1
|
Oh N, Kim JY. Ionizable Lipids Drive Subcellular Localization and Immune Cell Targeting of Barcoded Nanoparticles in Lung Cancer. ACS NANO 2025. [PMID: 40391427 DOI: 10.1021/acsnano.5c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
To accurately predict the effect of a drug and enhance its potency, it is essential to examine not only the arrival of the carrier and its payload at the target cell but also the final destination of the subcellular organelle because a considerable number of diseases are associated with the malfunctioning of cellular organelles. Here, we present nanoparticle (NP) microscopy via signal amplification of DNA barcodes combined with the multiplexed cyclic immunofluorescence technique for quantifying multiple NP types simultaneously. This technique enhanced the fluorescence signal-to-noise by 15-fold compared to standard fluorescence in situ hybridization, thereby providing a more precise means of analyzing the intra- and interdistribution of three core-shell NPs (G0-P5, 7C1-F5, and C12-D) in vitro and in vivo. The in vitro results demonstrated that in macrophages, nucleic acids condensed with G0-C14 cationic lipids were often located in lysosomes, whereas in tumor cells, nucleic acids were mainly located in mitochondria, regardless of the type of cationic lipid. Together, the in vivo results reveal that nucleic acids condensed with G0-C14 cationic lipids demonstrated the greatest uptake by CD206+ immune cells, whereas nucleic acids condensed with 7C1 and C12-200 cationic lipids exhibited the highest level of uptake by CD206+CD11c+Arg1+ immune cells.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan 47162, Republic of Korea
| | - Jae Yoon Kim
- Department of Urology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Republic of Korea
| |
Collapse
|
2
|
Wu X, Yuan F, Guo L, Gao D, Zheng W, Chen C, Zheng H, Liu J. Intraductal chemotherapy for triple-negative breast cancer: a pathway to minimally invasive clinical treatment. BMC Cancer 2025; 25:285. [PMID: 39966717 PMCID: PMC11837698 DOI: 10.1186/s12885-025-13693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is traditionally treated with systemic chemotherapy, often resulting in significant off-target toxicity. In this study, we assess the efficacy of intraductal chemotherapeutic delivery, aimed at reducing systemic side effects. Using an in situ TNBC model, created by intraductal injection of 4T1-luc cells, we identified day 3 post-tumor implantation as an optimal early intervention point. Echocardiographic analysis confirmed that intraductal administration of eribulin (ERI) or doxorubicin (DOX) did not cause cardiac dysfunction or apoptosis. Our results demonstrate that intraductal delivery of ERI and DOX significantly enhances anti-tumor and anti-metastatic effects. Mechanistically, ERI followed by DOX increased intratumoral perfusion, improved drug concentration, reversed epithelial-mesenchymal transition, and inhibited tumor cell invasion and metastasis. Additionally, this approach triggered immunogenic cell death and activated a systemic anti-tumor immune response. These findings underscore the potential of intraductal chemotherapy as a safe, highly effective approach, offering a preclinical foundation for minimally invasive TNBC therapies.
Collapse
Affiliation(s)
- Xinhong Wu
- Breast cancer center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, National key clinical specialty discipline construction program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, No.116 Zhuo Daoquan South Road, 430079, Wuhan, Hubei,, China
| | - Feng Yuan
- Breast cancer center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, National key clinical specialty discipline construction program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, No.116 Zhuo Daoquan South Road, 430079, Wuhan, Hubei,, China
| | - Liantao Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, China
| | - Dongcheng Gao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou City, Henan Province, China
| | - Weijie Zheng
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan, 430060, People's Republic of China.
| | - Hongmei Zheng
- Breast cancer center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, National key clinical specialty discipline construction program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, No.116 Zhuo Daoquan South Road, 430079, Wuhan, Hubei,, China.
| | - Jianhua Liu
- Breast cancer center, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, National key clinical specialty discipline construction program, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, No.116 Zhuo Daoquan South Road, 430079, Wuhan, Hubei,, China.
| |
Collapse
|
3
|
Sai BM, Dinakar YH, Kumar H, Jain R, Kesharwani S, Kesharwani SS, Mudavath SL, Ramkishan A, Jain V. Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer. Ther Deliv 2024; 15:871-891. [PMID: 39320858 PMCID: PMC11498026 DOI: 10.1080/20415990.2024.2400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women globally. The difficulties with anticancer medications, such as ineffective targeting, larger doses, toxicity to healthy cells and side effects, have prompted attention to alternate approaches to address these difficulties. RNA interference by small interfering RNA (siRNA) is one such tactic. When compared with chemotherapy, siRNA has several advantages, including the ability to quickly modify and suppress the expression of the target gene and display superior efficacy and safety. However, there are known challenges and hurdles that limits their clinical translation. Decomposition by endonucleases, renal clearance, hydrophilicity, negative surface charge, short half-life and off-target effects of naked siRNA are obstacles that hinder the desired biological activity of naked siRNA. Nanoparticulate systems such as polymeric, lipid, lipid-polymeric, metallic, mesoporous silica nanoparticles and several other nanocarriers were used for effective delivery of siRNA and to knock down genes involved in breast cancer and triple-negative breast cancer. The focus of this review is to provide a comprehensive picture of various strategies utilized for delivering siRNA, such as combinatorial delivery, development of modified nanoparticles, smart nanocarriers and nanocarriers that target angiogenesis, cancer stem cells and metastasis of breast cancer.
Collapse
Affiliation(s)
- Boya Manasa Sai
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Sharyu Kesharwani
- National Institute of Pharmaceutical Education & Research, Kolkata, West Bengal , 700054, India
| | | | - Shyam lal Mudavath
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ajmeer Ramkishan
- Central Drugs Standard Control Organization, East Zone, Kolkata, 700020, West Bengal, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
4
|
Zhang C, Wang J, Wang H, Li J. Interference of the Circular RNA Sperm Antigen With Calponin Homology and Coiled-Coil Domains 1 Suppresses Growth and Promotes Apoptosis of Breast Cancer Cells Partially Through Targeting miR-1236-3p/Chromobox 8 Pathway. Clin Breast Cancer 2024; 24:e138-e151.e2. [PMID: 38341369 DOI: 10.1016/j.clbc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024]
Abstract
Noncoding RNAs and RNA modifiers are implicated in cancer radiotherapy. Here, we aimed to investigate the role of sperm antigen with calponin homology and coiled-coil domains 1 (SPECC1)-derived circular RNA (circSPECC1; hsa_circ_0000745) in breast cancer (BC) cells under radiation treatment. Based on quantitative real-time PCR, circSPECC1 was highly upregulated in BC patients' tumors and cells, and circSPECC1 expression was further increased with the dosage of radiation in BC cells. Moreover, circSPECC1 upregulation was found to be concomitant with higher chromobox 8 (CBX8) and lower microRNA (miR)-1236-3p expression. Functionally, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays showed that circSPECC1 interference suppressed cell proliferation and long-term survival in BC cells and irradiated BC cells. Xenograft tumor model experiments showed that circSPECC1 knockdown restrained BC tumor growth in vivo. Meanwhile, flow cytometry assay and western blotting revealed an enhanced apoptosis by silencing circSPECC1. Moreover, miR-1236-3p overexpression, similar to circSPECC1 silencing, displayed anti-growth and proapoptosis roles in irradiated BC cells. Mechanistically, dual-luciferase reporter assay and RNA immunoprecipitation assay identified a target relationship between miR-1236-3p and circSPECC1 or CBX8. Also, CBX8 expression could be modulated by circSPECC1 via miR-1236-3p regulation. Collectively, we indicated that inhibiting circSPECC1 could suppress growth and promote apoptosis of BC cells in both irradiated and nonirradiated conditions at least partially via miR-1236-3p/CBX8 axis, confirming that circSPECC1 might be target to develop anticancer drug in BC.
Collapse
Affiliation(s)
- Cuipeng Zhang
- Department of Oncology, Second Affiliated Hospital of Guizhou Medical University, Guizhou Province, China.
| | - Jing Wang
- Department of Oncology, The Second People's Hospital of Liaocheng, Linqing, Shandong Province, China
| | - Hongwei Wang
- Department of Oncology, Lianyungang No. 2 Hospital of Jiangsu Province, China
| | - Jing Li
- Department of Oncology, Shandong Energy Zaozhuang Mining Group Central Hospital, China
| |
Collapse
|
5
|
Zaluzec EK, Kenyon E, Volk M, Hayat H, Powell K, Loomis A, Chakravarty S, Hix JML, Schipper J, Chang C, Kiupel M, Wang P, Shapiro EM, Sempere LF. Tantalum oxide nanoparticles as versatile and high-resolution X-ray contrast agent for intraductal image-guided ablative procedure in rodent models of breast cancer. NPJ IMAGING 2024; 2:3. [PMID: 39301013 PMCID: PMC11412094 DOI: 10.1038/s44303-024-00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/17/2024] [Indexed: 09/22/2024]
Abstract
There are limited options for primary prevention of breast cancer (BC). Experimental procedures to locally prevent BC have shown therapeutic efficacy in animal models. To determine the suitability of FDA-approved iodine-containing and various metal-containing (bismuth, gold, iodine, or tantalum) preclinical nanoparticle-based contrast agents for image-guided intraductal (ID) ablative treatment of BC in rodent models, we performed a prospective longitudinal study to determine the imaging performance, local retention and systemic clearance, safety profile, and compatibility with ablative solution of each contrast agent. At least six abdominal mammary glands (>3 female FVB/JN mice and/or Sprague-Dawley rats, 10-11 weeks of age) were intraductally injected with commercially available contrast agents (Omnipaque® 300, Fenestra® VC, MVivoTM Au, MVivoTM BIS) or in-house synthesized tantalum oxide (TaOx) nanoparticles. Contrast agents were administered at stock concentration or diluted in 70% ethanol (EtOH) and up to 1% ethyl cellulose (EC) as gelling agent to assess their compatibility with our image-guided ablative procedure. Mammary glands were serially imaged by microCT for up to 60 days after ID delivery. Imaging data were analyzed by radiologists and deep learning to measure in vivo signal disappearance of contrast agents. Mammary glands and major organs were ultimately collected for histopathological examination. TaOx-containing solutions provided best imaging performance for nitid visualization of ductal tree immediately after infusion, low outward diffusion (<1 day) and high homogeneity. Of all nanoparticles, TaOx had the highest local clearance rate (46% signal decay as stock and 36% as ablative solution 3 days after ID injection) and exhibited low toxicity. TaOx-containing ablative solution with 1% EC caused same percentage of epithelial cell death (88.62% ± 7.70% vs. 76.38% ± 9.99%, p value = 0.089) with similar minimal collateral damage (21.56 ± 5.28% vs. 21.50% ± 7.14%, p value = 0.98) in mouse and rat mammary glands, respectively. In conclusion, TaOx-nanoparticles are a suitable and versatile contrast agent for intraductal imaging and image-guided ablative procedures in rodent models of BC with translational potential to humans.
Collapse
Affiliation(s)
- Erin K Zaluzec
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Pharmacology & Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally: Erin K. Zaluzec, Elizabeth Kenyon
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally: Erin K. Zaluzec, Elizabeth Kenyon
| | - Maximilian Volk
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Hasaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Katherine Powell
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Alexander Loomis
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shatadru Chakravarty
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jeremy M L Hix
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Josh Schipper
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Chi Chang
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Matti Kiupel
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Lansing, MI 48910, USA
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Erik M Shapiro
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Departments of Biomedical Engineering, Physiology, and Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Lorenzo F Sempere
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Feng C, Song C, Song S, Zhang G, Yin M, Zhang Y, Qian F, Wang Q, Guo M, Li C. KnockTF 2.0: a comprehensive gene expression profile database with knockdown/knockout of transcription (co-)factors in multiple species. Nucleic Acids Res 2024; 52:D183-D193. [PMID: 37956336 PMCID: PMC10767813 DOI: 10.1093/nar/gkad1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Transcription factors (TFs), transcription co-factors (TcoFs) and their target genes perform essential functions in diseases and biological processes. KnockTF 2.0 (http://www.licpathway.net/KnockTF/index.html) aims to provide comprehensive gene expression profile datasets before/after T(co)F knockdown/knockout across multiple tissue/cell types of different species. Compared with KnockTF 1.0, KnockTF 2.0 has the following improvements: (i) Newly added T(co)F knockdown/knockout datasets in mice, Arabidopsis thaliana and Zea mays and also an expanded scale of datasets in humans. Currently, KnockTF 2.0 stores 1468 manually curated RNA-seq and microarray datasets associated with 612 TFs and 172 TcoFs disrupted by different knockdown/knockout techniques, which are 2.5 times larger than those of KnockTF 1.0. (ii) Newly added (epi)genetic annotations for T(co)F target genes in humans and mice, such as super-enhancers, common SNPs, methylation sites and chromatin interactions. (iii) Newly embedded and updated search and analysis tools, including T(co)F Enrichment (GSEA), Pathway Downstream Analysis and Search by Target Gene (BLAST). KnockTF 2.0 is a comprehensive update of KnockTF 1.0, which provides more T(co)F knockdown/knockout datasets and (epi)genetic annotations across multiple species than KnockTF 1.0. KnockTF 2.0 facilitates not only the identification of functional T(co)Fs and target genes but also the investigation of their roles in the physiological and pathological processes.
Collapse
Affiliation(s)
- Chenchen Feng
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & School of Computer, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guorui Zhang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxue Yin
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuexin Zhang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengcui Qian
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiuyu Wang
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & School of Computer, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chunquan Li
- National Health Commission Key Laboratory of Birth Defect Research and Prevention & School of Computer, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, University of South China, Hengyang, Hunan, 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
7
|
Zaluzec EK, Sempere LF. Systemic and Local Strategies for Primary Prevention of Breast Cancer. Cancers (Basel) 2024; 16:248. [PMID: 38254741 PMCID: PMC10814018 DOI: 10.3390/cancers16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
One in eight women will develop breast cancer in the US. For women with moderate (15-20%) to average (12.5%) risk of breast cancer, there are few options available for risk reduction. For high-risk (>20%) women, such as BRCA mutation carriers, primary prevention strategies are limited to evidence-based surgical removal of breasts and/or ovaries and anti-estrogen treatment. Despite their effectiveness in risk reduction, not many high-risk individuals opt for surgical or hormonal interventions due to severe side effects and potentially life-changing outcomes as key deterrents. Thus, better communication about the benefits of existing strategies and the development of new strategies with minimal side effects are needed to offer women adequate risk-reducing interventions. We extensively review and discuss innovative investigational strategies for primary prevention. Most of these investigational strategies are at the pre-clinical stage, but some are already being evaluated in clinical trials and others are expected to lead to first-in-human clinical trials within 5 years. Likely, these strategies would be initially tested in high-risk individuals but may be applicable to lower-risk women, if shown to decrease risk at a similar rate to existing strategies, but with minimal side effects.
Collapse
Affiliation(s)
- Erin K. Zaluzec
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology & Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lorenzo F. Sempere
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Robertson N, Sempere L, Kenyon E, Mallet C, Smith K, Hix J, Halim A, Fan J, Moore A. Omniparticle Contrast Agent for Multimodal Imaging: Synthesis and Characterization in an Animal Model. Mol Imaging Biol 2023; 25:401-412. [PMID: 36071300 PMCID: PMC9989039 DOI: 10.1007/s11307-022-01770-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Individual imaging modalities have certain advantages, but each suffers from drawbacks that other modalities may overcome. The goal of this study was to create a novel contrast agent suitable for various imaging modalities that after a single administration can bridge and strengthen the collaboration between the research fields as well as enrich the information obtained from any one modality. PROCEDURES The contrast agent platform is based on dextran-coated iron oxide nanoparticles (for MRI and MPI) and synthesized using a modified co-precipitation method, followed by a series of conjugation steps with a fluorophore (for fluorescence and photoacoustic imaging), thyroxine (for CT imaging), and chelators for radioisotope labeling (for PET imaging). The fully conjugated agent was then tested in vitro in cell uptake, viability, and phantom studies and in vivo in a model of intraductal injection and in a tumor model. RESULTS The agent was synthesized, characterized, and tested in vitro where it showed the ability to produce a signal on MRI/MPI/FL/PA/CT and PET images. Studies in cells showed the expected concentration-dependent uptake of the agent without noticeable toxicity. In vivo studies demonstrated localization of the agent to the ductal tree in mice after intraductal injection with different degrees of resolution, with CT being the best for this particular application. In a model of injected labeled tumor cells, the agent produced a signal with all modalities and showed persistence in tumor cells confirmed by histology. CONCLUSIONS A fully functional omniparticle contrast agent was synthesized and tested in vitro and in vivo in two animal models. Results shown here point to the generation of a potent signal in all modalities tested without detrimental toxicity. Future use of this agent includes its exploration in various models of human disease including image-guided diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Neil Robertson
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Christiane Mallet
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Kylie Smith
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Jeremy Hix
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Alan Halim
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Jinda Fan
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Sapienza Passos J, Dartora VFMC, Cassone Salata G, Draszesski Malagó I, Lopes LB. Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. Int J Pharm 2023; 635:122681. [PMID: 36738808 DOI: 10.1016/j.ijpharm.2023.122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Breast cancer is a major public health problem, affecting millions of people. It is a very heterogeneous disease, with localized and invasive forms, and treatment generally consists of a combination of surgery and radiotherapy followed by administration of estrogen receptor modulators or aromatase inhibitors. Given its heterogeneity, management strategies that take into consideration the type of disease and biological markers and can provide more personalized and local treatment are required. More recently, the intraductal administration (i.e., into the breast ducts) of drugs has attracted significant attention due to its ability of providing drug distribution through the ductal tree in a minimally invasive manner. Although promising, intraductal administration is not trivial, and difficulties in duct identification and cannulation are important challenges to the further development of this route. New drug delivery strategies such as nanostructured systems can help to achieve the full benefits of the route due to the possibility of prolonging tissue retention, improving targeting and selectivity, increasing cytotoxicity and reducing the frequency of administration. This review aims at discussing the potential benefits and challenges of intraductal administration, focusing on the design and use of nanocarriers as innovative and feasible strategies for local breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil; College of Engineering, University of California-Davis, USA
| | - Giovanna Cassone Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
10
|
Kenyon E, Zaluzec E, Powell K, Volk M, Chakravarty S, Hix J, Kiupel M, Shapiro EM, Sempere LF. X-Ray Visualization of Intraductal Ethanol-Based Ablative Treatment for Prevention of Breast Cancer in Rat Models. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/64042. [PMID: 36571406 PMCID: PMC9876732 DOI: 10.3791/64042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are still a limited number of primary interventions for prevention of breast cancer. For women at a high risk of developing breast cancer, the most effective intervention is prophylactic mastectomy. This is a drastic surgical procedure in which the mammary epithelial cells that can give rise to breast cancer are completely removed along with the surrounding tissue. The goal of this protocol is to demonstrate the feasibility of a minimally invasive intraductal procedure that could become a new primary intervention for breast cancer prevention. This local procedure would preferentially ablate mammary epithelial cells before they can become malignant. Intraductal methods to deliver solutions directly to these epithelial cells in rodent models of breast cancer have been developed at Michigan State University and elsewhere. The rat mammary gland consists of a single ductal tree that has a simpler and more linear architecture compared to the human breast. However, chemically induced rat models of breast cancer offer valuable tools for proof-of-concept studies of new preventive interventions and scalability from mouse models to humans. Here, a procedure for intraductal delivery of an ethanol-based ablative solution containing tantalum oxide nanoparticles as X-ray contrast agent and ethyl cellulose as gelling agent into the rat mammary ductal tree is described. Delivery of aqueous reagents (e.g., cytotoxic compounds, siRNAs, AdCre) by intraductal injection has been described previously in mouse and rat models. This protocol description emphasizes methodological changes and steps that pertain uniquely to delivering an ablative solution, formulation consideration to minimize local and systemic side effects of the ablative solution, and X-ray imaging for in vivo assessment of ductal tree filling. Fluoroscopy and micro-CT techniques enable to determine the success of ablative solution delivery and the extent of ductal tree filling thanks to compatibility with the tantalum-containing contrast agent.
Collapse
Affiliation(s)
- Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI, USA,Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Erin Zaluzec
- Precision Health Program, Michigan State University, East Lansing, MI, USA,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| | - Katherine Powell
- Precision Health Program, Michigan State University, East Lansing, MI, USA,Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Maximilian Volk
- Precision Health Program, Michigan State University, East Lansing, MI, USA,College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Shatadru Chakravarty
- Department of Radiology, Michigan State University, East Lansing, MI, USA,TechInsights Inc., Suite 500, 1891 Robertson Road, Nepean, Ontario, Canada K2H 5B7
| | - Jeremy Hix
- Department of Radiology, Michigan State University, East Lansing, MI, USA,IQ Advanced Molecular Imaging Facility, Michigan State University, East Lansing, MI, USA
| | - Matti Kiupel
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, USA
| | - Erik M. Shapiro
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Lorenzo F. Sempere
- Precision Health Program, Michigan State University, East Lansing, MI, USA,Department of Radiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Wang G, Kumar A, Ding W, Korangath P, Bera T, Wei J, Pai P, Gabrielson K, Pastan I, Sukumar S. Intraductal administration of transferrin receptor-targeted immunotoxin clears ductal carcinoma in situ in mouse models of breast cancer-a preclinical study. Proc Natl Acad Sci U S A 2022; 119:e2200200119. [PMID: 35675429 PMCID: PMC9214490 DOI: 10.1073/pnas.2200200119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022] Open
Abstract
The human transferrin receptor (TFR) is overexpressed in most breast cancers, including preneoplastic ductal carcinoma in situ (DCIS). HB21(Fv)-PE40 is a single-chain immunotoxin (IT) engineered by fusing the variable region of a monoclonal antibody (HB21) against a TFR with a 40 kDa fragment of Pseudomonas exotoxin (PE). In humans, the administration of other TFR-targeted immunotoxins intrathecally led to inflammation and vascular leakage. We proposed that for treatment of DCIS, intraductal (i.duc) injection of HB21(Fv)-PE40 could avoid systemic toxicity while retaining its potent antitumor effects on visible and occult tumors in the entire ductal tree. Pharmacokinetic studies in mice showed that, in contrast to intravenous injection, IT was undetectable by enzyme-linked immunosorbent assay in blood following i.duc injection of up to 3.0 μg HB21(Fv)-PE40. We demonstrated the antitumor efficacy of HB21(Fv)-PE40 in two mammary-in-duct (MIND) models, MCF7 and SUM225, grown in NOD/SCID/gamma mice. Tumors were undetectable by In Vivo Imaging System (IVIS) imaging in intraductally treated mice within 1 wk of initiation of the regimen (IT once weekly/3 wk, 1.5 μg/teat). MCF7 tumor-bearing mice remained tumor free for up to 60 d of observation with i.duc IT, whereas the HB21 antibody alone or intraperitoneal IT treatment had minimal/no antitumor effects. These and similar findings in the SUM225 MIND model were substantiated by analysis of mammary gland whole mounts, histology, and immunohistochemistry for the proteins Ki67, CD31, CD71 (TFR), and Ku80. This study provides a strong preclinical foundation for conducting feasibility and safety trials in patients with stage 0 breast cancer.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007
| | - Alok Kumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Wanjun Ding
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Preethi Korangath
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Tapan Bera
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Junxia Wei
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ira Pastan
- Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
12
|
Belpaire M, Taminiau A, Geerts D, Rezsohazy R. HOXA1, a breast cancer oncogene. Biochim Biophys Acta Rev Cancer 2022; 1877:188747. [PMID: 35675857 DOI: 10.1016/j.bbcan.2022.188747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
Abstract
More than 25 years ago, the first literature records mentioned HOXA1 expression in human breast cancer. A few years later, HOXA1 was confirmed as a proper oncogene in mammary tissue. In the following two decades, molecular data about the mode of action of the HOXA1 protein, the factors contributing to activate and maintain HOXA1 gene expression and the identity of its target genes have accumulated and provide a wider view on the association of this transcription factor to breast oncogenesis. Large-scale transcriptomic data gathered from wide cohorts of patients further allowed refining the relationship between breast cancer type and HOXA1 expression. Several recent reports have reviewed the connection between cancer hallmarks and the biology of HOX genes in general. Here we take HOXA1 as a paradigm and propose an extensive overview of the molecular data centered on this oncoprotein, from what its expression modulators, to the interactors contributing to its oncogenic activities, and to the pathways and genes it controls. The data converge to an intricate picture that answers questions on the multi-modality of its oncogene activities, point towards better understanding of breast cancer aetiology and thereby provides an appraisal for treatment opportunities.
Collapse
Affiliation(s)
- Magali Belpaire
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Dirk Geerts
- Heart Failure Research Center, Amsterdam University Medical Center (AMC), Universiteit van Amsterdam, Amsterdam, the Netherlands.
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
13
|
Kenyon E, Zaluzec EK, Powell K, Volk M, Chakravarty S, Hix J, Arora R, Westerhuis JJ, Kiupel M, Shapiro EM, Sempere LF. Intraductal Delivery and X-ray Visualization of Ethanol-Based Ablative Solution for Prevention and Local Treatment of Breast Cancer in Mouse Models. J Vis Exp 2022:10.3791/63457. [PMID: 35435915 PMCID: PMC9613378 DOI: 10.3791/63457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the second-leading cause of cancer-related death for women in the USA. For high-risk women, prophylactic mastectomy is the most effective primary prevention strategy. Prophylactic mastectomy is an aggressive surgical procedure that completely removes the mammary epithelial cells from which breast cancer arises along with the surrounding tissue. We seek to develop a minimally invasive intraductal procedure as an alternative to prophylactic mastectomy to locally ablate the mammary epithelial cells before they can become malignant. We and others have developed an intraductal delivery procedure to reach and treat these epithelial cells in rodent models of breast cancer. While the mouse mammary gland with a single non-anastomosed ductal tree opening at the nipple has a much less complex and tortuous architecture than the human breast, chemically induced and genetically engineered mouse models of breast cancer are valuable to produce proof-of-concept studies of new preventative strategies. Here, we describe a procedure for intraductal delivery of an ethanol-based ablative solution containing micro-CT/X-ray tantalum-based contrast agent within the mouse mammary ductal tree for the therapeutic purpose of primary prevention of breast cancer. Intraductal delivery of aqueous reagents (e.g., cytotoxic compounds, siRNAs, AdCre) has been previously described in mouse models. Thus, we focus our protocol description on methodological modifications and unique experimental considerations for optimizing delivery of ethanol, for minimizing local and systemic side effects of ethanol administration, and for in vivo visualization of ductal tree filling via micro-CT/fluoroscopy imaging. Visualization of the ductal tree immediately after injection of a contrast-containing solution allows for confirmation of complete filling or unsuccessful outcomes such as underfilling or overfilling. This procedure can be applied for delivery and imaging of other ablative compounds aimed at either preventing tumor formation or locally treating early-stage tumors accessible via the ductal tree.
Collapse
Affiliation(s)
- Elizabeth Kenyon
- Precision Health Program, Michigan State University; Department of Radiology, College of Human Medicine, Michigan State University
| | - Erin K Zaluzec
- Precision Health Program, Michigan State University; Department of Pharmacology & Toxicology, College of Veterinary Medicine, Michigan State University
| | - Katherine Powell
- Precision Health Program, Michigan State University; Department of Radiology, College of Human Medicine, Michigan State University
| | - Maximilian Volk
- Precision Health Program, Michigan State University; College of Osteopathic Medicine, Michigan State University
| | - Shatadru Chakravarty
- Department of Radiology, College of Human Medicine, Michigan State University; Advanced Materials Characterization Laboratory/Materials Research Center, Missouri University of Science and Technology
| | - Jeremy Hix
- Department of Radiology, College of Human Medicine, Michigan State University; Institute for Quantitative (IQ) Health Science and Engineering Advanced Molecular Imaging Facility, Michigan State University
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University; Institute for Quantitative (IQ) Health Science and Engineering, Michigan State University
| | | | - Matti Kiupel
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University
| | - Erik M Shapiro
- Department of Radiology, College of Human Medicine, Michigan State University; Institute for Quantitative (IQ) Health Science and Engineering Advanced Molecular Imaging Facility, Michigan State University
| | - Lorenzo F Sempere
- Precision Health Program, Michigan State University; Department of Radiology, College of Human Medicine, Michigan State University;
| |
Collapse
|
14
|
Correia C, Weiskittel TM, Ung CY, Villasboas Bisneto JC, Billadeau DD, Kaufmann SH, Li H. Uncovering Pharmacological Opportunities for Cancer Stem Cells-A Systems Biology View. Front Cell Dev Biol 2022; 10:752326. [PMID: 35359437 PMCID: PMC8962639 DOI: 10.3389/fcell.2022.752326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs) represent a small fraction of the total cancer cell population, yet they are thought to drive disease propagation, therapy resistance and relapse. Like healthy stem cells, CSCs possess the ability to self-renew and differentiate. These stemness phenotypes of CSCs rely on multiple molecular cues, including signaling pathways (for example, WNT, Notch and Hedgehog), cell surface molecules that interact with cellular niche components, and microenvironmental interactions with immune cells. Despite the importance of understanding CSC biology, our knowledge of how neighboring immune and tumor cell populations collectively shape CSC stemness is incomplete. Here, we provide a systems biology perspective on the crucial roles of cellular population identification and dissection of cell regulatory states. By reviewing state-of-the-art single-cell technologies, we show how innovative systems-based analysis enables a deeper understanding of the stemness of the tumor niche and the influence of intratumoral cancer cell and immune cell compositions. We also summarize strategies for refining CSC systems biology, and the potential role of this approach in the development of improved anticancer treatments. Because CSCs are amenable to cellular transitions, we envision how systems pharmacology can become a major engine for discovery of novel targets and drug candidates that can modulate state transitions for tumor cell reprogramming. Our aim is to provide deeper insights into cancer stemness from a systems perspective. We believe this approach has great potential to guide the development of more effective personalized cancer therapies that can prevent CSC-mediated relapse.
Collapse
Affiliation(s)
- Cristina Correia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Taylor M Weiskittel
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | | | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic, Rochester, MN, United States,Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States,Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States,Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States,*Correspondence: Hu Li,
| |
Collapse
|
15
|
Belpaire M, Ewbank B, Taminiau A, Bridoux L, Deneyer N, Marchese D, Lima-Mendez G, Baurain JF, Geerts D, Rezsohazy R. HOXA1 Is an Antagonist of ERα in Breast Cancer. Front Oncol 2021; 11:609521. [PMID: 34490074 PMCID: PMC8417444 DOI: 10.3389/fonc.2021.609521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.
Collapse
Affiliation(s)
- Magali Belpaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Bruno Ewbank
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Jean-François Baurain
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Woluwe-Saint-Lambert, Belgium.,King Albert II Cancer Institute, Cliniques Universitaires St Luc, Woluwe-Saint-Lambert, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centrum (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
16
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
17
|
Sena IFG, Rocha BGS, Picoli CC, Santos GSP, Costa AC, Gonçalves BOP, Garcia APV, Soltani-Asl M, Coimbra-Campos LMC, Silva WN, Costa PAC, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Heller D, Cassali GD, Mintz A, Birbrair A. C(3)1-TAg in C57BL/6 J background as a model to study mammary tumor development. Histochem Cell Biol 2021; 156:165-182. [PMID: 34003355 DOI: 10.1007/s00418-021-01995-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Diagnosis and prognosis of breast cancer is based on disease staging identified through histopathological and molecular biology techniques. Animal models are used to gain mechanistic insights into the development of breast cancer. C(3)1-TAg is a genetically engineered mouse model that develops mammary cancer. However, carcinogenesis caused by this transgene was characterized in the Friend Virus B (FVB) background. As most genetic studies are done in mice with C57BL/6 J background, we aimed to define the histological alterations in C3(1)-TAg C57BL/6 J animals. Our results showed that C3(1)-TAg animals with C57BL/6 J background develop solid-basaloid adenoid cystic carcinomas with increased fibrosis, decreased area of adipocytes, and a high proliferative index, which are triple-negative for progesterone, estrogen, and human epidermal growth factor receptor 2 (HER2) receptors. Our results also revealed that tumor development is slower in the C57BL/6 J background when compared with the FVB strain, providing a better model to study the different stages in breast cancer progression.
Collapse
Affiliation(s)
- Isadora F G Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula V Garcia
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maryam Soltani-Asl
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology and Neurochemistry, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of West Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora Heller
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,Cruzeiro Do Sul University, São Paulo, Brazil
| | - Geovanni D Cassali
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
18
|
Tsang SM, Kim H, Oliemuller E, Newman R, Boateng NA, Guppy N, Howard BA. Sox11 regulates mammary tumour-initiating and metastatic capacity in Brca1-deficient mouse mammary tumour cells. Dis Model Mech 2021; 14:261799. [PMID: 33969421 PMCID: PMC8188883 DOI: 10.1242/dmm.046037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Little is known about the role of Sox11 in the regulation of mammary progenitor cells. Sox11 is expressed by mammary bud epithelial cells during embryonic mammary gland development and is not detected in mammary epithelial cells after birth. As Sox11 is an oncofetal gene, we investigated the effects of reducing Sox11 levels in embryonic mammary progenitor cells and found that Sox11 regulates proliferative state, stem cell activity and lineage marker expression. We also investigated the effect of reducing Sox11 levels in two transplantable Brca1-deficient oestrogen receptor-negative mouse mammary tumour cell lines, to assess whether Sox11 regulates similar functions in tumour progenitor cells. When Sox11 levels were reduced in one Brca1-deficient mammary tumour cell line that expressed both epithelial and mesenchymal markers, similar effects on proliferation, stem cell activity and expression of lineage markers to those seen in the embryonic mammary progenitor cells were observed. Orthotopic grafting of mammary tumour cells with reduced Sox11 levels led to alterations in tumour-initiating capacity, latency, expression of lineage markers and metastatic burden. Our results support a model in which tumours expressing higher levels of Sox11 have more stem and tumour-initiating cells, and are less proliferative, whereas tumours expressing lower levels of Sox11 become more proliferative and capable of morphogenetic/metastatic growth, similar to what occurs during embryonic mammary developmental progression. Summary:Brca1−/− mammary tumours expressing Sox11 at high levels have more stem- and tumour-initiating cells, and are less proliferative, whereas tumours expressing Sox11 at lower levels become more proliferative and are capable of morphogenetic/metastatic growth.
Collapse
Affiliation(s)
- Siu Man Tsang
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Hyojin Kim
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Erik Oliemuller
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Richard Newman
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naa-Anyima Boateng
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Naomi Guppy
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Beatrice A Howard
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| |
Collapse
|
19
|
Singh MS, Ramishetti S, Landesman-Milo D, Goldsmith M, Chatterjee S, Palakuri R, Peer D. Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100287. [PMID: 33825318 DOI: 10.1002/smll.202100287] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Ovarian cancer is an aggressive tumor owing to its ability to metastasize from stage II onward. Herein, lipid nanoparticles (LNPs) that encapsulate combination of small interfering RNAs (siRNAs), polo-like kinase-1 (PLK1), and eukaryotic translation-initiation factor 3c (eIF3c), to target different cellular pathways essential for ovarian cancer progression are generated. The LNPs are further modified with hyaluronan (tNPs) to target cluster of differentiation 44 (CD44) expressing cells. Interestingly, hyaluronan-coated LNPs (tNPs) prolong functional activity and reduce growth kinetics of spheroids in in vitro assay as compared to uncoated LNPs (uNPs) due to ≈1500-fold higher expression of CD44. Treatment of 2D and 3D cultured ovarian cancer cells with LNPs encapsulating both siRNAs result in 85% cell death and robust target gene silencing. In advanced orthotopic ovarian cancer model, intraperitoneal administration of LNPs demonstrates CD44 specific tumor targeting of tNPs compared to uNPs and robust gene silencing in tissues involved in ovarian cancer pathophysiology. At very low siRNA dose, enhanced overall survival of 60% for tNPs treated mice is observed compared to 10% and 20% for single siRNA-, eIF3c-tNP, and PLK1-tNP treatment groups, respectively. Overall, LNPs represent promising platform in the treatment of advanced ovarian cancer by improving median- and overall-survival.
Collapse
Affiliation(s)
- Manu Smriti Singh
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Srinivas Ramishetti
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Meir Goldsmith
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sushmita Chatterjee
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ramesh Palakuri
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, 69978, Israel
- School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
20
|
Li H, Wang X, Zhang M, Wang M, Zhang J, Ma S. Identification of HOXA1 as a Novel Biomarker in Prognosis of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:602068. [PMID: 33763449 PMCID: PMC7982851 DOI: 10.3389/fmolb.2020.602068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Hox genes, a highly conserved homolog in most animals, play vital functions in cell development and organ formation. In recent years, researchers have discovered that it can act as a tumor regulator, and its members can participate in tumorigenesis by regulating receptor signaling, cell differentiation, apoptosis, migration, EMT, and angiogenesis. Hox genes and which major members play a vital role in the progress of head and neck squamous cell carcinoma (HNSCC) is still unclear. After analyzing the expression differences and prognostic value of all Hox genes through the TCGA-HNSC database, we use histochemistry stains in 52 pairs of HNSCC slices to verify the expression level of the key member-HOXA1. In correlation analysis, we found that high HOXA1 expression is related to poor pathological grade (p = 0.0077), advanced T stage (p = 0.021) and perineural invasion (PNI) (p = 0.0019). Furthermore, we used Cox univariate and multivariate regression analysis to confirm the independent predictive power of HOXA1 expression. To explore the underlying mechanisms behind HOXA1, we ran GSVA and GSEA and found fourteen mutual signaling pathways, including neuroprotein secretion and transport, tumor-associated signaling pathways, cell adhere junction and metabolic reprogramming. Finally, we found that the high expression of HOXA1 is significantly related to the decrease of CD8+ T cell infiltration and the decline of DNA methylation level. Our findings demonstrated that HOXA1, as a notable member of the HOX family, maybe an independent prognostic indicator in HNSCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaomin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mengjun Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
21
|
Abstract
Knowledge of the role of HOX proteins in cancer has been steadily accumulating in the last 25 years. They are encoded by 39 HOX genes arranged in 4 distinct clusters, and have unique and redundant function in all types of cancers. Many HOX genes behave as oncogenic transcriptional factors regulating multiple pathways that are critical to malignant progression in a variety of tumors. Some HOX proteins have dual roles that are tumor-site specific, displaying both oncogenic and tumor suppressor function. The focus of this review is on how HOX proteins contribute to growth or suppression of metastasis. The review will cover HOX protein function in the critical aspects of epithelial-mesenchymal transition, in cancer stem cell sustenance and in therapy resistance, manifested as distant metastasis. The emerging role of adiposity in both initiation and progression of metastasis is described. Defining the role of HOX genes in the metastatic process has identified candidates for targeted cancer therapies that may combat the metastatic process. We will discuss potential therapeutic opportunities, particularly in pathways influenced by HOX proteins.
Collapse
|
22
|
Pai P, Sukumar S. HOX genes and the NF-κB pathway: A convergence of developmental biology, inflammation and cancer biology. Biochim Biophys Acta Rev Cancer 2020; 1874:188450. [PMID: 33049277 DOI: 10.1016/j.bbcan.2020.188450] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The roles of HOX transcription factors as oncogenes and tumor suppressor genes, and the NF-KB pathway in chronic inflammation, both leading to cancer are well-established. HOX transcription factors are members of an evolutionarily conserved family of proteins required for anteroposterior body axis patterning during embryonic development, and are often dysregulated in cancer. The NF-KB pathway aids inflammation and immunity but it is also important during embryonic development. It is frequently activated in both solid and hematological malignancies. NF-KB and HOX proteins can influence each other through mutual transcriptional regulation, protein-protein interactions, and regulation of upstream and downstream interactors. These interactions have important implications both in homeostasis and in disease. In this review, we summarize the role of HOX proteins in regulating inflammation in homeostasis and disease- with a particular emphasis on cancer. We also describe the relationship between HOX genes and the NF-KB pathway, and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Priya Pai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| |
Collapse
|
23
|
lncRNA HotairM1 Depletion Promotes Self-Renewal of Cancer Stem Cells through HOXA1-Nanog Regulation Loop. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:456-470. [PMID: 33230449 PMCID: PMC7554324 DOI: 10.1016/j.omtn.2020.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 01/10/2023]
Abstract
In cancer cells, a gain of stemness may have profound implications for tumor initiation, aggressiveness, and clinical outcome. However, the molecular mechanisms underlying the self-renewal maintenance of cancer stem-like cells (CSCs) remain elusive. Here, based on analysis of transcriptome sequencing, we identified a long noncoding RNA (lncRNA) named HotairM1, which is weakly expressed in human colorectal carcinoma and uveal melanoma, and a much lower expression in corresponding CSCs. Our results showed that HotairM1 depletion could promote CSC self-renewal and tumor propagation. Mechanistically, HotairM1 recruit EZH2 and SUZ12 to the promoter of its target gene HOXA1, leading to histone H3K27 trimethylation and epigenetic silencing of HOXA1. The silence of HOXA1 subsequently induces the H3K27 acetylation at the enhancer site of Nanog gene to upregulate its expression. The enrichment of Nanog could further inhibit HOXA1 expression, forming a reciprocal regulation loop augmenting the stemness maintaining effect. In summary, our results revealed a lncRNA-based regulatory loop that sustains self-renewal of CSCs, which highlights the critical role of HotairM1 in CSC development through the HOXA1-Nanog signaling loop.
Collapse
|
24
|
Waaijer L, Filipe MD, Simons J, van der Pol CC, de Boorder T, van Diest PJ, Witkamp AJ. Detection of breast cancer precursor lesions by autofluorescence ductoscopy. Breast Cancer 2020; 28:119-129. [PMID: 32725533 PMCID: PMC7796885 DOI: 10.1007/s12282-020-01136-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Autofluorescence is an image enhancement technique used for the detection of cancer precursor lesions in pulmonary and gastrointestinal endoscopy. This study evaluated the feasibility of addition of autofluorescence to ductoscopy for the detection of intraductal breast cancer precursor lesions. METHODS An autofluorescence imaging system, producing real-time computed images combining fluorescence intensities, was coupled to a conventional white light ductoscopy system. Prior to surgery, ductoscopy with white light and autofluorescence was evaluated under general anaesthesia in women scheduled for therapeutic or prophylactic mastectomy. Endoscopic findings in both modes were compared, marked and correlated with histology of the surgical specimen. RESULTS Four breast cancer patients and five high-risk women, with a median age of 47 years (range 23-62) were included. In autofluorescence mode, two intraductal lesions were seen in two breast cancer patients, which had an increase in the red-to-green fluorescence intensity compared with the surrounding tissue. One lesion had initially been missed by white light ductoscopy but was clearly visible in subsequent autofluorescence mode. One endoscopic finding was classified as suspicious by white light, but was negative in autofluorescence mode and showed normal histology. CONCLUSIONS This study demonstrates for the first time the in vivo feasibility of autofluorescence ductoscopy to detect pathologically confirmed breast cancer precursor lesions in both breast cancer patients and high-risk women that were occult under white light.
Collapse
Affiliation(s)
- Laurien Waaijer
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Mando D Filipe
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Janine Simons
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Carmen C van der Pol
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Tjeerd de Boorder
- Department of Medical Technology and Clinical Physics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Arjen Joost Witkamp
- Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
25
|
Kuang XW, Liu JH, Sun ZH, Sukumar S, Sun SR, Chen C. Intraductal Therapy in Breast Cancer: Current Status and Future Prospective. J Mammary Gland Biol Neoplasia 2020; 25:133-143. [PMID: 32577880 DOI: 10.1007/s10911-020-09453-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
With our improved understanding of the biological behavior of breast cancer, minimally invasive intervention is urgently needed for personalized treatment of early disease. Intraductal therapy is one such minimally invasive approach. With the help of appropriate tools, technologies using the intraductal means of entering the ducts may be used both to diagnose and treat lesions in the mammary duct system with less trauma and at the same time avoid systemic toxicity. Traditional agents such as those targeting pathways, endocrine therapy, immunotherapy, or gene therapy can be used alone or combined with other new technologies, such as nanomaterials, through the intraductal route. Additionally, relevant mammary tumor models in rodents which reflect changes in the tumor microenvironment will help deepen our understanding of their biological behavior and heterogeneity. This article reviews the current status and future prospects of intraductal therapy in breast cancer, with emphasis on ductal carcinoma in situ.
Collapse
Affiliation(s)
- Xin-Wen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Jian-Hua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhi-Hong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
26
|
Xia H, Liu Y, Wang Z, Zhang W, Qi M, Qi B, Jiang X. Long Noncoding RNA HOTAIRM1 Maintains Tumorigenicity of Glioblastoma Stem-Like Cells Through Regulation of HOX Gene Expression. Neurotherapeutics 2020; 17:754-764. [PMID: 31691127 PMCID: PMC7283434 DOI: 10.1007/s13311-019-00799-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Noncoding RNAs regulate transcription of gene expression and play an important role in the pathogenesis of glioblastomas. These tumors are heterogeneous with some glioma stem cells (GSCs) that are highly tumorigenic subpopulations of cells contributing to recurrence and treatment resistance. In this study, GSCs were established by neurosphere cultures of primary glioblastoma cells and validated by the expression of GSC marker CD133. The expression of the long noncoding RNA HOTAIRM1 was detected using real-time quantitative reverse transcription PCR (qRT-PCR). The role of HOTAIRM1 in the proliferation, apoptosis, stemness, and tumorigenicity of GSCs was investigated by soft agar colony formation, flow cytometry, TUNEL analysis, sphere formation, and in vivo xenograft models through silencing of HOTAIRM1. The expression of HOTAIRM1 and the neighboring HOX genes were analyzed by qRT-PCR in different grades of gliomas and nontumor tissues. We found that HOTAIRM1 is significantly elevated in GSCs. The silencing of HOTAIRM1 significantly impairs the proliferation, apoptosis, self-renewal, tumorigenesis of GSCs. In addition, HOTAIRM1 is significantly upregulated in gliomas and associated with tumor grade and patient survival. HOTAIRM1 neighboring genes, HOXA1, HOXA2, and HOXA3, are also significantly upregulated in gliomas and correlate with the expression of HOTAIRM1. Among them, HOXA2 and HOXA3 were identified as being upregulated in GSCs and contributed to the self-renewal of these stem cells. Taken together, our results demonstrate that HOTAIRM1 plays a critical role in the self-renewal of GSCs. These data also suggest that overexpression of HOTAIRM1 can be a negative prognostic factor for patient survival in malignant glioma and may be a promising potential therapeutic target.
Collapse
Affiliation(s)
- Hongping Xia
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
- Department of Pathology, School of Basic Medical Sciences & The Affiliated Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China.
- Department of Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Yinhua Liu
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Zhichun Wang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Min Qi
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Bin Qi
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaochun Jiang
- Department of Neurosurgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
27
|
Identification of a Modified HOXB9 mRNA in Breast Cancer. JOURNAL OF ONCOLOGY 2020; 2020:6065736. [PMID: 32104178 PMCID: PMC7040399 DOI: 10.1155/2020/6065736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/29/2019] [Accepted: 01/07/2020] [Indexed: 12/03/2022]
Abstract
First identified as a developmental gene, HOXB9 is also known to be involved in tumor biological processes, and its aberrant expression correlates with poor prognosis of various cancers. In this study, we isolated a homeodomain-less, novel HOXB9 variant (HOXB9v) from human breast cancer cell line-derived mRNA. We confirmed that the novel variant was produced from variationless HOXB9 genomic DNA. RT-PCR of mRNA isolated from clinical samples and reanalysis of publicly available RNA-seq data proved that the new transcript is frequently expressed in human breast cancer. Exogenous HOXB9v expression significantly enhanced the proliferation of breast cancer cells, and gene ontology analysis indicated that apoptotic signaling was suppressed in these cells. Considering that HOXB9v lacks key domains of homeobox proteins, its behavior could be completely different from that of the previously described variationless HOXB9. Because none of the previous studies on HOXB9 have considered the presence of HOXB9v, further research analyzing the two transcripts individually is warranted to re-evaluate the true role of HOXB9 in cancer.
Collapse
|
28
|
Parashar D, Rajendran V, Shukla R, Sistla R. Lipid-based nanocarriers for delivery of small interfering RNA for therapeutic use. Eur J Pharm Sci 2020; 142:105159. [DOI: 10.1016/j.ejps.2019.105159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/03/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
|
29
|
Kenyon E, Westerhuis JJ, Volk M, Hix J, Chakravarty S, Claucherty E, Zaluzec E, Ramsey L, Madaj Z, Hostetter G, Eagleson B, Shapiro E, Moore A, Sempere LF. Ductal tree ablation by local delivery of ethanol prevents tumor formation in an aggressive mouse model of breast cancer. Breast Cancer Res 2019; 21:129. [PMID: 31779648 PMCID: PMC6883550 DOI: 10.1186/s13058-019-1217-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Prophylactic mastectomy is the most effective intervention to prevent breast cancer. However, this major surgery has life-changing consequences at the physical, emotional, psychological, and social levels. Therefore, only high-risk individuals consider this aggressive procedure, which completely removes the mammary epithelial cells from which breast cancer arises along with surrounding tissue. Here, we seek to develop a minimally invasive procedure as an alternative to prophylactic mastectomy by intraductal (ID) delivery of a cell-killing solution that locally ablates the mammary epithelial cells before they become malignant. Methods After ID injection of a 70% ethanol-containing solution in FVB/NJ female animals, ex vivo dual stained whole-mount tissue analysis and in vivo X-ray microcomputed tomography imaging were used to visualize ductal tree filling, and histological and multiplex immunohistochemical assays were used to characterize ablative effects and quantitate the number of intact epithelial cells and stroma. After ID injection of 70% ethanol or other solutions in cancer-prone FVB-Tg-C3(1)-TAg female animals, mammary glands were palpated weekly to establish tumor latency and examined after necropsy to record tumor incidence. Statistical difference in median tumor latency and tumor incidence between experimental groups was analyzed by log-rank test and logistic mixed-effects model, respectively. Results We report that ID injection of 70% ethanol effectively ablates the mammary epithelia with limited collateral damage to surrounding stroma and vasculature in the murine ductal tree. ID injection of 70% ethanol into the mammary glands of the C3(1)-TAg multifocal breast cancer model significantly delayed tumor formation (median latency of 150 days in the untreated control group [n = 25] vs. 217 days in the ethanol-treated group [n = 13], p value < 0.0001) and reduced tumor incidence (34% of glands with tumors [85 of 250] in the untreated control group vs. 7.3% of glands with tumor [7 of 95] in the ethanol-treated group, risk ratio = 4.76 [95% CI 1.89 to 11.97, p value < 0.0001]). Conclusions This preclinical study demonstrates the feasibility of local ductal tree ablation as a novel strategy for primary prevention of breast cancer. Given the existing clinical uses of ethanol, ethanol-based ablation protocols could be readily implemented in first-in-human clinical trials for high-risk individuals.
Collapse
Affiliation(s)
- Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Maximilian Volk
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeremy Hix
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Shatadru Chakravarty
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Ethan Claucherty
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Erin Zaluzec
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Lisa Ramsey
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Zach Madaj
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | | | - Bryn Eagleson
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Erik Shapiro
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo F Sempere
- Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Noh H, Shoemaker JE, Gunawan R. Network perturbation analysis of gene transcriptional profiles reveals protein targets and mechanism of action of drugs and influenza A viral infection. Nucleic Acids Res 2019; 46:e34. [PMID: 29325153 PMCID: PMC5887474 DOI: 10.1093/nar/gkx1314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Genome-wide transcriptional profiling provides a global view of cellular state and how this state changes under different treatments (e.g. drugs) or conditions (e.g. healthy and diseased). Here, we present ProTINA (Protein Target Inference by Network Analysis), a network perturbation analysis method for inferring protein targets of compounds from gene transcriptional profiles. ProTINA uses a dynamic model of the cell-type specific protein-gene transcriptional regulation to infer network perturbations from steady state and time-series differential gene expression profiles. A candidate protein target is scored based on the gene network's dysregulation, including enhancement and attenuation of transcriptional regulatory activity of the protein on its downstream genes, caused by drug treatments. For benchmark datasets from three drug treatment studies, ProTINA was able to provide highly accurate protein target predictions and to reveal the mechanism of action of compounds with high sensitivity and specificity. Further, an application of ProTINA to gene expression profiles of influenza A viral infection led to new insights of the early events in the infection.
Collapse
Affiliation(s)
- Heeju Noh
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Jason E Shoemaker
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rudiyanto Gunawan
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich 8093, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
31
|
Li B, Huang Q, Wei GH. The Role of HOX Transcription Factors in Cancer Predisposition and Progression. Cancers (Basel) 2019; 11:cancers11040528. [PMID: 31013831 PMCID: PMC6520925 DOI: 10.3390/cancers11040528] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Homeobox (HOX) transcription factors, encoded by a subset of homeodomain superfamily genes, play pivotal roles in many aspects of cellular physiology, embryonic development, and tissue homeostasis. Findings over the past decade have revealed that mutations in HOX genes can lead to increased cancer predisposition, and HOX genes might mediate the effect of many other cancer susceptibility factors by recognizing or executing altered genetic information. Remarkably, several lines of evidence highlight the interplays between HOX transcription factors and cancer risk loci discovered by genome-wide association studies, thereby gaining molecular and biological insight into cancer etiology. In addition, deregulated HOX gene expression impacts various aspects of cancer progression, including tumor angiogenesis, cell autophagy, proliferation, apoptosis, tumor cell migration, and metabolism. In this review, we will discuss the fundamental roles of HOX genes in cancer susceptibility and progression, highlighting multiple molecular mechanisms of HOX involved gene misregulation, as well as their potential implications in clinical practice.
Collapse
Affiliation(s)
- Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland.
| |
Collapse
|
32
|
Regulation of Adipogenesis and Thermogenesis through Mouse Olfactory Receptor 23 Stimulated by α-Cedrene in 3T3-L1 Cells. Nutrients 2018; 10:nu10111781. [PMID: 30453511 PMCID: PMC6265911 DOI: 10.3390/nu10111781] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors that perform important physiological functions beyond their role as odorant detectors in the olfactory sensory neurons. In the present study, we describe a novel role for one of these ORs, mouse olfactory receptor 23 (MOR23), as a regulator of adipogenesis and thermogenesis in 3T3-L1 cells. Downregulation of MOR23 by small interfering RNA in 3T3-L1 cells enhanced intracellular lipid accumulation and reduced the oxygen consumption rate. In agreement with this phenotype, MOR23 deletion significantly decreased intracellular cyclic adenosine monophosphate (cAMP) levels and protein amounts of adenylyl cyclase 3 (ADCY3), protein kinase A catalytic subunit (PKA Cα), phospho-5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK), and phospho-cAMP-responsive element-binding protein (CREB), along with upregulation of adipogenic genes and downregulation of genes involved in thermogenesis. Activation of MOR23 by α-cedrene, a novel natural ligand of MOR23, significantly reduced lipid content, increased the oxygen consumption rate, and stimulated reprogramming of the metabolic signature of 3T3-L1 cells, and these changes elicited by α-cedrene were absent in MOR23-deficient cells. These findings point to the role of MOR23 as a regulator of adipogenesis and thermogenesis in adipocytes.
Collapse
|
33
|
Zhou Z, Cui N, Su S, Sun S, Cui Z. The molecular basis for host responses to Marek's disease viruses integrated with different retro-viral long terminal repeat. Poult Sci 2018; 97:3015-3022. [PMID: 29917138 DOI: 10.3382/ps/pey135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/13/2018] [Indexed: 12/19/2022] Open
Abstract
Integration of retro-viral long terminal repeat (LTR) into the Marek's disease virus (MDV) genome can occur both in co-cultivation cell cultures and naturally in dual infected chickens. It is clear that the LTR insert is associated with the pathogenicity of MDV. The objective of this study was to compare the host responses to MDV with a different retro-viral LTR insert. Gene-chip containing chicken genome was employed to investigate the gene transcription profile of chicken embryo fibroblasts cells, and 795 genes were differentially expressed in chicken embryo fibroblasts infected with GX0101 with a reticuloendotheliosis virus LTR insert as compared to GX0101-ALV-LTR significantly. The differentially expressed genes were mostly associated with the regulation of transcription and the development of multiple organs. Based on the bio functions of the differential genes, infection of GX0101 was predicated with a greater development disorder of multiple systems, resulting in higher growth retardation, mortality, tumorigenicity, and immunosuppression in chickens than GX0101-ALV-LTR. Collectively, our results provided valuable insights into elucidation of the possible relationship between retro-viral LTR insert and the observed phenotypes caused by MDV recombinant viruses.
Collapse
Affiliation(s)
- Zhongwen Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Cui
- Shandong Key Laboratory of Animal Disease Control & Breeding; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuhong Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
34
|
Draime A, Bridoux L, Belpaire M, Pringels T, Tys J, Rezsohazy R. PRDM14, a putative histone methyl-transferase, interacts with and decreases the stability and activity of the HOXA1 transcription factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:534-542. [PMID: 29471045 DOI: 10.1016/j.bbagrm.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Understanding how the activity of transcription factors like HOX proteins is regulated remains a widely open question. In a recent screen for proteins interacting with HOXA1, we identified a PRDM protein family member, PRDM14, which is known to be transiently co-expressed with HOXA1 in epiblast cells before their specification towards somatic versus germ cell fate. Here, we confirm PRDM14 is an interactor of HOXA1 and we identify the homeodomain of HOXA1 as well as the PR domain and Zinc fingers of PRDM14 to be required for the interaction. An 11-His repeat of HOXA1 previously highlighted to contribute to HOXA1-mediated protein-protein interactions is also involved. At a functional level, we provide evidence that HOXA1 displays an unexpectedly long half-life and demonstrate that PRDM14 can reduce the stability and affect the transcriptional activity of HOXA1.
Collapse
Affiliation(s)
- Amandine Draime
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Magali Belpaire
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Tamara Pringels
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - Janne Tys
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium
| | - René Rezsohazy
- Animal Molecular and Cellular Biology Group, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, place Croix du Sud 5, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
35
|
Ning ZQ, Lu HL, Chen C, Wang L, Cai W, Li Y, Cao TH, Zhu J, Shu YQ, Shen H. MicroRNA-30e reduces cell growth and enhances drug sensitivity to gefitinib in lung carcinoma. Oncotarget 2018; 8:4572-4581. [PMID: 27992364 PMCID: PMC5354855 DOI: 10.18632/oncotarget.13944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/06/2016] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in variousbiological processes,including malignancy. Here, we demonstrated that miR-30e levels were markedly reduced in human lung carcinoma specimens in comparisonwith adjacent normal tissues. In addition, miR-30eamounts were starkly lower in the resistant PC9/gefitinib (PC9G) cancer cells compared with PC9 cells. Meanwhile, miR-30eoverexpression inPC9G cells resulted in reduced cell proliferation and migration,reversing drug resistance to gefitinib.Conversely,miR-30e silencing in PC9 cells increased proliferation as well as migration, and conferred resistance to gefitinib.Moreover, HOXA1, which was identified asa new miR-30etarget, plays important roles in regulating cell fate, early developmental patterns and organogenesis.Importantly, miR-30ealso inhibited PC9G growth in vivo. Taken together, these findings demonstrated that miR-30eshould be considered a tumor suppressor miRNA, which could be used in treatinghuman lung cancer.
Collapse
Affiliation(s)
- Zhi-Qiang Ning
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Hai-Lin Lu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Chao Chen
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Lin Wang
- Institute of Medcine, University of Zhengzhou, Henan Province, 450000, China
| | - Wei Cai
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yan Li
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Ting-Hua Cao
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Jing Zhu
- Department of Oncology, The First People's Hospital of Wujiang District, Suzhou, 215200, China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
36
|
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell 2017; 43:418-435.e13. [PMID: 29161592 DOI: 10.1016/j.devcel.2017.10.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael A Borten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
37
|
Tong T, Ryu SE, Min Y, de March CA, Bushdid C, Golebiowski J, Moon C, Park T. Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway. Sci Rep 2017; 7:9471. [PMID: 28842679 PMCID: PMC5573314 DOI: 10.1038/s41598-017-10379-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/08/2017] [Indexed: 01/11/2023] Open
Abstract
Ectopic expression and functions of odorant receptors (ORs) in the human body have aroused much interest in the past decade. Mouse olfactory receptor 23 (MOR23, olfr16) and its human orthologue, OR10J5, have been found to be functionally expressed in several non-olfactory systems. Here, using MOR23- and OR10J5-expressing Hana3A cells, we identified α-cedrene, a natural compound that protects against hepatic steatosis in mice fed the high-fat diet, as a novel agonist of these receptors. In human hepatocytes, an RNA interference-mediated knockdown of OR10J5 increased intracellular lipid accumulation, along with upregulation of lipogenic genes and downregulation of genes related to fatty acid oxidation. α-Cedrene stimulation resulted in a significant reduction in lipid contents of human hepatocytes and reprogramming of metabolic signatures, which are mediated by OR10J5, as demonstrated by receptor knockdown experiments using RNA interference. Taken together, our findings show a crucial role of OR10J5 in the regulation of lipid accumulation in human hepatocytes.
Collapse
Affiliation(s)
- Tao Tong
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Sang Eun Ryu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | - Yeojin Min
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea
| | - Claire A de March
- Institut de Chimie de Nice, Université Nice Sophia Antipolis, Nice cedex 02, France
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, United States
| | - Caroline Bushdid
- Institut de Chimie de Nice, Université Nice Sophia Antipolis, Nice cedex 02, France
| | - Jérôme Golebiowski
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
- Institut de Chimie de Nice, Université Nice Sophia Antipolis, Nice cedex 02, France
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | - Taesun Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, South Korea.
| |
Collapse
|
38
|
Ghanat Bari M, Ung CY, Zhang C, Zhu S, Li H. Machine Learning-Assisted Network Inference Approach to Identify a New Class of Genes that Coordinate the Functionality of Cancer Networks. Sci Rep 2017; 7:6993. [PMID: 28765560 PMCID: PMC5539301 DOI: 10.1038/s41598-017-07481-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence indicates the existence of a new class of cancer genes that act as "signal linkers" coordinating oncogenic signals between mutated and differentially expressed genes. While frequently mutated oncogenes and differentially expressed genes, which we term Class I cancer genes, are readily detected by most analytical tools, the new class of cancer-related genes, i.e., Class II, escape detection because they are neither mutated nor differentially expressed. Given this hypothesis, we developed a Machine Learning-Assisted Network Inference (MALANI) algorithm, which assesses all genes regardless of expression or mutational status in the context of cancer etiology. We used 8807 expression arrays, corresponding to 9 cancer types, to build more than 2 × 108 Support Vector Machine (SVM) models for reconstructing a cancer network. We found that ~3% of ~19,000 not differentially expressed genes are Class II cancer gene candidates. Some Class II genes that we found, such as SLC19A1 and ATAD3B, have been recently reported to associate with cancer outcomes. To our knowledge, this is the first study that utilizes both machine learning and network biology approaches to uncover Class II cancer genes in coordinating functionality in cancer networks and will illuminate our understanding of how genes are modulated in a tissue-specific network contribute to tumorigenesis and therapy development.
Collapse
Affiliation(s)
- Mehrab Ghanat Bari
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
39
|
Acharya R, Saha S, Ray S, Hazra S, Mitra MK, Chakraborty J. siRNA-nanoparticle conjugate in gene silencing: A future cure to deadly diseases? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1378-1400. [DOI: 10.1016/j.msec.2017.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/17/2017] [Accepted: 03/01/2017] [Indexed: 02/08/2023]
|
40
|
Xie Z, Zeng X. DNA/RNA-based formulations for treatment of breast cancer. Expert Opin Drug Deliv 2017; 14:1379-1393. [DOI: 10.1080/17425247.2017.1317744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhaolu Xie
- Department of Pharmacy, Daping Hospital & Research Institute of Surgery, Third Military Medical University, Chongqing, China
| | - Xianghui Zeng
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Abstract
Localized intraductal treatments for breast cancer offer potential advantages, including efficient delivery to the tumor and reduced systemic toxicity and adverse effects1,2,3,4,5,6,7. However, several challenges remain before these treatments can be applied more widely. The development and validation of intraductal therapeutics in an appropriate animal model facilitate the development of intraductal therapeutic strategies for patients. While the mouse mammary gland has been widely used as a model system of mammary development and tumorigenesis, the anatomy is distinct from the human gland. A larger animal model, such as the rabbit, may serve as a better model for mammary gland structure and intraductal therapeutic development. In contrast to mice, in which ten ductal trees are spatially distributed along the body axis, each terminating in a separate teat, the rabbit mammary gland more closely resembles the human gland, with multiple overlapping ductal systems that exit through separate openings in one teat. Here, we present minimally invasive methods for the delivery of reagents directly into the rabbit mammary duct and for visualization of the delivery itself with high-resolution ultrasound imaging.
Collapse
Affiliation(s)
- Amelia Clark
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Nora K Bird
- Department of Anesthesiology, UTMB Health at Galveston
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin;
| |
Collapse
|
42
|
Bradford BJ, Cooper CA, Tizard ML, Doran TJ, Hinton TM. RNA interference-based technology: what role in animal agriculture? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal agriculture faces a broad array of challenges, ranging from disease threats to adverse environmental conditions, while attempting to increase productivity using fewer resources. RNA interference (RNAi) is a biological phenomenon with the potential to provide novel solutions to some of these challenges. Discovered just 20 years ago, the mechanisms underlying RNAi are now well described in plants and animals. Intracellular double-stranded RNA triggers a conserved response that leads to cleavage and degradation of complementary mRNA strands, thereby preventing production of the corresponding protein product. RNAi can be naturally induced by expression of endogenous microRNA, which are critical in the regulation of protein synthesis, providing a mechanism for rapid adaptation of physiological function. This endogenous pathway can be co-opted for targeted RNAi either through delivery of exogenous small interfering RNA (siRNA) into target cells or by transgenic expression of short hairpin RNA (shRNA). Potentially valuable RNAi targets for livestock include endogenous genes such as developmental regulators, transcripts involved in adaptations to new physiological states, immune response mediators, and also exogenous genes such as those encoded by viruses. RNAi approaches have shown promise in cell culture and rodent models as well as some livestock studies, but technical and market barriers still need to be addressed before commercial applications of RNAi in animal agriculture can be realised. Key challenges for exogenous delivery of siRNA include appropriate formulation for physical delivery, internal transport and eventual cellular uptake of the siRNA; additionally, rigorous safety and residue studies in target species will be necessary for siRNA delivery nanoparticles currently under evaluation. However, genomic incorporation of shRNA can overcome these issues, but optimal promoters to drive shRNA expression are needed, and genetic engineering may attract more resistance from consumers than the use of exogenous siRNA. Despite these hurdles, the convergence of greater understanding of RNAi mechanisms, detailed descriptions of regulatory processes in animal development and disease, and breakthroughs in synthetic chemistry and genome engineering has created exciting possibilities for using RNAi to enhance the sustainability of animal agriculture.
Collapse
|
43
|
Salazar BM, Balczewski EA, Ung CY, Zhu S. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology. Int J Mol Sci 2016; 18:E37. [PMID: 28035989 PMCID: PMC5297672 DOI: 10.3390/ijms18010037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.
Collapse
Affiliation(s)
- Brittany M Salazar
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Emily A Balczewski
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Choong Yong Ung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
44
|
Shin J, Cho JH, Jin Y, Yang K, Lee JS, Park HJ, Han HS, Lee J, Jeon H, Shin H, Cho SW. Mussel Adhesion-Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose-Derived Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:6266-6278. [PMID: 27717233 DOI: 10.1002/smll.201601868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/21/2016] [Indexed: 06/06/2023]
Abstract
Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution-mediated transfection are limited due to low transfection efficiency and insufficient duration of cell-siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio-inspired polymer-mediated reverse transfection system is developed consisting of implantable poly(lactic-co-glycolic acid) (PLGA) scaffolds functionalized with siRNA-lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA-coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA-sLNP-PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose-derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA-sLNP-PLGA scaffolds enhanced bone formation in a mouse model of critical-sized bone defect. Therefore, the bio-inspired reverse transfection system can provide an all-in-one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.
Collapse
Affiliation(s)
- Jisoo Shin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jung Ho Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kisuk Yang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Hyun-Ji Park
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Hyung-Seop Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 136-650, Republic of Korea
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, U.K
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 136-650, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 133-791, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
45
|
Dave K, Alsharif FM, Perumal O. Transpapillary (Nipple) Delivery of Macromolecules to the Breast: Proof of Concept Study. Mol Pharm 2016; 13:3842-3851. [DOI: 10.1021/acs.molpharmaceut.6b00634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kaushalkumar Dave
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Fahd M. Alsharif
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, United States
| | - Omathanu Perumal
- Department of Pharmaceutical
Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, United States
| |
Collapse
|
46
|
Ma Z, Fan C, Yang Y, Di S, Hu W, Li T, Zhu Y, Han J, Xin Z, Wu G, Zhao J, Li X, Yan X. Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 2016; 6:35196. [PMID: 27731378 PMCID: PMC5059685 DOI: 10.1038/srep35196] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent for esophageal squamous cell carcinoma (ESCC). Forced expression of CHOP, one of the key downstream transcription factors during endoplasmic reticulum (ER) stress, upregulates the death receptor 5 (DR5) levels and promotes oxidative stress and cell death. In this study, we show that ER stress mediated by thapsigargin promoted CHOP and DR5 synthesis thus sensitizing TRAIL treatment, which induced ESCC cells apoptosis. These effects were reversed by DR5 siRNA in vitro and CHOP siRNA both in vitro and in vivo. Besides, chemically inhibition of AMPK by Compound C and AMPK siRNA weakened the anti-cancer effect of thapsigargin and TRAIL co-treatment. Therefore, our findings suggest ER stress effectively sensitizes human ESCC to TRAIL-mediated apoptosis via the TRAIL-DR5-AMPK signaling pathway, and that activation of ER stress may be beneficial for improving the efficacy of TRAIL-based anti-cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an 710032, China
| | - Jing Zhao
- Department of Thoracic Surgery, Beijing Military General Hospital, 5 DongSi ShiTiao Road 100070, Beijing 100700, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an 710038, China
| |
Collapse
|
47
|
Errico MC, Jin K, Sukumar S, Carè A. The Widening Sphere of Influence of HOXB7 in Solid Tumors. Cancer Res 2016; 76:2857-62. [PMID: 27197229 DOI: 10.1158/0008-5472.can-15-3444] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/20/2016] [Indexed: 12/18/2022]
Abstract
Strong lines of evidence have established a critical role for the homeodomain protein HOXB7 in cancer. Specifically, molecular and cellular studies have demonstrated that HOXB7 is a master regulatory gene, capable of orchestrating a variety of target molecules, resulting in the activation of several oncogenic pathways. HOXB7 overexpression correlates with clinical progression and poor outcome of cancer patients. Specific inhibition of HOXB7 is particularly relevant in cancers still lacking effective therapies, such as tamoxifen-resistant breast cancer and melanoma. Mechanistic studies are providing additional targets of therapy, and biomarker studies are further establishing its importance in early diagnosis and prognosis. Cancer Res; 76(10); 2857-62. ©2016 AACR.
Collapse
Affiliation(s)
- Maria Cristina Errico
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Kideok Jin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Alessandra Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
48
|
Microtubule-associated protein 4 is an important regulator of cell invasion/migration and a potential therapeutic target in esophageal squamous cell carcinoma. Oncogene 2016; 35:4846-56. [PMID: 26876215 DOI: 10.1038/onc.2016.17] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023]
Abstract
Cell invasion and migration significantly contribute to tumor metastasis. Microtubule-associated protein 4 (MAP4) protein is one member of microtubule-associate proteins family. It is responsible for stabilization of microtubules by modulation of microtubule dynamics. However, there is little information about the involvement of MAP4 in human cancer. Here we show that MAP4 serves as a regulator of invasion and migration in esophageal squamous cancer cells. By activating the ERK-c-Jun-vascular endothelial growth factor A signaling pathway, MAP4 promotes cell invasion and migration in vitro, tumor growth and metastasis in mouse models. Immunohistochemical staining of operative tissues indicated that MAP4 expression was associated with tumor stage, lymph node metastasis and shorter survival of the patients with esophageal squamous cell carcinoma (ESCC). Multivariate Cox regression analysis showed that MAP4 is an independent prognostic indicator. In the serial sections of ESCC tissues, there was a positive correlation between MAP4 and vascular endothelial growth factor A expression. Notably, an intratumoral injection of MAP4-small interfering RNA (siRNA) remarkably inhibited the growth of the tumors that formed by the MAP4-expressing ESCC cells in nude mice, and a combination of MAP4-siRNA and Bevacizumab significantly enhanced the inhibition effect. Our data suggest that MAP4 is probably a useful prognostic biomarker and a potential therapeutic target for the disease.
Collapse
|
49
|
Jin K, Sukumar S. HOX genes: Major actors in resistance to selective endocrine response modifiers. Biochim Biophys Acta Rev Cancer 2016; 1865:105-10. [PMID: 26803986 DOI: 10.1016/j.bbcan.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 12/29/2022]
Abstract
Long term treatment with therapies aimed at blocking the estrogen- (ER) or androgen receptor (AR) action often leads to the development of resistance to selective modulators of the estrogen receptor (SERMs) in ERα-positive breast cancer, or of the androgen receptor (SARMs) in AR-positive prostate cancer. Many underlying molecular events that confer resistance are known, but a unifying theme is yet to be revealed. Receptor tyrosine kinases (RTKs) such EGFR, ERBB2 and IGF1R are major mediators that can directly alter cellular response to the SERM, tamoxifen, but the mechanisms underlying increased expression of RTKs are not clear. A number of HOX genes and microRNAs and non-coding RNAs residing in the HOX cluster, have been identified as important independent predictors of endocrine resistant breast cancer. Recently, convincing evidence has accumulated that several members belonging to the four different HOX clusters contribute to endocrine therapy resistant breast cancer, but the mechanisms remain obscure. In this article, we have reviewed recent progress in understanding of the functioning of HOX genes and regulation of their expression by hormones. We also discuss, in particular, the contributions of several members of the HOX gene family to endocrine resistant breast cancer.
Collapse
Affiliation(s)
- Kideok Jin
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering at Johns Hopkins, 720 Rutland Avenue, 617 Traylor Bldg., Baltimore, MD 21205, United States.
| | - Saraswati Sukumar
- Breast Cancer Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
50
|
Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z, Zhou C. Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:15. [PMID: 26791264 PMCID: PMC4721151 DOI: 10.1186/s13046-016-0294-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC). METHODS To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes. RESULTS HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS. CONCLUSION Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Xingwu Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Meng Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China. .,Department of General Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur Autonomous Region, 844000, P. R. China.
| |
Collapse
|