1
|
Bailly E, Macedo C, Gu X, Hollingshead D, Bentlejewski C, Fong E, Morel PA, Randhawa P, Zeevi A, Lefaucheur C, Metes D. FCGR2C Q 13 and FCGR3A V 176 alleles jointly associate with worse natural killer cell-mediated antibody-dependent cellular cytotoxicity and microvascular inflammation in kidney allograft antibody-mediated rejection. Am J Transplant 2025; 25:302-315. [PMID: 39332679 DOI: 10.1016/j.ajt.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism of humoral allograft injury. FCGR3A V176/F176 polymorphism influences ADCC activity. Additionally, NK cell FcγRIIc expression, dictated by the Q13/STP13 polymorphism, was never investigated in kidney transplantation. To assess the clinical relevance of FCGR2C Q13/STP13 polymorphism in conjunction with FCGR3A V176/F176 polymorphism, 242 kidney transplant recipients were genotyped. NK cell Fc gamma receptor (FcγR) expression and ADCC activity were assessed. RNA sequencing was performed on kidney allograft biopsies to explore the presence of infiltrating FcγR+ NK cells. The FCGR2C Q13 allele was enriched in antibody-mediated rejection patients. FcγRIIc Q13+ NK cells had higher ADCC activity than FcγRIIc Q13- NK cells. In combination with the high-affinity FCGR3A V176 allele, Q13+V176+ NK cells were the most functionally potent. Q13+ was associated with worse microvascular inflammation and a higher risk of allograft loss. Among V176- patients, previously described in the literature as lower-risk patients, Q13+V176- showed a lower graft survival than Q13-V176- patients. In antibody-mediated rejection biopsies, FCGR2C transcripts were enriched and associated with ADCC-related transcripts. Our results suggest that FCGR2C Q13 in addition to FCGR3A V176 is a significant risk allele that may enhance NK cell-mediated ADCC and contribute to allograft injury and poor survival.
Collapse
Affiliation(s)
- Elodie Bailly
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; INSERM UMR-S976, Université Paris Cité, Paris, France.
| | - Camila Macedo
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xinyan Gu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Hollingshead
- University of Pittsburgh Health Sciences Core Research Facilities, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol Bentlejewski
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erica Fong
- University of Pittsburgh Health Sciences Core Research Facilities, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Penelope A Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Diana Metes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
2
|
Frampton S, Smith R, Ferson L, Gibson J, Hollox EJ, Cragg MS, Strefford JC. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol Rev 2024; 328:65-97. [PMID: 39345014 PMCID: PMC11659932 DOI: 10.1111/imr.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Fc gamma receptors (FcγRs) are a family of receptors that bind IgG antibodies and interface at the junction of humoral and innate immunity. Precise regulation of receptor expression provides the necessary balance to achieve healthy immune homeostasis by establishing an appropriate immune threshold to limit autoimmunity but respond effectively to infection. The underlying genetics of the FCGR gene family are central to achieving this immune threshold by regulating affinity for IgG, signaling efficacy, and receptor expression. The FCGR gene locus was duplicated during evolution, retaining very high homology and resulting in a genomic region that is technically difficult to study. Here, we review the recent evolution of the gene family in mammals, its complexity and variation through copy number variation and single-nucleotide polymorphism, and impact of these on disease incidence, resolution, and therapeutic antibody efficacy. We also discuss the progress and limitations of current approaches to study the region and emphasize how new genomics technologies will likely resolve much of the current confusion in the field. This will lead to definitive conclusions on the impact of genetic variation within the FCGR gene locus on immune function and disease.
Collapse
Affiliation(s)
- Sarah Frampton
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Rosanna Smith
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Lili Ferson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Jane Gibson
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| | - Edward J. Hollox
- Department of Genetics, Genomics and Cancer SciencesCollege of Life Sciences, University of LeicesterLeicesterUK
| | - Mark S. Cragg
- Antibody and Vaccine Group, Faculty of Medicine, School of Cancer Sciences, Centre for Cancer ImmunologyUniversity of SouthamptonSouthamptonUK
| | - Jonathan C. Strefford
- Cancer Genomics Group, Faculty of Medicine, School of Cancer SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
3
|
Li Y, Wu J. CD177 is a novel IgG Fc receptor and CD177 genetic variants affect IgG-mediated function. Front Immunol 2024; 15:1418539. [PMID: 39131159 PMCID: PMC11316256 DOI: 10.3389/fimmu.2024.1418539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we show that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.
Collapse
Affiliation(s)
- Yunfang Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Li Y, Wu J. CD177 is a novel IgG Fc receptor and CD177 genetic variants affect IgG-mediated function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574546. [PMID: 38260289 PMCID: PMC10802432 DOI: 10.1101/2024.01.07.574546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
CD177 plays an important role in the proliferation and differentiation of myeloid lineage cells including neutrophils, myelocytes, promyelocytes, megakaryocytes, and early erythroblasts in bone marrow. CD177 deficiency is a common phenotype in humans. Our previous studies revealed genetic mechanisms of human CD177 deficiency and expression variations. Up to now, immune functions of CD177 remain undefined. In the current study, we revealed human IgG as a ligand for CD177 by using flow cytometry, bead-rosette formation, and surface plasmon resonance (SPR) assays. In addition, we show that CD177 variants affect the binding capacity of CD177 for human IgG. Furthermore, we showed that the CD177 genetic variants significantly affect antibody-dependent cell-mediated cytotoxicity (ADCC) function. The demonstration of CD177 as a functional IgG Fc-receptor may provide new insights into CD177 immune function and genetic mechanism underlying CD177 as biomarkers for human diseases.
Collapse
|
5
|
Liu S, Zhang YL, Zhang LY, Zhao GJ, Lu ZQ. FCGR2C: An emerging immune gene for predicting sepsis outcome. Front Immunol 2022; 13:1028785. [PMID: 36532072 PMCID: PMC9757160 DOI: 10.3389/fimmu.2022.1028785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Background Sepsis is a life-threatening disease associated with immunosuppression. Immunosuppression could ultimately increase sepsis mortality. This study aimed to identify the prognostic biomarkers related to immunity in sepsis. Methods Public datasets of sepsis downloaded from the Gene Expression Omnibus (GEO) database were divided into the discovery cohort and the first validation cohort. We used R software to screen differentially expressed genes (DEGs) and analyzed DEGs' functional enrichment in the discovery dataset. Immune-related genes (IRGs) were filtered from the GeneCards website. A Lasso regression model was used to screen candidate prognostic genes from the intersection of DEGs and IRGs. Then, the candidate prognostic genes with significant differences were identified as prognostic genes in the first validation cohort. We further validated the expression of the prognostic genes in the second validation cohort of 81 septic patients recruited from our hospital. In addition, we used four immune infiltration methods (MCP-counter, ssGSEA, ImmuCellAI, and CIBERSORT) to analyze immune cell composition in sepsis. We also explored the correlation between the prognostic biomarker and immune cells. Results First, 140 genes were identified as prognostic-related immune genes from the intersection of DEGs and IRGs. We screened 18 candidate prognostic genes in the discovery cohort with the lasso regression model. Second, in the first validation cohort, we identified 4 genes (CFHR2, FCGR2C, GFI1, and TICAM1) as prognostic immune genes. Subsequently, we found that FCGR2C was the only gene differentially expressed between survivors and non-survivors in 81 septic patients. In the discovery and first validation cohorts, the AUC values of FCGR2C were 0.73 and 0.67, respectively. FCGR2C (AUC=0.84) had more value than SOFA (AUC=0.80) and APACHE II (AUC=0.69) in evaluating the prognosis of septic patients in our recruitment cohort. Moreover, FCGR2C may be closely related to many immune cells and functions, such as B cells, NK cells, neutrophils, cytolytic activity, and inflammatory promotion. Finally, enrichment analysis showed that FCGR2C was enriched in the phagosome signaling pathway. Conclusion FCGR2C could be an immune biomarker associated with prognosis, which may be a new direction of immunotherapy to reduce sepsis mortality.
Collapse
Affiliation(s)
- Si Liu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Special Medical Department, Nanchong Central Hospital, Nanchong, Sichuan, China
| | - Yao Lu Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Yao Zhang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Guang Ju Zhao, ; Zhong Qiu Lu,
| | - Zhong Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Guang Ju Zhao, ; Zhong Qiu Lu,
| |
Collapse
|
6
|
Mata-Molanes JJ, Rebollo-Liceaga J, Martínez-Navarro EM, Manzano RG, Brugarolas A, Juan M, Sureda M. Relevance of Fc Gamma Receptor Polymorphisms in Cancer Therapy With Monoclonal Antibodies. Front Oncol 2022; 12:926289. [PMID: 35814459 PMCID: PMC9263556 DOI: 10.3389/fonc.2022.926289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 12/15/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs), including immune checkpoint inhibitors (ICIs), are an important breakthrough for the treatment of cancer and have dramatically changed clinical outcomes in a wide variety of tumours. However, clinical response varies among patients receiving mAb-based treatment, so it is necessary to search for predictive biomarkers of response to identify the patients who will derive the greatest therapeutic benefit. The interaction of mAbs with Fc gamma receptors (FcγR) expressed by innate immune cells is essential for antibody-dependent cellular cytotoxicity (ADCC) and this binding is often critical for their in vivo efficacy. FcγRIIa (H131R) and FcγRIIIa (V158F) polymorphisms have been reported to correlate with response to therapeutic mAbs. These polymorphisms play a major role in the affinity of mAb receptors and, therefore, can exert a profound impact on antitumor response in these therapies. Furthermore, recent reports have revealed potential mechanisms of ICIs to modulate myeloid subset composition within the tumour microenvironment through FcγR-binding, optimizing their anti-tumour activity. The purpose of this review is to highlight the clinical contribution of FcγR polymorphisms to predict response to mAbs in cancer patients.
Collapse
Affiliation(s)
- Juan J. Mata-Molanes
- Oncology Platform, Hospital Quirónsalud Torrevieja, Alicante, Spain
- *Correspondence: Juan J. Mata-Molanes,
| | | | | | | | | | - Manel Juan
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Manuel Sureda
- Oncology Platform, Hospital Quirónsalud Torrevieja, Alicante, Spain
| |
Collapse
|
7
|
Delidakis G, Kim JE, George K, Georgiou G. Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annu Rev Biomed Eng 2022; 24:249-274. [PMID: 35363537 PMCID: PMC9648538 DOI: 10.1146/annurev-bioeng-082721-024500] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (a) cytotoxicity, phagocytosis, or complement lysis; (b) modulation of inflammation; (c) antigen presentation; (d) antibody-mediated receptor clustering; and (e) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Katia George
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; .,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Lassaunière R, Tiemessen CT. FcγR Genetic Variation and HIV-1 Vaccine Efficacy: Context And Considerations. Front Immunol 2021; 12:788203. [PMID: 34975881 PMCID: PMC8714752 DOI: 10.3389/fimmu.2021.788203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/02/2022] Open
Abstract
Receptors for the crystallisable fragment (Fc) of immunoglobulin (Ig) G, Fcγ receptors (FcγRs), link the humoral and cellular arms of the immune response, providing a diverse armamentarium of antimicrobial effector functions. Findings from HIV-1 vaccine efficacy trials highlight the need for further study of Fc-FcR interactions in understanding what may constitute vaccine-induced protective immunity. These include host genetic correlates identified within the low affinity Fcγ-receptor locus in three HIV-1 efficacy trials – VAX004, RV144, and HVTN 505. This perspective summarizes our present knowledge of FcγR genetics in the context of findings from HIV-1 efficacy trials, and draws on genetic variation described in other contexts, such as mother-to-child HIV-1 transmission and HIV-1 disease progression, to explore the potential contribution of FcγR variability in modulating different HIV-1 vaccine efficacy outcomes. Appreciating the complexity and the importance of the collective contribution of variation within the FCGR gene locus is important for understanding the role of FcγRs in protection against HIV-1 acquisition.
Collapse
Affiliation(s)
- Ria Lassaunière
- Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| | - Caroline T. Tiemessen
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Caroline T. Tiemessen, ; Ria Lassaunière,
| |
Collapse
|
9
|
Ebonwu J, Lassaunière R, Paximadis M, Goosen M, Strehlau R, Gray GE, Kuhn L, Tiemessen CT. An HIV Vaccine Protective Allele in FCGR2C Associates With Increased Odds of Perinatal HIV Acquisition. Front Immunol 2021; 12:760571. [PMID: 34917081 PMCID: PMC8668943 DOI: 10.3389/fimmu.2021.760571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the Thai RV144 HIV-1 vaccine trial, a three-variant haplotype within the Fc gamma receptor 2C gene (FCGR2C) reduced the risk of HIV-1 acquisition. A follow-on trial, HVTN702, of a similar vaccine candidate found no efficacy in South Africa, where the predominant population is polymorphic for only a single variant in the haplotype, c.134-96C>T (rs114945036). To investigate a role for this variant in HIV-1 acquisition in South Africans, we used the model of maternal-infant HIV-1 transmission. A nested case-control study was conducted of infants born to mothers living with HIV-1, comparing children with perinatally-acquired HIV-1 (cases, n = 176) to HIV-1-exposed uninfected children (controls, n = 349). All had received nevirapine for prevention of mother-to-child transmission. The FCGR2C copy number and expression variants (c.-386G>C, c.-120A>T c.169T>C, and c.798+1A>G) were determined using a multiplex ligation-dependent probe amplification assay and the c.134-96C>T genotype with Sanger sequencing. The copy number, genotype and allele carriage were compared between groups using univariate and multivariate logistic regression. The FCGR2C c.134-96C>T genotype distribution and copy number differed significantly between HIV-1 cases and exposed-uninfected controls (P = 0.002, PBonf = 0.032 and P = 0.010, PBonf = > 0.05, respectively). The FCGR2C c.134-96T allele was overrepresented in the cases compared to the controls (58% vs 42%; P = 0.001, PBonf = 0.016). Adjusting for birthweight and FCGR2C copy number, perinatal HIV-1 acquisition was associated with the c.134-96C>T (AOR = 1.89; 95% CI 1.25-2.87; P = 0.003, PBonf = 0.048) and c.169C>T (AOR = 2.39; 95% CI 1.45-3.95; P = 0.001, PBonf = 0.016) minor alleles but not the promoter variant at position c.-386G>C. The c.134-96C>T variant was in strong linkage disequilibrium with the c.169C>T variant, but remained significantly associated with perinatal acquisition when adjusted for c.169C>T in multivariate analysis. In contrast to the protective effect observed in the Thai RV144 trial, we found the FCGR2C variant c.134-96T-allele associated with increased odds of perinatal HIV-1 acquisition in South African children. These findings, taken together with a similar deleterious association found with HIV-1 disease progression in South African adults, highlight the importance of elucidating the functional relevance of this variant in different populations and vaccination/disease contexts.
Collapse
Affiliation(s)
- Joy Ebonwu
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ria Lassaunière
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Maria Paximadis
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Mark Goosen
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Renate Strehlau
- Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Johannesburg, South Africa
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Glenda E. Gray
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Louise Kuhn
- Gertrude H. Sergievsky Centre, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Caroline T. Tiemessen
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV & STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
10
|
Moraru M, Perez-Portilla A, Al-Akioui Sanz K, Blazquez-Moreno A, Arnaiz-Villena A, Reyburn HT, Vilches C. FCGR Genetic Variation in Two Populations From Ecuador Highlands-Extensive Copy-Number Variation, Distinctive Distribution of Functional Polymorphisms, and a Novel, Locally Common, Chimeric FCGR3B/A (CD16B/A) Gene. Front Immunol 2021; 12:615645. [PMID: 34108956 PMCID: PMC8183472 DOI: 10.3389/fimmu.2021.615645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Fcγ receptors (FcγR), cell-surface glycoproteins that bind antigen-IgG complexes, control both humoral and cellular immune responses. The FCGR locus on chromosome 1q23.3 comprises five homologous genes encoding low-affinity FcγRII and FcγRIII, and displays functionally relevant polymorphism that impacts on human health. Recurrent events of non-allelic homologous recombination across the FCGR locus result in copy-number variation of ~82.5 kbp-long fragments known as copy-number regions (CNR). Here, we characterize a recently described deletion that we name CNR5, which results in loss of FCGR3A, FCGR3B, and FCGR2C, and generation of a recombinant FCGR3B/A gene. We show that the CNR5 recombination spot lies at the beginning of the third FCGR3 intron. Although the FCGR3B/A-encoded hybrid protein CD16B/A reaches the plasma membrane in transfected cells, its possible natural expression, predictably restricted to neutrophils, could not be demonstrated in resting or interferon γ-stimulated cells. As the CNR5-deletion was originally described in an Ecuadorian family from Llano Grande (an indigenous community in North-Eastern Quito), we characterized the FCGR genetic variation in two populations from the highlands of Ecuador. Our results reveal that CNR5-deletion is relatively frequent in Llano Grande (5 carriers out of 36 donors). Furthermore, we found a high frequency of two strong-phagocytosis variants: the FCGR3B-NA1 haplotype and the CNR1 duplication, which translates into an increased FCGR3B and FCGR2C copy-number. CNR1 duplication was particularly increased in Llano Grande, 77.8% of the studied sample carrying at least one such duplication. In contrast, an extended haplotype CD16A-176V – CD32C-ORF+2B.2 – CD32B-2B.4 including strong activating and inhibitory FcγR variants was absent in Llano Grande and found at a low frequency (8.6%) in Ecuador highlands. This particular distribution of FCGR polymorphism, possibly a result of selective pressures, further confirms the importance of a comprehensive, joint analysis of all genetic variations in the locus and warrants additional studies on their putative clinical impact. In conclusion, our study confirms important ethnic variation at the FCGR locus; it shows a distinctive FCGR polymorphism distribution in Ecuador highlands; provides a molecular characterization of a novel CNR5-deletion associated with CD16A and CD16B deficiency; and confirms its presence in that population.
Collapse
Affiliation(s)
- Manuela Moraru
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| | - Adriana Perez-Portilla
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Karima Al-Akioui Sanz
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| | - Alfonso Blazquez-Moreno
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | | | - Hugh T Reyburn
- Department of Immunology and Oncology, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Carlos Vilches
- Immunogenetics & Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| |
Collapse
|
11
|
Dixon KJ, Wu J, Walcheck B. Engineering Anti-Tumor Monoclonal Antibodies and Fc Receptors to Enhance ADCC by Human NK Cells. Cancers (Basel) 2021; 13:312. [PMID: 33467027 PMCID: PMC7829765 DOI: 10.3390/cancers13020312] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-targeting monoclonal antibodies (mAbs) are the most widely used and characterized immunotherapy for hematologic and solid tumors. The significance of this therapy is their direct and indirect effects on tumor cells, facilitated by the antibody's antigen-binding fragment (Fab) and fragment crystallizable region (Fc region), respectively. The Fab can modulate the function of cell surface markers on tumor cells in an agonistic or antagonistic manner, whereas the Fc region can be recognized by an Fc receptor (FcR) on leukocytes through which various effector functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), can be elicited. This process is a key cytolytic mechanism of natural killer (NK) cells. These innate lymphocytes in the human body recognize tumor-bound antibodies exclusively by the IgG Fc receptor CD16A (FcγRIIIA). Two allelic versions of CD16A bind IgG with either lower or higher affinity. Cancer patients homozygous for the higher affinity allele of CD16A have been reported to respond significantly better to mAb therapies for various malignancies. These studies revealed that mAb therapy efficacy positively correlates with higher affinity binding to CD16A. Approaches to enhance tumor antigen targeting by NK cells by modifying the Fc portion of antibodies or the FcR on NK cells are the focus of this review.
Collapse
Affiliation(s)
| | | | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA; (K.J.D.); (J.W.)
| |
Collapse
|
12
|
Barb AW. Fc γ receptor compositional heterogeneity: Considerations for immunotherapy development. J Biol Chem 2021; 296:100057. [PMID: 33172893 PMCID: PMC7948983 DOI: 10.1074/jbc.rev120.013168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The antibody-binding crystallizable fragment (Fc) γ receptors (FcγRs) are expressed by leukocytes and activate or suppress a cellular response once engaged with an antibody-coated target. Therapeutic mAbs that require FcγR binding for therapeutic efficacy are now frontline treatments for multiple diseases. However, substantially fewer development efforts are focused on the FcγRs, despite accounting for half of the antibody-receptor complex. The recent success of engineered cell-based immunotherapies now provides a mechanism to introduce modified FcγRs into the clinic. FcγRs are highly heterogeneous because of multiple functionally distinct alleles for many genes, the presence of membrane-tethered and soluble forms, and a high degree of post-translational modification, notably asparagine-linked glycans. One significant factor limiting FcγR improvement is the fundamental lack of knowledge regarding endogenous receptor forms present in the human body. This review describes the composition of FcγRs isolated from primary human leukocytes, summarizes recent efforts to engineer FcγRs, and concludes with a description of potential FcγR features to enrich for enhanced function. Further understanding FcγR biology could accelerate the development of new clinical therapies targeting immune-related disease.
Collapse
Affiliation(s)
- Adam W Barb
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
13
|
Transient and chronic childhood immune thrombocytopenia are distinctly affected by Fc-γ receptor polymorphisms. Blood Adv 2020; 3:2003-2012. [PMID: 31270082 DOI: 10.1182/bloodadvances.2019000068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
In childhood immune thrombocytopenia (ITP), anti-platelet autoantibodies mediate platelet clearance through Fc-γ receptor (FcγR)-bearing phagocytes. In 75% to 90% of patients, the disease has a transient, self-limiting character. Here we characterized how polymorphisms of FcγR genes affect disease susceptibility, response to intravenous immunoglobulin (IVIg) treatment, and long-term recovery from childhood ITP. Genotyping of the FCGR2/3 locus was performed in 180 children with newly diagnosed ITP, 22 children with chronic ITP, and 180 healthy control children by multiplex ligation-dependent probe amplification. Children with newly diagnosed ITP were randomly assigned to a single administration of IVIg or observation, and followed for 1 year (Treatment With or Without IVIg for Kids With ITP [TIKI] trial). We defined transient ITP as a complete recovery (≥100 × 109/L) 3 months after diagnosis, including both self-limiting disease/IVIg responders and chronic ITP as absence of a complete recovery at 12 months. ITP susceptibility, as well as spontaneous recovery and response to IVIg, was associated with the genetic variants FCGR2C*ORF and FCGR2A*27W and the FCGR2B promoter variant 2B.4. These variants were overrepresented in patients with transient (N = 131), but not chronic (N = 43), disease. The presence of FCGR2C*ORF predisposed to transient ITP with an odds ratio of 4.7 (95% confidence interval, 1.9-14.3). Chronic ITP was associated with a deletion of FCGR2C/FCGR3B (copy number region 1) with an odds ratio of 6.2 (95% confidence interval, 1.8-24.7). Taken together, susceptibility to transient and chronic ITP is distinctly affected by polymorphic variants of FCGR2/3 genes. Our data suggest that genotyping of the FCGR2/3 locus may be useful for prognosis and guidance of treatment decisions in newly diagnosed childhood ITP.
Collapse
|
14
|
Laufer VA, Tiwari HK, Reynolds RJ, Danila MI, Wang J, Edberg JC, Kimberly RP, Kottyan LC, Harley JB, Mikuls TR, Gregersen PK, Absher DM, Langefeld CD, Arnett DK, Bridges SL. Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum Mol Genet 2020; 28:858-874. [PMID: 30423114 DOI: 10.1093/hmg/ddy395] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Large meta-analyses of rheumatoid arthritis (RA) susceptibility in European (EUR) and East Asian (EAS) populations have identified >100 RA risk loci, but genome-wide studies of RA in African-Americans (AAs) are absent. To address this disparity, we performed an analysis of 916 AA RA patients and 1392 controls and aggregated our data with genotyping data from >100 000 EUR and Asian RA patients and controls. We identified two novel risk loci that appear to be specific to AAs: GPC5 and RBFOX1 (PAA < 5 × 10-9). Most RA risk loci are shared across different ethnicities, but among discordant loci, we observed strong enrichment of variants having large effect sizes. We found strong evidence of effect concordance for only 3 of the 21 largest effect index variants in EURs. We used the trans-ethnic fine-mapping algorithm PAINTOR3 to prioritize risk variants in >90 RA risk loci. Addition of AA data to those of EUR and EAS descent enabled identification of seven novel high-confidence candidate pathogenic variants (defined by posterior probability > 0.8). In summary, our trans-ethnic analyses are the first to include AAs, identified several new RA risk loci and point to candidate pathogenic variants that may underlie this common autoimmune disease. These findings may lead to better ways to diagnose or stratify treatment approaches in RA.
Collapse
Affiliation(s)
- Vincent A Laufer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard J Reynolds
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria I Danila
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jelai Wang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah C Kottyan
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John B Harley
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,United States Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Ted R Mikuls
- VA Nebraska-Western Iowa Health Care System and the Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Donna K Arnett
- University of Kentucky College of Public Health, Lexington, KY, USA
| | - S Louis Bridges
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Li SS, Gilbert PB, Carpp LN, Pyo CW, Janes H, Fong Y, Shen X, Neidich SD, Goodman D, deCamp A, Cohen KW, Ferrari G, Hammer SM, Sobieszczyk ME, Mulligan MJ, Buchbinder SP, Keefer MC, DeJesus E, Novak RM, Frank I, McElrath MJ, Tomaras GD, Geraghty DE, Peng X. Fc Gamma Receptor Polymorphisms Modulated the Vaccine Effect on HIV-1 Risk in the HVTN 505 HIV Vaccine Trial. J Virol 2019; 93:e02041-18. [PMID: 31434737 PMCID: PMC6803257 DOI: 10.1128/jvi.02041-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/14/2019] [Indexed: 12/19/2022] Open
Abstract
HIV Vaccine Trials Network (HVTN) 505 was a phase 2b efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) HIV vaccine regimen. Although the trial was stopped early for lack of overall efficacy, later correlates of risk and sieve analyses generated the hypothesis that the DNA/rAd5 vaccine regimen protected some vaccinees from HIV infection yet enhanced HIV infection risk for others. Here, we assessed whether and how host Fc gamma receptor (FcγR) genetic variations influenced the DNA/rAd5 vaccine regimen's effect on HIV infection risk. We found that vaccine receipt significantly increased HIV acquisition compared with placebo receipt among participants carrying the FCGR2C-TATA haplotype (comprising minor alleles of four FCGR2C single-nucleotide polymorphism [SNP] sites) (hazard ratio [HR] = 9.79, P = 0.035) but not among participants without the haplotype (HR = 0.86, P = 0.67); the interaction of vaccine and haplotype effect was significant (P = 0.034). Similarly, vaccine receipt increased HIV acquisition compared with placebo receipt among participants carrying the FCGR3B-AGA haplotype (comprising minor alleles of the 3 FCGR3B SNPs) (HR = 2.78, P = 0.058) but not among participants without the haplotype (HR = 0.73, P = 0.44); again, the interaction of vaccine and haplotype was significant (P = 0.047). The FCGR3B-AGA haplotype also influenced whether a combined Env-specific CD8+ T-cell polyfunctionality score and IgG response correlated significantly with HIV risk; an FCGR2A SNP and two FCGR2B SNPs influenced whether anti-gp140 antibody-dependent cellular phagocytosis correlated significantly with HIV risk. These results provide further evidence that Fc gamma receptor genetic variations may modulate HIV vaccine effects and immune function after HIV vaccination.IMPORTANCE By analyzing data from the HVTN 505 efficacy trial of a DNA/recombinant adenovirus 5 (rAd5) vaccine regimen, we found that host genetics, specifically Fc gamma receptor genetic variations, influenced whether receiving the DNA/rAd5 regimen was beneficial, neutral, or detrimental to an individual with respect to HIV-1 acquisition risk. Moreover, Fc gamma receptor genetic variations influenced immune responses to the DNA/rAd5 vaccine regimen. Thus, Fc gamma receptor genetic variations should be considered in the analysis of future HIV vaccine trials and the development of HIV vaccines.
Collapse
Affiliation(s)
- Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Youyi Fong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Scott D Neidich
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Derrick Goodman
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Allan deCamp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Guido Ferrari
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Scott M Hammer
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Mark J Mulligan
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Susan P Buchbinder
- Department of Medicine, University of California, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Michael C Keefer
- Division of Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Ian Frank
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University, Durham, North Carolina, USA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
16
|
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol 2019; 10:2237. [PMID: 31632391 PMCID: PMC6786274 DOI: 10.3389/fimmu.2019.02237] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Fc-gamma receptors (FcγR) are the cellular receptors for Immunoglobulin G (IgG). Upon binding of complexed IgG, FcγRs can trigger various cellular immune effector functions, thereby linking the adaptive and innate immune systems. In humans, six classic FcγRs are known: one high-affinity receptor (FcγRI) and five low-to-medium-affinity FcγRs (FcγRIIA, -B and -C, FcγRIIIA and -B). In this review we describe the five genes encoding the low-to-medium -affinity FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B), including well-characterized functionally relevant single nucleotide polymorphisms (SNPs), haplotypes as well as copy number variants (CNVs), which occur in distinct copy number regions across the locus. The evolution of the locus is also discussed. Importantly, we recommend a consistent nomenclature of genetic variants in the FCGR2/3 locus. Next, we focus on the relevance of genetic variation in the FCGR2/3 locus in auto-immune and auto-inflammatory diseases, highlighting pathophysiological insights that are informed by genetic association studies. Finally, we illustrate how specific FcγR variants relate to variation in treatment responses and prognosis amongst autoimmune diseases, cancer and transplant immunology, suggesting novel opportunities for personalized medicine.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David E Schmidt
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Amsterdam, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research, Leiden, Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Zhao J, Jiang L, Deng L, Xu W, Cao Y, Chen C, Yang Y, Wu H, Huang Y, Zhu Z, Huang H. Important roles of CD32 in promoting suppression of IL-4 induced immune responses by a novel anti-IL-4Rα therapeutic antibody. MAbs 2019; 11:837-847. [PMID: 30950681 PMCID: PMC6601543 DOI: 10.1080/19420862.2019.1601985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and inflammation, as well as underlying structural changes to the airways. Interleukin-4 (IL-4) is a key T-helper type 2 (Th2) cytokine that plays important roles in the pathogenesis of atopic and eosinophilic asthma. We developed a novel humanized anti-IL-4Rα antibody that can potently inhibit IL-4/IL-13-mediated TF-1 cell proliferation. Using monocytes isolated from human peripheral blood mononuclear cells (PBMCs), we revealed a critical role of CD32 in modulating the immune responses of monocytes in response to blockade of IL-4Rα signaling pathway. We, therefore, devised a new strategy to increase the efficacy of the anti-IL-4Rα monoclonal antibody for the treatment of asthma and other atopic diseases by co-engaging CD32 and IL-4Rα on monocytic cells by choosing IgG classes or Fc mutations with higher affinities for CD32. The antibody with selectively enhanced affinity for CD32A displayed superior suppression of IL-4-induced monocytes’ activities, including the down-regulation of CD23 expression. Intriguingly, further analysis demonstrated that both CD32A and CD32B contributed to the enhancement of antibody-mediated suppression of CD23 expression from monocytes in response to blockade of IL-4Rα signaling. Furthermore, inhibition of IgE secretion from human PBMC by the antibody variants further suggests that the complex allergic inflammation mediated by IL-4/IL-4Rα signaling might result from a global network where multiple cell types that express multiple FcγRs are all involved, of which CD32, especially CD32A, is a key mediator. In this respect, our study provides new insights into designing therapeutic antibodies for targeting Th2 cytokine-mediated allergic pathogenesis.
Collapse
Affiliation(s)
- Jie Zhao
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Liangfeng Jiang
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Lan Deng
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Wei Xu
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Yang Cao
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Chen Chen
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Yan Yang
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Huiling Wu
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Yuping Huang
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Zhenping Zhu
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| | - Haomin Huang
- a Department of Antibody and Protein Engineering , 3sBio Inc , Pudong , Shanghai , China
| |
Collapse
|
18
|
de Taeye SW, Rispens T, Vidarsson G. The Ligands for Human IgG and Their Effector Functions. Antibodies (Basel) 2019; 8:E30. [PMID: 31544836 PMCID: PMC6640714 DOI: 10.3390/antib8020030] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 01/17/2023] Open
Abstract
Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Steven W de Taeye
- Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
- Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | - Theo Rispens
- Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| | - Gestur Vidarsson
- Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Crowley AR, Ackerman ME. Mind the Gap: How Interspecies Variability in IgG and Its Receptors May Complicate Comparisons of Human and Non-human Primate Effector Function. Front Immunol 2019; 10:697. [PMID: 31024542 PMCID: PMC6463756 DOI: 10.3389/fimmu.2019.00697] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
The field of HIV research relies heavily on non-human primates, particularly the members of the macaque genus, as models for the evaluation of candidate vaccines and monoclonal antibodies. A growing body of research suggests that successful protection of humans will not solely rely on the neutralization activity of an antibody's antigen binding fragment. Rather, immunological effector functions prompted by the interaction of the immunoglobulin G constant region and its cognate Fc receptors help contribute to favorable outcomes. Inherent differences in the sequences, expression, and activities of human and non-human primate antibody receptors and immunoglobulins have the potential to produce disparate results in the observations made in studies conducted in differing species. Having a more complete understanding of these differences, however, should permit the more fluent translation of observations between model organisms and the clinic. Here we present a guide to such translations that encompasses not only what is presently known regarding the affinity of the receptor-ligand interactions but also the influence of expression patterns and allelic variation, with a focus on insights gained from use of this model in HIV vaccines and passive antibody therapy and treatment.
Collapse
Affiliation(s)
- Andrew R. Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
| | - Margaret E. Ackerman
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
20
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Onengut-Gumuscu S, Chen WM, Robertson CC, Bonnie JK, Farber E, Zhu Z, Oksenberg JR, Brant SR, Bridges SL, Edberg JC, Kimberly RP, Gregersen PK, Rewers MJ, Steck AK, Black MH, Dabelea D, Pihoker C, Atkinson MA, Wagenknecht LE, Divers J, Bell RA, Erlich HA, Concannon P, Rich SS. Type 1 Diabetes Risk in African-Ancestry Participants and Utility of an Ancestry-Specific Genetic Risk Score. Diabetes Care 2019; 42:406-415. [PMID: 30659077 PMCID: PMC6385701 DOI: 10.2337/dc18-1727] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/14/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Genetic risk scores (GRS) have been developed that differentiate individuals with type 1 diabetes from those with other forms of diabetes and are starting to be used for population screening; however, most studies were conducted in European-ancestry populations. This study identifies novel genetic variants associated with type 1 diabetes risk in African-ancestry participants and develops an African-specific GRS. RESEARCH DESIGN AND METHODS We generated single nucleotide polymorphism (SNP) data with the ImmunoChip on 1,021 African-ancestry participants with type 1 diabetes and 2,928 control participants. HLA class I and class II alleles were imputed using SNP2HLA. Logistic regression models were used to identify genome-wide significant (P < 5.0 × 10-8) SNPs associated with type 1 diabetes in the African-ancestry samples and validate SNPs associated with risk in known European-ancestry loci (P < 2.79 × 10-5). RESULTS African-specific (HLA-DQA1*03:01-HLA-DQB1*02:01) and known European-ancestry HLA haplotypes (HLA-DRB1*03:01-HLA-DQA1*05:01-HLA-DQB1*02:01, HLA-DRB1*04:01-HLA-DQA1*03:01-HLA-DQB1*03:02) were significantly associated with type 1 diabetes risk. Among European-ancestry defined non-HLA risk loci, six risk loci were significantly associated with type 1 diabetes in subjects of African ancestry. An African-specific GRS provided strong prediction of type 1 diabetes risk (area under the curve 0.871), performing significantly better than a European-based GRS and two polygenic risk scores in independent discovery and validation cohorts. CONCLUSIONS Genetic risk of type 1 diabetes includes ancestry-specific, disease-associated variants. The GRS developed here provides improved prediction of type 1 diabetes in African-ancestry subjects and a means to identify groups of individuals who would benefit from immune monitoring for early detection of islet autoimmunity.
Collapse
Affiliation(s)
- Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | | | - Jessica K Bonnie
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Zhennan Zhu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Jorge R Oksenberg
- Department of Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Steven R Brant
- Meyerhoff Inflammatory Bowel Disease Center, Department of Medicine, School of Medicine, and Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - S Louis Bridges
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL
| | - Jeffrey C Edberg
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL
| | - Robert P Kimberly
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics & Human Genetics, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | | | - Dana Dabelea
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO
| | | | - Mark A Atkinson
- Diabetes Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Lynne E Wagenknecht
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jasmin Divers
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Ronny A Bell
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Henry A Erlich
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA
| | - Patrick Concannon
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| |
Collapse
|
22
|
Patel KR, Roberts JT, Barb AW. Multiple Variables at the Leukocyte Cell Surface Impact Fc γ Receptor-Dependent Mechanisms. Front Immunol 2019; 10:223. [PMID: 30837990 PMCID: PMC6382684 DOI: 10.3389/fimmu.2019.00223] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 12/18/2022] Open
Abstract
Fc γ receptors (FcγR) expressed on the surface of human leukocytes bind clusters of immunoglobulin G (IgG) to induce a variety of responses. Many therapeutic antibodies and vaccine-elicited antibodies prevent or treat infectious diseases, cancers and autoimmune disorders by binding FcγRs, thus there is a need to fully define the variables that impact antibody-induced mechanisms to properly evaluate candidate therapies and design new intervention strategies. A multitude of factors influence the IgG-FcγR interaction; one well-described factor is the differential affinity of the six distinct FcγRs for the four human IgG subclasses. However, there are several other recently described factors that may prove more relevant for disease treatment. This review covers recent reports of several aspects found at the leukocyte membrane or outside the cell that contribute to the cell-based response to antibody-coated targets. One major focus is recent reports covering post-translational modification of the FcγRs, including asparagine-linked glycosylation. This review also covers the organization of FcγRs at the cell surface, and properties of the immune complex. Recent technical advances provide high-resolution measurements of these often-overlooked variables in leukocyte function and immune system activation.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Lassaunière R, Paximadis M, Ebrahim O, Chaisson RE, Martinson NA, Tiemessen CT. The FCGR2C allele that modulated the risk of HIV-1 infection in the Thai RV144 vaccine trial is implicated in HIV-1 disease progression. Genes Immun 2018; 20:651-659. [PMID: 30563969 PMCID: PMC6881233 DOI: 10.1038/s41435-018-0053-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022]
Abstract
In the HIV-1 Thai RV144 vaccine trial—the only trial to demonstrate any
vaccine efficacy to date—a three-variant haplotype within the Fc gamma receptor 2C
gene (FCGR2C) modified the risk of HIV-1
acquisition. A similar vaccine regimen is currently being evaluated in South Africa
in the HVTN702 trial, where the predominant population is polymorphic for only a
single variant in the haplotype, c.134-96C>T. To investigate the significance of
c.134-96C>T in HIV-specific immunity in South Africans, this study assessed its
role in HIV-1 disease progression. In a cohort of HIV-1-infected South African
controllers (n = 71) and progressors (n = 73), the c.134-96C>T minor allele significantly
associated with increased odds of HIV-1 disease progression (odds ratio 3.80, 95%
confidence interval 1.90–7.62; P = 2.0 × 10–4, PBonf = 2.4 × 10–3).
It is unlikely that the underlying mechanism involves wild-type FcγRIIc function,
since only a single study participant was predicted to express wild-type FcγRIIc as
determined by the FCGR2C c.798+1A>G
splice-site variant. Conversely, in silico analysis revealed a potential role for
c.134-96C> T in modulating mRNA transcription. In conclusion, these data provide
additional evidence towards a role for FCGR2C
c.134-96C>T in the context of HIV-1 and underscore the need to investigate its
significance in the HVTN702 efficacy trial in South Africa.
Collapse
Affiliation(s)
- Ria Lassaunière
- National Institute for Communicable Diseases, Centre for HIV and STI's, Johannesburg, South Africa.,University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa.,Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Maria Paximadis
- National Institute for Communicable Diseases, Centre for HIV and STI's, Johannesburg, South Africa.,University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Osman Ebrahim
- University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa.,Brenthurst Clinic, Johannesburg, South Africa
| | | | - Neil A Martinson
- Perinatal HIV Research Unit (PHRU), University of the Witwatersrand, Johannesburg, South Africa.,MRC Soweto Matlosana Centre for HIV/AIDS and TB Research, Johannesburg, South Africa
| | - Caroline T Tiemessen
- National Institute for Communicable Diseases, Centre for HIV and STI's, Johannesburg, South Africa. .,University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa.
| |
Collapse
|
24
|
Wågström P, Yamada-Fowler N, Dahle C, Nilsdotter-Augustinsson Å, Bengnér M, Söderkvist P, Björkander J. Fcγ-receptor polymorphisms associated with clinical symptoms in patients with immunoglobulin G subclass deficiency. Infect Dis (Lond) 2018; 50:853-858. [PMID: 30298768 DOI: 10.1080/23744235.2018.1510183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunoglobulin G subclass deficiencies (IgGsd) are associated with recurrent respiratory tract infections. Immunoglobulin substitution therapy may be needed to prevent chronic lung tissue damage but tools for identifying the patients that will benefit from this treatment are still insufficient. Some FcγR polymorphisms seem to predispose for an increased risk for infections. In this study we wanted to evaluate if the FcγR-profile differs between individuals with IgGsd and a control population. METHODS Single nucleotide polymorphisms (SNPs) of FcγRIIa, FcγRIIIa and FcγRIIc in 36 IgGsd patients and 192 controls with similar sex and geographical distribution were analyzed by TaqMan allelic discrimination assay or Sanger sequencing. RESULTS In the IgGsd-group, homozygous frequency for FcγRIIa-R/R131 (low-binding capacity isoform) was higher (p = .03) as well as for non-classical FcγRIIc-ORF (p = .03) and classical FcγRIIc-ORF tended (p = .07) to be more common compared to the controls. There was no difference between the groups regarding FcγRIIIa. CONCLUSION The gene for classical FcγRIIc-ORF tended to be more frequent in individuals with immunoglobulin G subclass deficiency and the genes for non-classical FcγRIIc-ORF as well as low-binding capacity receptor FcγRIIa-R/R131 were more frequent. Further studies on the FcγR polymorphisms may pave way for identifying individuals that will benefit from immunoglobulin substitution.
Collapse
Affiliation(s)
- Per Wågström
- a Department of Infectious Diseases, Ryhov County Hospital, Jönköping and Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Naomi Yamada-Fowler
- b Department of Clinical and Experimental Medicine , Linköping University, Division of Cell Biology , Linköping , Sweden
| | - Charlotte Dahle
- c Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Åsa Nilsdotter-Augustinsson
- d Department of Infectious Diseases and Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Malin Bengnér
- e Office for Control of Communicable Diseases , Ryhov County Hospital , Jönköping , Sweden
| | - Peter Söderkvist
- b Department of Clinical and Experimental Medicine , Linköping University, Division of Cell Biology , Linköping , Sweden
| | - Janne Björkander
- f Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences , Linköping University , Sweden
| |
Collapse
|
25
|
Kaifu T, Nakamura A. Polymorphisms of immunoglobulin receptors and the effects on clinical outcome in cancer immunotherapy and other immune diseases: a general review. Int Immunol 2018; 29:319-325. [PMID: 28910969 DOI: 10.1093/intimm/dxx041] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
Receptors for the Fc domain of immunoglobulins [Fc receptors (FcRs)] are essential for the maintenance of antibody-mediated immune responses. FcRs consist of activating- and inhibitory-type receptors that regulate adequate thresholds for various immune cells. In particular, polymorphisms and/or gene copy-number variations of FcRs for IgG (FcγRs) are closely associated with the development of inflammatory disorders, including autoimmune diseases. Recent evidence has implicated polymorphisms of FcRs in the efficacy of monoclonal antibody (mAb)-mediated therapy. This review provides an overview of genetic variations in human FcγRs and the clinical contribution of FcγR polymorphisms in mAb treatments for cancer, autoimmune diseases and allergies.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
26
|
IL-21 drives expansion and plasma cell differentiation of autoreactive CD11c hiT-bet + B cells in SLE. Nat Commun 2018; 9:1758. [PMID: 29717110 PMCID: PMC5931508 DOI: 10.1038/s41467-018-03750-7] [Citation(s) in RCA: 376] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/08/2018] [Indexed: 01/06/2023] Open
Abstract
Although the aetiology of systemic lupus erythematosus (SLE) is unclear, dysregulated B cell responses have been implicated. Here we show that an unusual CD11chiT-bet+ B cell subset, with a unique expression profile including chemokine receptors consistent with migration to target tissues, is expanded in SLE patients, present in nephrotic kidney, enriched for autoreactive specificities and correlates with defined clinical manifestations. IL-21 can potently induce CD11chiT-bet+ B cells and promote the differentiation of these cells into Ig-secreting autoreactive plasma cells. While murine studies have identified a role for T-bet-expressing B cells in autoimmunity, this study describes and exemplifies the importance of CD11chiT-bet+ B cells in human SLE. Systemic lupus erythematosus (SLE) is associated with altered B cell responses but the underlying aetiology is still unclear. Here the authors show that a CD11chiT-bet+ B cell subset with a unique phenotype and transcriptome is increased in patients with SLE, can be expanded by IL-21, and may contribute to autoimmune responses in SLE.
Collapse
|
27
|
Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018; 9:880. [PMID: 29760702 PMCID: PMC5937051 DOI: 10.3389/fimmu.2018.00880] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts which presents with an increased bleeding risk. Several genetic risk factors (e.g., polymorphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both effector arms enhance platelet clearance through phagocytosis by splenic macrophages or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhibited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are important for B cell differentiation into autoantibody secreting plasma cells. Regulatory Tc are essential to secure immune tolerance, and reduced levels have been implicated in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways are involved in the etiology of ITP. In this review, we present a simplified model for the pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of tolerance are required for development of chronic anti-platelet responses. We also suggest that infections may comprise an important trigger for the development of auto-immunity against platelets in ITP. Post-translational modification of autoantigens has been firmly implicated in the development of autoimmune disorders like rheumatoid arthritis and type 1 diabetes. Based on these findings, we propose that post-translational modifications of platelet antigens may also contribute to the pathogenesis of ITP.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Maaike Rijkers
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
28
|
Wang J, Li Z, Xu L, Yang H, Liu W. Transmembrane domain dependent inhibitory function of FcγRIIB. Protein Cell 2018; 9:1004-1012. [PMID: 29497990 PMCID: PMC6251803 DOI: 10.1007/s13238-018-0509-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 01/26/2023] Open
Abstract
FcγRIIB, the only inhibitory IgG Fc receptor, functions to suppress the hyper-activation of immune cells. Numerous studies have illustrated its inhibitory function through the ITIM motif in the cytoplasmic tail of FcγRIIB. However, later studies revealed that in addition to the ITIM, the transmembrane (TM) domain of FcγRIIB is also indispensable for its inhibitory function. Indeed, recent epidemiological studies revealed that a non-synonymous single nucleotide polymorphism (rs1050501) within the TM domain of FcγRIIB, responsible for the I232T substitution, is associated with the susceptibility to systemic lupus erythematosus (SLE). In this review, we will summarize these epidemiological and functional studies of FcγRIIB-I232T in the past few years, and will further discuss the mechanisms accounting for the functional loss of FcγRIIB-I232T. Our review will help the reader gain a deeper understanding of the importance of the TM domain in mediating the inhibitory function of FcγRIIB and may provide insights to a new therapeutic target for the associated diseases.
Collapse
Affiliation(s)
- Junyi Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zongyu Li
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Liling Xu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, 400 Technology Square, Cambridge, MA, 02139, USA.
| | - Hengwen Yang
- The First Affiliate Hospital, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou, 510632, China.
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 2017; 130:2121-2130. [PMID: 28899854 DOI: 10.1182/blood-2017-05-784876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/06/2017] [Indexed: 01/21/2023] Open
Abstract
Red blood cell (RBC) transfusions are of vital importance in patients with sickle cell disease (SCD). However, a major complication of transfusion therapy is alloimmunization. The low-affinity Fcγ receptors, expressed on immune cells, are important regulators of antibody responses. Genetic variation in FCGR genes has been associated with various auto- and alloimmune diseases. The aim of this study was to evaluate the association between genetic variation of FCGR and RBC alloimmunization in SCD. In this case-control study, DNA samples from 2 cohorts of transfused SCD patients were combined (France and The Netherlands). Cases had a positive history of alloimmunization, having received ≥1 RBC unit. Controls had a negative history of alloimmunization, having received ≥20 RBC units. Single nucleotide polymorphisms and copy number variation of the FCGR2/3 gene cluster were studied in a FCGR-specific multiplex ligation-dependent probe amplification assay. Frequencies were compared using logistic regression. Two hundred seventy-two patients were included (130 controls, 142 cases). The nonclassical open reading frame in the FCGR2C gene (FCGR2C.nc-ORF) was strongly associated with a decreased alloimmunization risk (odds ratio [OR] 0.26, 95% confidence [CI] 0.11-0.64). This association persisted when only including controls with exposure to ≥100 units (OR 0.30, CI 0.11-0.85) and appeared even stronger when excluding cases with Rh or K antibodies only (OR 0.19, CI 0.06-0.59). In conclusion, SCD patients with the FCGR2Cnc-ORF polymorphism have over a 3-fold lower risk for RBC alloimmunization in comparison with patients without this mutation. This protective effect was strongest for exposure to antigens other than the immunogenic Rh or K antigens.
Collapse
|
30
|
Typiak M, Rębała K, Haraś A, Skotarczak M, Słomiński JM, Dubaniewicz A. Copy number variation of FCGR genes in etiopathogenesis of sarcoidosis. PLoS One 2017; 12:e0177194. [PMID: 28472129 PMCID: PMC5417662 DOI: 10.1371/journal.pone.0177194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022] Open
Abstract
We have previously revealed that, in contrast to polymorphism of FCGR2B and FCGR3B, polymorphism of FCGR2A, FCGR2C and FCGR3A genes, encoding receptors for Fc fragment of immunoglobulin G (Fcγ receptors), play a role in increased level of circulating immune complexes with occurrence of Mycobacterium tuberculosis heat shock proteins in patients with sarcoidosis. However, this immunocomplexemia might also be caused by decreased clearance by immune cells due to a changed copy number of FCGR genes. Thus, the next step of our study was to evaluate copy number variation of FCGR2A, FCGR2B, FCGR2C, FCGR3A and FCGR3B in this disease. The analysis was carried out by real-time quantitative PCR on 104 patients and 110 healthy volunteers. Despite previously detected variation in allele/genotype frequencies of FCGR in sarcoidosis and its particular stages, there was no copy number variation of the tested genes between sarcoidosis or its stages and healthy control, as well as between stages themselves. A relevant increase in copy number of FCGR2C and FCGR3B in Stage IV of sarcoidosis vs. other stages and controls was detected, but this observation was based on a limited number of Stage IV patients. Hence, polymorphism of FCGR genes seems to be more important than their copy number variation in etiopathogenesis of sarcoidosis in patients from the Polish population.
Collapse
Affiliation(s)
- Marlena Typiak
- Department of Pulmonology, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Rębała
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Agnieszka Haraś
- Department of Forensic Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Monika Skotarczak
- 2nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | | | - Anna Dubaniewicz
- Department of Pulmonology, Medical University of Gdansk, Gdansk, Poland
- * E-mail:
| |
Collapse
|
31
|
RhIg-prophylaxis is not influenced by FCGR2/3 polymorphisms involved in red blood cell clearance. Blood 2017; 129:1045-1048. [PMID: 28082442 DOI: 10.1182/blood-2016-05-716365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
33
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
34
|
Boesch AW, Brown EP, Ackerman ME. The role of Fc receptors in HIV prevention and therapy. Immunol Rev 2016; 268:296-310. [PMID: 26497529 DOI: 10.1111/imr.12339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, a wealth of experimental evidence has accumulated supporting the importance of Fc receptor (FcR) ligation in antibody-mediated pathology and protection in many disease states. Here we present the diverse evidence base that has accumulated as to the importance of antibody effector functions in the setting of HIV prevention and therapy, including clinical correlates, genetic associations, viral evasion strategies, and a rapidly growing number of compelling animal model experiments. Collectively, this work identifies antibody interactions with FcR as important to both therapeutic and prophylactic strategies involving both passive and active immunity. These findings mirror those in other fields as investigators continue to work toward identifying the right antibodies and the right effectors to be present at the right sites at the right time.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA.,Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
35
|
KIMBERLY ROBERTP. Prospecting for Precision: Promises for Personalized Medicine. J Rheumatol 2016; 43:999-1000. [DOI: 10.3899/jrheum.160424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
36
|
Peng X, Li SS, Gilbert PB, Geraghty DE, Katze MG. FCGR2C Polymorphisms Associated with HIV-1 Vaccine Protection Are Linked to Altered Gene Expression of Fc-γ Receptors in Human B Cells. PLoS One 2016; 11:e0152425. [PMID: 27015273 PMCID: PMC4807760 DOI: 10.1371/journal.pone.0152425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
The phase III Thai RV144 vaccine trial showed an estimated vaccine efficacy (VE) to prevent HIV-1 infection of 31.2%, which has motivated the search for immune correlates of vaccine protection. In a recent report, several single nucleotide polymorphisms (SNPs) in FCGR2C were identified to associate with the level of VE in the RV144 trial. To investigate the functional significance of these SNPs, we utilized a large scale B cell RNA sequencing database of 462 individuals from the 1000 Genomes Project to examine associations between FCGR2C SNPs and gene expression. We found that the FCGR2C SNPs that associated with vaccine efficacy in RV144 also strongly associated with the expression of FCGR2A/C and one of them also associated with the expression of Fc receptor-like A (FCRLA), another Fc-γ receptor (FcγR) gene that was not examined in the previous report. These results suggest that the expression of FcγR genes is influenced by these SNPs either directly or in linkage with other causal variants. More importantly, these results motivate further investigations into the potential for a causal association of expression and alternative splicing of FCGR2C and other FcγR genes with the HIV-1 vaccine protection in the RV144 trial and other similar studies.
Collapse
Affiliation(s)
- Xinxia Peng
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shuying S. Li
- Department of Biostatistics, Bioinformatics, and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Department of Biostatistics, Bioinformatics, and Epidemiology, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Daniel E. Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael G. Katze
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
37
|
Tsang-A-Sjoe MWP, Nagelkerke SQ, Bultink IEM, Geissler J, Tanck MWT, Tacke CE, Ellis JA, Zenz W, Bijl M, Berden JH, de Leeuw K, Derksen RH, Kuijpers TW, Voskuyl AE. Fc-gamma receptor polymorphisms differentially influence susceptibility to systemic lupus erythematosus and lupus nephritis. Rheumatology (Oxford) 2016; 55:939-48. [DOI: 10.1093/rheumatology/kev433] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 01/09/2023] Open
|
38
|
Prospects for engineering HIV-specific antibodies for enhanced effector function and half-life. Curr Opin HIV AIDS 2016; 10:160-9. [PMID: 25700208 DOI: 10.1097/coh.0000000000000149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW A wealth of recent animal model data suggests that as exciting possibilities for the use of antibodies in passive immunotherapy strategies continue to develop, it will be important to broadly consider how antibodies achieve anti-HIV-1 effect in vivo. RECENT FINDINGS Beyond neutralization breadth and potency, substantial evidence from natural infection, vaccination, and studies in animal models points to a critical role for antibody Fc receptor (FcR) engagement in reducing risk of infection, decreasing postinfection viremia, and delaying viral rebound. Supporting these findings in the setting of HIV, the clinical maturation of recombinant antibody therapeutics has reinforced the importance of Fc-driven activity in vivo across many disease settings, as well as opportunely resulted in the development and exploration of a number of engineered Fc sequence and glycosylation variants that possess differential binding to FcRs. Exploiting these variants as tools, the individual and concerted effects of antibody effector functions such as antibody-dependent cellular cytotoxicity, antibody-dependent cell-mediated virus inhibition, phagocytosis, complement-dependent cytotoxicity, antibody half-life, and compartmentalization are now being explored. As exciting molecular therapies are advanced, these studies promise to provide insight into optimal in-vivo antibody activity profiles. SUMMARY Careful consideration of recent progress in understanding protective antibody activities in vivo can point toward how tailoring antibody activity via Fc domain modification may enable optimization of HIV prevention and eradication strategies.
Collapse
|
39
|
Variability at the FCGR locus: characterization in Black South Africans and evidence for ethnic variation in and out of Africa. Genes Immun 2015; 17:93-104. [PMID: 26673965 DOI: 10.1038/gene.2015.60] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/07/2023]
Abstract
This study set out to comprehensively investigate all known functional FcγR variants in South African Black and Caucasian individuals. Population diversity was further assessed using data from the 1000 Genomes Project. In our cohort, Black South Africans neither possessed the haplotypes previously associated with increased surface densities of FcγRIIb and FcγRIIIa nor the FCGR2C haplotype recently associated with increased vaccine efficacy in the RV144 HIV-1 vaccine trial (despite 48.7% bearing the c.134-96T tag allele). Moreover, Africans (South Africans, Luhya Kenyans and Yoruba Nigerians) lack the FCGR2C c.798+1G splice-site allele required for the expression of functional FcγRIIc. Although the presence or absence of surface FcγRIIc did not affect natural killer cell-mediated antibody-dependent cellular cytotoxicity capability, this may be significant for other FcγRIIc-mediated functions. Overall, allele distribution and linkage disequilibrium in Africans and Caucasians differed in a manner that would suggest a differentially maintained balance of FcγR-mediated cell activation in these populations. Finally, significant variation observed among different African populations precludes the use of any one African population as a proxy for FcγR diversity in Africans. In conclusion, the findings of this study highlight further ethnic variation at the FCGR gene locus, in particular for FCGR2C, a gene with increasingly recognized clinical significance.
Collapse
|
40
|
Abstract
Monoclonal antibody (mAb) immunotherapy is currently experiencing an unprecedented amount of success, delivering blockbuster sales for the pharmaceutical industry. Having experienced several false dawns and overcoming technical issues which limited progress, we are now entering a golden period where mAbs are becoming a mainstay of treatment regimes for diseases ranging from cancer to autoimmunity. In this review, we discuss how these mAbs are most likely working and focus in particular on the key receptors that they interact with to precipitate their therapeutic effects. Although their targets may vary, their engagement with Fcγ receptors (FcγRs) on numerous immune effector cells is almost universal, and here we review their roles in delivering successful immunotherapy.
Collapse
Affiliation(s)
- Lekh N Dahal
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Stephen A Beers
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, General Hospital, Southampton, UK
| |
Collapse
|
41
|
Hargreaves CE, Rose-Zerilli MJJ, Machado LR, Iriyama C, Hollox EJ, Cragg MS, Strefford JC. Fcγ receptors: genetic variation, function, and disease. Immunol Rev 2015; 268:6-24. [DOI: 10.1111/imr.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Chantal E. Hargreaves
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | | | - Lee R. Machado
- Department of Genetics; University of Leicester; Leicester UK
- School of Health; University of Northampton; Northampton UK
| | - Chisako Iriyama
- Department of Hematology and Oncology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | | | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| | - Jonathan C. Strefford
- Cancer Genomics Group; Cancer Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
42
|
Allelic and copy-number variations of FcγRs affect granulocyte function and susceptibility for autoimmune blistering diseases. J Autoimmun 2015; 61:36-44. [PMID: 26032265 DOI: 10.1016/j.jaut.2015.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/03/2023]
Abstract
Low-affinity Fcγ receptors (FcγR) bridge innate and adaptive immune responses. In many autoimmune diseases, these receptors act as key mediators of the pathogenic effects of autoantibodies. Genes encoding FcγR exhibit frequent variations in sequence and gene copy number that influence their functional properties. FcγR variations also affect the susceptibility to systemic autoimmunity, e.g. systemic lupus erythematosus and rheumatoid arthritis. This raises the question whether FcγR variations are also associated with organ-specific autoimmunity, particularly autoantibody-mediated diseases, such as subepidermal autoimmune blistering diseases (AIBD). A multitude of evidence suggests a pathogenic role of neutrophil granulocyte interaction with autoantibodies via FcγR. In a two-stage study, we analyzed whether the FcγR genotype affects neutrophil function and mRNA expression, and consequently, bullous pemphigoid (BP) disease risk. We compared this to findings in pemphigus vulgaris/foliaceus (PV/PF), two Fc-independent AIBDs. Our results indicate that both allele and copy number variation of FcγR genes affect FcγR mRNA expression and reactive oxygen species (ROS) release by granulocytes. Susceptibility of BP was associated with FcγR genotypes that led to a decreased ROS release by neutrophils, indicating an unexpected protective role for these cells. BP and PV/PF differed substantially regarding the FcγR genotype association patterns, pointing towards different disease etiologies.
Collapse
|
43
|
Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood 2015; 125:1901-9. [PMID: 25631769 DOI: 10.1182/blood-2014-07-588376] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Following the success of rituximab, 2 other anti-CD20 monoclonal antibodies (mAbs), ofatumumab and obinutuzumab, have entered clinical use. Ofatumumab has enhanced capacity for complement-dependent cytotoxicity, whereas obinutuzumab, a type II mAb, lacks the ability to redistribute into lipid rafts and is glycoengineered for augmented antibody-dependent cellular cytotoxicity (ADCC). We previously showed that type I mAbs such as rituximab have a propensity to undergo enhanced antigenic modulation compared with type II. Here we assessed the key effector mechanisms affected, comparing type I and II antibodies of various isotypes in ADCC and antibody-dependent cellular-phagocytosis (ADCP) assays. Rituximab and ofatumumab depleted both normal and leukemic human CD20-expressing B cells in the mouse less effectively than glycoengineered and wild-type forms of obinutuzumab, particularly when human immunoglobulin G1 (hIgG1) mAbs were compared. In contrast to mouse IgG2a, hIgG1 mAbs were ineffective in ADCC assays with murine natural killer cells as effectors, whereas ADCP was equivalent for mouse IgG2a and hIgG1. However, rituximab's ability to elicit both ADCC and ADCP was reduced by antigenic modulation, whereas type II antibodies remained unaffected. These data demonstrate that ADCP and ADCC are impaired by antigenic modulation and that ADCP is the main effector function employed in vivo.
Collapse
|
44
|
Nagelkerke SQ, Kuijpers TW. Immunomodulation by IVIg and the Role of Fc-Gamma Receptors: Classic Mechanisms of Action after all? Front Immunol 2015; 5:674. [PMID: 25653650 PMCID: PMC4301001 DOI: 10.3389/fimmu.2014.00674] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/15/2014] [Indexed: 11/13/2022] Open
Abstract
Intravenous IgG (IVIg) contains polyclonal immunoglobulin G (IgG) from thousands of donors. It is administered at a low dose at regular intervals as antibody replacement therapy and at a higher dose as immunomodulatory treatment in various auto-immune or auto-inflammatory diseases. The working mechanism of immunomodulation is not well understood. Many different explanations have been given. During the last decade, we have focused on classical antibody binding via the Fc-domain of the IgG molecules to the common IgG receptors, i.e. the Fcγ receptors (FcγRs). Variation in the genes encoding human FcγRs determines function as well as expression among immune cells. As described here, NK cells and myeloid cells, including macrophages, can express different FcγR variants, depending on the individual's genotype, copy number variation (CNV), and promoter polymorphisms. B-cells seem to only express the single inhibitory receptor. Although these inhibitory FcγRIIb receptors are also expressed by monocytes, macrophages, and only rarely by NK cells or neutrophils, their presence is unlikely to explain the immunomodulatory capacity of IVIg, nor does the sialylation of IgG. Direct IVIg effects at the level of the activating FcγRs, including the more recently described FcγRIIc, deserve renewed attention to describe IVIg-related immunomodulation.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Department of Blood Cell Research, Sanquin, University of Amsterdam , Amsterdam , Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin, University of Amsterdam , Amsterdam , Netherlands ; Department of Pediatric Hematology, Immunology and Infectious Disease, Emma Children's Hospital at the Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
45
|
Abstract
Fc receptors play a central role in maintaining the homeostatic balance in the immune system. Our knowledge of the structure and function of these receptors and their naturally occurring polymorphisms, including single nucleotide polymorphisms and/or copy number variations, continues to expand. Through studies of their impact on human biology and clinical phenotype, the contributions of these variants to the pathogenesis, progression, and/or treatment outcome of many diseases that involve immunoglobulin have become evident. They affect susceptibility to bacterial and viral pathogens, constitute as risk factors for IgG or IgE mediated inflammatory diseases, and impact the development of many autoimmune conditions. In this chapter, we will provide an overview of these genetic variations in classical FcγRs, FcRLs, and other Fc receptors, as well as challenges in achieving an accurate and comprehensive understanding of the FcR polymorphisms and genomic architecture.
Collapse
Affiliation(s)
- Marc Daeron
- grid.428999.70000000123536535Institut Pasteur, Paris, France
| | - Falk Nimmerjahn
- grid.5330.50000000121073311Department of Biology, Institute of Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|