1
|
Hogan BLM. Bud, branch, breathe! Building a mammalian lung over space and time. Dev Biol 2025; 522:64-75. [PMID: 40107482 DOI: 10.1016/j.ydbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Many mammalian organs, such as the mammary and lachrymal glands, kidney and lungs develop by the process known as branching morphogenesis. An essential feature of this process is the reciprocal interaction between the inner branched tubular epithelium and the surrounding mesenchyme to optimize the final amount of epithelial tissue that is generated for specific functions. To achieve this expansion the initial epithelial population undergoes repeated rounds of bud formation, branch outgrowth and tip bifurcations, with each repertoire requiring dynamic changes in cell behavior. The process of branching morphogenesis was first studied experimentally by Grobstein and others who showed that the embryonic epithelium did not develop without so-called inductive signals from the mesenchyme. However, it was not known whether this activity was uniformly distributed throughout the mesoderm or localized to specific regions. The mouse lung was seen as a powerful system in which to investigate such questions since its early branching is highly stereotypic, both in vivo and in culture. This advantage was exploited by two young scientists, Alescio and Cassini, who used grafting techniques with explanted embryonic mouse lungs. They showed that mesenchyme from around distal buds could induce ectopic buds in the trachea and other non-branching regions of the epithelium. At the same time, distal regions denuded of their mesoderm failed to develop further. They speculated that inductive factors that promote bud formation and continued outgrowth in competent endoderm are specifically localized within the distal mesenchyme, establishing a conceptual framework for future experimentation. Since then, advances in many areas of biology and bioengineering have enabled the identification of gene regulatory networks, signaling pathways and biomechanical properties that mediate lung branching morphogenesis. However, a quantitative model of how these parameters are coordinated over space and time to control the pattern and scale of branching and the overall size of the lung, still remains elusive.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke University Medical School, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Czyrek AA, Baran K, Hruba E, Horackova A, Bosakova V, Chudzian J, Fafilek B, Laskova V, Stepankova V, Bednar D, Karl K, Kasparek P, Bosakova M, Killinger M, Szotkowska T, Prochazka J, Zieba JT, Rico-Llanos G, Fric J, Hadzic S, Loku E, Wujak M, Svozilova K, Stroblova M, Sedlacek R, Hristova K, Krakow D, Kubovciak J, Delattre M, Bartoszewski R, Buchtova M, Krowarsch D, Chaloupkova R, Zakrzewska M, Krejci P. Increased thermal stability of FGF10 leads to ectopic signaling during development. Cell Mol Life Sci 2025; 82:167. [PMID: 40257501 PMCID: PMC12011707 DOI: 10.1007/s00018-025-05681-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Fibroblast growth factors (FGFs) control organ morphogenesis during development as well as tissue homeostasis and repair in the adult organism. Despite their importance, many mechanisms that regulate FGF function are still poorly understood. Interestingly, the thermodynamic stability of 22 mammalian FGFs varies widely, with some FGFs remaining stable at body temperature for more than 24 h, while others lose their activity within minutes. How thermodynamic stability contributes to the function of FGFs during development remains unknown. Here we show that FGF10, an important limb and lung morphogen, exists as an intrinsically unstable protein that is prone to unfolding and is rapidly inactivated at 37 °C. Using rationally driven directed mutagenesis, we have developed several highly stable (STAB) FGF10 variants with a melting temperature of over 19 °C more than that of wildtype FGF10. In cellular assays in vitro, the FGF10-STABs did not differ from wildtype FGF10 in terms of binding to FGF receptors, activation of downstream FGF receptor signaling in cells, and induction of gene expression. In mouse embryonal lung explants, FGF10-STABs, but not wildtype FGF10, suppressed branching, resulting in increased alveolarization and expansion of epithelial tissue. Similarly, FGF10-STAB1, but not FGF10 wildtype, inhibited the growth of mouse embryonic tibias and markedly altered limb morphogenesis when implanted into chicken limb buds, collectively demonstrating that thermal instability should be considered an important regulator of FGF function that prevents ectopic signaling. Furthermore, we show enhanced differentiation of human iPSC-derived lung organoids and improved regeneration in ex vivo lung injury models mediated by FGF10-STABs, suggesting an application in cell therapy.
Collapse
Affiliation(s)
- Aleksandra A Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Eva Hruba
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | | | - Veronika Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Julia Chudzian
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | | | | | - David Bednar
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Enantis Ltd, Brno, 62500, Czech Republic
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Kelly Karl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Petr Kasparek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Michal Killinger
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Tereza Szotkowska
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Jennifer T Zieba
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, California Los Angeles, CA, 90095, USA
| | - Gustavo Rico-Llanos
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, 12800, Czech Republic
| | - Stefan Hadzic
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Edma Loku
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Magdalena Wujak
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
- Department of Medicinal Chemistry, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Bydgoszcz, 85-089, Poland
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
| | - Michaela Stroblova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California Los Angeles, California Los Angeles, CA, 90095, USA
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - Mathys Delattre
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 14200, Czech Republic
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Marcela Buchtova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Daniel Krowarsch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Radka Chaloupkova
- Enantis Ltd, Brno, 62500, Czech Republic.
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic.
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, 65691, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, 60200, Czech Republic.
| |
Collapse
|
3
|
Mills JC, Thanintorn N, Yin Y, McNeill H, Ornitz DM, Willet SG. Gastric hypoplasia in mice lacking fibroblast growth factor 9. Dev Dyn 2025. [PMID: 40022597 DOI: 10.1002/dvdy.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Fibroblast Growth Factor 9 (Fgf9) and its paralog Fgf20 are expressed in the developing stomach. We investigate the role of these growth factors during gastric development, using combinations of null alleles. RESULTS Analysis of expression databases showed that Fgf9 is expressed in gastric endoderm and surrounding mesoderm such as the mesothelium as early as E8.5, and Fgf20 is expressed in the gastric progenitors of the glandular stomach. To explore whether Fgf9 and Fgf20 are important for gastric development, we examined embryonic stomachs from Fgf9 and Fgf20 null (Fgf9LacZ/LacZ and Fgf20Cre.GFP/Cre.GFP) mice during development. At E18.5, Fgf9LacZ/LacZ stomachs were hypoplastic, lacking the squamous forestomach. No changes to glandular stomach differentiation were observed using representative markers of glandular lineages. Fgf9LacZ/LacZ stomachs were smaller during early development (E12.5 and E15.5). RNA-seq analysis of Fgf9LacZ/LacZ mice at E15.5 showed that squamous-epithelium-associated transcripts were underrepresented, and glandular epithelial transcripts were overrepresented. Analysis of gastric patterning at E12.5 revealed loss of early squamous progenitors in the epithelium, characterized by loss of SOX2+; GATA4- cells. We further show that loss of Fgf20 does not alone impact gastric development nor modify the Fgf9LacZ/LacZ phenotype. CONCLUSIONS Fgf9 drives gastric growth and squamous epithelial identity during gastric development.
Collapse
Affiliation(s)
- Jason C Mills
- Section of Gastroenterology, Department of Medicine, Pathology and Immunology, and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Nattapon Thanintorn
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Spencer G Willet
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Yin H, Staples SCR, Pickering JG. The fundamentals of fibroblast growth factor 9. Differentiation 2024; 139:100731. [PMID: 37783652 DOI: 10.1016/j.diff.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
Fibroblast growth factor 9 (FGF9) was first identified during a screen for factors acting on cells of the central nervous system (CNS). Research over the subsequent two decades has revealed this protein to be a critically important and elegantly regulated growth factor. A hallmark control feature is reciprocal compartmentalization, particularly during development, with epithelium as a dominant source and mesenchyme a prime target. This mesenchyme selectivity is accomplished by the high affinity of FGF9 to the IIIc isoforms of FGFR1, 2, and 3. FGF9 is expressed widely in the embryo, including the developing heart and lungs, and more selectively in the adult, including the CNS and kidneys. Global Fgf9-null mice die shortly after birth due to respiratory failure from hypoplastic lungs. As well, their hearts are dilated and poorly vascularized, the skeleton is small, the intestine is shortened, and male-to-female sex reversal can be found. Conditional Fgf9-null mice have revealed CNS phenotypes, including ataxia and epilepsy. In humans, FGF9 variants have been found to underlie multiple synostoses syndrome 3, a syndrome characterized by multiple joint fusions. Aberrant FGF9 signaling has also been implicated in differences of sex development and cancer, whereas vascular stabilizing effects of FGF9 could benefit chronic diseases. This primer reviews the attributes of this vital growth factor.
Collapse
Affiliation(s)
- Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Sabrina C R Staples
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Department of Biochemistry, Western University, London, Canada; Department of Medicine, Western University, London, Canada; London Health Sciences Centre, London, Canada.
| |
Collapse
|
5
|
Jank M, Doktor F, Zani A, Keijzer R. Cellular origins and translational approaches to congenital diaphragmatic hernia. Semin Pediatr Surg 2024; 33:151444. [PMID: 38996507 DOI: 10.1016/j.sempedsurg.2024.151444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a complex developmental abnormality characterized by abnormal lung development, a diaphragmatic defect and cardiac dysfunction. Despite significant advances in management of CDH, mortality and morbidity continue to be driven by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. The etiology of CDH remains unknown, but CDH is presumed to be caused by a combination of genetic susceptibility and external/environmental factors. Current research employs multi-omics technologies to investigate the molecular profile and pathways inherent to CDH. The aim is to discover the underlying pathogenesis, new biomarkers and ultimately novel therapeutic targets. Stem cells and their cargo, non-coding RNAs and agents targeting inflammation and vascular remodeling have produced promising results in preclinical studies using animal models of CDH. Shortcomings in current therapies combined with an improved understanding of the pathogenesis in CDH have given rise to novel promising experimental treatments that are currently being evaluated in clinical trials. This review provides insight into current developments in translational research, ranging from the cellular origins of abnormal cardiopulmonary development in CDH and the identification of novel treatment targets in preclinical CDH models at the bench and their translation to clinical trials at the bedside.
Collapse
Affiliation(s)
- Marietta Jank
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Doktor
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
7
|
Innis SM, Cabot RA. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Epigenetics Chromatin 2024; 17:16. [PMID: 38773546 PMCID: PMC11106951 DOI: 10.1186/s13072-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan A Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
8
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. Development 2024; 151:dev202659. [PMID: 38602479 PMCID: PMC11165721 DOI: 10.1242/dev.202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey R. Koenitzer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Peter Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S. Hagan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Riccetti MR, Green J, Taylor TJ, Perl AKT. Prenatal FGFR2 Signaling via PI3K/AKT Specifies the PDGFRA + Myofibroblast. Am J Respir Cell Mol Biol 2024; 70:63-77. [PMID: 37734036 PMCID: PMC10768833 DOI: 10.1165/rcmb.2023-0245oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
It is well known that FGFR2 (fibroblast growth factor receptor 2) signaling is critical for proper lung development. Recent studies demonstrate that epithelial FGFR2 signaling during the saccular phase of lung development (sacculation) regulates alveolar type 1 (AT1) and AT2 cell differentiation. During sacculation, PDGFRA (platelet-derived growth factor receptor-α)-positive lung fibroblasts exist as three functional subtypes: contractile myofibroblasts, extracellular matrix-producing matrix fibroblasts, and lipofibroblasts. All three subtypes are required during alveolarization to establish a niche that supports AT2 epithelial cell self-renewal and AT1 epithelial cell differentiation. FGFR2 signaling directs myofibroblast differentiation in PDGFRA+ fibroblasts during alveolar reseptation after pneumonectomy. However, it remains unknown if FGFR2 signaling regulates PDGFRA+ myo-, matrix, or lipofibroblast differentiation during sacculation. In this study, FGFR2 signaling was inhibited by temporal expression of a secreted dominant-negative FGFR2b (dnFGFR2) by AT2 cells from embryonic day (E) 16.5 to E18.5. Fibroblast and epithelial differentiation were analyzed at E18.5 and postnatal days 7 and 21. At all time points, the number of myofibroblasts was reduced and the number of lipo-/matrix fibroblasts was increased. AT2 cells are increased and AT1 cells are reduced postnatally, but not at E18.5. Similarly, in organoids made with PDGFRA+ fibroblasts from dnFGFR2 lungs, increased AT2 cells and reduced AT1 cells were observed. In vitro treatment of primary wild-type E16.5 adherent saccular lung fibroblasts with recombinant dnFGFR2b/c resulted in reduced myofibroblast contraction. Treatment with the PI3K/AKT activator 740 Y-P rescued the lack of myofibroblast differentiation caused by dnFGFR2b/2c. Moreover, treatment with the PI3K/AKT activator 740 Y-P rescued myofibroblast differentiation in E18.5 fibroblasts isolated from dnFGFR2 lungs.
Collapse
Affiliation(s)
- Matthew R. Riccetti
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jenna Green
- Division of Neonatology and Pulmonary Biology and
| | - Thomas J. Taylor
- Division of Neonatology and Pulmonary Biology and
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio; and
| | - Anne-Karina T. Perl
- Division of Neonatology and Pulmonary Biology and
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
10
|
Yin Y, Koenitzer JR, Patra D, Dietmann S, Bayguinov P, Hagan AS, Ornitz DM. Identification of a myofibroblast differentiation program during neonatal lung development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.28.573370. [PMID: 38234814 PMCID: PMC10793446 DOI: 10.1101/2023.12.28.573370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.
Collapse
Affiliation(s)
- Yongjun Yin
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Debabrata Patra
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Sabine Dietmann
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter Bayguinov
- Neuroscience, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew S. Hagan
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - David M. Ornitz
- Departments of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
11
|
Wang W, Shi W, Wang Y, Yang Y, Li P, Zeng Z, Hu W, Chen Y, Tang D, Dai Y. Systematic proteomics profiling of lysine crotonylation of the lung at Pseudoglandular and Canalicular phases in human fetus. Proteome Sci 2023; 21:22. [PMID: 38041078 PMCID: PMC10691156 DOI: 10.1186/s12953-023-00215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2023] [Indexed: 12/03/2023] Open
Abstract
Lung tissue is an important organ of the fetus, and genomic research on its development has improved our understanding of the biology of this tissue. However, the proteomic research of developing fetal lung tissue is still very scarce. We conducted comprehensive analysis of two developmental stages of fetal lung tissue of proteomics. It showed the developmental characteristics of lung tissue, such as the down-regulation of metabolism-related protein expression, the up-regulation of cell cycle-related proteins, and the regulation in proteins and pathways related to lung development. In addition, we also discovered some key core proteins related to lung development, and provided some key crotonylation modification sites that regulation during lung tissue development. Our comprehensive analysis of lung proteomics can provide a more comprehensive understanding of the developmental status of lung tissue, and provide a certain reference for future research and epigenetics of lung tissue.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern, University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yinglan Wang
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern, University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Ping Li
- Shenzhen Far East Women & Children Hospital, Shenzhen, 518000, Guangdong, China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Wenlong Hu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Yumei Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, ShenzhenPeople's Hospital, Shenzhen, Guangdong, 518020, People's Republic of China.
| |
Collapse
|
12
|
Jiang F, Wu M, Li R. The significance of long non-coding RNAs in the pathogenesis, diagnosis and treatment of inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2023; 6:pbad031. [PMID: 38163004 PMCID: PMC10757071 DOI: 10.1093/pcmedi/pbad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic relapsing gastrointestinal inflammatory diseases with significant global incidence. Although the pathomechanism of IBD has been extensively investigated, several aspects of its pathogenesis remain unclear. Long non-coding RNAs (lncRNAs) are transcripts with more than 200 nucleotides in length that have potential protein-coding functions. LncRNAs play important roles in biological processes such as epigenetic modification, transcriptional regulation and post-transcriptional regulation. In this review, we summarize recent advances in research on IBD-related lncRNAs from the perspective of the overall intestinal microenvironment, as well as their potential roles as immune regulators, diagnostic biomarkers and therapeutic targets or agents for IBD.
Collapse
Affiliation(s)
- Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wu
- Drug Discovery Section, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou 221000, China
| |
Collapse
|
13
|
Schütz K, Schmidt A, Schwerk N, Renz DM, Gerard B, Schaefer E, Antal MC, Peters S, Griese M, Rapp CK, Engels H, Cremer K, Bergmann AK, Schmidt G, Auber B, Kamp JC, Laenger F, von Hardenberg S. Variants in FGF10 cause early onset of severe childhood interstitial lung disease: A detailed description of four affected children. Pediatr Pulmonol 2023; 58:3095-3105. [PMID: 37560881 DOI: 10.1002/ppul.26627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION Fibroblast growth factor 10 (FGF10) is a signaling molecule with a well-established role for lung branching morphogenesis. Rare heterozygous, deleterious variants in the FGF10 gene are known causes of the lacrimo-auriculo-dento-digital (LADD) syndrome and aplasia of lacrimal and salivary glands. Previous studies indicate that pathogenic variants in FGF10 can cause childhood Interstitial Lung Disease (chILD) due to severe diffuse developmental disorders of the lung, but detailed reports on clinical presentation and follow-up of affected children are lacking. METHODS We describe four children with postnatal onset of chILD and heterozygous variants in FGF10, each detected by exome or whole genome sequencing. RESULTS All children presented with postnatal respiratory failure. Two children died within the first 2 days of life, one patient died at age of 12 years due to right heart failure related to severe pulmonary hypertension (PH) and one patient is alive at age of 6 years, but still symptomatic. Histopathological analysis of lung biopsies from the two children with early postpartum demise revealed diffuse developmental disorder representing acinar dysplasia and interstitial fibrosis. Sequential biopsies of the child with survival until the age of 12 years revealed alveolar simplification and progressive interstitial fibrosis. DISCUSSION Our report extends the phenotype of FGF10-related disorders to early onset chILD with progressive interstitial lung fibrosis and PH. Therefore, FGF10-related disorder should be considered even without previously described syndromic stigmata in children with postnatal respiratory distress, not only when leading to death in the neonatal period but also in case of persistent respiratory complaints and PH.
Collapse
Affiliation(s)
- Katharina Schütz
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Axel Schmidt
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Nicolaus Schwerk
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Munich, Germany
| | - Diane Miriam Renz
- Department of Pediatric Radiology, Hannover Medical School, Institute of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Benedicte Gerard
- Laboratoires de Diagnostic Génétique, Unité de génétique moléculaire, Nouvel Hôpital Civil, Strasbourg, Cedex, France
| | - Elise Schaefer
- Laboratoires de Diagnostic Génétique, Unité de génétique moléculaire, Nouvel Hôpital Civil, Strasbourg, Cedex, France
| | - Maria Cristina Antal
- UF6349 fœtopathologie, Département de Pathologie, Hôpitaux Universitaires, Strasbourg, France
| | - Sophia Peters
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Matthias Griese
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Christina K Rapp
- Department of Pediatric Pneumology, German Center for Lung Research (DZL), Dr von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jan C Kamp
- German Center for Lung Research (DZL), Munich, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Laenger
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | | |
Collapse
|
14
|
Liu S, Sun D, Butler R, Rawlins EL. RTK signalling promotes epithelial columnar cell shape and apical junction maintenance in human lung progenitor cells. Development 2023; 150:dev201284. [PMID: 37260147 PMCID: PMC10281517 DOI: 10.1242/dev.201284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Multipotent epithelial progenitor cells can be expanded from human embryonic lungs as organoids and maintained in a self-renewing state using a defined medium. The organoid cells are columnar, resembling the cell morphology of the developing lung tip epithelium in vivo. Cell shape dynamics and fate are tightly coordinated during development. We therefore used the organoid system to identify signalling pathways that maintain the columnar shape of human lung tip progenitors. We found that EGF, FGF7 and FGF10 have distinct functions in lung tip progenitors. FGF7 activates MAPK/ERK and PI3K/AKT signalling, and is sufficient to promote columnar cell shape in primary tip progenitors. Inhibitor experiments show that MAPK/ERK and PI3K/AKT signalling are key downstream pathways, regulating cell proliferation, columnar cell shape and cell junctions. We identified integrin signalling as a key pathway downstream of MAPK/ERK in the tip progenitors; disrupting integrin alters polarity, cell adhesion and tight junction assembly. By contrast, stimulation with FGF10 or EGF alone is not sufficient to maintain organoid columnar cell shape. This study employs organoids to provide insight into the cellular mechanisms regulating human lung development.
Collapse
Affiliation(s)
- Shuyu Liu
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Richard Butler
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
15
|
Sengal AT, Smith D, Snell CE, Leung S, Talhouk A, Williams ED, McAlpine JN, Pollock PM. Spatial expression of the FGFR2b splice isoform and its prognostic significance in endometrioid endometrial carcinoma. J Pathol Clin Res 2022; 8:521-537. [PMID: 35866380 PMCID: PMC9535101 DOI: 10.1002/cjp2.286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 12/29/2022]
Abstract
Endometrial carcinoma (EC) is the most common gynecological malignancy and fibroblast growth factor receptor 2 (FGFR2) is a frequently dysregulated receptor tyrosine kinase. FGFR2b and FGFR2c are the two main splice isoforms of FGFR2 and are normally localized in epithelial and mesenchymal cells, respectively. Previously, we demonstrated that FGFR2c mRNA expression was associated with aggressive tumor characteristics, shorter progression-free survival (PFS), and disease-specific survival (DSS) in endometrioid ECs (EECs). The objectives of this study were to investigate the spatial expression of FGFR2b in normal and hyperplasia with and without atypia of human endometrium and to assess the prognostic significance of FGFR2b expression in EC. FGFR2b and FGFR2c mRNA expression was evaluated in normal (proliferative [n = 10], secretory [n = 15], and atrophic [n = 10] endometrium), hyperplasia with and without atypia (n = 19) as well as two patient cohorts of EC samples (discovery [n = 78] and Vancouver [n = 460]) using isoform-specific BaseScope RNA in situ hybridization assays. Tumors were categorized based on FGFR2 isoform expression (one, both, or neither) and categories were correlated with clinicopathologic markers, molecular subtypes, and clinical outcomes. The FGFR2b splice isoform was exclusively expressed in the epithelial compartment of normal endometrium and hyperplasia without atypia. We observed FGFR2c expression at the basalis layer of glands in 33% (3/9) of hyperplasia with atypia. In patients with EEC, FGFR2b+/FGFR2c- expression was found in 48% of the discovery cohort and 35% of the validation Vancouver cohort. In univariate analyses, tumors with FGFR2b+/FGFR2c- expression had longer PFS (hazard ratio [HR] 0.265; 95% CI 0.145-0.423; log-rank p < 0.019) and DSS (HR 0.31; 95% CI 0.149-0.622; log-rank p < 0.001) compared to tumors with FGFR2b-/FGFR2c+ expression in the large EEC Vancouver cohort. In multivariable Cox regression analyses, tumors with FGFR2b+/FGFR2c- expression were significantly associated with longer DSS (HR 0.37; 95% CI 0.153-0.872; log-rank p < 0.023) compared to FGFR2b-/FGFR2c+ tumors. In conclusion, FGFR2b+/FGFR2c- expression is associated with favorable clinicopathologic markers and clinical outcomes suggesting that FGFR2b could play a role in tailoring the management of EEC patients in the clinic if these findings are confirmed in an independent cohort.
Collapse
Affiliation(s)
- Asmerom T Sengal
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT) located at the Translational Research Institute (TRI)BrisbaneAustralia
| | - Deborah Smith
- Mater PathologyMater Research and University of QueenslandBrisbaneAustralia
| | - Cameron E Snell
- Mater PathologyMater Research and University of QueenslandBrisbaneAustralia
| | - Samuel Leung
- Department of Pathology and Laboratory Medicine, Genetic Pathology Evaluation CentreUniversity of British ColumbiaVancouverBCCanada
| | - Aline Talhouk
- Department of Gynaecology and Obstetrics, Division of Gynaecologic OncologyUniversity of British ColumbiaVancouverBCCanada
| | - Elizabeth D Williams
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT) located at the Translational Research Institute (TRI)BrisbaneAustralia
| | - Jessica N McAlpine
- Department of Gynaecology and Obstetrics, Division of Gynaecologic OncologyUniversity of British ColumbiaVancouverBCCanada
| | - Pamela M Pollock
- School of Biomedical Sciences, Faculty of HealthQueensland University of Technology (QUT) located at the Translational Research Institute (TRI)BrisbaneAustralia
| |
Collapse
|
16
|
Matsiukevich D, House SL, Weinheimer C, Kovacs A, Ornitz DM. Fibroblast growth factor receptor signaling in cardiomyocytes is protective in the acute phase following ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:1011167. [PMID: 36211556 PMCID: PMC9539275 DOI: 10.3389/fcvm.2022.1011167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are expressed in multiple cell types in the adult heart. Previous studies have shown a cardioprotective effect of some FGF ligands in cardiac ischemia-reperfusion (I/R) injury and a protective role for endothelial FGFRs in post-ischemic vascular remodeling. To determine the direct role FGFR signaling in cardiomyocytes in acute cardiac I/R injury, we inactivated Fgfr1 and Fgfr2 (CM-DCKO) or activated FGFR1 (CM-caFGFR1) in cardiomyocytes in adult mice prior to I/R injury. In the absence of injury, inactivation of Fgfr1 and Fgfr2 in adult cardiomyocytes had no effect on cardiac morphometry or function. When subjected to I/R injury, compared to controls, CM-DCKO mice had significantly increased myocyte death 1 day after reperfusion, and increased infarct size, cardiac dysfunction, and myocyte hypertrophy 7 days after reperfusion. No genotype-dependent effect was observed on post-ischemic cardiomyocyte cross-sectional area and vessel density in areas remote to the infarct. By contrast, transient activation of FGFR1 signaling in cardiomyocytes just prior to the onset of ischemia did not affect outcomes after cardiac I/R injury at 1 day and 7 days after reperfusion. These data demonstrate that endogenous cell-autonomous cardiomyocyte FGFR signaling supports the survival of cardiomyocytes in the acute phase following cardiac I/R injury and that this cardioprotection results in continued improved outcomes during cardiac remodeling. Combined with the established protective role of some FGF ligands and endothelial FGFR signaling in I/R injury, this study supports the development of therapeutic strategies that promote cardiomyocyte FGF signaling after I/R injury.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Stacey L. House
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Carla Weinheimer
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - David M. Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
17
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
19
|
Yang G, Lu S, Jiang J, Weng J, Zeng X. Kub3 Deficiency Causes Aberrant Late Embryonic Lung Development in Mice by the FGF Signaling Pathway. Int J Mol Sci 2022; 23:ijms23116014. [PMID: 35682694 PMCID: PMC9181541 DOI: 10.3390/ijms23116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
As a Ku70-binding protein of the KUB family, Kub3 has previously been reported to play a role in DNA double-strand break repair in human glioblastoma cells in glioblastoma patients. However, the physiological roles of Kub3 in normal mammalian cells remain unknown. In the present study, we generated Kub3 gene knockout mice and revealed that knockout (KO) mice died as embryos after E18.5 or as newborns immediately after birth. Compared with the lungs of wild-type (WT) mice, Kub3 KO lungs displayed abnormal lung morphogenesis and pulmonary atelectasis at E18.5. No difference in cell proliferation or cell apoptosis was detected between KO lungs and WT lungs. However, the differentiation of alveolar epithelial cells and the maturation of type II epithelial cells were impaired in KO lungs at E18.5. Further characterization displayed that Kub3 deficiency caused an abnormal FGF signaling pathway at E18.5. Taking all the data together, we revealed that Kub3 deletion leads to abnormal late lung development in mice, resulting from the aberrant differentiation of alveolar epithelial cells and the immaturation of type II epithelial cells due to the disturbed FGF signaling pathway. Therefore, this study has uncovered an essential role of Kub3 in the prenatal lung development of mice which advances our knowledge of regulatory factors in embryonic lung development and provides new concepts for exploring the mechanisms of disease related to perinatal lung development.
Collapse
|
20
|
Jones MR, Lingampally A, Ahmadvand N, Chong L, Wu J, Wilhem J, Vazquez-Armendariz AI, Ansari M, Herold S, Ornitz DM, Schiller HB, Chao CM, Zhang JS, Carraro G, Bellusci S. FGFR2b signalling restricts lineage-flexible alveolar progenitors during mouse lung development and converges in mature alveolar type 2 cells. Cell Mol Life Sci 2022; 79:609. [PMID: 36445537 PMCID: PMC9708820 DOI: 10.1007/s00018-022-04626-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
The specification, characterization, and fate of alveolar type 1 and type 2 (AT1 and AT2) progenitors during embryonic lung development are poorly defined. Current models of distal epithelial lineage formation fail to capture the heterogeneity and dynamic contribution of progenitor pools present during early development. Furthermore, few studies explore the pathways involved in alveolar progenitor specification and fate. In this paper, we build upon our previously published work on the regulation of airway epithelial progenitors by fibroblast growth factor receptor 2b (FGFR2b) signalling during early (E12.5) and mid (E14.5) pseudoglandular stage lung development. Our results suggest that a significant proportion of AT2 and AT1 progenitors are lineage-flexible during late pseudoglandular stage development, and that lineage commitment is regulated in part by FGFR2b signalling. We have characterized a set of direct FGFR2b targets at E16.5 which are likely involved in alveolar lineage formation. These signature genes converge on a subpopulation of AT2 cells later in development and are downregulated in AT2 cells transitioning to the AT1 lineage during repair after injury in adults. Our findings highlight the extensive heterogeneity of pneumocytes by elucidating the role of FGFR2b signalling in these cells during early airway epithelial lineage formation, as well as during repair after injury.
Collapse
Affiliation(s)
- Matthew R. Jones
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- China National Key Clinical Specialty of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital and Yuying Children′s Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
| | - Jin Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Jochen Wilhem
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany ,Institute of Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Institute of Lung Health (ILH), Giessen, Germany ,Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Meshal Ansari
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center, German Center for Lung Research (DZL), Helmholtz Zentrum Munchen, Munich, Germany
| | - Susanne Herold
- Institute of Lung Health (ILH), Giessen, Germany ,Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Herbert B. Schiller
- Institute of Lung Biology and Disease and Comprehensive Pneumology Center, German Center for Lung Research (DZL), Helmholtz Zentrum Munchen, Munich, Germany
| | - Cho-Ming Chao
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany ,Center for Child and Adolescent Medicine, Centre for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Jin-San Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People′s Hospital, 324000 Quzhou, Zhejiang China
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA USA
| | - Saverio Bellusci
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People′s Hospital, 324000 Quzhou, Zhejiang China ,Laboratory of Extracellular Lung Matrix Remodelling, Department of Internal Medicine, Cardio-Pulmonary Institute and Institute for Lung Health, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
21
|
Li F, Liu H, Fu J, Fan L, Lu S, Zhang H, Liu Z. Knockdown of long non-coding RNA NEAT1 relieves inflammation of ulcerative colitis by regulating the miR-603/FGF9 pathway. Exp Ther Med 2022; 23:131. [PMID: 34970354 PMCID: PMC8713162 DOI: 10.3892/etm.2021.11054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Ulcerative colitis (UC) is a significant threat to human life. Hence, there is an urgent requirement to understand the mechanism of UC progression and to develop novel therapeutic interventions for the treatment of UC. The present study aimed to evaluate the potential significance of long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) in the progression of UC. NEAT1 expression was detected in colonic mucosa samples from patients with UC and healthy individuals. Fetal human cells (FHCs) were treated with different concentrations of lipopolysaccharides (LPS) to induce UC-caused inflammatory injury, and the effects of NEAT1 knockdown were investigated on cytokines production, cell apoptosis and viability. Furthermore, the correlation and regulation between NEAT1 and microRNA (miRNA/miR)-603 and the fibroblast growth factor 9 (FGF9) pathway were investigated. The results demonstrated that NEAT1 expression was upregulated in the colonic mucosa tissues of patients with UC. In addition, significant cell injury was observed in FHCs treated with different concentrations of LPS, with decreased cell viability, and increased apoptosis and inflammatory cytokines production. Conversely, NEAT1 knockdown significantly reduced LPS-induced cell injury in FHCs, which was achieved through negative regulation of miR-603 expression. Furthermore, FGF9 was negatively regulated by miR-603, and thus, FGF9 was identified as a potential target of miR-603. Notably, FGF9 knockdown reversed the suppressing effects of miR-603 on LPS-induced injury in FHCs. Taken together, the results of the present study suggest that NEAT1 contributes to the development of UC by regulating the miR-603/FGF9 pathway.
Collapse
Affiliation(s)
- Fengdong Li
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hui Liu
- Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong 266034, P.R. China
| | - Jinjin Fu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Li Fan
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Shuangshuang Lu
- Department of Internal Medicine, Graduate School of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Huahui Zhang
- Department of Internal Medicine, Graduate School of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhanju Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai 200072, P.R. China
| |
Collapse
|
22
|
Stanton AE, Goodwin K, Sundarakrishnan A, Jaslove JM, Gleghorn JP, Pavlovich AL, Nelson CM. Negative Transpulmonary Pressure Disrupts Airway Morphogenesis by Suppressing Fgf10. Front Cell Dev Biol 2021; 9:725785. [PMID: 34926440 PMCID: PMC8673560 DOI: 10.3389/fcell.2021.725785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces are increasingly recognized as important determinants of cell and tissue phenotype and also appear to play a critical role in organ development. During the fetal stages of lung morphogenesis, the pressure of the fluid within the lumen of the airways is higher than that within the chest cavity, resulting in a positive transpulmonary pressure. Several congenital defects decrease or reverse transpulmonary pressure across the developing airways and are associated with a reduced number of branches and a correspondingly underdeveloped lung that is insufficient for gas exchange after birth. The small size of the early pseudoglandular stage lung and its relative inaccessibility in utero have precluded experimental investigation of the effects of transpulmonary pressure on early branching morphogenesis. Here, we present a simple culture model to explore the effects of negative transpulmonary pressure on development of the embryonic airways. We found that negative transpulmonary pressure decreases branching, and that it does so in part by altering the expression of fibroblast growth factor 10 (Fgf10). The morphogenesis of lungs maintained under negative transpulmonary pressure can be rescued by supplementing the culture medium with exogenous FGF10. These data suggest that Fgf10 expression is regulated by mechanical stress in the developing airways. Understanding the mechanical signaling pathways that connect transpulmonary pressure to FGF10 can lead to the establishment of novel non-surgical approaches for ameliorating congenital lung defects.
Collapse
Affiliation(s)
- Alice E Stanton
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Katharine Goodwin
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Jason P Gleghorn
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Amira L Pavlovich
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States.,Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
23
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
24
|
Edel GG, Schaaf G, Wijnen RMH, Tibboel D, Kardon G, Rottier RJ. Cellular Origin(s) of Congenital Diaphragmatic Hernia. Front Pediatr 2021; 9:804496. [PMID: 34917566 PMCID: PMC8669812 DOI: 10.3389/fped.2021.804496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 01/16/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a structural birth defect characterized by a diaphragmatic defect, lung hypoplasia and structural vascular defects. In spite of recent developments, the pathogenesis of CDH is still poorly understood. CDH is a complex congenital disorder with multifactorial etiology consisting of genetic, cellular and mechanical factors. This review explores the cellular origin of CDH pathogenesis in the diaphragm and lungs and describes recent developments in basic and translational CDH research.
Collapse
Affiliation(s)
- Gabriëla G. Edel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Rene M. H. Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Robbert J. Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
25
|
Chang MM, Wu SZ, Yang SH, Wu CC, Wang CY, Huang BM. FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, M2 macrophage infiltration and liver metastasis of lung cancer. Transl Oncol 2021; 14:101208. [PMID: 34438248 PMCID: PMC8390529 DOI: 10.1016/j.tranon.2021.101208] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
FGF9 induced cell proliferation, EMT, migration, and invasion of mouse Lewis lung cancer (LLC) cells, in vitro. FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13) and reduced the expression of E-cadherin. FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with tumor growth, angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. The FGF9/LLC syngeneic animal model provides a useful tool for the mechanism studies of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Fibroblast growth factors 9 (FGF9) modulates cell proliferation, differentiation and motility for development and repair in normal cells. Abnormal activation of FGF9 signaling is associated with tumor progression in many cancers. Also, FGF9 may be an unfavorable prognostic indicator for non-small cell lung cancer patients. However, the effects and mechanisms of FGF9 in lung cancer remain elusive. In this study, we investigated the FGF9-induced effects and signal activation profiles in mouse Lewis lung carcinoma (LLC) in vitro and in vivo. Our results demonstrated that FGF9 significantly induced cell proliferation and epithelial-to-mesenchymal transition (EMT) phenomena (migration and invasion) in LLC cells. Mechanism-wise, FGF9 interacted with FGFR1 and activated FAK, AKT, and ERK/MAPK signal pathways, induced the expression of EMT key proteins (N-cadherin, vimentin, snail, MMP2, MMP3 and MMP13), and reduced the expression of E-cadherin. Moreover, in the allograft mouse model, intratumor injection of FGF9 to LLC-tumor bearing C57BL/6 mice enhanced LLC tumor growth which were the results of increased Ki67 expression and decreased cleaved caspase-3 expression compared to control groups. Furthermore, we have a novel finding that FGF9 promoted liver metastasis of subcutaneous inoculated LLC tumor with angiogenesis, EMT and M2-macrophage infiltration in the tumor microenvironment. In conclusion, FGF9 activated FAK, AKT, and ERK signaling through FGFR1 with induction of EMT to stimulate LLC tumorigenesis and hepatic metastasis. This novel FGF9/LLC allograft animal model may therefore be useful to study the mechanism of liver metastasis which is the worst prognostic factor for lung cancer patients with distant organ metastasis.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, Republic of China
| | - Shang-Hsun Yang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China.
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, Republic of China; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, Republic of China.
| |
Collapse
|
26
|
DeSalvo J, Ban Y, Li L, Sun X, Jiang Z, Kerr DA, Khanlari M, Boulina M, Capecchi MR, Partanen JM, Chen L, Kondo T, Ornitz DM, Trent JC, Eid JE. ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control. J Clin Invest 2021; 131:141908. [PMID: 33983905 DOI: 10.1172/jci141908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial sarcoma is an aggressive malignancy with no effective treatments for patients with metastasis. The synovial sarcoma fusion SS18-SSX, which recruits the SWI/SNF-BAF chromatin remodeling and polycomb repressive complexes, results in epigenetic activation of FGF receptor (FGFR) signaling. In genetic FGFR-knockout models, culture, and xenograft synovial sarcoma models treated with the FGFR inhibitor BGJ398, we show that FGFR1, FGFR2, and FGFR3 were crucial for tumor growth. Transcriptome analyses of BGJ398-treated cells and histological and expression analyses of mouse and human synovial sarcoma tumors revealed prevalent expression of two ETS factors and FGFR targets, ETV4 and ETV5. We further demonstrate that ETV4 and ETV5 acted as drivers of synovial sarcoma growth, most likely through control of the cell cycle. Upon ETV4 and ETV5 knockdown, we observed a striking upregulation of DUX4 and its transcriptional targets that activate the zygotic genome and drive the atrophy program in facioscapulohumeral dystrophy patients. In addition to demonstrating the importance of inhibiting all three FGFRs, the current findings reveal potential nodes of attack for the cancer with the discovery of ETV4 and ETV5 as appropriate biomarkers and molecular targets, and activation of the embryonic DUX4 pathway as a promising approach to block synovial sarcoma tumors.
Collapse
Affiliation(s)
- Joanna DeSalvo
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, and.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Luyuan Li
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | | | - Zhijie Jiang
- University of Miami Center for Computational Science, Coral Gables, Florida, USA
| | | | | | - Maria Boulina
- Analytical Imaging Core Facility, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mario R Capecchi
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Juha M Partanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lin Chen
- Center of Bone Metabolism and Repair, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jonathan C Trent
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | - Josiane E Eid
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| |
Collapse
|
27
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
28
|
Ishioka K, Yasuda H, Hamamoto J, Terai H, Emoto K, Kim TJ, Hirose S, Kamatani T, Mimaki S, Arai D, Ohgino K, Tani T, Masuzawa K, Manabe T, Shinozaki T, Mitsuishi A, Ebisudani T, Fukushima T, Ozaki M, Ikemura S, Kawada I, Naoki K, Nakamura M, Ohtsuka T, Asamura H, Tsuchihara K, Hayashi Y, Hegab AE, Kobayashi SS, Kohno T, Watanabe H, Ornitz DM, Betsuyaku T, Soejima K, Fukunaga K. Upregulation of FGF9 in Lung Adenocarcinoma Transdifferentiation to Small Cell Lung Cancer. Cancer Res 2021; 81:3916-3929. [PMID: 34083250 DOI: 10.1158/0008-5472.can-20-4048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/01/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
Transdifferentiation of lung adenocarcinoma to small cell lung cancer (SCLC) has been reported in a subset of lung cancer cases that bear EGFR mutations. Several studies have reported the prerequisite role of TP53 and RB1 alterations in transdifferentiation. However, the mechanism underlying transdifferentiation remains understudied, and definitive additional events, the third hit, for transdifferentiation have not yet been identified. In addition, no prospective experiments provide direct evidence for transdifferentiation. In this study, we show that FGF9 upregulation plays an essential role in transdifferentiation. An integrative omics analysis of paired tumor samples from a patient with transdifferentiated SCLC exhibited robust upregulation of FGF9. Furthermore, FGF9 upregulation was confirmed at the protein level in four of six (66.7%) paired samples. FGF9 induction transformed mouse lung adenocarcinoma-derived cells to SCLC-like tumors in vivo through cell autonomous activation of the FGFR pathway. In vivo treatment of transdifferentiated SCLC-like tumors with the pan-FGFR inhibitor AZD4547 inhibited growth. In addition, FGF9 induced neuroendocrine differentiation, a pathologic characteristic of SCLC, in established human lung adenocarcinoma cells. Thus, the findings provide direct evidence for FGF9-mediated SCLC transdifferentiation and propose the FGF9-FGFR axis as a therapeutic target for transdifferentiated SCLC. SIGNIFICANCE: This study demonstrates that FGF9 plays a role in the transdifferentiation of lung adenocarcinoma to small cell lung cancer.
Collapse
Affiliation(s)
- Kota Ishioka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shigemichi Hirose
- Department of Pathology, Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Tokyo, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Sachiyo Mimaki
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Daisuke Arai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tetsuo Tani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Keita Masuzawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tadashi Manabe
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Taro Shinozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Akifumi Mitsuishi
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshiki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Keio Cancer Center, School of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Katsuhiko Naoki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Keio Cancer Center, School of Medicine, Keio University School of Medicine, Tokyo, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, Tokyo Saiseikai Central Hospital, Minato-ku, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Tsuchihara
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Yuichiro Hayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan.,Clinical and Translational Research Center, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
29
|
He H, Snowball J, Sun F, Na CL, Whitsett JA. IGF1R controls mechanosignaling in myofibroblasts required for pulmonary alveologenesis. JCI Insight 2021; 6:144863. [PMID: 33591952 PMCID: PMC8026181 DOI: 10.1172/jci.insight.144863] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Ventilation throughout life is dependent on the formation of pulmonary alveoli, which create an extensive surface area in which the close apposition of respiratory epithelium and endothelial cells of the pulmonary microvascular enables efficient gas exchange. Morphogenesis of the alveoli initiates at late gestation in humans and the early postnatal period in the mouse. Alveolar septation is directed by complex signaling interactions among multiple cell types. Here, we demonstrate that IGF1 receptor gene (Igf1r) expression by a subset of pulmonary fibroblasts is required for normal alveologenesis in mice. Postnatal deletion of Igf1r caused alveolar simplification, disrupting alveolar elastin networks and extracellular matrix without altering myofibroblast differentiation or proliferation. Moreover, loss of Igf1r impaired contractile properties of lung myofibroblasts and inhibited myosin light chain (MLC) phosphorylation and mechanotransductive nuclear YAP activity. Activation of p-AKT, p-MLC, and nuclear YAP in myofibroblasts was dependent on Igf1r. Pharmacologic activation of AKT enhanced MLC phosphorylation, increased YAP activation, and ameliorated alveolar simplification in vivo. IGF1R controls mechanosignaling in myofibroblasts required for lung alveologenesis.
Collapse
Affiliation(s)
- Hua He
- Division of Pulmonary Biology and
| | | | - Fei Sun
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
30
|
Su Y, Yang LM, Ornitz DM. FGF20-FGFR1 signaling through MAPK and PI3K controls sensory progenitor differentiation in the organ of Corti. Dev Dyn 2021; 250:134-144. [PMID: 32735383 PMCID: PMC8415122 DOI: 10.1002/dvdy.231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Fibroblast Growth Factor 20 (FGF20)-FGF receptor 1 (FGFR1) signaling is essential for cochlear hair cell (HC) and supporting cell (SC) differentiation. In other organ systems, FGFR1 signals through several intracellular pathways including MAPK (ERK), PI3K, phospholipase C ɣ (PLCɣ), and p38. Previous studies implicated MAPK and PI3K pathways in HC and SC development. We hypothesized that one or both would be important downstream mediators of FGF20-FGFR1 signaling for HC differentiation. RESULTS By inhibiting pathways downstream of FGFR1 in cochlea explant cultures, we established that both MAPK and PI3K pathways are required for HC differentiation while PLCɣ and p38 pathways are not. Examining the canonical PI3K pathway, we found that while AKT is necessary for HC differentiation, it is not sufficient to rescue the Fgf20-/- phenotype. To determine whether PI3K functions downstream of FGF20, we inhibited Phosphatase and Tensin Homolog (PTEN) in Fgf20-/- explants. Overactivation of PI3K resulted in a partial rescue of the Fgf20-/- phenotype, demonstrating a requirement for PI3K downstream of FGF20. Consistent with a requirement for the MAPK pathway for FGF20-regulated HC differentiation, we show that treating Fgf20-/- explants with FGF9 increased levels of dpERK. CONCLUSIONS Together, these data provide evidence that both MAPK and PI3K are important downstream mediators of FGF20-FGFR1 signaling during HC and SC differentiation.
Collapse
Affiliation(s)
- Yutao Su
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Zhang Y, Fons JM, Hajihosseini MK, Zhang T, Tucker AS. An Essential Requirement for Fgf10 in Pinna Extension Sheds Light on Auricle Defects in LADD Syndrome. Front Cell Dev Biol 2020; 8:609643. [PMID: 33363172 PMCID: PMC7758485 DOI: 10.3389/fcell.2020.609643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
The pinna (or auricle) is part of the external ear, acting to capture and funnel sound toward the middle ear. The pinna is defective in a number of craniofacial syndromes, including Lacrimo-auriculo-dento-digital (LADD) syndrome, which is caused by mutations in FGF10 or its receptor FGFR2b. Here we study pinna defects in the Fgf10 knockout mouse. We show that Fgf10 is expressed in both the muscles and forming cartilage of the developing external ear, with loss of signaling leading to a failure in the normal extension of the pinna over the ear canal. Conditional knockout of Fgf10 in the neural crest fails to recapitulate this phenotype, suggesting that the defect is due to loss of Fgf10 from the muscles, or that this source of Fgf10 can compensate for loss in the forming cartilage. The defect in the Fgf10 null mouse is driven by a reduction in proliferation, rather than an increase in cell death, which can be partially phenocopied by inhibiting cell proliferation in explant culture. Overall, we highlight the mechanisms that could lead to the phenotype observed in LADD syndrome patients and potentially explain the formation of similar low-set and cup shaped ears observed in other syndromes.
Collapse
Affiliation(s)
- Yang Zhang
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Ear Nasal and Throat (ENT) Institute, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Juan M. Fons
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | | | - Tianyu Zhang
- Ear Nasal and Throat (ENT) Institute, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Facial Plastic and Reconstructive Surgery, Eye & Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Abigail S. Tucker
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| |
Collapse
|
32
|
Abstract
The pancreas of adult mammals displays a branched structure which transports digestive enzymes produced in the distal acini through a tree-like network of ducts into the duodenum. In contrast to several other branched organs, its branching patterns are not stereotypic. Moreover, the branches do not grow from dichotomic splitting of an initial stem but rather from the formation of microlumen in a mass of cells. These lumen progressively assemble into a hyperconnected network that refines into a tree by the time of birth. We review the cell remodeling events and the molecular mechanisms governing pancreas branching, as well as the role of the surrounding tissues in this process. Furthermore, we draw parallels with other branched organs such as the salivary and mammary gland.
Collapse
Affiliation(s)
- Lydie Flasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Coline Schewin
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany; The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark.
| |
Collapse
|
33
|
Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. Int J Mol Sci 2020; 21:ijms21218336. [PMID: 33172093 PMCID: PMC7672634 DOI: 10.3390/ijms21218336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Cordycepin, a bioactive constituent from the fungus Cordyceps sinensis, could inhibit cancer cell proliferation and promote cell death via induction of cell cycle arrest, apoptosis and autophagy. Our novel finding from microarray analysis of cordycepin-treated MA-10 mouse Leydig tumor cells is that cordycepin down-regulated the mRNA levels of FGF9, FGF18, FGFR2 and FGFR3 genes in MA-10 cells. Meanwhile, the IPA-MAP pathway prediction result showed that cordycepin inhibited MA-10 cell proliferation by suppressing FGFs/FGFRs pathways. The in vitro study further revealed that cordycepin decreased FGF9-induced MA-10 cell proliferation by inhibiting the expressions of p-ERK1/2, p-Rb and E2F1, and subsequently reducing the expressions of cyclins and CDKs. In addition, a mouse allograft model was performed by intratumoral injection of FGF9 and/or intraperitoneal injection of cordycepin to MA-10-tumor bearing C57BL/6J mice. Results showed that FGF9-induced tumor growth in cordycepin-treated mice was significantly smaller than that in a PBS-treated control group. Furthermore, cordycepin decreased FGF9-induced FGFR1-4 protein expressions in vitro and in vivo. In summary, cordycepin inhibited FGF9-induced testicular tumor growth by suppressing the ERK1/2, Rb/E2F1, cell cycle pathways, and the expressions of FGFR1-4 proteins, suggesting that cordycepin can be used as a novel anticancer drug for testicular cancers.
Collapse
|