1
|
Ji Y, Li R, Tang G, Wang W, Chen C, Yang Q. The interrelated roles of RAB family proteins in the advancement of neoplastic growth. Front Oncol 2025; 15:1513360. [PMID: 40196733 PMCID: PMC11974252 DOI: 10.3389/fonc.2025.1513360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rab Proteins, A Subfamily Of The Ras Superfamily Of Small Gtpases, Are Critical Regulators Of Intracellular Vesicular Trafficking, Which Is Intricately Linked To Various Cellular Processes. These Proteins Play Essential Roles Not Only In Maintaining Cellular Homeostasis But Also In Mediating The Complex Interplay Between Cancer Cells and Their Microenvironment. Rab Proteins Can Act As Either Oncogenic Factors Or Tumor Suppressors, With Their Functions Highly Dependent On The Cellular Context. Mechanistic Studies Have Revealed That Rab Proteins Are Involved In A Variety Of Processes, Including Vesicular Transport, Tumor Microenvironment Regulation, Autophagy, Drug Resistance, and Metabolic Regulation, and Play Either A Promotional Or Inhibitory Role In Cancer Development. Consequently, Targeting Rab Gtpases To Restore Dysregulated Vesicular Transport Systems May Offer A Promising Therapeutic Strategy To Inhibit Cancer Progression. However, It Is Equally Important To Consider The Potential Risks Of Disrupting Rab Functions, As Their Roles Are Highly Context-Dependent and May Have Opposing Effects In Different Malignancies. This Review Focuses On The Multifaceted Involvement Of Rab Family Proteins In Cancer Progression Underscores Their Importance As Potential Therapeutic Targets and Underscores The Need For A Deeper Understanding Of Their Complex Roles In Tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
2
|
Tago T, Ogawa T, Goto Y, Toyooka K, Tojima T, Nakano A, Satoh T, Satoh AK. RudLOV is an optically synchronized cargo transport method revealing unexpected effects of dynasore. EMBO Rep 2025; 26:613-634. [PMID: 39658747 PMCID: PMC11811055 DOI: 10.1038/s44319-024-00342-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Live imaging of secretory cargoes is a powerful method for understanding the mechanisms of membrane trafficking. Inducing the synchronous release of cargoes from an organelle is key for enhancing microscopic observation. We developed an optical cargo-releasing method, 'retention using dark state of LOV2' (RudLOV), which enables precise spatial, temporal, and quantity control during cargo release. A limited amount of cargo-release using RudLOV is able to visualize cargo cisternal-movement and cargo-specific exit sites on the Golgi/trans-Golgi network. Moreover, by controlling the timing of cargo-release using RudLOV, we reveal the canonical and non-canonical effects of the well-known dynamin inhibitor dynasore, which inhibits early- but not late-Golgi transport and exits from the trans-Golgi network where dynamin-2 is active. Accumulation of COPI vesicles at the cis-side of the Golgi stacks in dynasore-treated cells suggests that dynasore targets COPI-uncoating/tethering/fusion machinery in the early-Golgi cisternae or endoplasmic reticulum but not in the late-Golgi cisternae. These results provide insight into the cisternal maturation of Golgi stacks.
Collapse
Affiliation(s)
- Tatsuya Tago
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Takumi Ogawa
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | - Yumi Goto
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Takuro Tojima
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
| |
Collapse
|
3
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 PMCID: PMC11967910 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
5
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Shi X, Lingerak R, Herting CJ, Ge Y, Kim S, Toth P, Wang W, Brown BP, Meiler J, Sossey-Alaoui K, Buck M, Himanen J, Hambardzumyan D, Nikolov DB, Smith AW, Wang B. Time-resolved live-cell spectroscopy reveals EphA2 multimeric assembly. Science 2023; 382:1042-1050. [PMID: 37972196 PMCID: PMC11114627 DOI: 10.1126/science.adg5314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that initiates both ligand-dependent tumor-suppressive and ligand-independent oncogenic signaling. We used time-resolved, live-cell fluorescence spectroscopy to show that the ligand-free EphA2 assembles into multimers driven by two types of intermolecular interactions in the ectodomain. The first type entails extended symmetric interactions required for ligand-induced receptor clustering and tumor-suppressive signaling that inhibits activity of the oncogenic extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein kinases and suppresses cell migration. The second type is an asymmetric interaction between the amino terminus and the membrane proximal domain of the neighboring receptors, which supports oncogenic signaling and promotes migration in vitro and tumor invasiveness in vivo. Our results identify the molecular interactions that drive the formation of the EphA2 multimeric signaling clusters and reveal the pivotal role of EphA2 assembly in dictating its opposing functions in oncogenesis.
Collapse
Affiliation(s)
- Xiaojun Shi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ryan Lingerak
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cameron J. Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Soyeon Kim
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul Toth
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Wei Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Benjamin P. Brown
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Khalid Sossey-Alaoui
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Juha Himanen
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dolores Hambardzumyan
- Departments Oncological Sciences and Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adam W. Smith
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | - Bingcheng Wang
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Cleveland, OH 44109, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Madsen RR, Toker A. PI3K signaling through a biochemical systems lens. J Biol Chem 2023; 299:105224. [PMID: 37673340 PMCID: PMC10570132 DOI: 10.1016/j.jbc.2023.105224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- MRC-Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom.
| | - Alex Toker
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
8
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
9
|
Gerritsen JS, Faraguna JS, Bonavia R, Furnari FB, White FM. Predictive data-driven modeling of C-terminal tyrosine function in the EGFR signaling network. Life Sci Alliance 2023; 6:e202201466. [PMID: 37169593 PMCID: PMC10176108 DOI: 10.26508/lsa.202201466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) has been studied extensively because of its critical role in cellular signaling and association with disease. Previous models have elucidated interactions between EGFR and downstream adaptor proteins or showed phenotypes affected by EGFR. However, the link between specific EGFR phosphorylation sites and phenotypic outcomes is still poorly understood. Here, we employed a suite of isogenic cell lines expressing site-specific mutations at each of the EGFR C-terminal phosphorylation sites to interrogate their role in the signaling network and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR C-terminal tail, while also revealing nodes in the network that have not previously been linked to EGFR signaling. Our data-driven model highlights the signaling network nodes associated with distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. Application of this same approach to less-studied RTKs should provide a plethora of novel associations that should lead to an improved understanding of these signaling networks.
Collapse
Affiliation(s)
- Jacqueline S Gerritsen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph S Faraguna
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudy Bonavia
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA
- Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Hanover G, Vizeacoumar FS, Banerjee SL, Nair R, Dahiya R, Osornio-Hernandez AI, Morales AM, Freywald T, Himanen JP, Toosi BM, Bisson N, Vizeacoumar FJ, Freywald A. Integration of cancer-related genetic landscape of Eph receptors and ephrins with proteomics identifies a crosstalk between EPHB6 and EGFR. Cell Rep 2023; 42:112670. [PMID: 37392382 DOI: 10.1016/j.celrep.2023.112670] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
Eph receptors and their ephrin ligands are viewed as promising targets for cancer treatment; however, targeting them is hindered by their context-dependent functionalities. To circumvent this, we explore molecular landscapes underlying their pro- and anti-malignant activities. Using unbiased bioinformatics approaches, we construct a cancer-related network of genetic interactions (GIs) of all Ephs and ephrins to assist in their therapeutic manipulation. We also apply genetic screening and BioID proteomics and integrate them with machine learning approaches to select the most relevant GIs of one Eph receptor, EPHB6. This identifies a crosstalk between EPHB6 and EGFR, and further experiments confirm the ability of EPHB6 to modulate EGFR signaling, enhancing the proliferation of cancer cells and tumor development. Taken together, our observations show EPHB6 involvement in EGFR action, suggesting its targeting might be beneficial in EGFR-dependent tumors, and confirm that the Eph family genetic interactome presented here can be effectively exploited in developing cancer treatment approaches.
Collapse
Affiliation(s)
- Glinton Hanover
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Sara L Banerjee
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Raveena Nair
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Renuka Dahiya
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada
| | - Ana I Osornio-Hernandez
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada
| | - Alain Morejon Morales
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, GA20 Health Sciences, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Tanya Freywald
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Juha P Himanen
- Department of Biochemistry, University of Turku, 20500 Turku, Finland
| | - Behzad M Toosi
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| | - Nicolas Bisson
- Department of Molecular Biology, Medical Biochemistry and Pathology, PROTEO and Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, 9 Rue McMahon, Québec, QC G1R 3S3, Canada.
| | - Franco J Vizeacoumar
- Cancer Research, Saskatchewan Cancer Agency and Division of Oncology, University of Saskatchewan, 4D30.2 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Royal University Hospital, Room 2841, 103 Hospital Drive, Saskatoon, SK S7N 0W8, Canada.
| |
Collapse
|
11
|
Myers PJ, Lee SH, Lazzara MJ. An integrated mechanistic and data-driven computational model predicts cell responses to high- and low-affinity EGFR ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.25.543329. [PMID: 37425852 PMCID: PMC10327094 DOI: 10.1101/2023.06.25.543329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The biophysical properties of ligand binding heavily influence the ability of receptors to specify cell fates. Understanding the rules by which ligand binding kinetics impact cell phenotype is challenging, however, because of the coupled information transfers that occur from receptors to downstream signaling effectors and from effectors to phenotypes. Here, we address that issue by developing an integrated mechanistic and data-driven computational modeling platform to predict cell responses to different ligands for the epidermal growth factor receptor (EGFR). Experimental data for model training and validation were generated using MCF7 human breast cancer cells treated with the high- and low-affinity ligands epidermal growth factor (EGF) and epiregulin (EREG), respectively. The integrated model captures the unintuitive, concentration-dependent abilities of EGF and EREG to drive signals and phenotypes differently, even at similar levels of receptor occupancy. For example, the model correctly predicts the dominance of EREG over EGF in driving a cell differentiation phenotype through AKT signaling at intermediate and saturating ligand concentrations and the ability of EGF and EREG to drive a broadly concentration-sensitive migration phenotype through cooperative ERK and AKT signaling. Parameter sensitivity analysis identifies EGFR endocytosis, which is differentially regulated by EGF and EREG, as one of the most important determinants of the alternative phenotypes driven by different ligands. The integrated model provides a new platform to predict how phenotypes are controlled by the earliest biophysical rate processes in signal transduction and may eventually be leveraged to understand receptor signaling system performance depends on cell context. One-sentence summary Integrated kinetic and data-driven EGFR signaling model identifies the specific signaling mechanisms that dictate cell responses to EGFR activation by different ligands.
Collapse
|
12
|
Ventura E, Xie C, Buraschi S, Belfiore A, Iozzo RV, Giordano A, Morrione A. Complexity of progranulin mechanisms of action in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:333. [PMID: 36471440 PMCID: PMC9720952 DOI: 10.1186/s13046-022-02546-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mesothelioma is an aggressive disease with limited therapeutic options. The growth factor progranulin plays a critical role in several cancer models, where it regulates tumor initiation and progression. Recent data from our laboratories have demonstrated that progranulin and its receptor, EphA2, constitute an oncogenic pathway in bladder cancer by promoting motility, invasion and in vivo tumor formation. Progranulin and EphA2 are expressed in mesothelioma cells but their mechanisms of action are not well defined. In addition, there are no data establishing whether the progranulin/EphA2 axis is tumorigenic for mesothelioma cells. METHODS The expression of progranulin in various mesothelioma cell lines derived from all major mesothelioma subtypes was examined by western blots on cell lysates, conditioned media and ELISA assays. The biological roles of progranulin, EphA2, EGFR, RYK and FAK were assessed in vitro by immunoblots, human phospho-RTK antibody arrays, pharmacological (specific inhibitors) and genetic (siRNAs, shRNAs, CRISPR/Cas9) approaches, motility, invasion and adhesion assays. In vivo tumorigenesis was determined by xenograft models. Focal adhesion turnover was evaluated biochemically using focal adhesion assembly/disassembly assays and immunofluorescence analysis with focal adhesion-specific markers. RESULTS In the present study we show that progranulin is upregulated in various mesothelioma cell lines covering all mesothelioma subtypes and is an important regulator of motility, invasion, adhesion and in vivo tumor formation. However, our results indicate that EphA2 is not the major functional receptor for progranulin in mesothelioma cells, where progranulin activates a complex signaling network including EGFR and RYK. We further characterized progranulin mechanisms of action and demonstrated that progranulin, by modulating FAK activity, regulates the kinetic of focal adhesion disassembly, a critical step for cell motility. CONCLUSION Collectively, our results highlight the complexity of progranulin oncogenic signaling in mesothelioma, where progranulin modulate functional cross-talks between multiple RTKs, thereby suggesting the need for combinatorial therapeutic approaches to improve treatments of this aggressive disease.
Collapse
Affiliation(s)
- Elisa Ventura
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| | - Christopher Xie
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Simone Buraschi
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonino Belfiore
- grid.8158.40000 0004 1757 1969Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Renato V. Iozzo
- grid.412726.40000 0004 0442 8581Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Antonio Giordano
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA ,grid.9024.f0000 0004 1757 4641Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- grid.264727.20000 0001 2248 3398Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
13
|
Qasim M, Ricks-Santi LJ, Naab TJ, Rajack F, Beyene D, Abbas M, Kassim OO, Copeland RL, Kanaan Y. Inverse Correlation of KISS1 and KISS1R Expression in Triple-negative Breast Carcinomas from African American Women. Cancer Genomics Proteomics 2022; 19:673-682. [PMID: 36316037 PMCID: PMC9620443 DOI: 10.21873/cgp.20350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIM The kisspeptin 1 (KISS1) gene encodes a precursor polypeptide which after proteolysis forms the kisspeptin-10 (KISS1) protein. KISS1, retains maximum physiological activity when it binds to its receptor (KISS1R), allowing KISS1 to effectively function as a suppressor of metastasis in melanomas and other types of cancer. The goal of this study was to evaluate the expression of KISS1 and KISS1R in breast carcinomas from African American (AA) women and correlate their association with clinicopathological features, including breast cancer subtypes, and outcomes. MATERIALS AND METHODS Tissue microarrays were constructed from formalin-fixed, paraffin-embedded surgical blocks from 216 AA patients. KISS1 and KISS1R expression was assessed using immunohistochemistry. Univariate analysis was used to determine the association between the expression of KISS1 and KISS1R, and clinicopathological characteristics. Pearson correlation was also determined between immunohistochemical H-scores, tumor size, and the number of positive lymph nodes. Kaplan-Meier estimates of overall and disease-free survival were plotted, and log-rank tests were performed to compare estimates among groups. RESULTS KISS1 protein expression was found to be higher in receptor-negative and triple-negative breast cancer (TNBC) compared to other subtypes (p<0.001). However, KISS1R expression was higher in non-TNBC tumors compared to other subtypes (p<0.001). Higher KISS1R expression was marginally negatively correlated with tumor size (p=0.077), and positively correlated with lymph-node positivity (p=0.056), and disease-free survival (p=0.092). CONCLUSION Our study showed a significant inverse correlation between KISS1 and KISS1R in TNBC. This investigation implicates a role for KISS1 and KISS1R in the pathogenesis of TNBCs in AA women.
Collapse
Affiliation(s)
- Mustafa Qasim
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Luisel J Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Medicine, University of Florida, Gainesville, FL, U.S.A
| | - Tammey J Naab
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Fareed Rajack
- Department of Pathology, Howard University Hospital, Washington, DC, U.S.A
| | - Desta Beyene
- Howard University Cancer Center, Washington, DC, U.S.A
| | - Muneer Abbas
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Olakunle O Kassim
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Robert L Copeland
- Howard University Cancer Center, Washington, DC, U.S.A
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, U.S.A
| | - Yasmine Kanaan
- Department of Microbiology, Howard University College of Medicine, Washington, DC, U.S.A.;
- Howard University Cancer Center, Washington, DC, U.S.A
| |
Collapse
|
14
|
Sánchez MF, Dietz MS, Müller U, Weghuber J, Gatterdam K, Wieneke R, Heilemann M, Lanzerstorfer P, Tampé R. Dynamic in Situ Confinement Triggers Ligand-Free Neuropeptide Receptor Signaling. NANO LETTERS 2022; 22:8363-8371. [PMID: 36219818 PMCID: PMC9614963 DOI: 10.1021/acs.nanolett.2c03506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Membrane receptor clustering is fundamental to cell-cell communication; however, the physiological function of receptor clustering in cell signaling remains enigmatic. Here, we developed a dynamic platform to induce cluster formation of neuropeptide Y2 hormone receptors (Y2R) in situ by a chelator nanotool. The multivalent interaction enabled a dynamic exchange of histidine-tagged Y2R within the clusters. Fast Y2R enrichment in clustered areas triggered ligand-independent signaling as determined by an increase in cytosolic calcium and cell migration. Notably, the calcium and motility response to ligand-induced activation was amplified in preclustered cells, suggesting a key role of receptor clustering in sensitizing the dose response to lower ligand concentrations. Ligand-independent versus ligand-induced signaling differed in the binding of arrestin-3 as a downstream effector, which was recruited to the clusters only in the presence of the ligand. This approach allows in situ receptor clustering, raising the possibility to explore different receptor activation modalities.
Collapse
Affiliation(s)
- M. Florencia Sánchez
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Marina S. Dietz
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Ulrike Müller
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Julian Weghuber
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
- FFoQSI
- Austrian Competence Centre for Feed and Food Quality, Safety &
Innovation, FFoQSI GmbH, Technopark 1D, 3430 Tulln, Austria
| | - Karl Gatterdam
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Ralph Wieneke
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | - Peter Lanzerstorfer
- School
of Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Robert Tampé
- Institute
of Biochemistry, Biocenter, Goethe University
Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
15
|
Glykofridis IE, Henneman AA, Balk JA, Goeij-de Haas R, Westland D, Piersma SR, Knol JC, Pham TV, Boekhout M, Zwartkruis FJT, Wolthuis RMF, Jimenez CR. Phosphoproteomic analysis of FLCN inactivation highlights differential kinase pathways and regulatory TFEB phosphoserines. Mol Cell Proteomics 2022; 21:100263. [PMID: 35863698 PMCID: PMC9421328 DOI: 10.1016/j.mcpro.2022.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 10/26/2022] Open
Abstract
In Birt-Hogg-Dubé (BHD) syndrome, germline mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114 and Ser122, which may be caused by fact that FLCNNEG cells experience oxidative stress. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Alex A Henneman
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Richard Goeij-de Haas
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Michiel Boekhout
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Fried J T Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rob M F Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Human Genetics, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Buksh BF, Knutson SD, Oakley JV, Bissonnette NB, Oblinsky DG, Schwoerer MP, Seath CP, Geri JB, Rodriguez-Rivera FP, Parker DL, Scholes GD, Ploss A, MacMillan DWC. μMap-Red: Proximity Labeling by Red Light Photocatalysis. J Am Chem Soc 2022; 144:6154-6162. [PMID: 35363468 PMCID: PMC9843638 DOI: 10.1021/jacs.2c01384] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited SnIV chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling in vitro through several layers of tissue, and we then apply our platform in cellulo to label EGFR microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.
Collapse
Affiliation(s)
- Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Michael P Schwoerer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Dann L Parker
- Discovery Chemistry, Merck & Co., Kenilworth, New Jersey07033, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
17
|
Gomez-Soler M, Gehring MP, Lechtenberg BC, Zapata-Mercado E, Ruelos A, Matsumoto MW, Hristova K, Pasquale EB. Ligands with different dimeric configurations potently activate the EphA2 receptor and reveal its potential for biased signaling. iScience 2022; 25:103870. [PMID: 35243233 PMCID: PMC8858996 DOI: 10.1016/j.isci.2022.103870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated.
Collapse
Affiliation(s)
- Maricel Gomez-Soler
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marina P. Gehring
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bernhard C. Lechtenberg
- Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elmer Zapata-Mercado
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alyssa Ruelos
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
18
|
Clark JF, Soriano PM. Pulling back the curtain: The hidden functions of receptor tyrosine kinases in development. Curr Top Dev Biol 2022; 149:123-152. [PMID: 35606055 PMCID: PMC9127239 DOI: 10.1016/bs.ctdb.2021.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a conserved superfamily of transmembrane growth factor receptors that drive numerous cellular processes during development and in the adult. Upon activation, multiple adaptors and signaling effector proteins are recruited to binding site motifs located within the intracellular domain of the RTK. These RTK-effector interactions drive subsequent intracellular signaling cascades involved in canonical RTK signaling. Genetic dissection has revealed that alleles of Fibroblast Growth Factor receptors (FGFRs) that lack all canonical RTK signaling still retain some kinase-dependent biological activity. Here we examine how genetic analysis can be used to understand the mechanism by which RTKs drive multiple developmental processes via canonical signaling while revealing noncanonical activities. Recent data from both FGFRs and other RTKs highlight potential noncanonical roles in cell adhesion and nuclear signaling. The data supporting such functions are discussed as are recent technologies that have the potential to provide valuable insight into the developmental significance of these noncanonical activities.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philippe M Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
19
|
Chien FC, Lin CY, Abrigo G. Single-Molecule Blinking Fluorescence Enhancement by Surface Plasmon-Coupled Emission-Based Substrates for Single-Molecule Localization Imaging. Anal Chem 2021; 93:15401-15411. [PMID: 34730956 DOI: 10.1021/acs.analchem.1c03206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surface plasmon-coupled emission (SPCE) substrates to enhance the blinking fluorescence of spontaneously blinking fluorophores in single-molecule localization microscopy (SMLM) were fabricated to reduce the excitation power density requirement and reveal the distribution of fluorophore-labeled proteins on a plasma membrane with nanoscale-level resolution. The systemic investigation of the contribution of local field enhancement, modified quantum yield, and emission coupling yield through glass coverslip substrates coated with metal layers of different thicknesses revealed that the silver-layer substrate with a thickness of 44 nm produces the highest SPCE fluorescence in spontaneously blinking fluorophores, and it has a highly directional SPCE fluorescence, which helps improve the detection efficiency. Moreover, the uniform and surface-enhanced field created on the substrate surface is beneficial for fluorescence background reduction in single fluorophore detection and localization, as well as for revealing the real position of fluorophores. Consequently, compared with a glass coverslip substrate, the presented SPCE substrate demonstrated a fluorescence enhancement of 480% and an increase in blinking events from a single spontaneously blinking fluorophore; moreover, the required excitation power density for SMLM imaging was significantly reduced to 23 W cm-2 for visualizing the distribution of epidermal growth factor receptors (EGFRs) on the basal plasma membrane of A549 lung cancer cells with a localization precision of 19 ± 7 nm. Finally, the fluorophore-labeled EGFRs on the basal plasma membrane in the presence of PIKfyve-specific inhibitor treatment were explored using SPCE-SMLM imaging; the results revealed a distinct reduction in the density of localization events because of a decrease in EGFR abundance at the plasma membranes of the cells.
Collapse
Affiliation(s)
- Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Gerald Abrigo
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
20
|
Bian Q, Anderson JC, Zhang XW, Huang ZQ, Ebefors K, Nyström J, Hall S, Novak L, Julian BA, Willey CD, Novak J. Mesangioproliferative Kidney Diseases and Platelet-Derived Growth Factor-Mediated AXL Phosphorylation. Kidney Med 2021; 3:1003-1013.e1. [PMID: 34939009 PMCID: PMC8664734 DOI: 10.1016/j.xkme.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RATIONALE & OBJECTIVE Immunoglobulin A nephropathy (IgAN) is a common glomerular disease, with mesangial cell proliferation as a major feature. There is no disease-specific treatment. Platelet-derived growth factor (PDGF) contributes to the pathogenesis of IgAN. To better understand its pathogenic mechanisms, we assessed PDGF-mediated AXL phosphorylation in human mesangial cells and kidney tissue biopsy specimens. STUDY DESIGN Immunostaining using human kidney biopsy specimens and in vitro studies using primary human mesangial cells. SETTING & PARTICIPANTS Phosphorylation of AXL was assessed in cultured mesangial cells and 10 kidney-biopsy specimens from 5 patients with IgAN, 3 with minimal change disease, 1 with membranous nephropathy, and 1 with mesangioproliferative glomerulonephritis (GN). PREDICTOR Glomerular staining for phospho-AXL in kidney biopsy specimens of patients with mesangioproliferative diseases. OUTCOMES Phosphorylated AXL detected in biopsy tissues of patients with IgAN and mesangioproliferative GN and in cultured mesangial cells stimulated with PDGF. ANALYTIC APPROACH t test, Mann-Whitney test, and analysis of variance were used to assess the significance of mesangial cell proliferative changes. RESULTS Immunohistochemical staining revealed enhanced phosphorylation of glomerular AXL in IgAN and mesangioproliferative GN, but not in minimal change disease and membranous nephropathy. Confocal-microscopy immunofluorescence analysis indicated that mesangial cells rather than endothelial cells or podocytes expressed phospho-AXL. Kinomic profiling of primary mesangial cells treated with PDGF revealed activation of several protein-tyrosine kinases, including AXL. Immunoprecipitation experiments indicated association of AXL and PDGF receptor proteins. An AXL-specific inhibitor (bemcentinib) partially blocked PDGF-induced cellular proliferation and reduced phosphorylation of AXL and PDGF receptor and the downstream signals (AKT1 and ERK1/2). LIMITATIONS Small number of kidney biopsy specimens to correlate the activation of AXL with disease severity. CONCLUSIONS PDGF-mediated signaling in mesangial cells involves transactivation of AXL. Finding appropriate inhibitors to block PDGF-mediated transactivation of AXL may provide new therapeutic options for mesangioproliferative kidney diseases such as IgAN.
Collapse
Affiliation(s)
- Qi Bian
- University of Alabama at Birmingham, Birmingham, AL
- Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai, China
| | | | - Xian Wen Zhang
- University of Alabama at Birmingham, Birmingham, AL
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL
| | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
21
|
Wolf S, Wan Y, McDole K. Current approaches to fate mapping and lineage tracing using image data. Development 2021; 148:dev198994. [PMID: 34498046 DOI: 10.1242/dev.198994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Visualizing, tracking and reconstructing cell lineages in developing embryos has been an ongoing effort for well over a century. Recent advances in light microscopy, labelling strategies and computational methods to analyse complex image datasets have enabled detailed investigations into the fates of cells. Combined with powerful new advances in genomics and single-cell transcriptomics, the field of developmental biology is able to describe the formation of the embryo like never before. In this Review, we discuss some of the different strategies and applications to lineage tracing in live-imaging data and outline software methodologies that can be applied to various cell-tracking challenges.
Collapse
Affiliation(s)
- Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Yinan Wan
- Biozentrum, University of Basel, Basel, 4056, Switzerland
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
22
|
EphB4 as a Novel Target for the EGFR-Independent Suppressive Effects of Osimertinib on Cell Cycle Progression in Non-Small Cell Lung Cancer. Int J Mol Sci 2021; 22:ijms22168522. [PMID: 34445227 PMCID: PMC8395224 DOI: 10.3390/ijms22168522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Osimertinib is the latest generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor used for patients with EGFR-mutated non-small cell lung cancer (NSCLC). We aimed to explore the novel mechanisms of osimertinib by particularly focusing on EGFR-independent effects, which have not been well characterized. We explored the EGFR-independent effects of osimertinib on cell proliferation using NSCLC cell lines, an antibody array analysis, and the association between the action of osimertinib and the ephrin receptor B4 (EphB4). We also studied the clinicopathological significance of EphB4 in 84 lung adenocarcinoma patients. Osimertinib exerted significant inhibitory effects on cell growth and cell cycle progression by promoting the phosphorylation of p53 and p21 and decreasing cyclin D1 expression independently of EGFR. EphB4 was significantly suppressed by osimertinib and promoted cell growth and sensitivity to osimertinib. The EphB4 status in carcinoma cells was positively correlated with tumor size, T factor, and Ki-67 labeling index in all patients and was associated with poor relapse-free survival in EGFR mutation-positive patients. EphB4 is associated with the EGFR-independent suppressive effects of osimertinib on cell cycle and with a poor clinical outcome. Osimertinib can exert significant growth inhibitory effects in EGFR-mutated NSCLC patients with a high EphB4 status.
Collapse
|
23
|
Smith MP, Ferguson HR, Ferguson J, Zindy E, Kowalczyk KM, Kedward T, Bates C, Parsons J, Watson J, Chandler S, Fullwood P, Warwood S, Knight D, Clarke RB, Francavilla C. Reciprocal priming between receptor tyrosine kinases at recycling endosomes orchestrates cellular signalling outputs. EMBO J 2021; 40:e107182. [PMID: 34086370 PMCID: PMC8447605 DOI: 10.15252/embj.2020107182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Integration of signalling downstream of individual receptor tyrosine kinases (RTKs) is crucial to fine-tune cellular homeostasis during development and in pathological conditions, including breast cancer. However, how signalling integration is regulated and whether the endocytic fate of single receptors controls such signalling integration remains poorly elucidated. Combining quantitative phosphoproteomics and targeted assays, we generated a detailed picture of recycling-dependent fibroblast growth factor (FGF) signalling in breast cancer cells, with a focus on distinct FGF receptors (FGFRs). We discovered reciprocal priming between FGFRs and epidermal growth factor (EGF) receptor (EGFR) that is coordinated at recycling endosomes. FGFR recycling ligands induce EGFR phosphorylation on threonine 693. This phosphorylation event alters both FGFR and EGFR trafficking and primes FGFR-mediated proliferation but not cell invasion. In turn, FGFR signalling primes EGF-mediated outputs via EGFR threonine 693 phosphorylation. This reciprocal priming between distinct families of RTKs from recycling endosomes exemplifies a novel signalling integration hub where recycling endosomes orchestrate cellular behaviour. Therefore, targeting reciprocal priming over individual receptors may improve personalized therapies in breast and other cancers.
Collapse
Affiliation(s)
- Michael P Smith
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Harriet R Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Jennifer Ferguson
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Egor Zindy
- Division of Cell Matrix and Regenerative MedicineSchool of Biological Science, FBMHThe University of ManchesterManchesterUK
- Present address:
Center for Microscopy and Molecular ImagingUniversité Libre de Bruxelles (ULB)GosseliesBelgium
| | - Katarzyna M Kowalczyk
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Thomas Kedward
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Christian Bates
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Joseph Parsons
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
| | - Joanne Watson
- Division of Evolution and Genomic SciencesSchool of Biological ScienceFBMHThe University of ManchesterManchesterUK
| | - Sarah Chandler
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Paul Fullwood
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
| | - Stacey Warwood
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - David Knight
- Bio‐MS Core Research FacilityFBMHThe University of ManchesterManchesterUK
| | - Robert B Clarke
- Division of Cancer SciencesSchool of Medical ScienceFBMHThe University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| | - Chiara Francavilla
- Division of Molecular and Cellular FunctionSchool of Biological ScienceFaculty of Biology Medicine and Health (FBMH)The University of ManchesterManchesterUK
- Manchester Breast CentreManchester Cancer Research CentreManchesterUK
| |
Collapse
|
24
|
Jin H, Tang Y, Yang L, Peng X, Li B, Fan Q, Wei S, Yang S, Li X, Wu B, Huang M, Tang S, Liu J, Li H. Rab GTPases: Central Coordinators of Membrane Trafficking in Cancer. Front Cell Dev Biol 2021; 9:648384. [PMID: 34141705 PMCID: PMC8204108 DOI: 10.3389/fcell.2021.648384] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.
Collapse
Affiliation(s)
- Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qin Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Brüggemann Y, Karajannis LS, Stanoev A, Stallaert W, Bastiaens PIH. Growth factor-dependent ErbB vesicular dynamics couple receptor signaling to spatially and functionally distinct Erk pools. Sci Signal 2021; 14:14/683/eabd9943. [PMID: 34006609 DOI: 10.1126/scisignal.abd9943] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growth factor-dependent vesicular dynamics allow cells to regulate the spatial distribution of growth factor receptors and thereby their coupling to downstream signaling effectors that guide cellular responses. We found that the ErbB ligands epidermal growth factor (EGF) and heregulin (HRG) generated distinct spatiotemporal patterns of cognate receptor activities to activate distinct subcellular pools of the extracellular signal-regulated kinase (Erk). Sustained plasma membrane activity of the receptor tyrosine kinases ErbB2/ErbB3 signaled to Erk complexed with the scaffold protein KSR to promote promigratory EphA2 phosphorylation and cellular motility upon HRG stimulation. In contrast, receptor-saturating EGF stimuli caused proliferation-inducing transient activation of cytoplasmic Erk due to the rapid internalization of EGF receptors (EGFR or ErbB1) toward endosomes. Paradoxically, promigratory signaling mediated by Erk complexed to KSR was sustained at low EGF concentrations by vesicular recycling that maintained steady-state amounts of active, phosphorylated EGFR at the plasma membrane. Thus, the effect of ligand identity and concentration on determining ErbB vesicular dynamics constitutes a mechanism by which cells can transduce growth factor composition through spatially distinct Erk pools to enable functionally diverse cellular responses.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Lisa S Karajannis
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str.11, 44227 Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
26
|
Huang C, Chen L, Savage SR, Eguez RV, Dou Y, Li Y, da Veiga Leprevost F, Jaehnig EJ, Lei JT, Wen B, Schnaubelt M, Krug K, Song X, Cieślik M, Chang HY, Wyczalkowski MA, Li K, Colaprico A, Li QK, Clark DJ, Hu Y, Cao L, Pan J, Wang Y, Cho KC, Shi Z, Liao Y, Jiang W, Anurag M, Ji J, Yoo S, Zhou DC, Liang WW, Wendl M, Vats P, Carr SA, Mani DR, Zhang Z, Qian J, Chen XS, Pico AR, Wang P, Chinnaiyan AM, Ketchum KA, Kinsinger CR, Robles AI, An E, Hiltke T, Mesri M, Thiagarajan M, Weaver AM, Sikora AG, Lubiński J, Wierzbicka M, Wiznerowicz M, Satpathy S, Gillette MA, Miles G, Ellis MJ, Omenn GS, Rodriguez H, Boja ES, Dhanasekaran SM, Ding L, Nesvizhskii AI, El-Naggar AK, Chan DW, Zhang H, Zhang B. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021; 39:361-379.e16. [PMID: 33417831 PMCID: PMC7946781 DOI: 10.1016/j.ccell.2020.12.007] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/13/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.
Collapse
Affiliation(s)
- Chen Huang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lijun Chen
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodrigo Vargas Eguez
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | | | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael Schnaubelt
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marcin Cieślik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qing Kay Li
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - David J Clark
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yingwei Hu
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Liwei Cao
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jianbo Pan
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yuefan Wang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kyung-Cho Cho
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wen Jiang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Zhen Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xi S Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick NaVonal Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, 71-252 Szczecin, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Małgorzata Wierzbicka
- Poznań University of Medical Sciences, 61-701 Poznań, Poland; Institute of Human Genetics Polish Academy of Sciences, 60-479 Poznań, Poland
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Miles
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adel K El-Naggar
- Department of Pathology, Division of Pathology and Laboratory Medicine, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel W Chan
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hui Zhang
- Department of Pathology and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
27
|
Cioce M, Fazio VM. EphA2 and EGFR: Friends in Life, Partners in Crime. Can EphA2 Be a Predictive Biomarker of Response to Anti-EGFR Agents? Cancers (Basel) 2021; 13:cancers13040700. [PMID: 33572284 PMCID: PMC7915460 DOI: 10.3390/cancers13040700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The Eph receptors represent the largest group among Receptor Tyrosine kinase (RTK) families. The Eph/ephrin signaling axis plays center stage during development, and the deep perturbation of signaling consequent to its dysregulation in cancer reveals the multiplicity and complexity underlying its function. In the last decades, they have emerged as key players in solid tumors, including colorectal cancer (CRC); however, what causes EphA2 to switch between tumor-suppressive and tumor-promoting function is still an active theater of investigation. This review summarizes the recent advances in understanding EphA2 function in cancer, with detail on the molecular determinants of the oncogene-tumor suppressor switch function of EphA2. We describe tumor context-specific examples of EphA2 signaling and the emerging role EphA2 plays in supporting cancer-stem-cell-like populations and overcoming therapy-induced stress. In such a frame, we detail the interaction of the EphA2 and EGFR pathway in solid tumors, including colorectal cancer. We discuss the contribution of the EphA2 oncogenic signaling to the resistance to EGFR blocking agents, including cetuximab and TKIs.
Collapse
Affiliation(s)
- Mario Cioce
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| | - Vito Michele Fazio
- Laboratory of Molecular Medicine and Biotechnology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
- Correspondence: (M.C.); (V.M.F.)
| |
Collapse
|
28
|
Koseska A, Bastiaens PI. Processing Temporal Growth Factor Patterns by an Epidermal Growth Factor Receptor Network Dynamically Established in Space. Annu Rev Cell Dev Biol 2020; 36:359-383. [DOI: 10.1146/annurev-cellbio-013020-103810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.
Collapse
Affiliation(s)
- Aneta Koseska
- Lise Meitner Group Cellular Computations and Learning, Centre of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
| | - Philippe I.H. Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
29
|
Lun XK, Bodenmiller B. Profiling Cell Signaling Networks at Single-cell Resolution. Mol Cell Proteomics 2020; 19:744-756. [PMID: 32132232 PMCID: PMC7196580 DOI: 10.1074/mcp.r119.001790] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Signaling networks process intra- and extracellular information to modulate the functions of a cell. Deregulation of signaling networks results in abnormal cellular physiological states and often drives diseases. Network responses to a stimulus or a drug treatment can be highly heterogeneous across cells in a tissue because of many sources of cellular genetic and non-genetic variance. Signaling network heterogeneity is the key to many biological processes, such as cell differentiation and drug resistance. Only recently, the emergence of multiplexed single-cell measurement technologies has made it possible to evaluate this heterogeneity. In this review, we categorize currently established single-cell signaling network profiling approaches by their methodology, coverage, and application, and we discuss the advantages and limitations of each type of technology. We also describe the available computational tools for network characterization using single-cell data and discuss potential confounding factors that need to be considered in single-cell signaling network analyses.
Collapse
Affiliation(s)
- Xiao-Kang Lun
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland; Molecular Life Sciences PhD Program, Life Science Zürich Graduate School, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zürich, 8057 Zürich, Switzerland.
| |
Collapse
|
30
|
Harihar S, Ray S, Narayanan S, Santhoshkumar A, Ly T, Welch DR. Role of the tumor microenvironment in regulating the anti-metastatic effect of KISS1. Clin Exp Metastasis 2020; 37:209-223. [PMID: 32088827 PMCID: PMC7339126 DOI: 10.1007/s10585-020-10030-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/19/2020] [Indexed: 12/29/2022]
Abstract
KISS1, a metastasis suppressor gene, has been shown to block metastasis without affecting primary tumor formation. Loss of KISS1 leads to invasion and metastasis in multiple cancers, which is the leading cause of cancer morbidity and mortality. The discovery of KISS1 has provided a ray of hope for early clinical diagnosis and for designing effective treatments targeting metastatic cancer. However, this goal requires greater holistic understanding of its mechanism of action. In this review, we go back into history and highlight some key developments, from the discovery of KISS1 to its role in regulating multiple physiological processes including cancer. We discuss key emerging roles for KISS1, specifically interactions with tissue microenvironment to promote dormancy and regulation of tumor cell metabolism, acknowledged as some of the key players in tumor progression and metastasis. We finally discuss strategies whereby KISS1 might be exploited clinically to treat metastasis.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Srijit Ray
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Samyukta Narayanan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Anirudh Santhoshkumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
- The University Kansas Cancer Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA
| |
Collapse
|
31
|
Stanoev A, Nandan AP, Koseska A. Organization at criticality enables processing of time-varying signals by receptor networks. Mol Syst Biol 2020; 16:e8870. [PMID: 32090487 PMCID: PMC7036718 DOI: 10.15252/msb.20198870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 01/19/2023] Open
Abstract
How cells utilize surface receptors for chemoreception is a recurrent question spanning between physics and biology over the past few decades. However, the dynamical mechanism for processing time-varying signals is still unclear. Using dynamical systems formalism to describe criticality in non-equilibrium systems, we propose generic principle for temporal information processing through phase space trajectories using dynamic transient memory. In contrast to short-term memory, dynamic memory generated via "ghost" attractor enables signal integration depending on stimulus history and thereby uniquely promotes integrating and interpreting complex temporal growth factor signals. We argue that this is a generic feature of receptor networks, the first layer of the cell that senses the changing environment. Using the experimentally established epidermal growth factor sensing system, we propose how recycling could provide self-organized maintenance of the critical receptor concentration at the plasma membrane through a simple, fluctuation-sensing mechanism. Processing of non-stationary signals, a feature previously attributed only to neural networks, thus uniquely emerges for receptor networks organized at criticality.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell BiologyMax Planck Institute for Molecular PhysiologyDortmundGermany
| | - Akhilesh P Nandan
- Department of Systemic Cell BiologyMax Planck Institute for Molecular PhysiologyDortmundGermany
| | - Aneta Koseska
- Department of Systemic Cell BiologyMax Planck Institute for Molecular PhysiologyDortmundGermany
| |
Collapse
|
32
|
Abstract
Specificity in signal transduction is determined by the ability of cells to "encode" and subsequently "decode" different environmental signals. Akin to computer software, this "signaling code" governs context-dependent execution of cellular programs through modulation of signaling dynamics and can be corrupted by disease-causing mutations. Class IA phosphoinositide 3-kinase (PI3K) signaling is critical for normal growth and development and is dysregulated in human disorders such as benign overgrowth syndromes, cancer, primary immune deficiency, and metabolic syndrome. Despite decades of PI3K research, understanding of context-dependent regulation of the PI3K pathway and of the underlying signaling code remains rudimentary. Here, we review current knowledge on context-specific PI3K signaling and how technological advances now make it possible to move from a qualitative to quantitative understanding of this pathway. Insight into how cellular PI3K signaling is encoded or decoded may open new avenues for rational pharmacological targeting of PI3K-associated diseases. The principles of PI3K context-dependent signal encoding and decoding described here are likely applicable to most, if not all, major cell signaling pathways.
Collapse
Affiliation(s)
- Ralitsa R Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
33
|
Valenzuela JI, Perez F. Localized Intercellular Transfer of Ephrin-As by Trans-endocytosis Enables Long-Term Signaling. Dev Cell 2019; 52:104-117.e5. [PMID: 31866204 DOI: 10.1016/j.devcel.2019.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/02/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
Ephrins can elicit either contact-mediated cell-cell adhesion or repulsion, depending on the efficiency of the removal of their ligand-receptor complexes from the cell surface, thus controlling tissue morphogenesis and oncogenic development. However, the dynamic of the turnover of newly assembled ephrin-Eph complexes during cell-cell interactions remains mostly unexplored. Here, we show that ephrin-A1-EphA2 complexes are locally formed at the tip of the filopodia, at cell-to-cell contacts. Clusters of ephrin-A1 from donor cells surf on filopodia associated to EphA2-bearing subdomains of acceptor cells. Full-length ephrin-A1 is transferred to acceptor cells by trans-endocytosis through a proteolysis-independent mechanism. Trans-endocytosed ephrin-A1 bound to its receptor enables signaling to be emitted from endo-lysosomes of acceptor cells. Localized trans-endocytosis of ephrin-A1 sustains contact-mediated repulsion on cancer cells. Our results uncover the essential role played by local concentration at the tip of filopodia and the trans-endocytosis of full-length ephrin to maintain long-lasting ephrin signaling.
Collapse
Affiliation(s)
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
34
|
Gülcüler Balta GS, Monzel C, Kleber S, Beaudouin J, Balta E, Kaindl T, Chen S, Gao L, Thiemann M, Wirtz CR, Samstag Y, Tanaka M, Martin-Villalba A. 3D Cellular Architecture Modulates Tyrosine Kinase Activity, Thereby Switching CD95-Mediated Apoptosis to Survival. Cell Rep 2019; 29:2295-2306.e6. [DOI: 10.1016/j.celrep.2019.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 08/14/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
|
35
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
36
|
Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 2019; 38:6567-6584. [PMID: 31406248 DOI: 10.1038/s41388-019-0931-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6. Throughout this review, we carefully analyse and reconcile the existing/conflicting data in the field, to allow researchers to further the current understanding of Eph receptor signalling.
Collapse
Affiliation(s)
- Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter W Janes
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
37
|
Disanza A, Bisi S, Frittoli E, Malinverno C, Marchesi S, Palamidessi A, Rizvi A, Scita G. Is cell migration a selectable trait in the natural evolution of cancer development? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180224. [PMID: 31431177 DOI: 10.1098/rstb.2018.0224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective evolutionary pressure shapes the processes and genes that enable cancer survival and expansion in a tumour-suppressive environment. A distinguishing lethal feature of malignant cancer is its dissemination and seeding of metastatic foci. A key requirement for this process is the acquisition of a migratory/invasive ability. However, how the migratory phenotype is selected for during the natural evolution of cancer and what advantage, if any, it might provide to the growing malignant cells remain open issues. In this opinion piece, we discuss three possible answers to these issues. We will examine lines of evidence from mathematical modelling of cancer evolution that indicate that migration is an intrinsic selectable property of malignant cells that directly impacts on growth dynamics and cancer geometry. Second, we will argue that migratory phenotypes can emerge as an adaptive response to unfavourable growth conditions and endow cells not only with the ability to move/invade, but also with specific metastatic traits, including drug resistance, self-renewal and survival. Finally, we will discuss the possibility that migratory phenotypes are coincidental events that emerge by happenstance in the natural evolution of cancer. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Sara Bisi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Emanuela Frittoli
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Chiara Malinverno
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Stefano Marchesi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Palamidessi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Abrar Rizvi
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| | - Giorgio Scita
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haemato-Oncology-DIPO, School of Medicine, University of Milan, Milan, Italy
| |
Collapse
|
38
|
Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, Martinez-Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. eLife 2019; 8:44597. [PMID: 30924770 PMCID: PMC6440744 DOI: 10.7554/elife.44597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
Cell-cell communication in multicellular organisms depends on the dynamic and reversible phosphorylation of protein tyrosine residues. The receptor-linked protein tyrosine phosphatases (RPTPs) receive cues from the extracellular environment and are well placed to influence cell signaling. However, the direct events downstream of these receptors have been challenging to resolve. We report here that the homophilic receptor PTPRK is stabilized at cell-cell contacts in epithelial cells. By combining interaction studies, quantitative tyrosine phosphoproteomics, proximity labeling and dephosphorylation assays we identify high confidence PTPRK substrates. PTPRK directly and selectively dephosphorylates at least five substrates, including Afadin, PARD3 and δ-catenin family members, which are all important cell-cell adhesion regulators. In line with this, loss of PTPRK phosphatase activity leads to disrupted cell junctions and increased invasive characteristics. Thus, identifying PTPRK substrates provides insight into its downstream signaling and a potential molecular explanation for its proposed tumor suppressor function.
Collapse
Affiliation(s)
- Gareth W Fearnley
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Katherine A Young
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Iain M Hay
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Wei-Ching Liang
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Nadia Martinez-Martin
- Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, United States
| | - WeiYu Lin
- Antibody Engineering Department, Genentech, South San Francisco, United States
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Hayley J Sharpe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Baumdick M, Gelléri M, Uttamapinant C, Beránek V, Chin JW, Bastiaens PIH. A conformational sensor based on genetic code expansion reveals an autocatalytic component in EGFR activation. Nat Commun 2018; 9:3847. [PMID: 30242154 PMCID: PMC6155120 DOI: 10.1038/s41467-018-06299-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/10/2018] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by growth factors (GFs) relies on dimerization and allosteric activation of its intrinsic kinase activity, resulting in trans-phosphorylation of tyrosines on its C-terminal tail. While structural and biochemical studies identified this EGF-induced allosteric activation, imaging collective EGFR activation in cells and molecular dynamics simulations pointed at additional catalytic EGFR activation mechanisms. To gain more insight into EGFR activation mechanisms in living cells, we develop a Förster resonance energy transfer (FRET)-based conformational EGFR indicator (CONEGI) using genetic code expansion that reports on conformational transitions in the EGFR activation loop. Comparing conformational transitions, self-association and auto-phosphorylation of CONEGI and its Y845F mutant reveals that Y845 phosphorylation induces a catalytically active conformation in EGFR monomers. This conformational transition depends on EGFR kinase activity and auto-phosphorylation on its C-terminal tail, generating a looped causality that leads to autocatalytic amplification of EGFR phosphorylation at low EGF dose. Upon ligand binding epidermal growth factor receptor (EGFR) dimerizes and activates its intrinsic kinase to auto-phosphorylate EGFR. Here, the authors engineer and image a FRET-based conformational EGFR indicator which reveals that activation loop phosphorylation induces a catalytically active conformation in EGFR monomers.
Collapse
Affiliation(s)
- Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Márton Gelléri
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 6, 44227, Dortmund, Germany
| | - Chayasith Uttamapinant
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Václav Beránek
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Street 11, 44227, Dortmund, Germany. .,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Street 6, 44227, Dortmund, Germany.
| |
Collapse
|
40
|
Shi X, Wang B. Caught in the "Akt": Cross-talk between EphA2 and EGFR through the Akt-PIKfyve axis maintains cellular sensitivity to EGF. Sci Signal 2018; 11:eaau1207. [PMID: 30065027 PMCID: PMC6311088 DOI: 10.1126/scisignal.aau1207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activation of EGFR (epidermal growth factor receptor) and Eph receptor often exerts opposing effects on cell functions. In this issue of Science Signaling, Stallaert et al reveal how cells maintain sustained response to EGF stimulation by replenishing EGFR at the plasma membrane and how conflicting signals from the EphA-ephrin system and EGFR are integrated to coordinate cellular responses, including cell migration and proliferation.
Collapse
Affiliation(s)
- Xiaojun Shi
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus; and Departments of Pharmacology, Oncology, Physiology and Biophysics, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus; and Departments of Pharmacology, Oncology, Physiology and Biophysics, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|