1
|
Ezzedine K, Tannous R, Pearson TF, Harris JE. Recent clinical and mechanistic insights into vitiligo offer new treatment options for cell-specific autoimmunity. J Clin Invest 2025; 135:e185785. [PMID: 39817457 PMCID: PMC11735104 DOI: 10.1172/jci185785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials. Despite these impressive advances, many questions remain, which will be answered through integration of additional basic, translational, and clinical research studies. This vitiligo revolution has led to great excitement for individuals with vitiligo, those who know them, and the dermatologists who care for their patients. But just as importantly, these advances have great potential to shed light on autoimmune diseases that are more difficult to study, possibly leading to treatment advances that could not be achieved otherwise.
Collapse
Affiliation(s)
- Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Université Paris-Est Créteil Val de Marne-Université Paris, Paris, France
- EpidermE, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Rim Tannous
- Department of Dermatology, Hôpital Henri Mondor, Université Paris-Est Créteil Val de Marne-Université Paris, Paris, France
| | - Todd F. Pearson
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - John E. Harris
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Albelowi LM, Alhazmi RM, Ibrahim S. The Pathogenesis and Management of Vitiligo. Cureus 2024; 16:e75859. [PMID: 39822479 PMCID: PMC11736671 DOI: 10.7759/cureus.75859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Vitiligo is a common autoimmune disease that progressively destroys melanocytes in the skin, resulting in the appearance of patchy depigmentation. The aim of this review is to increase awareness towards vitiligo by providing insight on the pathogenesis and management options. Vitiligo is an acquired pigmentary skin disease, which can appear with one or a few macules. Based on the distribution pattern, vitiligo is classified into three different types: segmental, non-segmental, and unclassified. Oxidative stress, autoimmunity, and genetic factors are the main theories contributing to the cause of vitiligo, although the exact cause remains unknown. Various management methods depend on the type, severity, and progression of the disease. This dermatological condition is prevalent globally and shows a slightly higher incidence in females. Multiple hypotheses explain the complex mechanisms of vitiligo, with current research focusing on the roles of oxidative stress, genetic predisposition, and autoimmune responses in its development. Effective treatments include topical corticosteroids and phototherapy.
Collapse
Affiliation(s)
| | - Rema M Alhazmi
- Medicine, Taibah University, Al-Madinah al-Munawarah, SAU
| | - Sara Ibrahim
- Physiology, Taibah University, Al-Madinah al-Munawarah, SAU
| |
Collapse
|
3
|
Touni AA, Sohn R, Cosgrove C, Shivde RS, Dellacecca ER, Abdel-Aziz RTA, Cedercreutz K, Green SJ, Abdel-Wahab H, Le Poole IC. Topical antibiotics limit depigmentation in a mouse model of vitiligo. Pigment Cell Melanoma Res 2024; 37:583-596. [PMID: 38439216 DOI: 10.1111/pcmr.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Oral neomycin administration impacts the gut microbiome and delays vitiligo development in mice, and topical antibiotics may likewise allow the microbiome to preserve skin health and delay depigmentation. Here, we examined the effects of 6-week topical antibiotic treatment on vitiligo-prone pmel-1 mice. Bacitracin, Neosporin, or Vaseline were applied to one denuded flank, while the contralateral flank was treated with Vaseline in all mice. Ventral depigmentation was quantified weekly. We found that topical Neosporin treatment significantly reduced depigmentation and exhibited effects beyond the treated area, while Bacitracin ointment had no effect. Stool samples collected from four representative mice/group during treatment revealed that Neosporin treatment aligned with reduced abundance of the Alistipes genus in the gut, while relevant changes to the skin microbiome at end point were less apparent. Either antibiotic treatment led to reduced expression of MR1, potentially limiting mucosal-associated invariant T-cell activation, while Neosporin-treated skin selectively revealed significantly reduced CD8+ T-cell abundance. The latter finding aligned with reduced expression of multiple inflammatory markers and markedly increased regulatory T-cell density. Our studies on favorable skin and oral antibiotic treatment share the neomycin compound, and in either case, microbial changes were most apparent in stool samples. Taken together, neomycin-containing antibiotic applications can mediate skin Treg infiltration to limit vitiligo development. Our study highlights the therapeutic potential of short-term antibiotic applications to limit depigmentation vitiligo.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rachel Sohn
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rohan S Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia R Dellacecca
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Kettil Cedercreutz
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stefan J Green
- Department of Internal Medicine and Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
4
|
Mukhatayev Z, Le Poole IC. Vitiligo: advances in pathophysiology research and treatment development. Trends Mol Med 2024; 30:844-862. [PMID: 38705825 DOI: 10.1016/j.molmed.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The autoimmune condition vitiligo, characterized by skin depigmentation, presents challenges for effective treatment design, with Janus kinase (JAK) inhibitors and other repurposed drugs offering a promising strategy for symptom management. This review explores advantages and shortcomings of current therapies, while presenting the urgent need for further innovative approaches. We emphasize the growing understanding of autoimmune involvement in vitiligo, highlighting several novel treatment avenues including relieving melanocyte stress, preventing dendritic cell activation, halting T cell migration, and suppressing inflammation and autoimmunity. Integrating psychodrama therapy to remediate stress alongside medical interventions marks a holistic approach to enhance patient well-being. The molecular underpinnings of vitiligo care are covered, emphasizing exciting advances revolutionizing vitiligo treatment and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Kądziela M, Kutwin M, Karp P, Woźniacka A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J Clin Med 2024; 13:4919. [PMID: 39201060 PMCID: PMC11355229 DOI: 10.3390/jcm13164919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Vitiligo is a persistent autoimmune disease characterized by progressive depigmentation of the skin caused by the selective destruction of melanocytes. Although its etiopathogenesis remains unclear, multiple factors are involved in the development of this disease, from genetic and metabolic factors to cellular oxidative stress, melanocyte adhesion defects, and innate and adaptive immunity. This review presents a comprehensive summary of the existing knowledge on the role of different cellular mechanisms, including cytokines and chemokines interactions, in the pathogenesis of vitiligo. Although there is no definitive cure for vitiligo, notable progress has been made, and several treatments have shown favorable results. A thorough understanding of the basis of the disease uncovers promising drug targets for future research, providing clinical researchers with valuable insights for developing improved treatment options.
Collapse
Affiliation(s)
| | | | | | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland; (M.K.); (M.K.); (P.K.)
| |
Collapse
|
6
|
Wu Y, Wang X, Zhang J, Du S, Wang Z, Li J, Zhang W, Xiang J, Li R, Liu J, Bi X. Capsaicin combined with stem cells improved mitochondrial dysfunction in PIG3V cells, an immortalized human vitiligo melanocyte cell line, by inhibiting the HSP70/TLR4/mTOR/FAK signaling axis. Mol Biol Rep 2024; 51:650. [PMID: 38734811 DOI: 10.1007/s11033-024-09592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Vitiligo is a common autoimmune skin disease. Capsaicin has been found to exert a positive effect on vitiligo treatment, and mesenchymal stem cells (MSCs) are also confirmed to be an ideal cell type. This study aimed to explore the influence of capsaicin combined with stem cells on the treatment of vitiligo and to confirm the molecular mechanism of capsaicin combined with stem cells in treating vitiligo. METHODS AND RESULTS PIG3V cell proliferation and apoptosis were detected using CCK-8 and TUNEL assays, MitoSOX Red fluorescence staining was used to measure the mitochondrial ROS level, and JC-1 staining was used to detect the mitochondrial membrane potential. The expression of related genes and proteins was detected using RT‒qPCR and Western blotting. Coimmunoprecipitation was used to analyze the protein interactions between HSP70 and TLR4 or between TLR4 and mTOR. The results showed higher expression of HSP70 in PIG3V cells than in PIG1 cells. The overexpression of HSP70 reduced the proliferation of PIG3V cells, promoted apoptosis, and aggravated mitochondrial dysfunction and autophagy abnormalities. The expression of HSP70 could be inhibited by capsaicin combined with MSCs, which increased the levels of Tyr, Tyrp1 and DCT, promoted the proliferation of PIG3V cells, inhibited apoptosis, activated autophagy, and improved mitochondrial dysfunction. In addition, capsaicin combined with MSCs regulated the expression of TLR4 through HSP70 and subsequently affected the mTOR/FAK signaling pathway CONCLUSIONS: Capsaicin combined with MSCs inhibits TLR4 through HSP70, and the mTOR/FAK signaling pathway is inhibited to alleviate mitochondrial dysfunction and autophagy abnormalities in PIG3V cells.
Collapse
Affiliation(s)
- Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jiayu Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Sha Du
- Department of Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Zhiqiong Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jinrong Li
- Department of Dermatology, Traditional Chinese Medicine Hospital of Jinggu County, Pu'er, Yunnan, 666400, China
| | - Wenhe Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jie Xiang
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Renfu Li
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Jing Liu
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China
| | - Xin Bi
- Department of Dermatology, The First People's Hospital of Yunnan Province, No. 157 Jinbi Road, Kunming, Yunnan, 650032, China.
| |
Collapse
|
7
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences. Int J Mol Sci 2024; 25:4409. [PMID: 38673994 PMCID: PMC11049978 DOI: 10.3390/ijms25084409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA;
| |
Collapse
|
8
|
Renert-Yuval Y, Ezzedine K, Grimes P, Rosmarin D, Eichenfield LF, Castelo-Soccio L, Huang V, Desai SR, Walsh S, Silverberg JI, Paller AS, Rodrigues M, Weingarten M, Narla S, Gardner J, Siegel M, Ibad S, Silverberg NB. Expert Recommendations on Use of Topical Therapeutics for Vitiligo in Pediatric, Adolescent, and Young Adult Patients. JAMA Dermatol 2024; 160:453-461. [PMID: 38477910 DOI: 10.1001/jamadermatol.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Importance Evidence-based recommendations for the treatment of vitiligo in pediatric, adolescent, and young adult patients in the US are needed. Objective To develop evidence- and consensus-based expert recommendations on the diagnosis and treatment of vitiligo in young patients. Evidence Review A process was developed to produce consensus recommendations addressing questions regarding pediatric vitiligo. A librarian-conducted literature review was performed using articles that met the inclusion criteria: published in English, containing primary data (including meta-analysis) and pediatric-specific data, and analysis of 6 or more patients. Included articles were graded by the Strength of Recommendation Taxonomy criteria and Oxford Centre for Evidence-based Medicine's Levels of Evidence and Grades of Recommendation. Research questions were reviewed on May 9, 2022, through a video conference. One month after the conference, participants participated in an online survey documenting their level of agreement with the generated statements, using a 5-point Likert scale. Findings Articles on topical corticosteroids and/or topical calcineurin inhibitors (n = 50), topical Janus kinase inhibitors (n = 5), pseudocatalase (n = 2), and microdermabrasion (n = 2) met inclusion criteria. Forty-two recommendations were made on the diagnosis of vitiligo and optimal topical therapeutics, with 33 recommendations obtaining a 70% or greater composite agreement and strong agreement. Topical calcineurin inhibitors twice daily, topical corticosteroids with time limitation due to atrophy risk, and topical ruxolitinib, 1.5%, cream-used off-label for patients younger than 12 years and limited to nonsegmental vitiligo-were identified as evidence-based first-line therapies in the management of pediatric and adolescent patients, with specific guidance on age-based data, minimum therapeutic trial of 6 months or greater, prolonged therapy to prevent recurrence, and the positive benefit of coordinated use of UV therapeutic sources. Conclusions and Relevance Evidence supports the use of topical calcineurin inhibitors, topical corticosteroids, and topical Janus kinase inhibitors as effective therapeutics for vitiligo in pediatric, adolescent, and young adult patients, with specific decisions on choice of agent based on factors such as site location, body surface area, and age.
Collapse
Affiliation(s)
- Yael Renert-Yuval
- Department of Dermatology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
- Pediatric Dermatology Unit, Schneider Children's Medical Center of Israel, Petah Tikva, Israel, and Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khaled Ezzedine
- Hôpital Henri Mondor, Department of Dermatology and Université Paris Est Créteil, Epidemiology in Dermatology and Evaluation of Therapeutics, Créteil, France
| | - Pearl Grimes
- Departments of Dermatology, University of California, Los Angeles
| | - David Rosmarin
- Department of Dermatology, Indiana University School of Medicine, Indianapolis
| | - Lawrence F Eichenfield
- Dermatology and Pediatrics, University of California, San Diego School of Medicine, San Diego
- Pediatrics and Adolescent Dermatology, Rady Children's Hospital, San Diego, California
| | - Leslie Castelo-Soccio
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, US National Institutes of Health, Bethesda, Maryland
| | - Victor Huang
- Department of Dermatology, University of California, Davis
| | - Seemal R Desai
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas
- Innovative Dermatology, Plano, Texas
| | | | | | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michele Rodrigues
- Department of Dermatology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Mark Weingarten
- Department of Dermatology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shanthi Narla
- Department of Dermatology, St Luke's University Health Network, Easton, Pennsylvania
| | | | - Michael Siegel
- Pediatric Dermatology Research Alliance, Portland, Oregon
| | - Sidra Ibad
- Department of Dermatology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nanette B Silverberg
- Department of Dermatology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
9
|
Liu H, Wang Y, Le Q, Tong J, Wang H. The IFN-γ-CXCL9/CXCL10-CXCR3 axis in vitiligo: Pathological mechanism and treatment. Eur J Immunol 2024; 54:e2250281. [PMID: 37937817 DOI: 10.1002/eji.202250281] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
Vitiligo is a disease featuring distinct white patches that result from melanocyte destruction. The overall pathogenesis of vitiligo remains to be elucidated. Nevertheless, considerable research indicates that adaptive immune activation plays a key role in this process. Specifically, the interferon-gamma (IFN-γ), C-X-C motif chemokine ligands (CXCL9/10), and C-X-C motif chemokine receptor (CXCR3) signaling axis, collectively referred to as IFN-γ-CXCL9/10-CXCR3 or ICC axis, has emerged as a key mediator responsible for the recruitment of autoimmune CXCR3+ CD8+ T cells. These cells serve as executioners of melanocytes by promoting their detachment and apoptosis. Moreover, IFN-γ is generated by activated T cells to create a positive feedback loop, exacerbating the autoimmune response. This review not only delves into the mechanistic insights of the ICC axis but also explores the significant immunological effects of associated cytokines and their receptors. Additionally, the review provides a thorough comparison of existing and emerging treatment options that target the ICC axis for managing vitiligo. This review aims to foster further advancements in basic research within related fields and facilitate a deeper understanding of alternative treatment strategies targeting different elements of the axis.
Collapse
Affiliation(s)
- Hanqing Liu
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yihui Wang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qianqian Le
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jiajia Tong
- Shanghai Institute of Immunology, Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
10
|
Lin Y, Ding Y, Wu Y, Yang Y, Liu Z, Xiang L, Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp Dermatol 2024; 33:e14856. [PMID: 37338012 DOI: 10.1111/exd.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Vitiligo is an acquired depigmentary disorder characterized by the depletion of melanocytes in the skin. Mitochondria shoulder multiple functions in cells, such as production of ATP, maintenance of redox balance, initiation of inflammation and regulation of cell death. Increasing evidence has implicated the involvement of mitochondria in the pathogenesis of vitiligo. Mitochondria alteration will cause the abnormalities of mitochondria functions mentioned above, ultimately leading to melanocyte loss through various cell death modes. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in mitochondrial homeostasis, and the downregulation of Nrf2 in vitiligo may correlate with mitochondria damage, making both mitochondria and Nrf2 promising targets in treatment of vitiligo. In this review, we aim to discuss the alterations of mitochondria and its role in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yi Lin
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
11
|
Boniface K. Aetiopathogenesis of Vitiligo. Dermatol Pract Concept 2023; 13:dpc.1304S2a314S. [PMID: 38241397 PMCID: PMC10824321 DOI: 10.5826/dpc.1304s2a314s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
Vitiligo is a chronic auto-immune disease characterized by skin depigmentation due to the loss of melanocytes. The better understanding of the disease mechanisms is currently undergoing a significant dynamism, opening a new era in therapeutic development. The pathophysiology of vitiligo has attracted the attention of researchers for years and many advances have been made in clarifying the crosstalk between the cellular players involved in the development of vitiligo lesions. The understanding of the complex interactions between epidermal cells (i.e. melanocytes and keratinocytes), dermal fibroblasts, and immune cells, led to a better characterization of the signals leading to the loss of melanocytes. Recent advances highlighted the role resident T memory cells in the development and recurrence of lesions. This narrative review aims to give an overview of the mechanisms leading to melanocyte disappearance in vitiligo, with a focus on the intercellular interaction network involved in the activation of the local skin immune response.
Collapse
Affiliation(s)
- Katia Boniface
- University of Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
12
|
Seneschal J, Boniface K. Vitiligo: Current Therapies and Future Treatments. Dermatol Pract Concept 2023; 13:dpc.1304S2a313S. [PMID: 38241396 PMCID: PMC10824325 DOI: 10.5826/dpc.1304s2a313s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/21/2024] Open
Abstract
The current management of vitiligo remains challenging; however, different strategies can be proposed to patients with a good efficacy in many cases. First, it is important to identify patients in the active phase of the disease because treatment should start as soon as possible to halt its progression. For patients with a stable disease, the treatment strategy is now well-stratified and is based on a combination of phototherapy (natural or in a cabin) and topical immunomodulatory agents. Surgical treatments are useful for localized and stable vitiligo, as well as for segmental vitiligo. Depigmentation remains indicated in very extensive forms. The recent approval of topical ruxolitinib cream in both the US and Europe brings new approaches for the management of vitiligo and paves the way for the development of new topical or oral targeted drugs.
Collapse
Affiliation(s)
- Julien Seneschal
- Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin disorders, Hôpital Saint-André, Bordeaux, France
- University of Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| | - Katia Boniface
- University of Bordeaux, CNRS, Immuno ConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
13
|
Tavoletti G, Avallone G, Conforti C, Roccuzzo G, Maronese CA, Mattioli MA, Quaglino P, Zalaudek I, Marzano AV, Ribero S, Alberti-Violetti S. Topical ruxolitinib: A new treatment for vitiligo. J Eur Acad Dermatol Venereol 2023; 37:2222-2230. [PMID: 37147856 DOI: 10.1111/jdv.19162] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Vitiligo is a chronic autoimmune skin disorder whose diagnosis is often psychologically upsetting. The efficacy of the available therapies, including topical corticosteroids and topical calcineurin inhibitors, has historically been limited and the management of vitiligo is still challenging. As vitiligo is a chronic disease limited to the skin, topical rather than systemic therapies may be preferable (especially among patients with localised lesions) to avoid the long-term side-effects of the latter. A topical formulation of ruxolitinib, a selective JAK1/2 inhibitor, has recently been approved in the United States for the treatment of non-segmental vitiligo in patients aged >12 years based on data from the phase III TRuE-V1 and TRuE-V2 clinical trials. The aim of this review is to describe the current evidence concerning the efficacy and safety of topical ruxolitinib in the treatment of vitiligo, and discuss issues regarding its use in younger children and pregnant or breastfeeding women, as well as the duration and durability of treatment. The promising results obtained so far suggest that 1.5% ruxolitinib cream is an effective means of treating vitiligo.
Collapse
Affiliation(s)
- G Tavoletti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - G Avallone
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - C Conforti
- Dermatology Clinic, Maggiore Hospital of Trieste, Trieste, Italy
| | - G Roccuzzo
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - C A Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - M A Mattioli
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - P Quaglino
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - I Zalaudek
- Dermatology Clinic, Maggiore Hospital of Trieste, Trieste, Italy
| | - A V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - S Ribero
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - S Alberti-Violetti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Alshamrani S, Mashraqi MM, Alzamami A, Alturki NA, Almasoudi HH, Alshahrani MA, Basharat Z. Mining Autoimmune-Disorder-Linked Molecular-Mimicry Candidates in Clostridioides difficile and Prospects of Mimic-Based Vaccine Design: An In Silico Approach. Microorganisms 2023; 11:2300. [PMID: 37764144 PMCID: PMC10536613 DOI: 10.3390/microorganisms11092300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular mimicry, a phenomenon in which microbial or environmental antigens resemble host antigens, has been proposed as a potential trigger for autoimmune responses. In this study, we employed a bioinformatics approach to investigate the role of molecular mimicry in Clostridioides difficile-caused infections and the induction of autoimmune disorders due to this phenomenon. Comparing proteomes of host and pathogen, we identified 23 proteins that exhibited significant sequence homology and were linked to autoimmune disorders. The disorders included rheumatoid arthritis, psoriasis, Alzheimer's disease, etc., while infections included viral and bacterial infections like HIV, HCV, and tuberculosis. The structure of the homologous proteins was superposed, and RMSD was calculated to find the maximum deviation, while accounting for rigid and flexible regions. Two sequence mimics (antigenic, non-allergenic, and immunogenic) of ≥10 amino acids from these proteins were used to design a vaccine construct to explore the possibility of eliciting an immune response. Docking analysis of the top vaccine construct C2 showed favorable interactions with HLA and TLR-4 receptor, indicating potential efficacy. The B-cell and T-helper cell activity was also simulated, showing promising results for effective immunization against C. difficile infections. This study highlights the potential of C. difficile to trigger autoimmunity through molecular mimicry and vaccine design based on sequence mimics that trigger a defensive response.
Collapse
Affiliation(s)
- Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Science, Shaqra University, AlQuwayiyah 11961, Saudi Arabia;
| | - Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Science, King Saud University, Riyadh 11433, Saudi Arabia;
| | - Hassan H. Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia; (S.A.); (H.H.A.); (M.A.A.)
| | | |
Collapse
|
15
|
Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, Abdel-Wahab H, Kundu RV, Le Poole IC. Melanocyte-keratinocyte cross-talk in vitiligo. Front Med (Lausanne) 2023; 10:1176781. [PMID: 37275386 PMCID: PMC10235633 DOI: 10.3389/fmed.2023.1176781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Vitiligo is a common acquired pigmentary disorder that presents as progressive loss of melanocytes from the skin. Epidermal melanocytes and keratinocytes are in close proximity to each other, forming a functional and structural unit where keratinocytes play a pivotal role in supporting melanocyte homeostasis and melanogenesis. This intimate relationship suggests that keratinocytes might contribute to ongoing melanocyte loss and subsequent depigmentation. In fact, keratinocyte dysfunction is a documented phenomenon in vitiligo. Keratinocyte apoptosis can deprive melanocytes from growth factors including stem cell factor (SCF) and other melanogenic stimulating factors which are essential for melanocyte function. Additionally, keratinocytes control the mobility/stability phases of melanocytes via matrix metalloproteinases and basement membrane remodeling. Hence keratinocyte dysfunction may be implicated in detachment of melanocytes from the basement membrane and subsequent loss from the epidermis, also potentially interfering with repigmentation in patients with stable disease. Furthermore, keratinocytes contribute to the autoimmune insult in vitiligo. Keratinocytes express MHC II in perilesional skin and may present melanosomal antigens in the context of MHC class II after the pigmented organelles have been transferred from melanocytes. Moreover, keratinocytes secrete cytokines and chemokines including CXCL-9, CXCL-10, and IL-15 that amplify the inflammatory circuit within vitiligo skin and recruit melanocyte-specific, skin-resident memory T cells. In summary, keratinocytes can influence vitiligo development by a combination of failing to produce survival factors, limiting melanocyte adhesion in lesional skin, presenting melanocyte antigens and enhancing the recruitment of pathogenic T cells.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rohan S. Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Harika Echuri
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | | | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Roopal V. Kundu
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
16
|
Xie B, Zhu Y, Shen Y, Xu W, Song X. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Expert Opin Ther Targets 2023; 27:189-206. [PMID: 36947026 DOI: 10.1080/14728222.2023.2193329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The treatment of vitiligo remains challenging due to the complexity of its pathogenesis, influenced by genetic factors, oxidative stress and abnormal cell adhesion that collectively impact melanocyte survival and trigger immune system attacks, resulting in melanocyte death. Melanocytes in vitiligo are believed to exhibit genetic susceptibility and defects in cellular mechanisms, such as defects in autophagy, that reduce their ability to resist oxidative stress, leading to increased expression of the pro-inflammatory protein HSP70. The low expression of adhesion molecules, such as DDR1 and E-cadherin, accelerates melanocyte damage and antigen exposure. Consequently, autoimmune attacks centered on IFN-γ-CXCR9/10-CXCR3-CD8+ T cells are initiated, causing vitiligo. AREAS COVERED This review discusses the latest knowledge on the pathogenesis of vitiligo and potential therapeutic targets from the perspective of suppressing autoimmune attacks and activating melanocytes functions. EXPERT OPINION Vitiligo is one of the most challenging dermatological diseases due to its complex pathogenesis with diverse therapeutic targets. Immune suppression, such as corticosteroids and emerging JAK inhibitors, has proven effective in disease progression. However, during the early stages of the disease, it is also important to optimize therapeutic strategies to activate melanocytes for alleviating oxidative stress and improving treatment outcomes.
Collapse
Affiliation(s)
- Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang Chinese Medical University; Binwen Rd 548, Hangzhou, 310053, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
- Zhejiang University School of Medicine; Yuhangtang Rd 866, Hangzhou, 310058, People's Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine; West Lake Ave 38, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
17
|
Vitiligo Treatments: Review of Current Therapeutic Modalities and JAK Inhibitors. Am J Clin Dermatol 2023; 24:165-186. [PMID: 36715849 DOI: 10.1007/s40257-022-00752-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/31/2023]
Abstract
Vitiligo is a chronic autoimmune disease characterized by loss of pigment of the skin, affecting 0.5-2% of the population worldwide. It can have a significant impact on patients' quality of life. In recent years, there has been significant progress in our understanding of the pathogenesis of vitiligo. It is believed that vitiligo develops due to a complex combination of genetics, oxidative stress, inflammation, and environmental triggers. Conventional treatments include camouflage, topical corticosteroids, topical calcineurin inhibitors, oral corticosteroids, phototherapy, and surgical procedures, with the treatment regimen dependent on the patient's preferences and characteristics. With increased understanding of the importance of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the pathogenesis of vitiligo, treatment has expanded to include the first US FDA-approved cream to repigment patients with vitiligo. This review summarizes our understanding of the major mechanisms involved in the pathogenesis of vitiligo and its most common available treatments.
Collapse
|
18
|
Karagaiah P, Schwartz RA, Lotti T, Wollina U, Grabbe S, Goldust M. Biologic and targeted therapeutics in vitiligo. J Cosmet Dermatol 2023; 22:64-73. [PMID: 35029034 DOI: 10.1111/jocd.14770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Vitiligo is a long-standing progressive autoimmune disease with depigmented macules/patches with significant psychological morbidity to the patients. From being one of the most poorly understood diseases in the past, there has been a rampant advance in determining the molecular and genetic factors influencing the disease process. More light has been shed on the complex intracellular environment and interplay between innate and adaptive immunity. Numerous cytokines and signaling pathways have been associated with disease pathogenesis in the recent past. OBJECTIVE The aim of this review the efficacy of biologic and targeted therapeutics in vitiligo. METHODS A detailed literature search was conducted on databases like PubMed, COCHRANE Central, EMBASE and Google Scholar using keywords-"biologics," "vitiligo," "treatment," "repigmentation," "JAK inhibitors,", "TNF-ꭤ inhibitors," and "IL17/23 inhibitors," Relevant studies and review articles in English were analyzed in detail and report was written. This article aimed at a comprehensive review of all the biologicals and newer targeted therapeutics tried in vitiligo and their efficacy with an insight into the potential complications arising as a result of the therapy. RESULTS Most conventional vitiligo treatment modalities are restricted to generalized nonspecific immunosuppressants like topical and oral corticosteroids, calcineurin inhibitors, phototherapy, and surgical modalities. There have been reports and studies on the usage of biologicals in treating vitiligo. JAK inhibitors have shown good efficacy in vitiligo; however, it lacks substantial evidence in the form of randomized control trials. Similarly, the use of targeted therapeutics in treating vitiligo is substantiated by limited evidence and requires more randomized trials for further evidence. CONCLUSION JAK inhibitors have shown promising results and good tolerability; Adjuvant phototherapy can achieve a superior response compared to monotherapy. Though TNF-ꭤ has been tried in a few cases, it is best used if vitiligo is present in association with other chronic autoimmune diseases for which it is indicated. More in vitro studies and clinical research are required to understand the pathogenesis clearly, and therapy has to be targeted at specific pathways for a better approach toward vitiligo. Treatment aimed at induction and differentiation of melanocytes may be added to achieve faster repigmentation.
Collapse
Affiliation(s)
- Priyanka Karagaiah
- Department of Dermatology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Robert A Schwartz
- Department of Dermatology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Torello Lotti
- Department of Dermatology, University of Studies Guglielmo Marconi, Rome, Italy.,Department of Dermatology and Communicable Diseases, First Medical State University of Moscow I. M. Sechenev Ministry of Health, Moscow, Russia
| | - Uwe Wollina
- Department of Dermatology and Allergology, Städtisches Klinikum Dresden, Academic Teaching Hospital of the Technical University of Dresden, Dresden, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
19
|
Wang J, Pan Y, Wei G, Mao H, Liu R, He Y. Damage-associated molecular patterns in vitiligo: igniter fuse from oxidative stress to melanocyte loss. Redox Rep 2022; 27:193-199. [PMID: 36154894 PMCID: PMC9518600 DOI: 10.1080/13510002.2022.2123864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The pathogenesis of vitiligo remains unclear. In this review, we comprehensively describe the role of damage associated molecular patterns (DAMPs) during vitiligo pathogenesis. METHODS Published papers on vitiligo, oxidative stress and DAMPs were collected and reviewed via database searching on PubMed, MEDLINE and Embase, etc. RESULTS Oxidative stress may be an important inducer of vitiligo. At high oxidative stress levels, damage-associated molecular patterns (DAMPs) are released from keratinocytes or melanocytes in the skin and induce downstream immune responses during vitiligo. Treatment regimens targeting DAMPs can effectively improve disease severity. DISCUSSION DAMPs play key roles in initiating host defenses against danger signals, deteriorating the condition of vitiligo. DAMP levels in serum and skin may be used as biomarkers to indicate vitiligo activity and prognosis. Targeted therapies, incorporating HMGB1, Hsp70, and IL-15 could significantly improve disease etiology. Thus, novel strategies could be identified for vitiligo treatment by targeting DAMPs.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yinghao Pan
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Guangmin Wei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hanxiao Mao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Rulan Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Yuanmin He Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
20
|
Feng Y, Lu Y. Advances in vitiligo: Update on therapeutic targets. Front Immunol 2022; 13:986918. [PMID: 36119071 PMCID: PMC9471423 DOI: 10.3389/fimmu.2022.986918] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Vitiligo, whose treatment remains a serious concern and challenge, is an autoimmune skin disease characterized by patches of depigmentation. The increasing application of molecular-targeted therapy in skin diseases, such as psoriasis and systemic lupus erythematosus, has dramatically improved their condition. Besides, there is a favorable effect of repigmentation in the treatment of the above diseases combined with vitiligo, implying that molecular-targeted therapy may also have utility in vitiligo treatment. Recently, the role of cytokine and signaling pathways in vitiligo pathogenesis are increasingly recognized. Thus, investigations are underway targeting the molecules described above. In this paper, we present a synopsis of current practices in vitiligo treatment and introduce the improvement in identifying new molecular targets and applying molecular-targeted therapies, including those under development in vitiligo treatment, providing valuable insight into establishing further precision medicine for vitiligo patients.
Collapse
|
21
|
Marchioro HZ, Castro CCSD, Fava VM, Sakiyama PH, Dellatorre G, Miot HA. Update on the pathogenesis of vitiligo. An Bras Dermatol 2022; 97:478-490. [PMID: 35643735 PMCID: PMC9263675 DOI: 10.1016/j.abd.2021.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disease whose pathogenesis results from the interaction of genetic components, metabolic factors linked to cellular oxidative stress, melanocyte adhesion to the epithelium, and immunity (innate and adaptive), which culminate in aggression against melanocytes. In vitiligo, melanocytes are more sensitive to oxidative damage, leading to the increased expression of proinflammatory proteins such as HSP70. The lower expression of epithelial adhesion molecules, such as DDR1 and E-cadherin, facilitates damage to melanocytes and exposure of antigens that favor autoimmunity. Activation of the type 1-IFN pathway perpetuates the direct action of CD8+ cells against melanocytes, facilitated by regulatory T-cell dysfunction. The identification of several genes involved in these processes sets the stage for disease development and maintenance. However, the relationship of vitiligo with environmental factors, psychological stress, comorbidities, and the elements that define individual susceptibility to the disease are a challenge to the integration of theories related to its pathogenesis.
Collapse
|
22
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
The Promising Role of Chemokines in Vitiligo: From Oxidative Stress to the Autoimmune Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8796735. [PMID: 35096274 PMCID: PMC8791757 DOI: 10.1155/2022/8796735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Vitiligo is a common chronic autoimmune skin disorder featured with depigmented patches and underlying destruction of melanocytes in the lesional skin. Multiple factors and mechanisms have been proposed for the etiopathogenesis of vitiligo, among which oxidative stress has been widely accepted as a key factor in initiating melanocyte loss. The altered redox status caused by oxidative stress, including the overproduction of reactive oxygen species (ROS) and the decreased activity of the antioxidant system in the skin, surrenders the resistance of melanocytes to exogenous or endogenous stimuli and eventually impairs the normal defense mechanism, leading to the absence of melanocytes. Considering the important role of innate and adaptive immunity in vitiligo, there is mounting evidence revealing an association between oxidative stress and autoimmunity. Since the significant changes of chemokines have been documented in vitiligo in many recent studies, it has been suggested that ROS-mediated chemotactic signals are not only the biomarkers of disease progression and prognosis but also are involved in the pathogenesis of vitiligo by facilitating the innate and adaptive immune cells, especially melanocyte-specific T cells, trafficking to the lesional areas of vitiligo. In this review, we discuss the interaction between oxidative stress and autoimmune response orchestrated by chemokines, including CXCL16-CXCR6 axis, CXCL9/CXCL10-CXCR3 axis, and other altered chemokines in vitiligo, and we also try to provide insight into potential therapeutic options through targeting these pathways.
Collapse
|
24
|
Xu Z, Chen D, Hu Y, Jiang K, Huang H, Du Y, Wu W, Wang J, Sui J, Wang W, Zhang L, Li S, Li C, Yang Y, Chang J, Chen T. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature 2022; 601:118-124. [PMID: 34912121 DOI: 10.1038/s41586-021-04221-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.
Collapse
Affiliation(s)
- Zijian Xu
- National Institute of Biological Sciences, Beijing, China
| | - Daoming Chen
- National Institute of Biological Sciences, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yucheng Hu
- Academy for Multidisciplinary Studies, Beijing National Center for Applied Mathematics, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, China
| | - Kaiju Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Yingxue Du
- National Institute of Biological Sciences, Beijing, China
| | - Wenbo Wu
- National Institute of Biological Sciences, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Wang
- Peking University Third Hospital, Beijing, China
| | - Long Zhang
- Peking University Third Hospital, Beijing, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Xi'an, China
| | - Yong Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
25
|
Cui T, Wang Y, Song P, Yi X, Chen J, Yang Y, Wang H, Kang P, Guo S, Liu L, Li K, Jian Z, Li S, Li C. HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo. J Invest Dermatol 2021; 142:1659-1669.e4. [PMID: 34780715 DOI: 10.1016/j.jid.2021.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Autophagy plays a protective role in oxidative stress‒induced melanocyte death. Dysregulated autophagy increases the sensitivity of melanocytes in response to oxidative damage and promotes melanocyte degeneration in vitiligo. However, the molecular mechanism underlying this process is not fully understood. In this study, using RNA-sequencing technology, we compared the transcriptome change between normal and vitiligo melanocytes with or without treatment of oxidative stress. We found that ATG5 and ATG12, the critical components for autophagosome formation, were significantly reduced in vitiligo melanocytes under oxidative stress. Mechanistically, HSF1 is the prime transcription factor for both ATG5 and ATG12, accounting for the reduced level of ATG5 and ATG12 in vitiligo melanocytes. Deficiency of HSF1 led to accumulation of intracellular ROS, imbalance of mitochondrion membrane potential, and apoptosis in melanocytes exposure to oxidative stress. Furthermore, overexpression of HSF1 could ameliorate oxidative stress‒induced melanocytes death through the activation of autophagy by upregulating ATG5 and ATG12. These findings suggested that targeting HSF1-ATG5/12 axis could prevent oxidative stress‒induced melanocyte death and may be used as a therapeutic strategy for vitiligo treatment.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kai Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
26
|
Lu H, Xu J, Hu Y, Luo H, Chen Y, Xie B, Song X. Differences in the skin microbial community between patients with active and stable vitiligo based on 16S rRNA gene sequencing. Australas J Dermatol 2021; 62:e516-e523. [PMID: 34523726 DOI: 10.1111/ajd.13721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVE Recent studies have described an association between altered skin microbial community and epidemiology of skin diseases, such as vitiligo, atopic dermatitis and psoriasis. In this study, we conducted microbiological analysis on patients at different stages of vitiligo to determine whether the dysbiosis is associated with disease progression. METHODS To characterise the skin microbes in vitiligo patients, we profiled samples collected from 40 patients with active and stable vitiligo using the Novaseq sequencer. Alpha diversity was used to measure richness and uniformity, while Beta diversity (Non-Metric Multi-Dimensional Scaling) analysis was used to show the differences. Moreover, the species differences were evaluated by LEfSe analysis and the flora gene function was predicted using Statistical Analysis of Metagenomic Profiles (STAMP). RESULTS The alpha diversity results showed no significant differences between active vitiligo and stable vitiligo, while beta diversity and LEfSe analysis results showed the differences in community composition. Streptomyces and Streptococcus were enriched in active vitiligo compared to stable vitiligo. In addition, the flora gene function of mixed acid fermentation was more pronounced in active vitiligo, while the function of lipid IVA biosynthesis was more significant in stable vitiligo. CONCLUSION This study has shown the differences in epidermal microbes between active vitiligo and stable vitiligo. Our results suggest that maintaining the flora balance might be a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Haojie Lu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yebei Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixin Luo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Zhao SJ, Jia H, Xu XL, Bu WB, Zhang Q, Chen X, Ji J, Sun JF. Identification of the Role of Wnt/β-Catenin Pathway Through Integrated Analyses and in vivo Experiments in Vitiligo. Clin Cosmet Investig Dermatol 2021; 14:1089-1103. [PMID: 34511958 PMCID: PMC8423189 DOI: 10.2147/ccid.s319061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 01/18/2023]
Abstract
Purpose Vitiligo is an acquired depigmentation skin disease, which affects an average of 1% of the world’s population. The purpose of this study is to identify the key genes and pathways responsible for vitiligo and find new therapeutic targets. Methods The datasets GSE65127, GSE53146, and GSE75819 were downloaded from the Gene Expression Omnibus (GEO) database. R language was used to identify the differentially expressed genes (DEGs) between lesional skin of vitiligo and non-lesional skin. Next, the key pathways were obtained by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The protein–protein interaction (PPI) networks were conducted by STRING database and Cytoscape software. Subsequently, module analysis was performed by Cytoscape. Among these results, the Wnt/β-catenin pathway and melanogenesis pathway caught our attention. The expression level of β-catenin, microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) was detected by immunofluorescence in vitiligo lesions and healthy skin. Moreover, zebrafish was treated with XAV-939, an inhibitor of the Wnt/β-catenin pathway. After that, the area of melanin granules as a percentage of the head area was measured. The mRNA expression of β-catenin, lymphoid-enhancing factor 1(lef1), tyr and mitf were detected by q-PCR (quantitative polymerase chain reaction) in zebrafish (Danio rerio). Results A total of 2442 DEGs were identified, including 1068 upregulated and 1374 downregulated DEGs. The key pathways were identified by GO and KEGG analyses, such as “NOD-like receptor signaling pathway”, “Wnt signaling pathway”, “Melanogenesis”, “mTOR signaling pathway”, “PI3K-Akt signaling pathway”, “Calcium signaling pathway” and “Rap1 signaling pathway”. The immunofluorescence results showed that the level of β-catenin, MITF and TYR was significantly downregulated in vitiligo lesional skin. In zebrafish, the mean percentage area of melanin granules and the expression of β-catenin, lef1, tyr and mitf were decreased after treated with XAV-939. Conclusion The present study identified key genes and signaling pathways associated with the pathophysiology of vitiligo. Among them, the Wnt/β-catenin pathway played an essential role in pigmentation and could be a breakthrough point in vitiligo treatment.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Hong Jia
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xiu-Lian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Wen-Bo Bu
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Qian Zhang
- Department of Dermatologic Surgery, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Xi Chen
- Department of Medicine 3, Universitätsklinikum Erlangen, Friedrich Alexander University Erlangen Nuremberg, Erlangen, Bavaria, Germany
| | - Juan Ji
- Department of Dermatology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| | - Jian-Fang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Khaitan BK, Sindhuja T. Autoimmunity in vitiligo: Therapeutic implications and opportunities. Autoimmun Rev 2021; 21:102932. [PMID: 34506987 DOI: 10.1016/j.autrev.2021.102932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Vitiligo is an acquired chronic pigmentary disorder affecting the melanocytes, mainly in the skin and mucosae. It occurs due to the dynamic interaction between genetic and environmental factors leading to autoimmune destruction of melanocytes. Defects in melanocyte adhesion and increased oxidative stress further augment the immune response in vitiligo. It is a cosmetically disfiguring condition with a substantial psychological burden. Its autoimmune nature with resultant chronicity, variable responses to therapeutic modalities, and frequent recurrences have further diminished the quality of life. Hence, treatment should aim to provide more extended remission periods, prevent recurrences, provide good cosmetic outcomes and ensure patient satisfaction. These treatment goals seem plausible with the recent progress in our understanding of the complex pathogenic mechanisms underlying vitiligo at a molecular and genetic level. We provide a literature review of the pathogenic mechanisms and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Binod K Khaitan
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India.
| | - Tekumalla Sindhuja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Gellatly KJ, Strassner JP, Essien K, Refat MA, Murphy RL, Coffin-Schmitt A, Pandya AG, Tovar-Garza A, Frisoli ML, Fan X, Ding X, Kim EE, Abbas Z, McDonel P, Garber M, Harris JE. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T reg function. Sci Transl Med 2021; 13:eabd8995. [PMID: 34516831 DOI: 10.1126/scitranslmed.abd8995] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kyle J Gellatly
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - James P Strassner
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kingsley Essien
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Maggi Ahmed Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Rachel L Murphy
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anthony Coffin-Schmitt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Amit G Pandya
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrea Tovar-Garza
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael L Frisoli
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xiaolan Ding
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Evangeline E Kim
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zainab Abbas
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Patrick McDonel
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
30
|
Jaishankar D, Cosgrove C, Ramesh P, Mahon J, Shivde R, Dellacecca ER, Yang SF, Mosenson J, Guevara-Patiño JA, Le Poole IC. HSP70i Q435A to subdue autoimmunity and support anti-tumor responses. Cell Stress Chaperones 2021; 26:845-857. [PMID: 34542825 PMCID: PMC8492854 DOI: 10.1007/s12192-021-01229-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022] Open
Abstract
Developing immunosuppressive therapies for autoimmune diseases comes with a caveat that immunosuppression may promote the risk of developing other conditions or diseases. We have previously shown that biolistic delivery of an expression construct encoding inducible HSP70 (HSP70i) with one amino acid modification in the dendritic cell (DC) activating moiety 435-445 (HSP70iQ435A) to mouse skin resulted in significant immunosuppressive activity of autoimmune vitiligo, associated with fewer tissue infiltrating T cells. To prepare HSP70iQ435A as a potential therapeutic for autoimmune vitiligo, in this study we evaluated whether and how biolistic delivery of HSP70iQ435A in mice affects anti-tumor responses. We found that HSP70iQ435A in fact supports anti-tumor responses in melanoma-challenged C57BL/6 mice. Biolistic delivery of the HSP70iQ435A-encoding construct to mice elicited significant anti-HSP70 titers, and anti-HSP70 IgG and IgM antibodies recognize surface-expressed and cytoplasmic HSP70i in human and mouse melanoma cells. A peptide scan revealed that the anti-HSP70 antibodies recognize a specific C-terminal motif within the HSP70i protein. The antibodies elicited surface CD107A expression among mouse NK cells, representative of antibody-mediated cellular cytotoxicity (ADCC), supporting the concept, that HSP70iQ435A-encoding DNA elicits a humoral response to the stress protein expressed selectively on the surface of melanoma cells. Thus, besides limiting autoimmunity and inflammation, HSP70iQ435A elicits humoral responses that limit tumor growth and may be used in conjunction with immune checkpoint inhibitors to not only control tumor but to also limit adverse events following tumor immunotherapy.
Collapse
Affiliation(s)
- Dinesh Jaishankar
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA.
| | - Cormac Cosgrove
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Prathyaya Ramesh
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - James Mahon
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA
| | - Rohan Shivde
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Emilia R Dellacecca
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Shiayin F Yang
- Department of Otolaryngology - Head and Neck Surgery, Loyola University Medical Center, Maywood, IL, USA
| | - Jeffrey Mosenson
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA
| | - José A Guevara-Patiño
- Department of Surgery, Loyola University Medical Center, Maywood, IL, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - I Caroline Le Poole
- Department of Dermatology & Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL, USA.
- Department of Microbiology & Immunology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
31
|
Clinical Features, Immunopathogenesis, and Therapeutic Strategies in Vitiligo. Clin Rev Allergy Immunol 2021; 61:299-323. [PMID: 34283349 DOI: 10.1007/s12016-021-08868-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Vitiligo is an autoimmune disease of the skin characterized by epidermal melanocyte loss resulting in white patches, with an approximate prevalence of 0.5-2% worldwide. Several precipitating factors by chemical exposure and skin injury present commonly in patients with vitiligo. Although the diagnosis appears to be straightforward for the distinct clinical phenotype and specific histological features, vitiligo provides many challenges including chronicity, treatment resistance, frequent relapse, associated profound psychosocial effect, and negative impact on quality of life. Multiple mechanisms are involved in melanocyte disappearance, including genetics, environmental factors, and immune-mediated inflammation. Compelling evidence supports the melanocyte intrinsic abnormalities with poor adaptation to stressors leading to instability and release of danger signals, which will activate dendritic cells, natural killer cells, and innate lymphoid cells to initiate innate immunity, ultimately resulting in T-cell mediated adaptive immune response and melanocyte destruction. Importantly, the cross- talk between keratinocytes, melanocytes, and immune cells, such as interferon (IFN)-γ signaling pathway, builds inflammatory loops that give rise to the disease deterioration. Improved understanding of the immune pathogenesis of vitiligo has led to the development of new therapeutic options including Janus kinase (JAK) inhibitors targeting IFN-γ signaling pathways, which can effectively reverse depigmentation. Furthermore, definition of treatment goals and integration of comorbid diseases into vitiligo management have revolutionized the way vitiligo is treated. In this review, we highlight recent developments in vitiligo clinical aspects and immune pathogenesis. Our key objective is to raise awareness of the complexity of this disease, the potential of prospective therapy strategies, and the need for early and comprehensive management.
Collapse
|
32
|
Lu H, Xu J, Xie B, Hu Y, Luo H, Chen Y, Song X. The multi-target mechanism of Cyclosporin A in the treatment of vitiligo based on network pharmacology. Dermatol Ther 2021; 34:e15023. [PMID: 34089287 DOI: 10.1111/dth.15023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/02/2021] [Indexed: 02/01/2023]
Abstract
Network pharmacology is an emerging discipline that designs drugs based on systems biology theory and biological system network analysis. Here, we applied network pharmacology to analyze the multi-target mechanism of Cyclosporin A in the treatment of vitiligo First, we predicted the targets of Cyclosporin A. Second, we obtained the genes related to vitiligo from the database. Third, we constructed the PPI network of the mutual genes between Cyclosporin A and vitiligo and used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze. Finally, we verified the prediction of potential targets through a docking study with Cyclosporin A. We found that there were 15 shared target genes between Cyclosporin A and vitiligo. We analyzed these 15 genes by Cytoscape and obtained a network diagram of 885 nodes. Through screening and molecular docking, PRKDC, CUL7, CUL1, HSPA8, HSPA4, and SIRT7 were the most likely multi-target mechanism of Cyclosporin A in the treatment of vitiligo. In our study, Cyclosporin A might not only affect the repair of DNA strands by targeting PRKDC, but also affected the innate and adaptive immune function of vitiligo patients by the targets of CUL1, CUL7, and HSP70. In addition, Cyclosporin A might promote the repigmentation of vitiligo by adjusting the expression of SIRT7.
Collapse
Affiliation(s)
- Haojie Lu
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Jinhui Xu
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, The Third People's Hospital of Hangzhou, Zhejiang, Hangzhou, China
| | - Yebei Hu
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Haixin Luo
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, The Third People's Hospital of Hangzhou, Zhejiang, Hangzhou, China
| |
Collapse
|
33
|
Boniface K, Passeron T, Seneschal J, Tulic MK. Targeting Innate Immunity to Combat Cutaneous Stress: The Vitiligo Perspective. Front Immunol 2021; 12:613056. [PMID: 33936032 PMCID: PMC8079779 DOI: 10.3389/fimmu.2021.613056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple factors are involved in the process leading to melanocyte loss in vitiligo including environmental triggers, genetic polymorphisms, metabolic alterations, and autoimmunity. This review aims to highlight current knowledge on how danger signals released by stressed epidermal cells in a predisposed patient can trigger the innate immune system and initiate a cascade of events leading to an autoreactive immune response, ultimately contributing to melanocyte disappearance in vitiligo. We will explore the genetic data available, the specific role of damage-associated-molecular patterns, and pattern-recognition receptors, as well as the cellular players involved in the innate immune response. Finally, the relevance of therapeutic strategies targeting this pathway to improve this inflammatory and autoimmune condition is also discussed.
Collapse
Affiliation(s)
- Katia Boniface
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France
| | - Thierry Passeron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France.,Côte d'Azur University, Department of Dermatology, CHU Nice, Nice, France
| | - Julien Seneschal
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Meri K Tulic
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France
| |
Collapse
|
34
|
Abstract
Vitiligo is a disease of the skin characterized by the appearance of white spots. Significant progress has been made in understanding vitiligo pathogenesis over the past 30 years, but only through perseverance, collaboration, and open-minded discussion. Early hypotheses considered roles for innervation, microvascular anomalies, oxidative stress, defects in melanocyte adhesion, autoimmunity, somatic mosaicism, and genetics. Because theories about pathogenesis drive experimental design, focus, and even therapeutic approach, it is important to consider their impact on our current understanding about vitiligo. Animal models allow researchers to perform mechanistic studies, and the development of improved patient sample collection methods provides a platform for translational studies in vitiligo that can also be applied to understand other autoimmune diseases that are more difficult to study in human samples. Here we discuss the history of vitiligo translational research, recent advances, and their implications for new treatment approaches.
Collapse
Affiliation(s)
| | - John E. Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
35
|
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev 2021; 41:1138-1166. [PMID: 33200838 PMCID: PMC7983894 DOI: 10.1002/med.21754] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune depigment disease results from extensive melanocytes destruction. The destruction of melanocyte is thought to be of multifactorial causation. Genome-wide associated studies have identified single-nucleotide polymorphisms in a panel of susceptible loci as risk factors in melanocyte death. But vitiligo onset can't be solely attributed to a susceptive genetic background. Oxidative stress triggered by elevated levels of reactive oxygen species accounts for melanocytic molecular and organelle dysfunction, a minority of melanocyte demise, and melanocyte-specific antigens exposure. Of note, the self-responsive immune function directly contributes to the bulk of melanocyte deaths in vitiligo. The aberrantly heightened innate immunity, type-1-skewed T helper, and incompetent regulatory T cells tip the balance toward autoreaction and CD8+ cytotoxic T lymphocytes finally execute the killing of melanocytes, possibly alarmed by resident memory T cells. In addition to the well-established apoptosis and necrosis, we discuss several death modalities like oxeiptosis, ferroptosis, and necroptosis that are probably employed in melanocyte destruction. This review focuses on the various mechanisms of melanocytic death in vitiligo pathogenesis to demonstrate a panorama of that. We hope to provide new insights into vitiligo pathogenesis and treatment strategies by the review.
Collapse
Affiliation(s)
- Jianru Chen
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Shuli Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Chunying Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
36
|
Plaza-Rojas L, Guevara-Patiño JA. The Role of the NKG2D in Vitiligo. Front Immunol 2021; 12:624131. [PMID: 33717132 PMCID: PMC7952755 DOI: 10.3389/fimmu.2021.624131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.
Collapse
Affiliation(s)
- Lourdes Plaza-Rojas
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | | |
Collapse
|
37
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Bergqvist C, Ezzedine K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J Dermatol 2021; 48:252-270. [DOI: 10.1111/1346-8138.15743] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Christina Bergqvist
- Department of Dermatology AP‐HP Henri Mondor University Hospital UPEC Créteil France
| | - Khaled Ezzedine
- Department of Dermatology AP‐HP Henri Mondor University Hospital UPEC Créteil France
- EA 7379 EpidermE Université Paris‐Est Créteil, UPEC Créteil France
| |
Collapse
|
39
|
Srivastava N, Bishnoi A, Parsad D, Kumaran MS, Vinay K, Gupta S. Dendritic cells sub-sets are associated with inflammatory cytokine production in progressive vitiligo disease. Arch Dermatol Res 2021; 313:759-767. [PMID: 33403574 DOI: 10.1007/s00403-020-02168-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/25/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
In autoimmune onset of vitiligo, perilesional area shows inflammatory cells including T cytotoxic, helper cells and macrophages. Dendritic Cells (DCs) regulate immune activities by antigen presentation to T cells or cytokine production. It is evident that pro- and anti-inflammatory DCs are responsible for their respective cytokines release. However, role of DCs in vitiligo is enigmatic. In the present study, we assessed DCs markers (CD11b and CD11c) along with pro- and anti-inflammatory cytokines (IL-17A, IL-10 and IL-12p70) in stable and active vitiligo patients. Our results revealed a significant augmented expression of CD11b+CD11c+ (pro-inflammatory DC) in peripheral blood mononuclear cells (PBMCs) and skin tissues of active vitiligo patients versus control and stable vitiligo group. Unlikely, CD11b+ (anti-inflammatory DC) levels were significantly impeded in active vitiligo group as compared to another two groups. CD11c (T helper 1 stimulating DC) presented no significant alterations in any group. Furthermore, we perceived significantly up-regulated IL-17A (pro-inflammatory cytokine) and down-regulated IL-10 (anti-inflammatory cytokine) expressions in active vitiligo group as compared to control and stable group (in sera, PBMCs and skin tissue). Also, a significant positive correlation was observed between CD11b+CD11c+ and IL-17A; and CD11b+ and IL-10. Contrarily, CD11b+CD11c+ and CD11b+ were negatively correlated with IL-10 and IL-17A, respectively. In conclusion, modulation of pro- and anti-inflammatory DCs in active vitiligo patients may affect cytokines production and thereby, lead to further depigmentation of skin.
Collapse
Affiliation(s)
- Niharika Srivastava
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India.,Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | | | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprosy, PGIMER, Chandigarh, India
| | - Sarika Gupta
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India.
| |
Collapse
|
40
|
Seneschal J, Boniface K, D'Arino A, Picardo M. An update on Vitiligo pathogenesis. Pigment Cell Melanoma Res 2020; 34:236-243. [PMID: 33278065 DOI: 10.1111/pcmr.12949] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
Vitiligo, the most common depigmenting disorder of the skin, is undergoing a period of intense advances in both disease understanding and therapeutic possibilities leading the way to the beginning of a new era for the disorder. Its pathophysiology has gathered the attention of researchers for years, and many advances have been made in the clarification of the interaction between different factors that result in depigmented macule formation. The complex interplay between non-immunological and immunological factors in vitiligo is key for the development of the disease, and the participation of cells other than melanocytes, such as keratinocytes, fibroblasts, natural killer cells, and innate lymphoid cells, has been shown. Recent advances have also brought to the understanding of the complex part played by a specific subtype of T cells: T-resident memory cells. This review analyzes some of the most recent insights in vitiligo pathogenesis underlining the interactions between different cell types, which are the basis for the therapeutic approaches under development.
Collapse
Affiliation(s)
- Julien Seneschal
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers (BMGIC), Immunodermatology ATIP-AVENIR, University of Bordeaux, FHU ACRONIM, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology and National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Katia Boniface
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers (BMGIC), Immunodermatology ATIP-AVENIR, University of Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Andrea D'Arino
- San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
41
|
Mukhatayev Z, Dellacecca ER, Cosgrove C, Shivde R, Jaishankar D, Pontarolo-Maag K, Eby JM, Henning SW, Ostapchuk YO, Cedercreutz K, Issanov A, Mehrotra S, Overbeck A, Junghans RP, Leventhal JR, Le Poole IC. Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Front Immunol 2020; 11:581433. [PMID: 33335528 PMCID: PMC7736409 DOI: 10.3389/fimmu.2020.581433] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by melanocyte destruction. Regulatory T cells (Tregs) are greatly reduced in vitiligo skin, and replenishing peripheral skin Tregs can provide protection against depigmentation. Ganglioside D3 (GD3) is overexpressed by perilesional epidermal cells, including melanocytes, which prompted us to generate GD3-reactive chimeric antigen receptor (CAR) Tregs to treat vitiligo. Mice received either untransduced Tregs or GD3-specific Tregs to test the hypothesis that antigen specificity contributes to reduced autoimmune reactivity in vitro and in vivo. CAR Tregs displayed increased IL-10 secretion in response to antigen, provided superior control of cytotoxicity towards melanocytes, and supported a significant delay in depigmentation compared to untransduced Tregs and vehicle control recipients in a TCR transgenic mouse model of spontaneous vitiligo. The latter findings were associated with a greater abundance of Tregs and melanocytes in treated mice versus both control groups. Our data support the concept that antigen-specific Tregs can be prepared, used, and stored for long-term control of progressive depigmentation.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Emilia R Dellacecca
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Cormac Cosgrove
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Rohan Shivde
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Dinesh Jaishankar
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | | | - Jonathan M Eby
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Steven W Henning
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Kettil Cedercreutz
- Department of Dermatology, Northwestern University, Chicago, IL, United States
| | - Alpamys Issanov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Andreas Overbeck
- Department for Surgery of Pigment Disorders, Lumiderm, Madrid, Spain
| | - Richard P Junghans
- Department of Hematology/Oncology, Boston University, Boston MA, United States
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern Memorial Hospital, Chicago, IL, United States
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
42
|
Abstract
Vitiligo is a chronic inflammatory skin disease leading to the loss of epidermal melanocytes. To date, treatment options for vitiligo patients are limited, lack sustained efficacy, and are mainly based on off-label use of immunosuppressive agents, such as systemic or topical steroids or topical calcineurin inhibitors, in association with the use of ultraviolet light. However, recent insights into the understanding of the immune pathogenesis of the disease have led to the identification of several therapeutic targets and the development of targeted therapies that are now being tested in clinical trials. In this review, based on the physiopathology of the disease, we summarize emerging targets that could be developed for the treatment of vitiligo and discuss recent and ongoing developments of drugs for the management of the disease.
Collapse
|
43
|
Passeron T. First step in a new era for treatment of patients with vitiligo. Lancet 2020; 396:74-75. [PMID: 32653058 DOI: 10.1016/s0140-6736(20)30747-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Thierry Passeron
- Department of Dermatology, Centre Hospitalier Universitaire Nice, Université Côte d'Azur, Nice, France; Université Côte d'Azur, INSERM, U1065 Nice, France.
| |
Collapse
|
44
|
Schmidt C. Temprian Therapeutics: developing a gene-based treatment for vitiligo. Nature 2020:10.1038/d41586-020-01808-5. [PMID: 32606401 DOI: 10.1038/d41586-020-01808-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Guevara-Patiño JA, Plaza-Rojas L. It Takes Two to Tango. J Invest Dermatol 2020; 140:1131-1133. [PMID: 32446332 DOI: 10.1016/j.jid.2020.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
Abstract
In the study by Jacquemin et al., the authors reported that ligands for NKG2D are upregulated in vitiligo perilesional skin and especially in patients with active disease. The reasons for the elevated expression of NKG2D ligands are unknown. This study, however, provides a framework for understanding vitiligo: Skin resident CD8 T cells recognize and kill melanocytes through NKG2D signaling. This event results in the increased production and release of cyto/chemokines and the development of long-lasting CD8 T cells, which in turn causes the recruitment of new T cells, thus perpetuating and disseminating the disease.
Collapse
Affiliation(s)
- José A Guevara-Patiño
- Department of Surgery and Cancer Biology, Loyola University Chicago, Maywood, Illinois, USA.
| | - Lourdes Plaza-Rojas
- Department of Surgery and Cancer Biology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
46
|
Sun MC, Xu XL, Lou XF, Du YZ. Recent Progress and Future Directions: The Nano-Drug Delivery System for the Treatment of Vitiligo. Int J Nanomedicine 2020; 15:3267-3279. [PMID: 32440123 PMCID: PMC7217315 DOI: 10.2147/ijn.s245326] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
Vitiligo is a depigmentation disease that seriously affects the physical health, mental health and quality of life of a patient. Therapeutic aim at control immunoreaction by relieving oxidative stress. Unfortunately, the cuticle barrier function and lack of specific accumulation lead to unsatisfactory therapeutic outcomes and side effects. The introduction and innovation of nanotechnology offers inspiration and clues for the development of new strategies to treat vitiligo. However, not many studies have been done to interrogate how nanotechnology can be used for vitiligo treatment. In this review, we summarize and analyze recent studies involving nano-drug delivery systems for the treatment of vitiligo, with a special emphasis on liposomes, niosomes, nanohydrogel and nanoparticles. These studies made significant progress by either increasing drug loading efficiency or enhancing penetration. Based on these studies, there are three proposed principles for topical nano-drug delivery systems treatment of vitiligo including the promotion of transdermal penetration, enhancement of drug retention and facilitation of melanin regeneration. The presentation of these ideas may provide inspirations for the future development of topical drug delivery systems that will conquer vitiligo.
Collapse
Affiliation(s)
- Ming-Chen Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xue-Fang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, People's Republic of China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
47
|
Abstract
Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Autoreactive cytotoxic CD8+ T cells engage melanocytes and promote disease progression through the local production of IFN-γ, and IFN-γ-induced chemokines are then secreted from surrounding keratinocytes to further recruit T cells to the skin through a positive-feedback loop. Both topical and systemic treatments that block IFN-γ signaling can effectively reverse vitiligo in humans; however, disease relapse is common after stopping treatments. Autoreactive resident memory T cells are responsible for relapse, and new treatment strategies focus on eliminating these cells to promote long-lasting benefit. Here, we discuss basic, translational, and clinical research studies that provide insight into the pathogenesis of vitiligo, and how this insight has been utilized to create new targeted treatment strategies.
Collapse
Affiliation(s)
- Michael L. Frisoli
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - Kingsley Essien
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - John E. Harris
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| |
Collapse
|
48
|
Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I. The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res 2020; 33:778-787. [PMID: 32198977 DOI: 10.1111/pcmr.12878] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Vitiligo is the most common acquired pigmentary disorder, which afflicts 0.5%-1% of the world population, and is characterized by depigmented skin patches resulting from melanocyte loss. Vitiligo has a complex etiology and varies in its manifestations, progression, and response to treatment. It presents as an autoimmune disease, evidenced by circulating melanocyte-specific antibodies, and association with other autoimmune diseases. However, autoimmunity may be secondary to the high oxidative stress in vitiligo skin and to intrinsic defects in melanocytes and their microenvironment, which contribute to aberrant stress response, neo-antigenicity, and susceptibility of melanocytes to immune attack and apoptosis. There is also a genetic predisposition to vitiligo, which sensitizes melanocytes to environmental agents, such as phenolic compounds. Currently, there are different treatment modalities for re-pigmenting vitiligo skin. However, when repigmentation is achieved, the major challenge is maintaining the pigmentation, which is lost in 40% of cases. In this review, we present an overview of the clinical aspects of vitiligo, its pathophysiology, the intrinsic defects in melanocytes and their microenvironment, and treatment strategies. Based on lessons from the biology of human melanocytes, we present our perspective of how repigmentation of vitiligo skin can be achieved and sustained.
Collapse
Affiliation(s)
| | - Christian Jordan
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Tina Ho
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Parth Rajendrakumar Upadhyay
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Alan Fleischer
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
49
|
Bergqvist C, Ezzedine K. Vitiligo: A Review. Dermatology 2020; 236:571-592. [DOI: 10.1159/000506103] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
Vitiligo, a common depigmenting skin disorder, has an estimated prevalence of 0.5–2% of the population worldwide. The disease is characterized by the selective loss of melanocytes which results in typical nonscaly, chalky-white macules. In recent years, considerable progress has been made in our understanding of the pathogenesis of vitiligo which is now clearly classified as an autoimmune disease. Vitiligo is often dismissed as a cosmetic problem, although its effects can be psychologically devastating, often with a considerable burden on daily life. In 2011, an international consensus classified segmental vitiligo separately from all other forms of vitiligo, and the term vitiligo was defined to designate all forms of nonsegmental vitiligo. This review summarizes the current knowledge on vitiligo and attempts to give an overview of the future in vitiligo treatment.
Collapse
|
50
|
Karagaiah P, Valle Y, Sigova J, Zerbinati N, Vojvodic P, Parsad D, Schwartz RA, Grabbe S, Goldust M, Lotti T. Emerging drugs for the treatment of vitiligo. Expert Opin Emerg Drugs 2020; 25:7-24. [PMID: 31958256 DOI: 10.1080/14728214.2020.1712358] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Vitiligo is a relatively common autoimmune depigmenting disorder of the skin. There has been a great advance in understanding the pathological basis, which has led to the development and utilization of various new molecules in treating vitiligo. This review aims at a comprehensively describing the treatments available and the emerging treatment aspects and the scope for future developments.Areas covered: This study comprehensively summarizes the current concepts in the pathogenesis of vitiligo with special focus on the cytokine and signaling pathways, which are the targets for newer drugs. JAK kinase signaling pathways and the cytokines involved are the focus of vitiligo treatment in current research, followed by antioxidant mechanisms and repigmenting mechanisms. Topical immunosuppressants may be an alternative to steroids in localized vitiligo. Newer repigmenting agents like basic fibroblast growth factors, afamelanotide have been included and a special emphasis is laid on the upcoming targeted immunotherapy.Expert opinion: The treatment of vitiligo needs to be multimodal with emphasis on targeting different limbs of the pathogenesis. Topical and oral JAK inhibitors are the most promising new class of drugs currently available for treating vitiligo and acts best in conjunction with NB-UVB.
Collapse
Affiliation(s)
- Priyanka Karagaiah
- Department of Dermatology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Yan Valle
- Vitiligo Research Foundation, New York, NY, USA
| | - Julia Sigova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nicola Zerbinati
- Universita degli Studi dell'Insubria Dipartimento di Scienze Chirurgiche e Morfologiche, Varese, Italy
| | - Petar Vojvodic
- Clinic for Mental Disorders "Dr Laza Lazarevic", Belgrade, Serbia
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mohamad Goldust
- University of Rome Guglielmo Marconi, Rome, Italy, Department of Dermatology, University Medical Center Mainz, Mainz, Germany
| | - Torello Lotti
- Department of Dermatology, University of Studies Guglielmo Marconi, Rome, Italy
| |
Collapse
|