven by miR-125b exhibit five distinct dynamical states: first and second stable states, first and second dynamical states, and a sustained oscillation state. These different p53 dynamical states may correspond to various cellular conditions. If the stress induced by miR-125b is weak, the system will be weakly activated, favoring a return to normal functioning. However, if the stress is significantly strong, the system will move to an active state. To sustain this active state, which is far from equilibrium with little scope for returning to normal conditions, the system may transition to an apoptotic state by crossing through other intermediate states, as it is unlikely to regain normal functioning. The p53 dynamical states show a multifractal nature, contributed by both short- and long-range correlations. The networks illustrated from these dynamical states follow hierarchical scale-free features, exhibiting an assortative nature with an absence of the centrality-lethality rule. Furthermore, the active dynamical state is generally closer to hierarchical characteristics and is self-organized. Our research study reveals that significant activity of miR-125b on the p53 regulatory network and its dynamics can only be observed when the system is slightly activated by ROS. However, this process does not necessarily require the direct study of ROS activity. These findings elucidate the mechanisms by which cells integrate signaling pathways with distinct temporal activity patterns to encode stress specificity and direct diverse cell fate decisions.
Collapse
Affiliation(s)
- Md Zubbair Malik
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Mohammed Dashti
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Amit Jangid
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arshad Channanath
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman 15462, Kuwait City, Kuwait
| | | |
Collapse
|
6
|
Hsieh FS, Nguyen DPM, Heltberg MS, Wu CC, Lee YC, Jensen MH, Chen SH. Plausible, robust biological oscillations through allelic buffering. Cell Syst 2024; 15:1018-1032.e12. [PMID: 39504970 DOI: 10.1016/j.cels.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Biological oscillators can specify time- and dose-dependent functions via dedicated control of their oscillatory dynamics. However, how biological oscillators, which recurrently activate noisy biochemical processes, achieve robust oscillations remains unclear. Here, we characterize the long-term oscillations of p53 and its negative feedback regulator Mdm2 in single cells after DNA damage. Whereas p53 oscillates regularly, Mdm2 from a single MDM2 allele exhibits random unresponsiveness to ∼9% of p53 pulses. Using allelic-specific imaging of MDM2 activity, we show that MDM2 alleles buffer each other to maintain p53 pulse amplitude. Removal of MDM2 allelic buffering cripples the robustness of p53 amplitude, thereby elevating p21 levels and cell-cycle arrest. In silico simulations support that allelic buffering enhances the robustness of biological oscillators and broadens their plausible biochemical space. Our findings show how allelic buffering ensures robust p53 oscillations, highlighting the potential importance of allelic buffering for the emergence of robust biological oscillators during evolution. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Feng-Shu Hsieh
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Duy P M Nguyen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Mathias S Heltberg
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Chia-Chou Wu
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; National Center for Theoretical Sciences, Physics Division, Complex Systems, Taipei 10617, Taiwan
| | - Yi-Chen Lee
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Sheng-Hong Chen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; National Center for Theoretical Sciences, Physics Division, Complex Systems, Taipei 10617, Taiwan.
| |
Collapse
|
7
|
Lu D, Faizi M, Drown B, Simerzin A, François J, Bradshaw G, Kelleher N, Jambhekar A, Gunawardena J, Lahav G. Temporal regulation of gene expression through integration of p53 dynamics and modifications. SCIENCE ADVANCES 2024; 10:eadp2229. [PMID: 39454005 PMCID: PMC11506164 DOI: 10.1126/sciadv.adp2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The master regulator of the DNA damage response, the transcription factor p53, orchestrates multiple downstream responses and coordinates repair processes. In response to double-strand DNA breaks, p53 exhibits pulses of expression, but how it achieves temporal coordination of downstream responses remains unclear. Here, we show that p53's posttranslational modification state is altered between its first and second pulses of expression. We show that acetylations at two sites, K373 and K382, were reduced in the second pulse, and these acetylations differentially affected p53 target genes, resulting in changes in gene expression programs over time. This interplay between dynamics and modification may offer a strategy for cellular hubs like p53 to temporally organize multiple processes in individual cells.
Collapse
Affiliation(s)
- Dan Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Marjan Faizi
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Bryon Drown
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joshua François
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Neil Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Jiménez A, Lucchetti A, Heltberg MS, Moretto L, Sanchez C, Jambhekar A, Jensen MH, Lahav G. Entrainment and multi-stability of the p53 oscillator in human cells. Cell Syst 2024; 15:956-968.e3. [PMID: 39368467 DOI: 10.1016/j.cels.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
The tumor suppressor p53 responds to cellular stress and activates transcription programs critical for regulating cell fate. DNA damage triggers oscillations in p53 levels with a robust period. Guided by the theory of synchronization and entrainment, we developed a mathematical model and experimental system to test the ability of the p53 oscillator to entrain to external drug pulses of various periods and strengths. We found that the p53 oscillator can be locked and entrained to a wide range of entrainment modes. External periods far from p53's natural oscillations increased the heterogeneity between individual cells whereas stronger inputs reduced it. Single-cell measurements allowed deriving the phase response curves (PRCs) and multiple Arnold tongues of p53. In addition, multi-stability and non-linear behaviors were mathematically predicted and experimentally detected, including mode hopping, period doubling, and chaos. Our work revealed critical dynamical properties of the p53 oscillator and provided insights into understanding and controlling it. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Alba Jiménez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Alessandra Lucchetti
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mathias S Heltberg
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA; Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Liv Moretto
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark
| | - Carlos Sanchez
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark.
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
9
|
King DA, McCoy DE, Perdyan A, Mieczkowski J, Douki T, Dionne JA, Herrera RE, Morrison AJ. p53 Regulates Nuclear Architecture to Reduce Carcinogen Sensitivity and Mutagenic Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613067. [PMID: 39345432 PMCID: PMC11429700 DOI: 10.1101/2024.09.14.613067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The p53 tumor suppressor is an indispensable regulator of DNA damage responses that accelerates carcinogenesis when mutated. In this report, we uncover a new mechanism by which p53 maintains genomic integrity in the absence of canonical DNA damage response activation. Specifically, loss of p53 dramatically alters chromatin structure at the nuclear periphery, allowing increased transmission of an environmental carcinogen, ultraviolet (UV) radiation, into the nucleus. Genome-wide mapping of UV-induced DNA lesions in p53-deficient primary cells reveals elevated lesion abundance in regions corresponding to locations of high mutation burden in malignant melanomas. These findings uncover a novel role of p53 in the suppression of mutations that contribute to cancer and highlight the critical influence of nuclear architecture in regulating sensitivity to carcinogens.
Collapse
Affiliation(s)
- Devin A. King
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dakota E. McCoy
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, F-38000 Grenoble, France
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Rafael E. Herrera
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Ashby J. Morrison
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Rogers CB, Leung W, Baxley RM, Kram RE, Wang L, Buytendorp JP, Le K, Largaespada DA, Hendrickson EA, Bielinsky AK. Cell type specific suppression of hyper-recombination by human RAD18 is linked to PCNA K164 ubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611050. [PMID: 39282285 PMCID: PMC11398407 DOI: 10.1101/2024.09.03.611050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Homologous recombination (HR) and translesion synthesis (TLS) promote gap-filling DNA synthesis to complete genome replication. One factor involved in both pathways is RAD18, an E3 ubiquitin ligase. Although RAD18's role in promoting TLS through the ubiquitination of PCNA at lysine 164 (K164) is well established, its requirement for HR-based mechanisms is currently less clear. To assess this, we inactivated RAD18 in three human cell lines. Our analyses found that loss of RAD18 in HCT116, but neither hTERT RPE-1 nor DLD1 cell lines, resulted in elevated sister chromatid exchange, gene conversion, and gene targeting, i.e . HCT116 mutants were hyper-recombinogenic (hyper-rec). Loss of RAD18 also impaired TLS activity in HCT116 cells, but unexpectedly, did not reduce clonogenic survival. Interestingly, these phenotypes appear linked to PCNA K164 ubiquitination, as HCT116 PCNA K164R/+ mutants were also hyper-rec and showed reduced TLS activity, consistent with previous studies in rad18 -/- or pcna K164R avian DT40 mutant cells. Importantly, knockdown of UBC9 to prevent PCNA K164 SUMOylation did not affect hyper-recombination, strengthening the link between increased recombination and RAD18-catalyzed PCNA K164 ubiquitination, but not K164 SUMOylation. Taken together, these data suggest that the roles of human RAD18 in directing distinct gap-filling DNA synthesis pathways varies depending on cell type and that these functions are linked to PCNA ubiquitination.
Collapse
|
11
|
Bennett JJR, Stern AD, Zhang X, Birtwistle MR, Pandey G. Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events. NPJ Syst Biol Appl 2024; 10:65. [PMID: 38834572 PMCID: PMC11150372 DOI: 10.1038/s41540-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.
Collapse
Affiliation(s)
- Jamie J R Bennett
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Zhang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Wang Y, Hu S, Zhang W, Zhang B, Yang Z. Emerging role and therapeutic implications of p53 in intervertebral disc degeneration. Cell Death Discov 2023; 9:433. [PMID: 38040675 PMCID: PMC10692240 DOI: 10.1038/s41420-023-01730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.
Collapse
Affiliation(s)
- Yidian Wang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Shouye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weisong Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
13
|
Gutu N, Binish N, Keilholz U, Herzel H, Granada AE. p53 and p21 dynamics encode single-cell DNA damage levels, fine-tuning proliferation and shaping population heterogeneity. Commun Biol 2023; 6:1196. [PMID: 38001355 PMCID: PMC10673849 DOI: 10.1038/s42003-023-05585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Cells must accurately and quickly detect DNA damage through a set of checkpoint mechanisms that enable repair and control proliferation. Heterogeneous levels of cellular stress and noisy signaling processes can lead to phenotypic variability but little is known about their role in underlying proliferation heterogeneity. Here we study two previously published single cell datasets and find that cells encode heterogeneous levels of endogenous and exogenous DNA damage to shape proliferation heterogeneity at the population level. Using a comprehensive time series analysis of short- and long-term signaling dynamics of p53 and p21, we show that DNA damage levels are quantitatively translated into p53 and p21 signal parameters in a gradual manner. Analyzing instantaneous proliferation and signaling differences among equally-radiated cells, we identify time-localized changes in the period of p53 pulses that drive cells out of a low proliferative state. Our findings suggest a novel role of the p53-p21 network in quantitatively encoding DNA damage strength and fine-tuning proliferation trajectories.
Collapse
Affiliation(s)
- Nica Gutu
- Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
| | - Neha Binish
- Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany
- Hertie Institute for Clinical Brain Research, Center for Neurology, University Medical Center Tübingen, Tübingen, Germany
| | - Ulrich Keilholz
- Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany
- German Cancer Consortium, Deutschen Konsortiums für Translationale Krebsforschung (DKTK), Berlin, Germany
| | - Hanspeter Herzel
- Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Theoretical Biology, Berlin, Germany
| | - Adrián E Granada
- Charité Universitätsmedizin, Charité Comprehensive Cancer Center, Berlin, Germany.
- German Cancer Consortium, Deutschen Konsortiums für Translationale Krebsforschung (DKTK), Berlin, Germany.
| |
Collapse
|
14
|
Marques JF, Kops GJPL. Permission to pass: on the role of p53 as a gatekeeper for aneuploidy. Chromosome Res 2023; 31:31. [PMID: 37864038 PMCID: PMC10589155 DOI: 10.1007/s10577-023-09741-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
Aneuploidy-the karyotype state in which the number of chromosomes deviates from a multiple of the haploid chromosome set-is common in cancer, where it is thought to facilitate tumor initiation and progression. However, it is poorly tolerated in healthy cells: during development and tissue homeostasis, aneuploid cells are efficiently cleared from the population. It is still largely unknown how cancer cells become, and adapt to being, aneuploid. P53, the gatekeeper of the genome, has been proposed to guard against aneuploidy. Aneuploidy in cancer genomes strongly correlates with mutations in TP53, and p53 is thought to prevent the propagation of aneuploid cells. Whether p53 also participates in preventing the mistakes in cell division that lead to aneuploidy is still under debate. In this review, we summarize the current understanding of the role of p53 in protecting cells from aneuploidy, and we explore the consequences of functional p53 loss for the propagation of aneuploidy in cancer.
Collapse
Affiliation(s)
- Joana F Marques
- Royal Netherlands Academy of Arts and Sciences (KNAW), Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands
- University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands
- Oncode Institute, Jaarbeursplein 6, 3521AL, Utrecht, the Netherlands
| | - Geert J P L Kops
- Royal Netherlands Academy of Arts and Sciences (KNAW), Hubrecht Institute, Uppsalalaan 8, 3584CT, Utrecht, the Netherlands.
- University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, the Netherlands.
- Oncode Institute, Jaarbeursplein 6, 3521AL, Utrecht, the Netherlands.
| |
Collapse
|
15
|
Pellot Ortiz KI, Rechberger JS, Nonnenbroich LF, Daniels DJ, Sarkaria JN. MDM2 Inhibition in the Treatment of Glioblastoma: From Concept to Clinical Investigation. Biomedicines 2023; 11:1879. [PMID: 37509518 PMCID: PMC10377337 DOI: 10.3390/biomedicines11071879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Inhibition of the interaction between MDM2 and p53 has emerged as a promising strategy for combating cancer, including the treatment of glioblastoma (GBM). Numerous MDM2 inhibitors have been developed and are currently undergoing rigorous testing for their potential in GBM therapy. Encouraging results from studies conducted in cell culture and animal models suggest that MDM2 inhibitors could effectively treat a specific subset of GBM patients with wild-type TP53 or functional p53. Combination therapy with clinically established treatment modalities such as radiation and chemotherapy offers the potential to achieve a more profound therapeutic response. Furthermore, an increasing array of other molecularly targeted therapies are being explored in combination with MDM2 inhibitors to increase the effects of individual treatments. While some MDM2 inhibitors have progressed to early phase clinical trials in GBM, their efficacy, alone and in combination, is yet to be confirmed. In this article, we present an overview of MDM2 inhibitors currently under preclinical and clinical investigation, with a specific focus on the drugs being assessed in ongoing clinical trials for GBM patients.
Collapse
Affiliation(s)
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Leo F Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
16
|
Tran AP, Tralie CJ, Reyes J, Moosmüller C, Belkhatir Z, Kevrekidis IG, Levine AJ, Deasy JO, Tannenbaum AR. Long-term p21 and p53 dynamics regulate the frequency of mitosis events and cell cycle arrest following radiation damage. Cell Death Differ 2023; 30:660-672. [PMID: 36182991 PMCID: PMC9984379 DOI: 10.1038/s41418-022-01069-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
Radiation exposure of healthy cells can halt cell cycle temporarily or permanently. In this work, we analyze the time evolution of p21 and p53 from two single cell datasets of retinal pigment epithelial cells exposed to several levels of radiation, and in particular, the effect of radiation on cell cycle arrest. Employing various quantification methods from signal processing, we show how p21 levels, and to a lesser extent p53 levels, dictate whether the cells are arrested in their cell cycle and how frequently these mitosis events are likely to occur. We observed that single cells exposed to the same dose of DNA damage exhibit heterogeneity in cellular outcomes and that the frequency of cell division is a more accurate monitor of cell damage rather than just radiation level. Finally, we show how heterogeneity in DNA damage signaling is manifested early in the response to radiation exposure level and has potential to predict long-term fate.
Collapse
Affiliation(s)
- Anh Phong Tran
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher J Tralie
- Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA, USA
| | - José Reyes
- Cancer Biology and Genetics Program and Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Caroline Moosmüller
- Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
| | - Zehor Belkhatir
- School of Engineering and Sustainable Development, De Montfort University, Leicester, UK
| | - Ioannis G Kevrekidis
- Department of Chemical and Biological Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allen R Tannenbaum
- Departments of Computer Science and Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
17
|
Charan K, Giri A, Kar S. Elucidating the Implications of Diverse Dynamical Responses in p53 Protein. Chemphyschem 2023; 24:e202200537. [PMID: 36208026 DOI: 10.1002/cphc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/06/2022] [Indexed: 11/07/2022]
Abstract
p53 is a well-known tumor suppressor gene that acts as a transcription factor to exhibit a variety of dynamical responses by sensing different types and extent of stress conditions causing DNA damage in Mammalian cells. Mathematical modeling has played a crucial role to correlate cell fate decision-making with some of these dynamic p53 regulations. However, it is extremely challenging to explain the various cell-type and stimulus-specific p53 protein dynamics under different stress conditions by using a single mathematical model. In this article, we propose a simple mathematical model of p53 regulation based on a generic p53 regulatory network that elucidates a range of p53 dynamical responses. By employing bifurcation analysis along with deterministic and stochastic simulations, we explain an array of p53 dynamics by correlating it with the corresponding cell fate regulations in a cell type-specific and stimulus-dependent manner. Moreover, our model makes experimentally testable predictions to fine-tune p53 dynamics under various DNA damage conditions and can be systematically used and improved to analyze complex p53 dynamics in the future.
Collapse
Affiliation(s)
- Kajal Charan
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Amitava Giri
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
18
|
Wang P, Wang HY, Gao XJ, Zhu HX, Zhang XP, Liu F, Wang W. Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells 2023; 12:cells12030490. [PMID: 36766831 PMCID: PMC9914463 DOI: 10.3390/cells12030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
In the cellular response to stresses, the tumor suppressor p53 is activated to maintain genomic integrity and fidelity. As a transcription factor, p53 exhibits rich dynamics to allow for discrimination of the type and intensity of stresses and to direct the selective activation of target genes involved in different processes including cell cycle arrest and apoptosis. In this review, we focused on how stresses are encoded into p53 dynamics and how the dynamics are decoded into cellular outcomes. Theoretical modeling may provide a global view of signaling in the p53 network by coupling the encoding and decoding processes. We discussed the significance of modeling in revealing the mechanisms of the transition between p53 dynamic modes. Moreover, we shed light on the crosstalk between the p53 network and other signaling networks. This review may advance the understanding of operating principles of the p53 signaling network comprehensively and provide insights into p53 dynamics-based cancer therapy.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science, Xihua University, Chengdu 610039, China
| | - Hang-Yu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xing-Jie Gao
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Hua-Xia Zhu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| | - Feng Liu
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences, Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
- Department of Physics, Nanjing University, Nanjing 210093, China
- Correspondence: (X.-P.Z.); (W.W.)
| |
Collapse
|
19
|
Luo L, Liu H, Yan F. Dynamic behavior of P53-Mdm2-Wip1 gene regulatory network under the influence of time delay and noise. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:2321-2347. [PMID: 36899536 DOI: 10.3934/mbe.2023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The tumor suppressor protein P53 can regulate the cell cycle, thereby preventing cell abnormalities. In this paper, we study the dynamic characteristics of the P53 network under the influence of time delay and noise, including stability and bifurcation. In order to study the influence of several factors on the concentration of P53, bifurcation analysis on several important parameters is conducted; the results show that the important parameters could induce P53 oscillations within an appropriate range. Then we study the stability of the system and the existing conditions of Hopf bifurcation by using Hopf bifurcation theory with time delays as the bifurcation parameter. It is found that time delay plays a key role in inducing Hopf bifurcation and regulating the period and amplitude of system oscillation. Meanwhile, the combination of time delays can not only promote the oscillation of the system but it also provides good robustness. Changing the parameter values appropriately can change the bifurcation critical point and even the stable state of the system. In addition, due to the low copy number of the molecules and the environmental fluctuations, the influence of noise on the system is also considered. Through numerical simulation, it is found that noise not only promotes system oscillation but it also induces system state switching. The above results may help us to further understand the regulation mechanism of the P53-Mdm2-Wip1 network in the cell cycle.
Collapse
Affiliation(s)
- LanJiang Luo
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| | - Haihong Liu
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| | - Fang Yan
- Department of Mathematics, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Complex System Modeling and Application for Universities in Yunnan, Kunming 650500, China
| |
Collapse
|
20
|
Hanson RL, Batchelor E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol Syst Biol 2022; 18:e11401. [PMID: 36472304 PMCID: PMC9724178 DOI: 10.15252/msb.202211401] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
In response to different cellular stresses, the transcription factor p53 undergoes different dynamics. p53 dynamics, in turn, control cell fate. However, distinct stresses can generate the same p53 dynamics but different cell fate outcomes, suggesting integration of dynamic information from other pathways is important for cell fate regulation. To determine how MAPK activities affect p53-mediated responses to DNA breaks and oxidative stress, we simultaneously tracked p53 and either ERK, JNK, or p38 activities in single cells. While p53 dynamics were comparable between the stresses, cell fate outcomes were distinct. Combining MAPK dynamics with p53 dynamics was important for distinguishing between the stresses and for generating temporal ordering of cell fate pathways. Furthermore, cross-talk between MAPKs and p53 controlled the balance between proliferation and cell death. These findings provide insight into how cells integrate signaling pathways with distinct temporal patterns of activity to encode stress specificity and drive different cell fate decisions.
Collapse
Affiliation(s)
- Ryan L Hanson
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
| | - Eric Batchelor
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMNUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMNUSA
| |
Collapse
|
21
|
Heltberg MS, Lucchetti A, Hsieh FS, Minh Nguyen DP, Chen SH, Jensen MH. Enhanced DNA repair through droplet formation and p53 oscillations. Cell 2022; 185:4394-4408.e10. [PMID: 36368307 DOI: 10.1016/j.cell.2022.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/23/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.
Collapse
Affiliation(s)
- Mathias S Heltberg
- Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark.
| | | | - Feng-Shu Hsieh
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Duy Pham Minh Nguyen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Sheng-Hong Chen
- Lab for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan; National Center for Theoretical Sciences, Physics Division, Complex Systems, Taipei, 10617, Taiwan
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark.
| |
Collapse
|
22
|
Xiong L, Garfinkel A. A common pathway to cancer: Oncogenic mutations abolish p53 oscillations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:28-40. [PMID: 35752348 DOI: 10.1016/j.pbiomolbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The tumor suppressor p53 oscillates in response to DNA double-strand breaks, a behavior that has been suggested to be essential to its anti-cancer function. Nearly all human cancers have genetic alterations in the p53 pathway; a number of these alterations have been shown to be oncogenic by experiment. These alterations include somatic mutations and copy number variations as well as germline polymorphisms. Intriguingly, they exhibit a mixed pattern of interactions in tumors, such as co-occurrence, mutual exclusivity, and paradoxically, mutual antagonism. Using a differential equation model of p53-Mdm2 dynamics, we employ Hopf bifurcation analysis to show that these alterations have a common mode of action, to abolish the oscillatory competence of p53, thereby, we suggest, impairing its tumor suppressive function. In this analysis, diverse genetic alterations, widely associated with human cancers clinically, have a unified mechanistic explanation of their role in oncogenesis.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90007 USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90007, USA; Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA; Newton-Abraham Visiting Professor (2019-2020), Lincoln College and Department of Computer Science, University of Oxford, Oxford, OX1 3DR, UK.
| |
Collapse
|
23
|
Wu Z, Xia C, Zhang C, Tang D, Liu F, Ou Y, Gao J, Yi H, Yang D, Ma K. Adeno-associated virus-delivered alpha synuclein inhibits bladder cancer growth via the p53/p21 signaling pathway. Cancer Gene Ther 2022; 29:1193-1206. [PMID: 35064206 DOI: 10.1038/s41417-022-00425-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Alpha-synuclein (α-syn), encoded by the SNCA gene, is a major participant in the pathophysiology of Parkinson's disease (PD). Its functions have been reported to be related to apoptosis induction, the elevation of oxidative stress, mitochondrial homeostasis, cell-cycle aberrations, and DNA-related interactions. Evidence obtained in recent studies suggests a possible link between α-syn and cancer development. Bladder cancer (BCa) is the second most common genitourinary malignancy, with the population of survivors of BCa increasing worldwide. In this study, we show that α-syn expression was significantly downregulated in BCa. In vitro and in vivo experiments showed that α-syn could significantly inhibit BCa cell proliferation by arresting the cell cycle in the S phase via upregulation of p53 expression mediated by DNA damages. Further experiments showed that overexpression of α-syn delivered by adeno-associated viruses (AAVs) exerted inhibitory effects on the growth of BCa tumors. These findings indicate that αα-syn is a functional tumor suppressor that can inhibit the proliferation of BCa cells by activating the p53/p21 signaling pathway. Our present study provides insights into the roles of α-syn in BCa and suggests that α-syn may be a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China
| | - Chao Zhang
- Oncology Department, The First People's hospital of Qujing, 655000, Qujing, China
| | - Donghong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Feineng Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China
| | - Yitian Ou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China
| | - Jiahong Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Hongkun Yi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650101, Kunming, China.
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 650118, Kunming, China.
- Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, 100005, Beijing, China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, 650118, Kunming, China.
| |
Collapse
|
24
|
Progress and challenges in understanding the regulation and function of p53 dynamics. Biochem Soc Trans 2021; 49:2123-2131. [PMID: 34495325 PMCID: PMC8765192 DOI: 10.1042/bst20210148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023]
Abstract
The dynamics of p53 expression provide a mechanism to increase differentiation between cellular stresses and specificity in appropriate responses. Here, we review recent advances in our understanding of the molecular mechanisms regulating p53 dynamics and the functions of the dynamics in the regulation of p53-dependent cell stress responses. We also compare dynamic encoding in the p53 system with that found in other important cell signaling systems, many of which can interact with the p53 network. Finally, we highlight some of the current challenges in understanding dynamic cell signaling within a larger cellular network context.
Collapse
|
25
|
Carlsen L, El-Deiry WS. Differential p53-Mediated Cellular Responses to DNA-Damaging Therapeutic Agents. Int J Mol Sci 2021; 22:ijms222111828. [PMID: 34769259 PMCID: PMC8584119 DOI: 10.3390/ijms222111828] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/01/2023] Open
Abstract
The gene TP53, which encodes the tumor suppressor protein p53, is mutated in about 50% of cancers. In response to cell stressors like DNA damage and after treatment with DNA-damaging therapeutic agents, p53 acts as a transcription factor to activate subsets of target genes which carry out cell fates such as apoptosis, cell cycle arrest, and DNA repair. Target gene selection by p53 is controlled by a complex regulatory network whose response varies across contexts including treatment type, cell type, and tissue type. The molecular basis of target selection across these contexts is not well understood. Knowledge gained from examining p53 regulatory network profiles across different DNA-damaging agents in different cell types and tissue types may inform logical ways to optimally manipulate the network to encourage p53-mediated tumor suppression and anti-tumor immunity in cancer patients. This may be achieved with combination therapies or with p53-reactivating targeted therapies. Here, we review the basics of the p53 regulatory network in the context of differential responses to DNA-damaging agents; discuss recent efforts to characterize differential p53 responses across treatment types, cell types, and tissue types; and examine the relevance of evaluating these responses in the tumor microenvironment. Finally, we address open questions including the potential relevance of alternative p53 transcriptional functions, p53 transcription-independent functions, and p53-independent functions in the response to DNA-damaging therapeutics.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA;
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Medicine, Hematology-Oncology Division, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
- Correspondence:
| |
Collapse
|
26
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
27
|
Haemmig S, Yang D, Sun X, Das D, Ghaffari S, Molinaro R, Chen L, Deng Y, Freeman D, Moullan N, Tesmenitsky Y, Wara AKMK, Simion V, Shvartz E, Lee JF, Yang T, Sukova G, Marto JA, Stone PH, Lee WL, Auwerx J, Libby P, Feinberg MW. Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence. Sci Transl Med 2021; 12:12/531/eaaw1868. [PMID: 32075942 DOI: 10.1126/scitranslmed.aaw1868] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging regulators of biological processes in the vessel wall; however, their role in atherosclerosis remains poorly defined. We used RNA sequencing to profile lncRNAs derived specifically from the aortic intima of Ldlr -/- mice on a high-cholesterol diet during lesion progression and regression phases. We found that the evolutionarily conserved lncRNA small nucleolar host gene-12 (SNHG12) is highly expressed in the vascular endothelium and decreases during lesion progression. SNHG12 knockdown accelerated atherosclerotic lesion formation by 2.4-fold in Ldlr -/- mice by increased DNA damage and senescence in the vascular endothelium, independent of effects on lipid profile or vessel wall inflammation. Conversely, intravenous delivery of SNHG12 protected the tunica intima from DNA damage and atherosclerosis. LncRNA pulldown in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that SNHG12 interacted with DNA-dependent protein kinase (DNA-PK), an important regulator of the DNA damage response. The absence of SNHG12 reduced the DNA-PK interaction with its binding partners Ku70 and Ku80, abrogating DNA damage repair. Moreover, the anti-DNA damage agent nicotinamide riboside (NR), a clinical-grade small-molecule activator of NAD+, fully rescued the increases in lesional DNA damage, senescence, and atherosclerosis mediated by SNHG12 knockdown. SNHG12 expression was also reduced in pig and human atherosclerotic specimens and correlated inversely with DNA damage and senescent markers. These findings reveal a role for this lncRNA in regulating DNA damage repair in the vessel wall and may have implications for chronic vascular disease states and aging.
Collapse
Affiliation(s)
- Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dafeng Yang
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Cardiology, Xiangya Hospital, Central South University, 0731 Changsha, Hunan, China
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Debapria Das
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siavash Ghaffari
- Keenan Research Centre, St. Michael's Hospital and Department of Biochemistry, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Roberto Molinaro
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Lei Chen
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Department of Cardiology, Xiangya Hospital, Central South University, 0731 Changsha, Hunan, China
| | - Yihuan Deng
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Freeman
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Norman Moullan
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yevgenia Tesmenitsky
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - A K M Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Viorel Simion
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenia Shvartz
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James F Lee
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Tianlun Yang
- Department of Cardiology, Xiangya Hospital, Central South University, 0731 Changsha, Hunan, China
| | - Galina Sukova
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jarrod A Marto
- The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Departments of Cancer Biology and Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter H Stone
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Warren L Lee
- Keenan Research Centre, St. Michael's Hospital and Department of Biochemistry, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Jacques M, Dobrzyński M, Gagliardi PA, Sznitman R, Pertz O. CODEX, a neural network approach to explore signaling dynamics landscapes. Mol Syst Biol 2021; 17:e10026. [PMID: 33835701 PMCID: PMC8034356 DOI: 10.15252/msb.202010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Current studies of cell signaling dynamics that use live cell fluorescent biosensors routinely yield thousands of single-cell, heterogeneous, multi-dimensional trajectories. Typically, the extraction of relevant information from time series data relies on predefined, human-interpretable features. Without a priori knowledge of the system, the predefined features may fail to cover the entire spectrum of dynamics. Here we present CODEX, a data-driven approach based on convolutional neural networks (CNNs) that identifies patterns in time series. It does not require a priori information about the biological system and the insights into the data are built through explanations of the CNNs' predictions. CODEX provides several views of the data: visualization of all the single-cell trajectories in a low-dimensional space, identification of prototypic trajectories, and extraction of distinctive motifs. We demonstrate how CODEX can provide new insights into ERK and Akt signaling in response to various growth factors, and we recapitulate findings in p53 and TGFβ-SMAD2 signaling.
Collapse
Affiliation(s)
| | | | | | - Raphael Sznitman
- ARTORG Center for Biomedical Engineering ResearchUniversity of BernBernSwitzerland
| | - Olivier Pertz
- Institute of Cell BiologyUniversity of BernBernSwitzerland
| |
Collapse
|
29
|
De S, Campbell C, Venkitaraman AR, Esposito A. Pulsatile MAPK Signaling Modulates p53 Activity to Control Cell Fate Decisions at the G2 Checkpoint for DNA Damage. Cell Rep 2021; 30:2083-2093.e5. [PMID: 32075732 PMCID: PMC7029415 DOI: 10.1016/j.celrep.2020.01.074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Cell-autonomous changes in p53 expression govern the duration and outcome of cell-cycle arrest at the G2 checkpoint for DNA damage. Here, we report that mitogen-activated protein kinase (MAPK) signaling integrates extracellular cues with p53 dynamics to determine cell fate at the G2 checkpoint. Optogenetic tools and quantitative cell biochemistry reveal transient oscillations in MAPK activity dependent on ataxia-telangiectasia-mutated kinase after DNA damage. MAPK inhibition alters p53 dynamics and p53-dependent gene expression after checkpoint enforcement, prolonging G2 arrest. In contrast, sustained MAPK signaling induces the phosphorylation of CDC25C, and consequently, the accumulation of pro-mitotic kinases, thereby relaxing checkpoint stringency and permitting cells to evade prolonged G2 arrest and senescence induction. We propose a model in which this MAPK-mediated mechanism integrates extracellular cues with cell-autonomous p53-mediated signals, to safeguard genomic integrity during tissue proliferation. Early steps in oncogene-driven carcinogenesis may imbalance this tumor-suppressive mechanism to trigger genome instability. DNA damage elicits opposing pro-survival and pro-arrest responses via MAPK and p53 MAPK pulsations modulate p53-dependent transcription to determine cell fate MAPK/p53 signal dynamics control the stringency of the G2 DNA damage checkpoint MAPK/p53 integrate extracellular and intracellular cues to protect genome integrity
Collapse
Affiliation(s)
- Siddharth De
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Callum Campbell
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| | - Alessandro Esposito
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
30
|
Friedel L, Loewer A. The guardian's choice: how p53 enables context-specific decision-making in individual cells. FEBS J 2021; 289:40-52. [PMID: 33590949 DOI: 10.1111/febs.15767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 01/20/2023]
Abstract
p53 plays a central role in defending the genomic integrity of our cells. In response to genotoxic stress, this tumour suppressor orchestrates the expression of hundreds of target genes, which induce a variety of cellular outcomes ranging from damage repair to induction of apoptosis. In this review, we examine how the p53 response is regulated on several levels in individual cells to allow precise and context-specific fate decisions. We discuss that the p53 response is not only controlled by its canonical regulators but also controlled by interconnected signalling pathways that influence the dynamics of p53 accumulation upon damage and modulate its transcriptional activity at target gene promoters. Additionally, we consider how the p53 response is diversified through a variety of mechanisms at the promoter level and beyond to induce context-specific outcomes in individual cells. These layers of regulation allow p53 to react in a stimulus-specific manner and fine-tune its signalling according to the individual needs of a given cell, enabling it to take the right decision on survival or death.
Collapse
Affiliation(s)
- Laura Friedel
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Germany
| | - Alexander Loewer
- Systems Biology of the Stress Response, Department of Biology, Technical University of Darmstadt, Germany
| |
Collapse
|
31
|
p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat Commun 2021; 12:898. [PMID: 33563973 PMCID: PMC7873198 DOI: 10.1038/s41467-021-21145-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation sensitivity varies greatly between tissues. The transcription factor p53 mediates the response to radiation; however, the abundance of p53 protein does not correlate well with the extent of radiosensitivity across tissues. Given recent studies showing that the temporal dynamics of p53 influence the fate of cultured cells in response to irradiation, we set out to determine the dynamic behavior of p53 and its impact on radiation sensitivity in vivo. We find that radiosensitive tissues show prolonged p53 signaling after radiation, while more resistant tissues show transient p53 activation. Sustaining p53 using a small molecule (NMI801) that inhibits Mdm2, a negative regulator of p53, reduced viability in cell culture and suppressed tumor growth. Our work proposes a mechanism for the control of radiation sensitivity and suggests tools to alter the dynamics of p53 to enhance tumor clearance. Similar approaches can be used to enhance killing of cancer cells or reduce toxicity in normal tissues following genotoxic therapies. p53 mediates the response to irradiation, however, tissues with similar levels of p53 have different radiation sensitivities. Here, the authors show that the in vivo p53 dynamics varies in these tissues after radiation, and the use of Mdm2 inhibitor to sustain p53 activity enhances radiosensitivity.
Collapse
|
32
|
Hallmarks of Health. Cell 2020; 184:33-63. [PMID: 33340459 DOI: 10.1016/j.cell.2020.11.034] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022]
Abstract
Health is usually defined as the absence of pathology. Here, we endeavor to define health as a compendium of organizational and dynamic features that maintain physiology. The biological causes or hallmarks of health include features of spatial compartmentalization (integrity of barriers and containment of local perturbations), maintenance of homeostasis over time (recycling and turnover, integration of circuitries, and rhythmic oscillations), and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, and repair and regeneration). Disruption of any of these interlocked features is broadly pathogenic, causing an acute or progressive derailment of the system coupled to the loss of numerous stigmata of health.
Collapse
|
33
|
Zhou Y, Shao C. Histone methylation can either promote or reduce cellular radiosensitivity by regulating DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108362. [PMID: 34083050 DOI: 10.1016/j.mrrev.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Radiotherapy is one of the primary modalities for cancer treatment, and its efficiency usually relies on cellular radiosensitivity. DNA damage repair is a core content of cellular radiosensitivity, and the primary mechanism of which includes non-homologous end-joining (NHEJ) and homologous recombination (HR). By affecting DNA damage repair, histone methylation regulated by histone methyltransferases (HMTs) and histone demethylases (HDMs) participates in the regulation of cellular radiosensitivity via three mechanisms: (a) recruiting DNA repair-related proteins, (b) regulating the expressions of DNA repair genes, and (c) mediating the dynamic change of chromatin. Interestingly, both aberrantly high and low levels of histone methylation could impede DNA repair processes. Here we reviewed the mechanisms of the dual effects of histone methylation on cell response to radiation. Since some inhibitors of HMTs and HDMs are reported to increase cellular radiosensitivity, understanding their molecular mechanisms may be helpful in developing new drugs for the therapy of radioresistant tumors.
Collapse
Affiliation(s)
- Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094 Xie-Tu Road, Shanghai, 200032, China.
| |
Collapse
|
34
|
Gong Y, Tian C, Lu S, Gao Y, Wen L, Chen B, Gao H, Zhang H, Zhao J, Wang J. Harmine Combined with Rad54 Knockdown Inhibits the Viability of Echinococcus granulosus by Enhancing DNA Damage. DNA Cell Biol 2020; 40:1-9. [PMID: 33170025 DOI: 10.1089/dna.2020.5779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aimed at exploring the role of EgRad54 and the effect of harmine (HM) or HM derivatives (HMDs) on DNA damage in Echinococcus granulosus. DNA damage in E. granulosus protoscoleces (PSCs) was assessed by using a comet assay, after treatment with HM or HMDs. Efficiency of electroporation-based transfection of PSCs and subsequent EgRad54 knockdown was evaluated by using real-time quantitative polymerase chain reaction (RT-qPCR) and fluorescence intensity. Viability of PSCs was determined via eosin exclusion test, and expression of related genes was analyzed via RT-qPCR. HM and HMDs significantly (p < 0.05) increased DNA damage in E. granulosus, and upregulated EgRad54 expression. Compared with HM and HMD-only treatment groups, EgRad54 knockdown combined with HM and HMD treatment further reduced E. granulosus viability. This combined approach resulted in significant (p < 0.05) downregulation of Rad54 and Topo2a expression, and upregulation of ATM expression, whereas H2A and P53 expression was significantly higher compared with control groups. These data show that EgRad54 knockdown, combined with HM or HMD treatment, enhances DNA damage in E. granulosus via upregulation of ATM and H2A, and downregulation of Rad54 and Topo2a, thereby inhibiting E. granulosus growth, and suggest that EgRad54 is a potential therapeutic target for cystic echinococcosis treatment.
Collapse
Affiliation(s)
- Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chunyan Tian
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Lu
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Gao
- College of Pharmaceutical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Haibo Zhang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
35
|
Houston R, Sekine S, Calderon MJ, Seifuddin F, Wang G, Kawagishi H, Malide DA, Li Y, Gucek M, Pirooznia M, Nelson AJ, Stokes MP, Stewart-Ornstein J, Mullett SJ, Wendell SG, Watkins SC, Finkel T, Sekine Y. Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses. PLoS Biol 2020; 18:e3000981. [PMID: 33253182 PMCID: PMC7728262 DOI: 10.1371/journal.pbio.3000981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/10/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.
Collapse
Affiliation(s)
- Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fayaz Seifuddin
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Hiroyuki Kawagishi
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Daniela A. Malide
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Alissa J. Nelson
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Jacob Stewart-Ornstein
- Department of Computational and Systems Biology, University of Pittsburgh and Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
36
|
Hanson RL, Batchelor E. Rucaparib Treatment Alters p53 Oscillations in Single Cells to Enhance DNA-Double-Strand-Break-Induced Cell Cycle Arrest. Cell Rep 2020; 33:108240. [PMID: 33053351 DOI: 10.1016/j.celrep.2020.108240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
DNA double strand breaks induce oscillatory expression of the transcription factor p53 that is dependent on ataxia telangiectasia mutated (ATM) activity and the rate of double strand break resolution. Although p53 dynamics are known to play a role in the regulation of cell fate determination, the consequences of the variability in dynamics associated with differences in repair rates and utilized repair pathways are unknown. Using single-cell time-lapse microscopy, we found that disruption of specific repair pathways has distinct impacts on p53 dynamics. The small-molecule rucaparib, an inhibitor of the alternative end-joining-associated protein poly (ADP-ribose) polymerase (PARP), increased p53 pulse duration, altering the temporal expression of multiple p53 target genes. As a result, combination treatments of the radiomimetic drug neocarzinostatin with rucaparib drove prolonged growth arrest beyond that of DNA damage alone. This study highlights how pharmacological manipulation of DNA repair pathways may be used to alter p53 dynamics to enhance therapeutic regimens.
Collapse
Affiliation(s)
- Ryan L Hanson
- Department of Integrative Biology and Physiology, University of Minnesota, Cancer and Cardiovascular Research Building 3-136, 2231 6th Street SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Cancer and Cardiovascular Research Building 3-136, 2231 6th Street SE, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
37
|
Kim TW, Hong DW, Park JW, Hong SH. CB11, a novel purine-based PPARɣ ligand, overcomes radio-resistance by regulating ATM signalling and EMT in human non-small-cell lung cancer cells. Br J Cancer 2020; 123:1737-1748. [PMID: 32958825 PMCID: PMC7723055 DOI: 10.1038/s41416-020-01088-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/27/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023] Open
Abstract
Background Peroxisome proliferator-activated receptor γ (PPARγ) agonists frequently induce cell death in human non-small-cell lung cancer (NSCLC) cells. However, majority of NSCLC patients acquire resistance after cancer therapy, and it is still unclear. Methods In this study we investigated the apoptotic mechanism and the anti-cancer effects of a novel purine-based PPARγ agonist, CB11 (8-(2-aminophenyl)-3-butyl-1,6,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione), on human NSCLC cells. CB11 mediates PPARγ-dependent cell death, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) collapse, cell cycle arrest, lactate dehydrogenase (LDH) cytotoxicity, and caspase-3 activity in human NSCLC cells. Results CB11 causes cell death via ROS-mediated ATM-p53-GADD45α signalling in human NSCLC cells, and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, decreases cell death by inhibiting CB11-mediated ATM signalling. In a xenograft experiment, CB11 dramatically reduced tumour volume when compared to a control group. Furthermore, CB11 induced cell death by inhibiting epithelial-to-mesenchymal transition (EMT) under radiation exposure in radiation-resistant human NSCLC cells. However, PPARγ deficiency inhibited cell death by blocking the ATM-p53 axis in radiation/CB11-induced radiation-resistant human NSCLC cells. Conclusions Taken together, our results suggest that CB11, a novel PPARγ agonist, may be a novel anti-cancer agent, and it could be useful in a therapeutic strategy to overcome radio-resistance in radiation-exposed NSCLC.
Collapse
Affiliation(s)
- Tae Woo Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Da-Won Hong
- Laboratory of RNA Cell Biology, Graduate Department of Bioconvergence Science and Technology, Dankook University, Jukjeon-ro 152, Suji-gu, Yongin-si, Gyeonggi-do, 16892, Republic of Korea
| | - Joung Whan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea
| | - Sung Hee Hong
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, 139-706, Republic of Korea.
| |
Collapse
|
38
|
Salem EA, Elhalafawy IA, Hegazy MM, Younis FE, Swellim OA, Sakr MA. Altered tumor suppressor genes expression in Egyptian pesticide applicators exposed to organophosphate insecticides. Toxicol Ind Health 2020; 36:558-566. [PMID: 32869731 DOI: 10.1177/0748233720940538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Occupational exposure in spraying and application of non-arsenical insecticides has been classified as a probable human carcinogen. The fundamental molecular mechanisms involved the tumor-related genes. This study aimed to investigate the carcinogenesis effects related to chronic exposure to organophosphate (OP) pesticides in pesticide applicators. This was a cross-sectional study conducted on 27 pesticide applicators and 24 matched controls through the period from June to December 2018. The level of acetylcholinesterase (AChE) was determined and the effects of OPs exposure on messenger RNA (mRNA) expression of the DNA-damage responsive genes P53, P21, GADD45a, and MDM2 were determined using real-time quantitative polymerase chain reaction. A significant reduction of serum AChE enzyme activities was observed in chronically exposed subjects in comparison with the control group (p = 0.001). The expression of P53, P21 mRNA was significantly downregulated in the exposed group compared with the healthy nonexposed control group (p < 0.05). Conversely, the expression of MDM2 and GADD45a did not significantly differ between the exposed subjects and the control group (p > 0.05). No significant differences were noted between the exposed and control groups regarding the genotype or allele distributions of P53 Arg72Pro polymorphism. These results suggested that chronic exposure to OP insecticides may have mitogenic and carcinogenicity activity for the exposed cases due to downregulation of P53 and P21 but did not demonstrate any DNA damage properties for the exposed cases, and finally, a regular follow-up of the exposed cases for tumor markers is recommended.
Collapse
Affiliation(s)
- Eman A Salem
- Industrial Medicine and Occupational Health, Department of Public Heath and Community Medicine, Faculty of Medicine, 68872Menoufia University, Al Minufiyah, Egypt
| | - Ibrahim A Elhalafawy
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, 392053University of Sadat City, Sadat City, Egypt
| | - Mofrih M Hegazy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, 68872Menoufia University, Al Minufiyah, Egypt
| | - Faten E Younis
- Industrial Medicine and Occupational Health, Department of Public Heath and Community Medicine, Faculty of Medicine, 68872Menoufia University, Al Minufiyah, Egypt
| | - Ola A Swellim
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, 68872Menoufia University, Al Minufiyah, Egypt
| | - Moustafa A Sakr
- Department of Molecular Diagnostics and Therapeutics, Genetic Engineering and Biotechnology Research Institute, 392053University of Sadat City, Sadat City, Egypt
| |
Collapse
|
39
|
Tsabar M, Mock CS, Venkatachalam V, Reyes J, Karhohs KW, Oliver TG, Regev A, Jambhekar A, Lahav G. A Switch in p53 Dynamics Marks Cells That Escape from DSB-Induced Cell Cycle Arrest. Cell Rep 2020; 32:107995. [PMID: 32755587 PMCID: PMC7521664 DOI: 10.1016/j.celrep.2020.107995] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
Cellular responses to stimuli can evolve over time, resulting in distinct early and late phases in response to a single signal. DNA damage induces a complex response that is largely orchestrated by the transcription factor p53, whose dynamics influence whether a damaged cell will arrest and repair the damage or will initiate cell death. How p53 responses and cellular outcomes evolve in the presence of continuous DNA damage remains unknown. Here, we have found that a subset of cells switches from oscillating to sustained p53 dynamics several days after undergoing damage. The switch results from cell cycle progression in the presence of damaged DNA, which activates the caspase-2-PIDDosome, a complex that stabilizes p53 by inactivating its negative regulator MDM2. This work defines a molecular pathway that is activated if the canonical checkpoints fail to halt mitosis in the presence of damaged DNA.
Collapse
Affiliation(s)
- Michael Tsabar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Caroline S Mock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Veena Venkatachalam
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Harvard Radiation Oncology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Jose Reyes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle W Karhohs
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Trudy G Oliver
- Huntsman Cancer Institute at University of Utah, Salt Lake City, UT 84112, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Matsuda S, Murakami M, Ikeda Y, Nakagawa Y, Tsuji A, Kitagishi Y. Role of tumor suppressor molecules in genomic perturbations and damaged DNA repair involved in the pathogenesis of cancer and neurodegeneration (Review). Biomed Rep 2020; 13:10. [PMID: 32765849 PMCID: PMC7391300 DOI: 10.3892/br.2020.1317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/11/2020] [Indexed: 12/25/2022] Open
Abstract
Genomic perturbations due to inaccurate DNA replication, including inappropriate chromosomal segregation often underlie the development of cancer and neurodegenerative diseases. The incidence of these two diseases increases with age and exhibits an inverse association. Therefore, elderly subjects with cancer exhibit a reduced risk of a neurodegenerative disease, and vice versa. Both of these diseases are associated with aging and share several risk factors. Cells have multiple mechanisms to repair DNA damage and inaccurate replication. Previous studies have demonstrated that tumor suppressor proteins serve a critical role in the DNA damage response, which may result in genomic instability and thus induction of cellular apoptosis. Tumor suppressor genes, such as phosphatase and tensin homologue deleted on chromosome 10 (PTEN), breast cancer susceptibility gene 1 (BRCA1) and TP53 reduce genomic susceptibility to cancer by repairing the damaged DNA. In addition, these genes work cooperatively to ensure the inhibition of the development of several types of cancer. PTEN, BRCA1 and TP53 have been recognized as the most frequently deleted and/or mutated genes in various types of human cancer. Recently, tumor suppressor genes have also been shown to be involved in the development of neurodegenerative diseases. The present review summarizes the recent findings of the functions of these tumor suppressors that are associated with genomic stability, and are involved in carcinogenic and neurodegenerative cell signaling. A summary is presented regarding the interactions of these tumor suppressors with their partners which results in transduction of downstream signals. The implications of these functions for cancer and neurodegenerative disease-associated biology are also highlighted.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Mutsumi Murakami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
41
|
Expression of the Long Noncoding RNA DINO in Human Papillomavirus-Positive Cervical Cancer Cells Reactivates the Dormant TP53 Tumor Suppressor through ATM/CHK2 Signaling. mBio 2020; 11:mBio.01190-20. [PMID: 32546626 PMCID: PMC7298716 DOI: 10.1128/mbio.01190-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional restoration of the TP53 tumor suppressor holds great promise for anticancer therapy. Current strategies are focused on modulating TP53 regulatory proteins. Long noncoding RNAs (lncRNAs) have emerged as important regulators of TP53 as well as modulators of downstream tumor-suppressive transcriptional responses. Unlike many other cancer types, human papillomavirus (HPV)-positive cancer cells retain wild-type TP53 that is rendered dysfunctional by the viral E6 protein. We show that acute expression of the damage-induced long noncoding RNA, DINO, a known TP53 transcriptional target and functional modulator, causes TP53 reactivation in HPV-positive cervical cancer cells. This causes increased vulnerability to standard chemotherapeutics as well as biguanide compounds that cause metabolic stress. Hence, strategies that target DINO may be useful for restoring TP53 tumor suppressor activity in HPV-positive cancers and other tumor types that retain wild-type TP53. Tumor cells overcome the cytostatic and cytotoxic restraints of TP53 tumor suppressor signaling through a variety of mechanisms. High-risk human papillomavirus (HPV)-positive tumor cells retain wild-type TP53 because the HPV E6/UBE3A ubiquitin ligase complex targets TP53 for proteasomal degradation. While restoration of TP53 in tumor cells holds great promise for cancer therapy, attempts to functionally restore the dormant TP53 tumor suppressor in HPV-positive cancer cells by inhibiting the HPV E6/UBE3A ubiquitin ligase complex have not yet been successful. The damage-induced long noncoding RNA, DINO (DINOL), is a TP53 transcriptional target that has been reported to bind to and stabilize TP53, thereby amplifying TP53 signaling. We show that HPV-positive cervical carcinoma cells contain low levels of DINO because of HPV E6/UBE3A-mediated TP53 degradation. Acute DINO expression overrides HPV16 E6/UBE3A-mediated TP53 degradation, causing TP53 stabilization and increased expression of TP53 transcriptional target genes. This causes a marked sensitization to chemotherapy agents and renders cells vulnerable to metabolic stress. Acute DINO expression in HPV-positive cervical cancer cells induces hallmarks of DNA damage response signaling, and TP53 activation involves ATM/CHK2 signaling. DINO upregulation in response to DNA damage is independent of ATM/CHK2 and can occur in cancer cells that express mutant TP53.
Collapse
|
42
|
Sun TZ, Mu D. Multi-scale modeling identifies the role of p53-Gys2 negative feedback loop in cellular homeostasis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2020; 17:3260-3273. [PMID: 32987529 DOI: 10.3934/mbe.2020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transcription factor p53 is a tumor suppressor and strictly controlled p53 protein abundance coordinates cellular outcomes in response to various stresses. The glycogen synthase 2 (Gys2) and p53 generates a novel negative feedback circuit in which p53 represses Gys2 expression whereas Gys2 can stabilize p53 by competitive binding with MDM2. However, the dynamic role of p53-Gys2 negative feedback is still elusive. In current work, we recapitulated the main experimental findings using multi-scale modeling and emphasized the pivotal role of p53-Gys2 negative feedback loop to main cellular homeostasis. The multi-scale modeling strategy was used to simulate both in vitro and in vivo experimental findings. We found that expression of a key oncoprotein HBx may facilitate cancer progression. Gys2 overexpression can inhibit hepatocellular carcinoma progression whereas Gys2 knockdown advanced cancer development. We also applied oscillatory and impulse disturbance to p53 signaling pathway and the results showed that optimal p53-Gys2 negative feedback loop was highly resistant to oscillatory or impulse disturbances. Instead, the canonical p53-MDM2 negative feedback circuit can significantly affect the dynamics of p53 and therefore effectively shaped pulsatile patterns. Therefore, the dual negative feedback loops in p53 signaling can provide features of both robustness and tunability. These dynamic features are critical for cellular homeostasis against tumor progression in p53 signaling pathway.
Collapse
Affiliation(s)
- Ting Zhe Sun
- School of Life Sciences, Anqing Normal University, Anqing 246133, China
| | - Dan Mu
- School of Life Sciences, Anqing Normal University, Anqing 246133, China
| |
Collapse
|
43
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
44
|
Bhatkar D, Sarode SC, Sarode GS, Patil S, Sharma NK. CRISPR-Cas genome editing tool: a narrow lane of cancer therapeutics with potential blockades. Transl Cancer Res 2020; 9:3135-3141. [PMID: 35117677 PMCID: PMC8797949 DOI: 10.21037/tcr.2020.02.33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 02/10/2020] [Indexed: 11/24/2022]
Abstract
In recent, clustered regularly interspaced short palindromic repeats (CRISPR)-associated nucleases (Cas) system is emerging as a versatile genome editing tool with applications in basic science, preclinical and translational biology. This CRISPR-Cas genome editing tool is known as a precise and effective option to correct a part of the genome that may have implications in many human diseases including cancer associated genes such as oncogenes and onco-suppressors. Besides robust potential to edit target genes, CRISPR-Cas editing technology displays cellular alterations in the form of activation of DNA double strand break repair system and bringing genomic instability. As a consequence of repair of DNA double strand breaks, highly mitotically active cells may face hyper-DNA repair systems and there may be sometimes a situation leading to error prone mutations and unwanted genomic integrity. Additionally, the use of CRISPR-Cas editing technology in cancer therapy is limited in the backdrop of genotype and epigenomic heterogeneity in tumors. Therefore, a precaution should be considered to employ CRISPR-Cas technology in cancer therapy in view of tumor heterogeneity and environmental pressure.
Collapse
Affiliation(s)
- Devyani Bhatkar
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Sachin C. Sarode
- Department of Oral and Maxillofacial Pathology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Gargi S. Sarode
- Department of Oral and Maxillofacial Pathology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, Maharashtra, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| |
Collapse
|
45
|
Goglia AG, Wilson MZ, Jena SG, Silbert J, Basta LP, Devenport D, Toettcher JE. A Live-Cell Screen for Altered Erk Dynamics Reveals Principles of Proliferative Control. Cell Syst 2020; 10:240-253.e6. [PMID: 32191874 DOI: 10.1016/j.cels.2020.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/08/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
Abstract
Complex, time-varying responses have been observed widely in cell signaling, but how specific dynamics are generated or regulated is largely unknown. One major obstacle has been that high-throughput screens are typically incompatible with the live-cell assays used to monitor dynamics. Here, we address this challenge by screening a library of 429 kinase inhibitors and monitoring extracellular-regulated kinase (Erk) activity over 5 h in more than 80,000 single primary mouse keratinocytes. Our screen reveals both known and uncharacterized modulators of Erk dynamics, including inhibitors of non-epidermal growth factor receptor (EGFR) receptor tyrosine kinases (RTKs) that increase Erk pulse frequency and overall activity. Using drug treatment and direct optogenetic control, we demonstrate that drug-induced changes to Erk dynamics alter the conditions under which cells proliferate. Our work opens the door to high-throughput screens using live-cell biosensors and reveals that cell proliferation integrates information from Erk dynamics as well as additional permissive cues.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Maxwell Z Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Siddhartha G Jena
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jillian Silbert
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Lena P Basta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544.
| |
Collapse
|
46
|
Hafner A, Kublo L, Tsabar M, Lahav G, Stewart-Ornstein J. Identification of universal and cell-type specific p53 DNA binding. BMC Mol Cell Biol 2020; 21:5. [PMID: 32070277 PMCID: PMC7027055 DOI: 10.1186/s12860-020-00251-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Background The tumor suppressor p53 is a major regulator of the DNA damage response and has been suggested to selectively bind and activate cell-type specific gene expression programs. However recent studies and meta-analyses of genomic data propose largely uniform, and condition independent p53 binding and thus question the selective and cell-type dependent function of p53. Results To systematically assess the cell-type specificity of p53, we measured its association with DNA in 12 p53 wild-type cancer cell lines, from a range of epithelial linages, in response to ionizing radiation. We found that the majority of bound sites were occupied across all cell lines, however we also identified a subset of binding sites that were specific to one or a few cell lines. Unlike the shared p53-bound genome, which was not dependent on chromatin accessibility, the association of p53 with these atypical binding sites was well explained by chromatin accessibility and could be modulated by forcing cell state changes such as the epithelial-to-mesenchymal transition. Conclusions Our study reconciles previous conflicting views in the p53 field, by demonstrating that although the majority of p53 DNA binding is conserved across cell types, there is a small set of cell line specific binding sites that depend on cell state.
Collapse
Affiliation(s)
- Antonina Hafner
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA. .,Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Lyubov Kublo
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michael Tsabar
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jacob Stewart-Ornstein
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, PA, 15260, USA
| |
Collapse
|
47
|
Heltberg ML, Chen SH, Jiménez A, Jambhekar A, Jensen MH, Lahav G. Inferring Leading Interactions in the p53/Mdm2/Mdmx Circuit through Live-Cell Imaging and Modeling. Cell Syst 2019; 9:548-558.e5. [PMID: 31812692 PMCID: PMC7263464 DOI: 10.1016/j.cels.2019.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/23/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023]
Abstract
The tumor-suppressive transcription factor p53 is a master regulator of stress responses. In non-stressed conditions, p53 is maintained at low levels by the ubiquitin ligase Mdm2 and its binding partner Mdmx. Mdmx depletion leads to a biphasic p53 response, with an initial post-mitotic pulse followed by oscillations. The mechanism underlying this dynamical behavior is unknown. Two different roles for Mdmx have been proposed: enhancing p53 ubiquitination by Mdm2 and inhibiting p53 activity. Here, we developed a mathematical model of the p53/Mdm2/Mdmx network to investigate which Mdmx functions quantitatively affect specific features of p53 dynamics under various conditions. We found that enhancement of Mdm2 activity was the most critical role of Mdmx under unstressed conditions. The model also accurately predicted p53 dynamics in Mdmx-depleted cells following DNA damage. This work outlines a strategy for rapidly testing possible network interactions to reveal those most impactful in regulating the dynamics of key proteins.
Collapse
Affiliation(s)
- Mathias L Heltberg
- Niels Bohr Institute, University of Copenhagen 2100, Copenhagen, Denmark; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sheng-Hong Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Alba Jiménez
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen 2100, Copenhagen, Denmark.
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Friedrich D, Friedel L, Finzel A, Herrmann A, Preibisch S, Loewer A. Stochastic transcription in the p53-mediated response to DNA damage is modulated by burst frequency. Mol Syst Biol 2019; 15:e9068. [PMID: 31885199 PMCID: PMC6886302 DOI: 10.15252/msb.20199068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Discontinuous transcription has been described for different mammalian cell lines and numerous promoters. However, our knowledge of how the activity of individual promoters is adjusted by dynamic signaling inputs from transcription factors is limited. To address this question, we characterized the activity of selected target genes that are regulated by pulsatile accumulation of the tumor suppressor p53 in response to ionizing radiation. We performed time-resolved measurements of gene expression at the single-cell level by smFISH and used the resulting data to inform a mathematical model of promoter activity. We found that p53 target promoters are regulated by frequency modulation of stochastic bursting and can be grouped along three archetypes of gene expression. The occurrence of these archetypes cannot solely be explained by nuclear p53 abundance or promoter binding of total p53. Instead, we provide evidence that the time-varying acetylation state of p53's C-terminal lysine residues is critical for gene-specific regulation of stochastic bursting.
Collapse
Affiliation(s)
- Dhana Friedrich
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Laura Friedel
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
| | - Ana Finzel
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| | - Andreas Herrmann
- Department for BiologyHumboldt Universität zu BerlinBerlinGermany
| | - Stephan Preibisch
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
- Janelia Research CampusHoward Hughes Medical InstituteVAAshburnUSA
| | - Alexander Loewer
- Department for BiologyTechnische Universität DarmstadtDarmstadtGermany
- Berlin Institute for Medical Systems BiologyMax Delbrück Center in the Helmholtz AssociationBerlinGermany
| |
Collapse
|
49
|
Harton MD, Koh WS, Bunker AD, Singh A, Batchelor E. p53 pulse modulation differentially regulates target gene promoters to regulate cell fate decisions. Mol Syst Biol 2019; 15:e8685. [PMID: 31556489 PMCID: PMC6761572 DOI: 10.15252/msb.20188685] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 01/02/2023] Open
Abstract
The p53 tumor suppressor regulates distinct responses to cellular stresses. Although different stresses generate different p53 dynamics, the mechanisms by which cells decode p53 dynamics to differentially regulate target genes are not well understood. Here, we determined in individual cells how canonical p53 target gene promoters vary in responsiveness to features of p53 dynamics. Employing a chemical perturbation approach, we independently modulated p53 pulse amplitude, duration, or frequency, and we then monitored p53 levels and target promoter activation in individual cells. We identified distinct signal processing features-thresholding in response to amplitude modulation, a refractory period in response to duration modulation, and dynamic filtering in response to frequency modulation. We then showed that the signal processing features not only affect p53 target promoter activation, they also affect p53 regulation and downstream cellular functions. Our study shows how different promoters can differentially decode features of p53 dynamics to generate distinct responses, providing insight into how perturbing p53 dynamics can be used to generate distinct cell fates.
Collapse
Affiliation(s)
- Marie D Harton
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Woo Seuk Koh
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Amie D Bunker
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Abhyudai Singh
- Department of Electrical and Computer EngineeringDepartment of Biomedical EngineeringDepartment of Mathematical Sciences, and Center for Bioinformatics and Computational BiologyUniversity of DelawareNewarkDEUSA
| | - Eric Batchelor
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
50
|
Bowling JL, Skolfield MC, Riley WA, Nolin AP, Wolf LC, Nelson DE. Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway. BMC Mol Cell Biol 2019; 20:33. [PMID: 31412778 PMCID: PMC6694515 DOI: 10.1186/s12860-019-0220-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background The PINK1:Parkin pathway regulates the autophagic removal of damaged and dysfunctional mitochondria. While the response of this pathway to complete loss of ΔΨm, as caused by high concentrations of mitochondrial ionophores, has been well characterized, it remains unclear how the pathway makes coherent decisions about whether to keep or purge mitochondria in situations where ΔΨm is only partially lost or exhibits fluctuations, as has been observed in response to certain types of cellular stress. Results To investigate the responses of the PINK1:Parkin pathway to mitochondrial insults of different magnitude and duration, controlled titration of the mitochondrial protonophore, CCCP, was used to manipulate ΔΨm in live cells, and the dynamics of PINK1 and Parkin recruitment was measured by fluorescence microscopy. In contrast to the stable accumulation of PINK1 and Parkin seen at completely depolarized mitochondria, partial depolarization produced a transient pulse of PINK1 stabilization and rapid loss, which was driven by small fluctuations in ΔΨm. As the rate of Parkin dissociation from the mitochondria and phospho-polyubiquitin chain removal was comparatively slow, repetitive pulses of PINK1 were able to drive a slow step-wise accumulation of Parkin and phospho-polyubiquitin leading to deferred mitophagy. Conclusion These data suggest that the PINK1:Parkin mitophagy pathway is able to exhibit distinct dynamic responses to complete and partial mitochondrial depolarization. In this way, the pathway is able to differentiate between irretrievably damaged mitochondria and those showing signs of dysfunction, promoting either rapid or delayed autophagy, respectively. Electronic supplementary material The online version of this article (10.1186/s12860-019-0220-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Logan Bowling
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | | | - Wesley A Riley
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrew P Nolin
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Larissa C Wolf
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - David E Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| |
Collapse
|