1
|
Jafri Z, Zhang J, O'Meara CH, Joshua AM, Parish CR, Khachigian LM. Interplay between CD28 and PD-1 in T cell immunotherapy. Vascul Pharmacol 2025; 158:107461. [PMID: 39734005 DOI: 10.1016/j.vph.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionised the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa). CD28 signalling has the potential to counter T cell exhaustion by serving as a potential complementary response to traditional anti-PD-1 therapies. Here we discuss the interplay between PD-1 and CD28 in T cell immunotherapy and additionally how CD28 transcriptionally modulates T cell exhaustion. We also consider clinical attempts at targeting CD28; the challenges faced by past attempts and recent promising developments.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA; Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Jafri Z, Li Y, Zhang J, O’Meara CH, Khachigian LM. Jun, an Oncological Foe or Friend? Int J Mol Sci 2025; 26:555. [PMID: 39859271 PMCID: PMC11766113 DOI: 10.3390/ijms26020555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Jun/JUN is a basic leucine zipper (bZIP) protein and a prototypic member of the activator protein-1 (AP-1) family of transcription factors that can act as homo- or heterodimers, interact with DNA elements and co-factors, and regulate gene transcription. Jun is expressed by both immune and inflammatory cells. Jun is traditionally seen as an oncoprotein that regulates processes involved in transformation and oncogenesis in human tumours. This article examines the traditional view that Jun plays a permissive role in cancer development and progression, whilst exploring emerging evidence supporting Jun's potential to prevent immune cell exhaustion and promote anti-tumour efficacy.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H. O’Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA
- Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Levon M. Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Scott A, Farrar B, Young T, Prior J, Stratilo C, Unterholzner L, D’Elia R. Single-stranded DNA oligonucleotides containing CpG motifs are non-stimulatory in vitro but offer protection in vivo against Burkholderia pseudomallei. Front Cell Infect Microbiol 2024; 14:1458435. [PMID: 39492991 PMCID: PMC11527787 DOI: 10.3389/fcimb.2024.1458435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
Therapies that modulate and appropriately direct the immune response are promising candidates for the treatment of infectious diseases. One such candidate therapeutic is DZ13, a short, synthetic, single-stranded DNA molecule. This molecule has enzymatic activity and can modulate the immune response by binding to and degrading the mRNA encoding a key immuno-regulatory molecule. Originally developed and entering clinical trials as an anti-cancer agent, DZ13 has also been evaluated as a treatment for viral infections, and has been shown to provide protection against infection with influenza virus in a mouse model of infection. In this work, we evaluated whether the immuno-modulatory properties of DZ13 could provide protection against the potential biothreat pathogen Burkholderia pseudomallei which causes the neglected tropical disease melioidosis. Treatment of mice infected with B. pseudomallei demonstrated that DZ13 did indeed provide excellent protection after only two post-exposure treatments. However, our data indicated that the enzymatic activity contained in DZ13 was not required for protection, with control oligonucleotide treatments lacking activity against the target mRNA equally as protective against B. pseudomallei. We have designed new sequences to study the mechanism of protection further. These novel sequences offer enhanced protection against infection, but are not directly anti-microbial and do not appear to be stimulating the immune system via TLR9 or other key innate immune sensors, despite containing CpG motifs. The molecular mechanism of these novel sequences remains to be elucidated, but the data highlights that these oligonucleotide-sensing pathways are attractive and relevant targets to modulate during bacterial and viral infections.
Collapse
Affiliation(s)
- Andrew Scott
- Microbiology, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Benjamin Farrar
- Microbiology, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Tom Young
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Joann Prior
- Microbiology, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Chad Stratilo
- Bio Threat Defence Section, Defence Research and Development Canada, Ralston, AB, Canada
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Riccardo D’Elia
- Microbiology, Defence Science and Technology Laboratory, Salisbury, United Kingdom
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
Lee M, Lee M, Song Y, Kim S, Park N. Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy. Molecules 2024; 29:4737. [PMID: 39407665 PMCID: PMC11477775 DOI: 10.3390/molecules29194737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
5
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
6
|
Prange CJ, Hu X, Tang L. Smart chemistry for traceless release of anticancer therapeutics. Biomaterials 2023; 303:122353. [PMID: 37925794 DOI: 10.1016/j.biomaterials.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
In the design of delivery strategies for anticancer therapeutics, the controlled release of intact cargo at the destined tumor and metastasis locations is of particular importance. To this end, stimuli-responsive chemical linkers have been extensively investigated owing to their ability to respond to tumor-specific physiological stimuli, such as lowered pH, altered redox conditions, increased radical oxygen species and pathological enzymatic activities. To prevent premature action and off-target effects, anticancer therapeutics are chemically modified to be transiently inactivated, a strategy known as prodrug development. Prodrugs are reactivated upon stimuli-dependent release at the sites of interest. As most drugs and therapeutic proteins have the optimal activity when released from carriers in their native and original forms, traceless release mechanisms are increasingly investigated. In this review, we summarize the chemical toolkit for developing innovative traceless prodrug strategies for stimuli-responsive drug delivery and discuss the applications of these chemical modifications in anticancer treatment including cancer immunotherapy.
Collapse
Affiliation(s)
- Céline Jasmin Prange
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, EPFL, Lausanne, CH-1015, Switzerland
| | - Xile Hu
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, CH-1015, Switzerland.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Institute of Materials Science & Engineering, EPFL, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
7
|
Xiao L, Zhao Y, Yang M, Luan G, Du T, Deng S, Jia X. A promising nucleic acid therapy drug: DNAzymes and its delivery system. Front Mol Biosci 2023; 10:1270101. [PMID: 37753371 PMCID: PMC10518456 DOI: 10.3389/fmolb.2023.1270101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.
Collapse
Affiliation(s)
- Lang Xiao
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meng Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Du
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Wang R, He W, Yi X, Wu Z, Chu X, Jiang JH. Site-Specific Bioorthogonal Activation of DNAzymes for On-Demand Gene Therapy. J Am Chem Soc 2023; 145:17926-17935. [PMID: 37535859 DOI: 10.1021/jacs.3c05413] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
RNA-cleaving DNAzymes hold great promise as gene silencers, and spatiotemporal control of their activity through site-specific reactions is crucial but challenging for on-demand therapy. We herein report a novel design of a bioorthogonally inducible DNAzyme that is deactivated by site-specific installation of bioorthogonal caging groups on the designated backbone sites but restores the activity via a phosphine-triggered Staudinger reduction. We perform a systematical screening for installing the caging groups on each backbone site in the catalytic core of 10-23 DNAzyme and identify an inducible DNAzyme with very low leakage activity. This design is demonstrated to achieve bioorthogonally controlled cleavage of exogenous and endogenous mRNA in live cells. It is further extended to photoactivation and endogenous stimuli activation for spatiotemporal or targeted control of gene silencing. The bioorthogonally inducible DNAzyme is applied to a triple-negative breast cancer mouse model using a lipid nanoparticle delivery system, demonstrating high efficiency in knockdown of Lcn2 oncogenes and substantial suppression of tumor growth, thus highlighting the potential of precisely controlling the DNAzyme functions for on-demand gene therapy.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Wenhan He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xin Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Chiba K, Yamaguchi T, Obika S. Development of 8-17 XNAzymes that are functional in cells. Chem Sci 2023; 14:7620-7629. [PMID: 37476720 PMCID: PMC10355097 DOI: 10.1039/d3sc01928d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
DNA enzymes (DNAzymes), which cleave target RNA with high specificity, have been widely investigated as potential oligonucleotide-based therapeutics. Recently, xeno-nucleic acid (XNA)-modified DNAzymes (XNAzymes), exhibiting cleavage activity in cultured cells, have been developed. However, a versatile approach to modify XNAzymes that function in cells has not yet been established. Here, we report an X-ray crystal structure-based approach to modify 8-17 DNAzymes; this approach enables us to effectively locate suitable XNAs to modify. Our approach, combined with a modification strategy used in designing antisense oligonucleotides, rationally designed 8-17 XNAzyme ("X8-17") that achieved high potency in terms of RNA cleavage and biostability against nucleases. X8-17, modified with 2'-O-methyl RNA, locked nucleic acid and phosphorothioate, successfully induced endogenous MALAT-1 and SRB1 RNA knockdown in cells. This approach may help in developing XNAzyme-based novel therapeutic agents.
Collapse
Affiliation(s)
- Kosuke Chiba
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- National Institutes of Biomedical Innovation, Health and Nutrition 7-6-8 Saito-Asagi Ibaraki Osaka 567-0085 Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 1-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
10
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
11
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
12
|
Wang Y, Nguyen K, Spitale RC, Chaput JC. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat Chem 2021; 13:319-326. [DOI: 10.1038/s41557-021-00645-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022]
|
13
|
Huo W, Li X, Wang B, Zhang H, Zhang J, Yang X, Jin Y. Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AbstractDeoxyribozyme (or denoted as DNAzyme), which is produced by in vitro screening technology, has gained extensive research interest in the field of biomedicine due to its high catalytic activity and structure identification. This review introduces the structural characteristics of RNA-cleaving DNAzyme and its application potential in cancer gene therapy, which plays a significant role in cancer-related gene inactivation by specifically cleaving target mRNA and inhibiting the expression of the corresponding protein. However, the low delivery efficiency and cellular uptake hindered the widespread usage of DNAzyme in gene therapy of cancers. Emerging nanotechnology holds great promise for DNAzyme to overcome these obstacles. This review mainly focuses on DNAzyme-based nanotherapeutic platforms in gene therapy of cancers, including oncogene antagonism therapy, treatment resistance gene therapy, immunogene therapy, and antiangiogenesis gene therapy. We also revealed the potential of DNAzyme-based nanotherapeutic platforms as emerging cancer therapy approaches and their security issues.
Collapse
|
14
|
Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm 2020; 46:1238-1252. [PMID: 32597264 DOI: 10.1080/03639045.2020.1788061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Therapeutic peptides are administered via parenteral route due to poor absorption in the gastrointestinal (GI) tract, instability in gastric acid, and GI enzymes. Polymeric drug delivery systems have achieved significant interest in pharmaceutical research due to its feasibility in protecting proteins, tissue targeting, and controlled drug release pattern. MATERIALS AND METHODS In this study, the size, polydispersity index, and zeta potential of insulin-loaded nanoparticles were characterized by dynamic light scattering and laser Doppler micro-electrophoresis. The main and interaction effects of chitosan concentration and Dz13Scr concentration on the physicochemical properties of the prepared insulin-loaded nanoparticles (size, polydispersity index, and zeta potential) were evaluated statistically using analysis of variance. A robust procedure of reversed-phase high-performance liquid chromatography was developed to quantify insulin release in simulated GI buffer. Results and discussion: We reported on the effect of two independent parameters, including polymer concentration and oligonucleotide concentration, on the physical characteristics of particles. Chitosan concentration was significant in predicting the size of insulin-loaded CS-Dz13Scr particles. In terms of zeta potential, both chitosan concentration and squared term of chitosan were significant factors that affect the surface charge of particles, which was attributed to the availability of positively-charged amino groups during interaction with negatively-charged Dz13Scr. The excipients used in this study could fabricate nanoparticles with negligible toxicity in GI cells and skeletal muscle cells. The developed formulation could conserve the physicochemical properties after being stored for 1 month at 4 °C. CONCLUSION The obtained results revealed satisfactory results for insulin-loaded CS-Dz13Scr nanoparticles (159.3 nm, pdi 0.331, -1.08 mV). No such similar study has been reported to date to identify the main and interactive significance of the above parameters for the characterization of insulin-loaded polymeric-oligonucleotide nanoparticles. This research is of importance for the understanding and development of protein-loaded nanoparticles for oral delivery.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
15
|
Liu M, Peng Y, Nie Y, Liu P, Hu S, Ding J, Zhou W. Co-delivery of doxorubicin and DNAzyme using ZnO@polydopamine core-shell nanocomposites for chemo/gene/photothermal therapy. Acta Biomater 2020; 110:242-253. [PMID: 32438113 DOI: 10.1016/j.actbio.2020.04.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Multi-modal nanomedicines that synergistically combine chemo-, gene-, and photothermal therapy have shown great potential for cancer treatment. In this study, a core-shell nanosystem-based on a zinc oxide (ZnO) nanocore and a polydopamine (PDA) shell was constructed to integrate chemo- (doxorubicin, DOX), gene- (DNAzyme, DZ), and photothermal (PDA layer) therapy in one system. Instead of small interfering RNAs, we employed DZ for tumor-related gene (survivin) regulation owing to its higher stability, biocompatibility, and predictable activity. DOX and amino-modified DZ were loaded onto the PDA shell via physisorption and covalent conjugation, respectively. Specifically, the ZnO nanocore was designed as a metal cofactor reservoir to release Zn2+ in response to intracellular stimuli, which triggered the activation of DZ for gene silencing after endocytosis into cells. Both in vitro and in vivo experiments demonstrated the enhanced anti-tumor efficacy of these multifunctional nanocomposites and highlighted the advantages of these nano-drug delivery systems to alleviate the side effects of DOX. This study provides a strategy for synergistic cancer therapy via chemo/gene/photothermal combination and offers a strategy to harness DZ as a gene-silencing tool for disease treatment in combination with other therapeutic modalities. STATEMENT OF SIGNIFICANCE: In this work, we constructed a core-shell nanosystem containing a zinc oxide (ZnO) nanocore and a polydopamine (PDA) outer layer, which integrated chemo- (doxorubicin, DOX), gene- (DNAzyme, DZ), and photothermal (PDA layer) therapies for multimodal cancer therapy. Specifically, the ZnO core was incorporated to solve the key issue of DZ for gene silencing applications, which acted as the metal cofactor reservoir to release Zn2+ inside cells for effective DZ activation. In addition, the PDA shell could detoxify the ZnO by scavenging the reactive oxygen species produced by ZnO, thus increasing the biocompatibility of the nanocarrier. This work solves the key issue of DZ for RNAi-based applications, offers a platform to combine DZ with other therapeutic modalities, and also provides a smart strategy to achieve triggered activation of biocatalytic reactions for therapeutic applications.
Collapse
|
16
|
Wang Y, Vorperian A, Shehabat M, Chaput JC. Evaluating the Catalytic Potential of a General RNA-Cleaving FANA Enzyme. Chembiochem 2019; 21:1001-1006. [PMID: 31680396 DOI: 10.1002/cbic.201900596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Indexed: 12/14/2022]
Abstract
The discovery of synthetic genetic polymers (XNAs) with catalytic activity demonstrates that natural genetic polymers are not unique in their ability to function as enzymes. However, all known examples of in vitro selected XNA enzymes function with lower activity than their natural counterparts, suggesting that XNAs might be limited in their ability to fold into structures with high catalytic activity. To explore this problem, we evaluated the catalytic potential of FANAzyme 12-7, an RNA-cleaving catalyst composed entirely of 2'-fluoroarabino nucleic acid (FANA) that was evolved to cleave RNA at a specific phosphodiester bond located between an unpaired guanine and a paired uracil in the substrate recognition arm. Here, we show that this activity extends to chimeric DNA substrates that contain a central riboguanosine (riboG) residue at the cleavage site. Surprisingly, FANAzyme 12-7 rivals known DNAzymes that were previously evolved to cleave chimeric DNA substrates under physiological conditions. These data provide convincing evidence that FANAzyme 12-7 maintains the catalytic potential of equivalent DNAzymes, which has important implications for the evolution of XNA catalysts and their contributions to future applications in synthetic biology.
Collapse
Affiliation(s)
- Yajun Wang
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| | - Alexander Vorperian
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| | - Mouhamad Shehabat
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Departments of Pharmaceutical Sciences, Chemistry, and Molecular Biology and Biochemistry, University of California, Irvine, 101 Theory, Suite 100, Irvine, CA, 92697-3958, USA
| |
Collapse
|
17
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA‐Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Xiao
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Chunmei Gu
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Yu Xiang
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| |
Collapse
|
18
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019; 58:14167-14172. [PMID: 31314942 DOI: 10.1002/anie.201908105] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 02/05/2023]
Abstract
RNA-cleaving DNAzymes are useful tools for intracellular metal-ion sensing and gene regulation. Incorporating stimuli-responsive modifications into these DNAzymes enables their activities to be spatiotemporally and chemically controlled for more precise applications. Despite the successful development of many caged DNAzymes for light-induced activation, DNAzymes that can be intracellularly activated by chemical inputs of biological importance, such as reactive oxygen species (ROS), are still scarce. ROS like hydrogen peroxide (H2 O2 ) and hypochlorite (HClO) are critical mediators of oxidative stress-related cell signaling and dysregulation including activation of immune system as well as progression of diseases and aging. Herein, we report ROS-activable DNAzymes by introducing phenylboronate and phosphorothioate modifications to the Zn2+ -dependent 8-17 DNAzyme. These ROS-activable DNAzymes were orthogonally activated by H2 O2 and HClO inside live human and mouse cells.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Shim G, Park J, Kim MG, Yang G, Lee Y, Oh YK. Noncovalent tethering of nucleic acid aptamer on DNA nanostructure for targeted photo/chemo/gene therapies. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102053. [PMID: 31344502 DOI: 10.1016/j.nano.2019.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022]
Abstract
Here, we report various therapeutic cargo-loadable DNA nanostructures that are shelled in polydopamine and noncovalently tethered with cancer cell-targeting DNA aptamers. Initial DNA nanostructure was formed by rolling-circle amplification and condensation with Mu peptides. This DNA nanostructure was loaded with an antisense oligonucleotide, a photosensitizer, or an anticancer chemotherapeutic drug. Each therapeutic agent-loaded DNA nanostructure was then shelled with polydopamine (PDA), and noncovalently decorated with a poly adenine-tailed nucleic acid aptamer (PA) specific for PTK7 receptor, resulting in PA-tethered and PDA-shelled DNA nanostructure (PA/PDN). PDA coating shell enabled photothermal therapy. In the cells overexpressing PTK7 receptor, photosensitizer-loaded PA/PDN showed greater photodynamic activity. Doxorubicin-loaded PA/PDN exerted higher anticancer activity than the other groups. Antisense oligonucleotide-loaded PA/PDN provided selective reduction of target proteins compared with other groups. Our results suggest that the PA-tethered and PDA-shelled DNA nanostructures could enable the specific receptor-targeted phototherapy, chemotherapy, and gene therapy against cancer cells.
Collapse
Affiliation(s)
- Gayong Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mi-Gyeong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Geon Yang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea..
| |
Collapse
|
20
|
An artificial DNAzyme RNA ligase shows a reaction mechanism resembling that of cellular polymerases. Nat Catal 2019. [DOI: 10.1038/s41929-019-0290-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Khachigian LM. Deoxyribozymes as Catalytic Nanotherapeutic Agents. Cancer Res 2019; 79:879-888. [DOI: 10.1158/0008-5472.can-18-2474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
22
|
Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y. Tetrahedral DNA Nanostructure-Delivered DNAzyme for Gene Silencing to Suppress Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6850-6857. [PMID: 30698411 DOI: 10.1021/acsami.8b22444] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
23
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
24
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
25
|
Wang Y, Ngor AK, Nikoomanzar A, Chaput JC. Evolution of a General RNA-Cleaving FANA Enzyme. Nat Commun 2018; 9:5067. [PMID: 30498223 PMCID: PMC6265334 DOI: 10.1038/s41467-018-07611-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/06/2018] [Indexed: 11/09/2022] Open
Abstract
The isolation of synthetic genetic polymers (XNAs) with catalytic activity demonstrates that catalysis is not limited to natural biopolymers, but it remains unknown whether such systems can achieve robust catalysis with Michaelis-Menten kinetics. Here, we describe an efficient RNA-cleaving 2'-fluoroarabino nucleic acid enzyme (FANAzyme) that functions with a rate enhancement of >106-fold over the uncatalyzed reaction and exhibits substrate saturation kinetics typical of most natural enzymes. The FANAzyme was generated by in vitro evolution using natural polymerases that were found to recognize FANA substrates with high fidelity. The enzyme comprises a small 25 nucleotide catalytic domain flanked by substrate-binding arms that can be engineered to recognize diverse RNA targets. Substrate cleavage occurs at a specific phosphodiester bond located between an unpaired guanine and a paired uracil in the substrate recognition arm. Our results expand the chemical space of nucleic acid enzymes to include nuclease-resistant scaffolds with strong catalytic activity.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA
| | - Arlene K Ngor
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA
| | - Ali Nikoomanzar
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA.,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697-3958, USA. .,Department of Chemistry, University of California, Irvine, CA, 92697-3958, USA. .,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3958, USA.
| |
Collapse
|
26
|
Cai H, Cho EA, Li Y, Sockler J, Parish CR, Chong BH, Edwards J, Dodds TJ, Ferguson PM, Wilmott JS, Scolyer RA, Halliday GM, Khachigian LM. Melanoma protective antitumor immunity activated by catalytic DNA. Oncogene 2018; 37:5115-5126. [DOI: 10.1038/s41388-018-0306-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
|
27
|
Braendli-Baiocco A, Festag M, Dumong Erichsen K, Persson R, Mihatsch MJ, Fisker N, Funk J, Mohr S, Constien R, Ploix C, Brady K, Berrera M, Altmann B, Lenz B, Albassam M, Schmitt G, Weiser T, Schuler F, Singer T, Tessier Y. From the Cover: The Minipig is a Suitable Non-Rodent Model in the Safety Assessment of Single Stranded Oligonucleotides. Toxicol Sci 2018; 157:112-128. [PMID: 28123102 PMCID: PMC5414856 DOI: 10.1093/toxsci/kfx025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Non-human primates (NHPs) are currently considered to be the non-rodent species of choice for the preclinical safety assessment of single-stranded oligonucleotide (SSO) drugs. We evaluated minipigs as a potential alternative to NHPs to test the safety of this class of compounds. Four different phosphorothioated locked nucleic acid-based SSOs (3 antisense and 1 anti-miR), all with known safety profiles, were administered to minipigs using similar study designs and read-outs as in earlier NHP studies with the same compounds. The studies included toxicokinetic investigations, in-life monitoring, clinical and anatomic pathology. In the minipig, we demonstrated target engagement by the SSOs where relevant, and a similar toxicokinetic behavior in plasma, kidney, and liver when compared with NHPs. Clinical tolerability was similar between minipig and NHPs. For the first time, we showed similar and dose-dependent effects on the coagulation and complement cascade after intravenous dosing similar to those observed in NHPs. Similar to NHPs, morphological changes were seen in proximal tubular epithelial cells of the kidney, Kupffer cells, hepatocytes, and lymph nodes. Minipigs appeared more sensitive to the high-dose kidney toxicity of most of the selected SSOs than NHPs. No new target organ or off-target toxicities were identified in the minipig. The minipig did not predict the clinical features of human injection site reactions better than the NHPs, but histopathological similarities were observed between minipigs and NHPs. We conclude that there is no impediment, as default, to the use of minipigs as the non-rodent species in SSO candidate non-clinical safety packages.
Collapse
Affiliation(s)
- Annamaria Braendli-Baiocco
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Matthias Festag
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kamille Dumong Erichsen
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Robert Persson
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | | | - Niels Fisker
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Juergen Funk
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Susanne Mohr
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rainer Constien
- Roche Pharmaceutical Research and Early Development, Bioanalytical Research and Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Penzberg, Germany
| | - Corinne Ploix
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kevin Brady
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marco Berrera
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bernd Altmann
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Barbara Lenz
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Mudher Albassam
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Georg Schmitt
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas Weiser
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Thomas Singer
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Yann Tessier
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| |
Collapse
|
28
|
Hu Q, Li H, Wang L, Gu H, Fan C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem Rev 2018; 119:6459-6506. [PMID: 29465222 DOI: 10.1021/acs.chemrev.7b00663] [Citation(s) in RCA: 636] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past decade, we have seen rapid advances in applying nanotechnology in biomedical areas including bioimaging, biodetection, and drug delivery. As an emerging field, DNA nanotechnology offers simple yet powerful design techniques for self-assembly of nanostructures with unique advantages and high potential in enhancing drug targeting and reducing drug toxicity. Various sequence programming and optimization approaches have been developed to design DNA nanostructures with precisely engineered, controllable size, shape, surface chemistry, and function. Potent anticancer drug molecules, including Doxorubicin and CpG oligonucleotides, have been successfully loaded on DNA nanostructures to increase their cell uptake efficiency. These advances have implicated the bright future of DNA nanotechnology-enabled nanomedicine. In this review, we begin with the origin of DNA nanotechnology, followed by summarizing state-of-the-art strategies for the construction of DNA nanostructures and drug payloads delivered by DNA nanovehicles. Further, we discuss the cellular fates of DNA nanostructures as well as challenges and opportunities for DNA nanostructure-based drug delivery.
Collapse
Affiliation(s)
- Qinqin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China.,Research & Development Center, Shandong Buchang Pharmaceutical Company, Limited, Heze 274000 , China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University , Shanghai 200032 , China.,Department of Systems Biology for Medicine , School of Basic Medical Sciences, Fudan University , Shanghai 200032 , China.,Shanghai Institute of Cardiovascular Diseases , Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.,School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
29
|
Sun X, Wei B, Liu S, Guo C, Wu N, Liu Q, Sun MZ. Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells with high lymph node metastasis potential preferentially via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) and E-cadherin. Biomed Pharmacother 2016; 84:645-654. [PMID: 27697636 DOI: 10.1016/j.biopha.2016.09.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/10/2016] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Annexin A5 (Anxa5) is associated with the progression of some cancers, while its role and regulation mechanism in tumor lymphatic metastasis is rarely reported. This study aims to investigate the influence of Anxa5 knockdown on the malignant behaviours of murine hepatocarcinoma Hca-F cell line with high lymph node metastatic (LNM) potential and the underlying regulation mechanism. METHODS RNA interfering was performed to silence Anxa5 in Hca-F. Monoclonal shRNA-Anxa5- Hca-F cells were obtained via G418 screening by limited dilution method. Quantitative real-time RT-PCR (qRT-PCR) and Western blotting (WB) were applied to measure Anxa5 expression levels. CCK-8, Boyden transwell-chamber and in situ LN adhesion assays were performed to explore the effects of Anxa5 on the proliferation, migration, invasion and adhesion capacities of Hca-F. WB and qRT-PCR were used to detect the level changes of key molecules in corresponding signal pathways. RESULTS We obtained two monoclonal shRNA-Anxa5-transfected Hca-F cell lines with stable knockdowns of Anxa5. Anxa5 knockdown resulted in significantly reduced proliferation, migration, invasion and in situ LN adhesion potentials of Hca-F in proportion to its knockdown extent. Anxa5 downregulation enhanced E-cadherin levels in Hca-F. Moreover, Anxa5 affected Hca-F behaviours specifically via ERK2/p-ERK2/c-Jun/p-c-Jun(Ser73) instead of p38MAPK/c-Jun, Jnk/c-Jun and AKT/c-Jun pathways. CONCLUSIONS Anxa5 mediates the in vitro malignant behaviours of murine hepatocarcinoma Hca-F cells via ERK2/c-Jun/p-c-Jun(Ser73) and ERK2/E-cadherin pathways. It is an important molecule in metastasis (especially LNM) and a potential therapeutic target for hepatocarcinoma.
Collapse
Affiliation(s)
- Xujuan Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Bin Wei
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Na Wu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Qinlong Liu
- Department of General Surgery, The 2nd Affiliated Hospital, Dalian Medical University, Dalian 116027, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
30
|
Malorni L, Giuliano M, Migliaccio I, Wang T, Creighton CJ, Lupien M, Fu X, Hilsenbeck SG, Healy N, De Angelis C, Mazumdar A, Trivedi MV, Massarweh S, Gutierrez C, De Placido S, Jeselsohn R, Brown M, Brown PH, Osborne CK, Schiff R. Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Mol Cancer Res 2016; 14:470-81. [PMID: 26965145 DOI: 10.1158/1541-7786.mcr-15-0423] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/20/2016] [Indexed: 01/02/2023]
Abstract
UNLABELLED The transcription factor AP-1 is downstream of growth factor (GF) receptors (GFRs) and stress-related kinases, both of which are implicated in breast cancer endocrine resistance. Previously, we have suggested that acquired endocrine resistance is associated with increased activity of AP-1 in an in vivo model. In this report, we provide direct evidence for the role of AP-1 in endocrine resistance. First, significant overlap was found between genes modulated in tamoxifen resistance and a gene signature associated with GF-induced estrogen receptor (ER) cistrome. Interestingly, these overlapping genes were enriched for key signaling components of GFRs and stress-related kinases and had AP-1 motifs in their promoters/enhancers. Second, to determine a more definitive role of AP-1 in endocrine resistance, AP-1 was inhibited using an inducible dominant-negative (DN) cJun expressed in MCF7 breast cancer cells in vitro and in vivo AP-1 blockade enhanced the antiproliferative effect of endocrine treatments in vitro, accelerated xenograft tumor response to tamoxifen and estrogen deprivation in vivo, promoted complete regression of tumors, and delayed the onset of tamoxifen resistance. Induction of DN-cJun after the development of tamoxifen resistance resulted in dramatic tumor shrinkage, accompanied by reduced proliferation and increased apoptosis. These data suggest that AP-1 is a key determinant of endocrine resistance by mediating a global shift in the ER transcriptional program. IMPLICATIONS AP-1 represents a viable therapeutic target to overcome endocrine resistance. Mol Cancer Res; 14(5); 470-81. ©2016 AACR.
Collapse
Affiliation(s)
- Luca Malorni
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Sandro Pitigliani Medical Oncology Unit and Translational Research Unit, Oncology Department, Hospital of Prato, Prato, Italy.
| | - Mario Giuliano
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Naples, Italy
| | - Ilenia Migliaccio
- Sandro Pitigliani Medical Oncology Unit and Translational Research Unit, Oncology Department, Hospital of Prato, Prato, Italy
| | - Tao Wang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Chad J Creighton
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mathieu Lupien
- Ontario Cancer Institute, Princess Margaret Cancer Center-University Health Network, Ontario Institute for Cancer Research and the Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoyong Fu
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nuala Healy
- Department of Radiology, St. James's Hospital, Dublin, Ireland
| | - Carmine De Angelis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Naples, Italy
| | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Meghana V Trivedi
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, Texas
| | - Suleiman Massarweh
- Department of Medicine and Stanford Cancer Institute, Stanford University, Stanford, California
| | - Carolina Gutierrez
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Naples, Italy
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Powel H Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C Kent Osborne
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Rachel Schiff
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas. Department of Medicine, Baylor College of Medicine, Houston, Texas. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
31
|
Hollenstein M. DNA Catalysis: The Chemical Repertoire of DNAzymes. Molecules 2015; 20:20777-804. [PMID: 26610449 PMCID: PMC6332124 DOI: 10.3390/molecules201119730] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Deoxyribozymes or DNAzymes are single-stranded catalytic DNA molecules that are obtained by combinatorial in vitro selection methods. Initially conceived to function as gene silencing agents, the scope of DNAzymes has rapidly expanded into diverse fields, including biosensing, diagnostics, logic gate operations, and the development of novel synthetic and biological tools. In this review, an overview of all the different chemical reactions catalyzed by DNAzymes is given with an emphasis on RNA cleavage and the use of non-nucleosidic substrates. The use of modified nucleoside triphosphates (dN*TPs) to expand the chemical space to be explored in selection experiments and ultimately to generate DNAzymes with an expanded chemical repertoire is also highlighted.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
32
|
Abstract
Gene-silencing strategies based on catalytic nucleic acids have been rapidly developed in the past decades. Ribozymes, antisense oligonucleotides and RNA interference have been actively pursued for years due to their potential application in gene inactivation. Pioneered by Joyce et al., a new class of catalytic nucleic acid composed of deoxyribonucleotides has emerged via an in vitro selection system. The therapeutic potential of these RNA-cleaving DNAzymes have been shown both in vitro and in vivo. Although they rival the activity and stability of synthetic ribozymes, they are limited by inefficient delivery to the intracellular targets. Recent successes in clinical testing of the DNAzymes in cancer patients have revitalized the potential clinical utility of DNAzymes.
Collapse
|
33
|
Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials 2015; 62:155-63. [DOI: 10.1016/j.biomaterials.2015.04.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/15/2015] [Accepted: 04/21/2015] [Indexed: 01/09/2023]
|
34
|
Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, Xu S, Xiao L, Lu J, Luo X, Tang M, Bode AM, Dong Z, Sun L, Cao Y. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget 2015; 6:5804-5817. [PMID: 25714020 PMCID: PMC4467403 DOI: 10.18632/oncotarget.3331] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/03/2015] [Indexed: 02/05/2023] Open
Abstract
LMP1, which is encoded by the Epstein-Barr virus, is proposed to be one of the major oncogenic factors involved in nasopharyngeal carcinoma (NPC). Previous studies demonstrated that down-regulation of LMP1 by LMP1-targeted DNAzyme (DZ1) increases the radiosensitivity of NPC. However, the mechanism by which DZ1 contributes to this radiosensitivity remains unclear. In this study, we determined whether a DZ1 blockade of LMP1 expression has an overall positive effect on the radiotherapy of NPCs by repressing HIF-1/VEGF activity and to investigate the mechanisms underlying LMP1-induced HIF-1 activation in NPC cells. The results showed that DZ1 inhibited the microtubule-forming ability of HUVECs co-cultured with NPC cells, which occurs with the down-regulation of VEGF expression and secretion. Moreover, LMP1 increases phosphorylated JNKs/c-Jun signaling, which is involved in the regulation of HIF-1/VEGF activity. After silencing LMP1 and decreasing phosphorylation of JNKs, NPC cells exhibited an enhanced radiosensitivity. Furthermore, in vivo experiments revealed a significant inhibition of tumor growth and a marked reduction of the Ktrans parameter, which reflects the condition of tumor micro-vascular permeability. Taken together, our data suggested that VEGF expression is increased by LMP1 through the JNKs/c-Jun signaling pathway and indicated that DZ1 enhances the radiosensitivity of NPC cells by inhibiting HIF-1/VEGF activity.
Collapse
Affiliation(s)
- Lifang Yang
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Liyu Liu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhijie Xu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Dong
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - San Xu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Lanbo Xiao
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingchen Lu
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangjian Luo
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Min Tang
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ya Cao
- Cancer Research Institute, Key Laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
35
|
Fokina AA, Stetsenko DA, François JC. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opin Biol Ther 2015; 15:689-711. [PMID: 25772532 DOI: 10.1517/14712598.2015.1025048] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Ongoing studies on the inhibition of gene expression at the mRNA level have identified several types of specific inhibitors such as antisense oligonucleotides, small interfering RNA, ribozymes and DNAzymes (Dz). After its discovery in 1997, the 10-23 Dz (which can cleave RNA efficiently and site-specifically, has flexible design, is independent from cell mechanisms, does not require expensive chemical modifications for effective use in vivo) has been employed to downregulate a range of therapeutically important genes. Recently, 10-23 Dzs have taken their first steps into clinical trials. AREAS COVERED This review focuses predominantly on Dz applications as potential antiviral, antibacterial, anti-cancer and anti-inflammatory agents as well as for the treatment of cardiovascular disease and diseases of CNS, summarizing results of their clinical trials up to the present day. EXPERT OPINION In comparison with antisense oligonucleotides and small interfering RNAs, Dzs do not usually show off-target effects due to their high specificity and lack of immunogenicity in vivo. As more results of clinical trials carried out so far are gradually becoming available, Dzs may turn out to be safe and well-tolerated therapeutics in humans. Therefore, there is a good chance that we may witness a deoxyribozyme drug reaching the clinic in the near future.
Collapse
Affiliation(s)
- Alesya A Fokina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , 8 Lavrentiev Avenue, Novosibirsk 630090 , Russia
| | | | | |
Collapse
|
36
|
Development of a protective dermal drug delivery system for therapeutic DNAzymes. Int J Pharm 2015; 479:150-8. [DOI: 10.1016/j.ijpharm.2014.12.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022]
|
37
|
Breaker RR, Joyce GF. The expanding view of RNA and DNA function. CHEMISTRY & BIOLOGY 2014; 21:1059-65. [PMID: 25237854 PMCID: PMC4171699 DOI: 10.1016/j.chembiol.2014.07.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 11/28/2022]
Abstract
RNA and DNA are simple linear polymers consisting of only four major types of subunits, and yet these molecules carry out a remarkable diversity of functions in cells and in the laboratory. Each newly discovered function of natural or engineered nucleic acids enforces the view that prior assessments of nucleic acid function were far too narrow and that many more exciting findings are yet to come. This Perspective highlights just a few of the numerous discoveries over the past 20 years pertaining to nucleic acid function, focusing on those that have been of particular interest to chemical biologists. History suggests that there will continue to be many opportunities to engage chemical biologists in the discovery, creation, and manipulation of nucleic acid function in the years to come.
Collapse
Affiliation(s)
- Ronald R Breaker
- Department of Molecular, Cellular and Developmental Biology, and Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520, USA.
| | - Gerald F Joyce
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Therapeutic potential of siRNA and DNAzymes in cancer. Tumour Biol 2014; 35:9505-21. [PMID: 25149153 DOI: 10.1007/s13277-014-2477-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/07/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is characterized by uncontrolled cell growth, invasion, and metastasis and possess threat to humans worldwide. The scientific community is facing numerous challenges despite several efforts to cure cancer. Though a number of studies were done earlier, the molecular mechanism of cancer progression is not completely understood. Currently available treatments like surgery resection, adjuvant chemotherapy, and radiotherapy are not completely effective in curing all the cancers. Recent advances in the antisense technology provide a powerful tool to investigate various cancer pathways and target them. Small interfering RNAs (siRNAs) could be effective in downregulating the cancer-associated genes, but their in vivo delivery is the main obstacle. DNA enzymes (DNAzymes) have great potential in the treatment of cancer due to high selectivity and significant catalytic efficiency. In this review, we are focusing on antisense molecules such as siRNA and DNAzymes in cancer therapeutics development. This review also describes the challenges and approaches to overcome obstacles involved in using siRNA and DNAzymes in the treatment of cancers.
Collapse
|
39
|
Overcoming EGFR T790M-based Tyrosine Kinase Inhibitor Resistance with an Allele-specific DNAzyme. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e150. [PMID: 24594844 PMCID: PMC3982196 DOI: 10.1038/mtna.2014.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/03/2014] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the main therapeutic agents used to treat non–small-cell lung cancer patients harboring EGFR-activating mutations. However, most of these patients will eventually develop resistance, 50% of which are due to a secondary mutation at T790M in the EGFR. In this paper, we describe the development of an allele-specific DNAzyme, DzT, that can specifically silence EGFR T790M mutant messenger RNA while leaving wild-type EGFR intact. Allele-specific silencing of EGFR T790M expression and downstream signaling by DzT triggered apoptosis in non–small-cell lung cancer cells harboring this mutant. Adding a cholesterol-triethylene glycol group on the 3′-end of DzT (cDzT) improved drug efficacy, increasing inhibitory effect on cell viability from 46 to 79% in T790M/L858R-harboring H1975TM/LR non–small-cell lung cancer cells, without loss of allele specificity. Combined treatment with cDzT and BIBW-2992, a second-generation EGFR-tyrosine kinase inhibitor, synergistically inhibited EGFR downstream signaling and suppressed the growth of xenograft tumors derived from H1975TM/LR cells. Collectively, these results indicate that the allele-specific DNAzyme, DzT, may provide an alternative treatment for non–small-cell lung cancer that is capable of overcoming EGFR T790M mutant-based tyrosine kinase inhibitor resistance.
Collapse
|
40
|
Yang L, Xu Z, Liu L, Luo X, Lu J, Sun L, Cao Y. Targeting EBV-LMP1 DNAzyme enhances radiosensitivity of nasopharyngeal carcinoma cells by inhibiting telomerase activity. Cancer Biol Ther 2014; 15:61-68. [PMID: 24145206 PMCID: PMC3938524 DOI: 10.4161/cbt.26606] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 02/08/2023] Open
Abstract
The latent membrane protein 1 (LMP1), which is encoded by the Epstein-Barr virus (EBV), has been suggested to be one of the major oncogenic factors in nasopharyngeal carcinoma (NPC). In previous studies, we experimentally demonstrated that downregulation of LMP1 expression by targeting EBV-LMP1 DNAzyme (Dz1) could increase the radiosensitivity of NPC. However, how Dz1 contributes to the radiosensitivity in NPC is still not clear. In the present study, we confirmed that Dz1 decreases LMP1 expression and downregulates the expression of the catalytic subunit of telomerase (hTERT), both at the protein and mRNA levels (P<0.01), and therefore, consequently inhibits telomerase activity (P<0.05) in LMP1-positive NPC cells. We also observed that LMP1 mediated Akt phosphorylation is involved in the regulation of hTERT expression and phosphorylation. After LMP1 and hTERT expression was silenced by Dz1 and hTERT-targeted siRNA, respectively, the radiosensitivity increased in CNE1-LMP1 cells (P<0.05). The inhibition was more significant after Dz1 treatment was combined with siRNA (P<0.01). We concluded that hTERT expression and phosphorylation could be regulated by LMP1 through the Akt pathway, and Dz1 enhances radiosensitivity of LMP1-positive NPC cells by inhibiting telomerase activity.
Collapse
Affiliation(s)
- Lifang Yang
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha, PR China
- Center for Molecular Medicine; Xiangya Hospital; Central South University; Changsha, PR China
| | - Zhijie Xu
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha, PR China
| | - Liyu Liu
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha, PR China
| | - Xiangjian Luo
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha, PR China
| | - Jingchen Lu
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha, PR China
| | - Lunquan Sun
- Center for Molecular Medicine; Xiangya Hospital; Central South University; Changsha, PR China
| | - Ya Cao
- Cancer Research Institute; Xiangya School of Medicine; Central South University; Changsha, PR China
| |
Collapse
|
41
|
Shen L, Zhou Q, Wang Y, Liao W, Chen Y, Xu Z, Yang L, Sun LQ. Antiangiogenic and antitumoral effects mediated by a vascular endothelial growth factor receptor 1 (VEGFR-1)-targeted DNAzyme. Mol Med 2013; 19:377-386. [PMID: 24306423 PMCID: PMC3883960 DOI: 10.2119/molmed.2013.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/29/2013] [Indexed: 02/05/2023] Open
Abstract
Antiangiogenesis is a promising antitumor strategy that inhibits tumor vascular formation to suppress tumor growth. DNAzymes are synthetic single-strand deoxyribonucleic acid (DNA) molecules that can cleave ribonucleic acids (RNAs). Here, we conducted a comprehensive in vitro selection of active DNAzymes for their activity to cleave the vascular endothelial growth factor receptor (VEGFR-1) mRNA and screened for their biological activity in a matrigel tube-formation assay. Among the selected DNAzymes, DT18 was defined as a lead molecule that was further investigated in several model systems. In a rat corneal vascularization model, DT18 demonstrated significant and specific antiangiogenic activity, as evidenced by the reduced area and vessel number in VEGF-induced corneal angiogenesis. In a mouse melanoma model, DT18 was shown to inhibit B16 tumor growth, whereas it did not affect B16 cell proliferation. We further assessed the DT18 effect in mice with established human nasopharyngeal carcinoma (NPC). A significant inhibition of tumor growth was observed, which accompanied downregulation of VEGFR-1 expression in NPC tumor tissues. To evaluate DT18 effect on vasculature, we performed dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) on the human NPC xenograft mice treated with DT18 and showed a reduction of the parameter of K(trans) (volume constant for transfer of contrast agent), which reflects the condition of tumor microvascular permeability. When examining the safety and tolerability of DT18, intravenous administration of Dz18 to healthy mice caused no substantial toxicities, as shown by parameters such as body weight, liver/kidney function, and histological and biochemical analyses. Taken together, our data suggest that the anti-VEGFR-1 DNAzyme may be used as a therapeutic agent for the treatment of cancer, such as NPC.
Collapse
Affiliation(s)
- Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Chen
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Cancer Research Institute, Central South University, Hunan, China
| | - Lifang Yang
- Cancer Research Institute, Central South University, Hunan, China
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Li Y, Bhindi R, Deng ZJ, Morton SW, Hammond PT, Khachigian LM. Inhibition of vein graft stenosis with a c-jun targeting DNAzyme in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Int J Cardiol 2013; 168:3659-64. [PMID: 23886527 PMCID: PMC3951723 DOI: 10.1016/j.ijcard.2013.05.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/02/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Coronary artery bypass grafting (CABG) is among the most commonly performed heart surgical procedures. Saphenous vein graft failure due to stenosis impedes the longer-term success of CABG. A key cellular event in the process of vein graft stenosis is smooth muscle cell hyperplasia. In this study, we evaluated the effect of a DNAzyme (Dz13) targeting the transcription factor c-Jun in a rabbit model of vein graft stenosis in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Dz13 in DOTAP/DOPE has undergone preclinical toxicological testing, and a Phase I clinical trial we recently conducted in basal cell carcinoma cancer patients demonstrates that it is safe and well tolerated after local administration. METHODS Effects of Dz13 in a formulation containing DOTAP/DOPE on smooth muscle cell (SMC) growth and c-Jun expression were assessed. Dz13 transfection was determined by cellular uptake of carboxyfluorescein-labeled Dz13. Autologous jugular vein to carotid artery transplantation was performed in New Zealand White rabbits to investigate the effect of the Dz13 in DOTAP/DOPE formulation on intimal hyperplasia. RESULTS Dz13/DOTAP/DOPE reduced SMC proliferation and c-Jun protein expression in vitro compared with an impotent form of Dz13 bearing a point mutation in its catalytic domain (Dz13.G>C). The Dz13(500 μg)/DOTAP/DOPE formed lipoplexes that were colloidally stable for up to 1h on ice (0°C) and 30 min at 37°C, allowing sufficient uptake by the veins. Dz13 (500 μg) inhibited neointima formation 28 d after end-to-side transplantation. CONCLUSIONS This formulation applied to veins prior to transplantation may potentially be useful in efforts to reduce graft failure.
Collapse
Affiliation(s)
- Yue Li
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Hallett MA, Dalal P, Sweatman TW, Pourmotabbed T. The distribution, clearance, and safety of an anti-MMP-9 DNAzyme in normal and MMTV-PyMT transgenic mice. Nucleic Acid Ther 2013; 23:379-88. [PMID: 24083396 DOI: 10.1089/nat.2012.0348] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Catalytic oligonucleotides, known as DNAzymes, are a new class of nucleic acid-based gene therapy that have recently been used in preclinical animal studies to treat various cancers. In this study the systemic distribution, pharmacokinetics, and safety of intravenously administered anti-MMP (matrix metalloproteinase)-9 DNAzyme (AM9D) were determined in healthy FVB and in MMTV-polyoma virus middle T (PyMT) transgenic mice bearing mammary tumors. MMP-9 is known to be involved in tumor cell development, angiogenesis, invasion, and metastasis. Sulfur-35 ((35)S) labeled ([(35)S]-AM9D) administered intravenously, without the use of carrier molecules, to healthy and mammary tumor bearing MMTV-PyMT transgenic mice distributed to all major organs. The order of percentages of [(35)S]-AM9D accumulation in different organs of healthy and MMTV-PyMT mice were blood>liver>kidney>lung>spleen>heart and mammary tumor>blood≈liver>kidney>spleen>lung>heart, respectively. The amount of AM9D accumulated in mammary tumors 2 hours post injection was 0.6% and 0.2% higher than in either blood or liver, respectively, and its rate of initial clearance from mammary tissue was at least 50% slower than the other organs. Approximately 43% of the delivered dosage of [(35)S]-AM9D was cleared from the system via feces and urine over a period of 72 hours. No evidence of acute or chronic cytotoxicity, local or widespread, associated with AM9D treatment (up to 75 mg AM9D /kg of body weight) was observed in the organs examined. These data suggest that DNAzyme in general and AM9D in particular can be used systemically as a therapeutic agent to treat patients with breast cancer or other metastatic and surgically inaccessible tumors.
Collapse
Affiliation(s)
- Miranda A Hallett
- 1 Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis Tennessee
| | | | | | | |
Collapse
|
44
|
Cho EA, Moloney FJ, Cai H, Au-Yeung A, China C, Scolyer RA, Yosufi B, Raftery MJ, Deng JZ, Morton SW, Hammond PT, Arkenau HT, Damian DL, Francis DJ, Chesterman CN, Barnetson RS, Halliday GM, Khachigian LM. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: a phase 1 first-in-human trial (DISCOVER). Lancet 2013; 381:1835-43. [PMID: 23660123 PMCID: PMC3951714 DOI: 10.1016/s0140-6736(12)62166-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The nuclear transcription factor c-Jun is preferentially expressed in basal-cell carcinoma. Dz13 is a deoxyribozyme that targets JUN messenger RNA and has inhibited the growth of a range of tumours in mice. We did a phase 1 study to assess safety and tolerability in human beings. METHODS Adults with nodular basal-cell carcinoma were recruited from Royal Prince Alfred Hospital, Sydney, Australia, between September, 2010, and October, 2011. Patients were assigned to receive one intratumoral injected dose of 10, 30, or 100 μg Dz13, in a 50 μL volume of lipid carrier, and were assessed for adverse effects in the first 24 h then at 7, 14, and 28 days after injection. Treated tumours were surgically excised 14 days after injection and compared with the baseline biopsy samples for expression of c-Jun and tumorigenesis markers. FINDINGS Nine patients were recruited, of whom three received each dose of Dz13. All patients completed the study with no drug-related serious adverse events. No systemic Dz13 exposure was detected. c-Jun expression was reduced in the excised tumours of all nine (100%) patients, compared with baseline, and histological tumour depth had decreased in five (56%) of nine. Proportions of cells positive for caspases 3, 8, and 9 and P53 were increased, but those of cells positive for Bcl-2 and MMP-9 were decreased. Infiltration by inflammatory and immune cells was stimulated. INTERPRETATION Dz13 was safe and well tolerated after single intratumoral injections at all doses. FUNDING Cancer Institute NSW, Cancer Council Australia, and National Health and Medical Research Council.
Collapse
Affiliation(s)
- Eun-Ae Cho
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Fergal J. Moloney
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Hong Cai
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Annie Au-Yeung
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Carlos China
- Woolcock Institute of Medical Research, Sydney NSW, Australia
| | - Richard A. Scolyer
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney NSW, Australia
| | | | - Mark J. Raftery
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW, Australia
| | - Jason Z. Deng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Stephen W. Morton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | | | - Diona L. Damian
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | | | - Colin N. Chesterman
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Ross St.C Barnetson
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Gary M. Halliday
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
45
|
Affiliation(s)
- Gabriele Grassi
- Department of Life Sciences, University of Trieste, Trieste 34149, Italy.
| | | |
Collapse
|
46
|
Spiegelzymes: sequence specific hydrolysis of L-RNA with mirror image hammerhead ribozymes and DNAzymes. PLoS One 2013; 8:e54741. [PMID: 23382952 PMCID: PMC3559883 DOI: 10.1371/journal.pone.0054741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
In this manuscript we describe for the first time mirror image catalytic nucleic acids (Spiegelzymes), which hydrolyze sequence specifically L-ribonucleic acid molecules. The mirror image nucleic acid ribozymes designed are based upon the known hammerhead ribozyme and DNAzyme structures that contain L-ribose or L-deoxyribose instead of the naturally occurring D-ribose or D-deoxyribose, respectively. Both Spiegelzymes show similar hydrolytic activities with the same L-RNA target molecules and they also exhibit extra ordinary stabilities when tested with three different human sera. In this respect they are very similar to Spiegelmers (mirror image aptamers), which we had previously developed and for which it has been shown that they are non-toxic and non-immunogenic. Since we are also able to demonstrate that the hammerhead and DNAzyme Spiegelzymes can also hydrolyze mirror image oligonucleotide sequences, like they occur in Spiegelmers, in vivo, it seems reasonable to assume that Spiegelzymes may in principle be used as an antidote against Spiegelmers. Since the Spiegelzymes contain the same building blocks as the Spiegelmers, it can be expected that they will have similar favorable biological characteristics concerning toxicity and immunogenety. In trying to understand the mechanism of action of the Spiegelzymes described in this study, we have initiated for the first time a model building system with L-nucleic acids. The models for L-hammerhead ribozyme and L-DNAzyme interaction with the same L-RNA target will be presented.
Collapse
|
47
|
Burgess DJ. Antitumour potential of catalytic DNA. Nat Rev Drug Discov 2012; 11:602. [DOI: 10.1038/nrd3807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
|
49
|
Khachigian LM, Cai H, Moloney FJ, Parish CR, Chong BH, Stocker R, Barnetson RSC, Halliday GM. Destroying c-jun Messenger: new insights into biological mechanisms of DNAzyme function. Oncotarget 2012; 3:594-5. [PMID: 22805148 PMCID: PMC3442292 DOI: 10.18632/oncotarget.549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|