1
|
Booth C, Sevilla J, Almarza E, Kuo CY, Zubicaray J, Terrazas D, O'Toole G, Chitty-Lopez M, Choi G, Nicoletti E, Long-Boyle J, Fernandes A, Chetty K, De Oliveira S, Banuelos C, Xu-Bayford J, Bastone AL, John-Neek P, Jackson C, Moore TB, Gilmour K, Schambach A, Rothe M, Kasbekar S, Rao GR, Patel K, Shah G, Thrasher AJ, Bueren JA, Schwartz JD, Kohn DB. Lentiviral Gene Therapy for Severe Leukocyte Adhesion Deficiency Type 1. N Engl J Med 2025; 392:1698-1709. [PMID: 40305711 DOI: 10.1056/nejmoa2407376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
BACKGROUND The β2 common integrin subunit CD18 is essential for leukocyte-endothelial adhesion and extravasation to inflamed or infected tissue. Damaging variants in ITGB2, which encodes CD18, cause leukocyte adhesion deficiency type I (LAD-I), an inborn error of immunity that leads to frequent life-threatening infections and a high risk of death among affected children. Allogeneic hematopoietic stem-cell transplantation (HSCT) represents a curative treatment but is limited by donor availability, a high incidence of graft-versus-host disease, and graft failure. METHODS In a phase 1-2, multinational, open-label study, we enrolled nine children who had severe LAD-I and treated them with marnetegragene-autotemcel (marne-cel), a gene therapy of autologous CD34+ hematopoietic stem cells transduced with a self-inactivating lentiviral vector containing human ITGB2, and followed them for 24 months. The primary efficacy end point of the phase 2 study was survival without allogeneic HSCT (HSCT-free survival) at least 1 year after marne-cel infusion and at 2 years of age among the patients who were younger than 1 year of age at enrollment, tested against a null hypothesis of survival of 39% of the patients. We also report interim data from six patients enrolled in the long-term follow-up study. RESULTS Serious adverse events related to myeloablative busulfan conditioning were observed. No adverse events attributed to gene therapy were reported. None of the patients had graft failure. HSCT-free survival was 100% (95% confidence interval [CI], 66 to 100) at 1 year after infusion (P<0.001). All the patients who were enrolled at younger than 1 year of age were alive beyond 2 years of age. Pretreatment neutrophilia and skin abnormalities related to LAD-I resolved. The annualized incidence of infection-related hospitalizations beyond 90 days after engraftment through 24 months after marne-cel infusion was 74.45% lower than the incidence before marne-cel infusion, the annualized incidence of prolonged infection-related hospitalizations was 81.95% lower, and the annualized incidence of prespecified serious infections was 84.90% lower. CONCLUSIONS In this study, lentiviral vector-transduced autologous CD34+ HSCT was successful in treating severe LAD-I. (Funded by Rocket Pharmaceuticals and the California Institute for Regenerative Medicine; ClinicalTrials.gov numbers, NCT03812263 and NCT06282432.).
Collapse
Affiliation(s)
- Claire Booth
- University College London Great Ormond Street Institute of Child Health, London
- Great Ormond Street Hospital NHS Foundation Trust, London
| | - Julián Sevilla
- Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
| | - Elena Almarza
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
- Rocket Pharmaceuticals, Cranbury, NJ
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD)/CIEMAT, Madrid
| | | | - Josune Zubicaray
- Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid
| | | | | | | | | | | | - Janel Long-Boyle
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco
| | | | - Kritika Chetty
- University College London Great Ormond Street Institute of Child Health, London
| | | | | | | | | | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | - Kimberly Gilmour
- University College London Great Ormond Street Institute of Child Health, London
- Immunology Department, Great Ormond Street Hospital, London
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Adrian J Thrasher
- University College London Great Ormond Street Institute of Child Health, London
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid
- Unidad Mixta de Terapias Avanzadas, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD)/CIEMAT, Madrid
| | | | | |
Collapse
|
2
|
Norouzi-Barough L, Olyaei NA, Carapito R, Molitor A, Biglari S, Poostiyan N, Shahrooei M, Vahidnezhad H, Tabatabaiefar MA, Bahram S, Sherkat R. A novel ITGB2 variant in a patient with severe recurrent pyoderma gangrenosum-like lesions and underlying leukocyte adhesion deficiency type I: case report and literature review. Arch Dermatol Res 2025; 317:681. [PMID: 40195196 DOI: 10.1007/s00403-025-04206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/09/2025]
Abstract
Leukocyte adhesion deficiency (LAD) is a group of inborn errors of immunity caused by mutations of integrin subunit b2 gene (ITGB2). Pyoderma gangrenosum (PG) is an uncommon neutrophilic dermatosis characterized by recurrent, sterile, and enlarging necrotic ulcers which may manifest as a single or multiple new lesions simultaneously. Here we report a 43-year-old woman from a consanguine marriage who was diagnosed with LAD-I in childhood, recurrent severe PG-like lesion, and atypical manifestations including celiac disease and low CD19 B-cell subsets. A targeted genetic panel revealed a novel homozygous missense variant c.988T>C (Tyr330His) in ITGB2 gene. While the treatment with prednisolone, cyclosporine, and antibiotics led to partial improvement, the patient unfortunately discontinued the therapy and later died from septicemia. Early hematopoietic cell transplantation (HCT) shortly after birth can be highly effective in managing patients with LAD and preventing life-threatening infections. However, evidence suggests that HCT does not prevent autoinflammatory and autoimmune disorders such as PG. Therefore, it is important to monitor LAD patients for the potential development of PG, even after HCT.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Alipour Olyaei
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Pôle de Biologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne Molitor
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nazila Poostiyan
- Skin Diseases and Leishmaniasis Research Center, Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
- Dr. Shahrooei Laboratory, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Department of Dermatology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Centre de Recherche d'Immunologie et d'Hématologie and Centre de Recherche en Biomédecine de Strasbourg (CRBS), Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Strasbourg, France.
- Faculté de Médecine, Institut Thématique Interdisciplinaire (ITI) Transplantex NG de Médecine de Précision de Strasbourg, Université de Strasbourg, Strasbourg, France.
- Laboratoire d'Immunologie, Pôle de Biologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Tang Z, Jin L, Yang Y. The dual role of IL-17 in periodontitis regulating immunity and bone homeostasis. Front Immunol 2025; 16:1578635. [PMID: 40248692 PMCID: PMC12003107 DOI: 10.3389/fimmu.2025.1578635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
Periodontitis is a common dysbiotic bacteria-induced inflammatory disease characterized by alveolar bone resorption, leading to tooth loss. Interleukin-17 (IL-17) is a critical cytokine with dual roles in periodontium, which exerts the function of host defense, including neutrophil recruitment, phagocytosis, and mucosal immunity. However, excessive expression of IL-17 causes persistent chronic inflammation, local tissue breakdown, and bone loss. This review highlights the protective and pathological functions of IL-17 on immunity and bone homeostasis in inflammatory bone-related diseases. We also provide the latest findings with IL-17 knockout mice in periodontitis and highlight complex immune responses under various experimental models. This may provide a critical perception of inflammatory bone-related disease management using an immune-modulating strategy.
Collapse
Affiliation(s)
- Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Ramadan AR, Ben Khalaf N, Trabelsi K, Bakheit H, Ben-Mustapha I, Barbouche MR, Fathallah MD. Lymphoblastoid and Jurkat cell lines are useful surrogate in developing a CRISPR-Cas9 method to correct leukocyte adhesion deficiency genomic defect. Front Bioeng Biotechnol 2025; 13:1548227. [PMID: 40190710 PMCID: PMC11968696 DOI: 10.3389/fbioe.2025.1548227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction: Leukocyte adhesion deficiency type 1 (LAD1) is a severe inborn error of immunity caused by mutations in the ITGB2 gene, which encodes the beta-2 integrin subunit (CD18). These mutations lead to the absence or deficiency of CD18/CD11a, b, and c heterodimers, crucial for leukocyte adhesion and immune function. CRISPR-Cas9 Gene editing technology represents a promising approach for correcting these genomic defects restore the stable expression of CD18 and reverse the disease. Methods: We developed a CRISPR-Cas9-based gene correction strategy using Jurkat cells and patient-derived lymphoblastoid cell lines as surrogates for hematopoietic progenitor cells. Three candidate gRNAs were first predicted in silico using CRISPOR and experimentally tested in wild-type ITGB2-expressing Jurkat cells to identify the gRNA with the highest genomic DNA cleavage efficiency. The most efficient gRNA was then paired with espCas9 and used alongside five homology-directed repair templates (HDRs) (single-stranded donor oligonucleotides, ssODNs) to repair ITGB2 defects in patient-derived lymphoblastoid cell lines. CD18 expression levels in edited cells were quantified via flow cytometry, and whole-genome sequencing (WGS) was conducted to assess off-target effects and insertion accuracy. Results: Among the three candidate gRNAs, 2-rev gRNA exhibited the highest genomic cleavage rate in Jurkat cells. Using this gRNA with espCas9 and HDR-2, we achieved a 23% restoration of CD18 expression in LAD1 patient-derived cells, a level sufficient to change the disease course from severe to moderate. Whole-genome sequencing confirmed the absence of off-target mutations or undesired DNA insertions, demonstrating high specificity and precision in gene correction. Discussion: This CRISPR-Cas9-based method provides a precise and effective approach for correcting ITGB2 mutations in LAD1 patients. The high-fidelity gene editing process, validated through WGS, supports its potential for future applications in CD34+ hematopoietic stem cell therapies. The approach can be further optimized for clinical translation, offering a path toward a stable and long-term cure for LAD1.
Collapse
Affiliation(s)
- Ahmad R. Ramadan
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Life Sciences, King Fahd Chair of Medical Biotechnology, College of Graduate studies Arabian Gulf University, Manama, Bahrain
| | - Noureddine Ben Khalaf
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khaled Trabelsi
- Biotechnology Development Group, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Halla Bakheit
- Department of Molecular Medicine, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - Imen Ben-Mustapha
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain
| | - M-Dahmani Fathallah
- Department of Life Sciences, King Fahd Chair of Medical Biotechnology, College of Graduate studies Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
5
|
Hu K, Song M, Song T, Jia X, Song Y. Osteoimmunology in Osteoarthritis: Unraveling the Interplay of Immunity, Inflammation, and Joint Degeneration. J Inflamm Res 2025; 18:4121-4142. [PMID: 40125089 PMCID: PMC11930281 DOI: 10.2147/jir.s514002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease influenced by multiple factors, with its etiology arising from intricate interactions among mechanical stress, inflammatory processes, and disruptions in bone metabolism. Recent research in bone immunology indicates that immune-mediated mechanisms significantly contribute to the progression of OA, highlighting the interactions among immune cells, cytokine networks, and bone components. Immune cells interact with osteoclasts, osteoblasts, and chondrocytes in a variety of ways. These interactions foster a pro-inflammatory microenvironment, contributing to cartilage breakdown, synovial inflammation, and the sclerosis of subchondral bone. In this article, we present a comprehensive review of bone immunology in OA, focusing on the critical role of immune cells and their cytokine-mediated feedback loops in the pathophysiology of OA. In addition, we are exploring novel therapeutic strategies targeting bone immune pathways, including macrophage polarization, T-cell differentiation, and stem cell therapy to restore the metabolic balance between immunity and bone. By integrating cutting-edge research in bone immunology, this review integrates the latest advancements in bone immunology to construct a comprehensive framework for unraveling the pathogenesis of OA, laying a theoretical foundation for the development of innovative precision therapies.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xiao Jia
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
6
|
Ye X, Li X, Zhu C, Cui L, Shen Z, Xu K, Shen G, Wu L, Zhang B. Associations between systemic inflammation response index and femur bone mineral density in adults: The NHANES 2005-2010, 2013-2014, and 2017-2018. Medicine (Baltimore) 2025; 104:e41565. [PMID: 39993115 PMCID: PMC11856988 DOI: 10.1097/md.0000000000041565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/13/2024] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
A unique measure of inflammatory evaluation, the systemic inflammation response index (SIRI) may offer useful data for the diagnosis and risk assessment of a number of diseases. The aim of this study was to investigate the relationship between SIRI and femur bone mineral density (BMD) in US adults. The association between SIRI and femur BMD was examined using multivariate logistic regression, sensitivity analysis, and smoothing curve fitting using data from the National Health and Nutrition Examination Survey (NHANES) 2005-2010, 2013-2014, and 2017-2018. Subgroup analysis and interaction tests were employed to examine the population-level stability of this connection. This present study included 18,022 participants older than 20 years from NHANES (2005-2010, 2013-2014, and 2017-2018). The present study showed a negative association between SIRI and femur BMD (including total femur BMD, femoral neck BMD, trochanter BMD, and intertrochanter BMD). In the fully adjusted model, we found a negative association between the SIRI and total femur BMD (Beta = -0.0032, 95% CI: -0.0053 to -0.0012), a negative association between the SIRI and femoral neck BMD (Beta = -0.0025, 95% CI: -0.0045 to -0.0005), a negative association between the SIRI and trochanter BMD (Beta = -0.0032, 95% CI: -0.0050 to -0.0013), a negative association between the SIRI and intertrochanter BMD (Beta = -0.0031, 95% CI: -0.0056 to -0.0007). This negative association was more pronounced in older adults > 65 years of age. In addition, we found a U-shaped association between SIRI and femur BMD by further smoothing curve-fitting methods. SIRI was negatively associated with femur BMD in US adults, and this association was more significant in older adults over 65 years. SIRI may be a useful, convenient, and practical indicator of inflammation. Moreover, older adults with high SIRI levels are likely to have low femur BMD.
Collapse
Affiliation(s)
- Xiaoang Ye
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xinru Li
- Hangzhou Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chaojin Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Longkang Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Zhe Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Kuangying Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Gaobo Shen
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lianguo Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Bingbing Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
7
|
Schaefer AS, Nibali L, Zoheir N, Moutsopoulos NM, Loos BG. Genetic risk variants implicate impaired maintenance and repair of periodontal tissues as causal for periodontitis-A synthesis of recent findings. Periodontol 2000 2025. [PMID: 39953674 DOI: 10.1111/prd.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025]
Abstract
Periodontitis is a complex inflammatory disease in which the host genome, in conjunction with extrinsic factors, determines susceptibility and progression. Genetic predisposition is the strongest risk factor in the first decades of life. As people age, chronic exposure to the periodontal microbiome puts a strain on the proper maintenance of barrier function. This review summarizes our current knowledge on genetic risk factors implicated in periodontitis, derived (i) from hypothesis-free systematic whole genome-profiling studies (genome-wide association studies [GWAS] and quantitative trait loci [QTL] mapping studies), and independently validated through further unbiased approaches; (ii) from monogenic and oligogenic forms of periodontitis; and (iii) from syndromic forms of periodontitis. The genes include, but are not limited to, SIGLEC5, PLG, ROBO2, ABCA1, PF4, and CTSC. Notably, CTSC and PLG gene mutations were also identified in non-syndromic and syndromic forms of prepubertal and early-onset periodontitis. The functions of the identified genes in this review suggest that the pathways affected by the periodontitis-associated gene variants converge in functions involved in the maintenance and repair of structural integrity of the periodontal tissues. Particularly, these genes play a role in the healing of inflamed and ulcerated periodontal tissues, including roles in fibrinolysis, extrusion of cellular debris, extracellular matrix remodeling and angiogenesis. Syndromes that include periodontitis in their phenotype indicate that neutrophils play an important role in the regulation of inflammation in the periodontium. The established genetic susceptibility genes therefore collectively provide new insights into the molecular mechanisms and plausible causal factors underlying periodontitis.
Collapse
Affiliation(s)
- Arne S Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Luigi Nibali
- Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Noha Zoheir
- Periodontology Unit, Faculty of Dentistry, Oral and Craniofacial Sciences, Centre for Host Microbiome Interactions, King's College London, London, UK
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Bruno G Loos
- Department of Periodontology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Savy C, Bourgoin M, Cluzeau T, Jacquel A, Robert G, Auberger P. VEXAS, Chediak-Higashi syndrome and Danon disease: myeloid cell endo-lysosomal pathway dysfunction as a common denominator? Cell Mol Biol Lett 2025; 30:12. [PMID: 39865233 PMCID: PMC11765923 DOI: 10.1186/s11658-025-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy. Furthermore, all three genes are highly expressed in the more mature myeloid cells pointing out their likely important function in these cells. LAMP2 deficiency for instance is known to be associated with alterations of lysosome architecture and function. It is thus well established that different cell types from Danon disease patients that harbor invalidating mutations in LAMP2 exhibit giant lysosomes containing undigested materials characteristic of defects in the fusion of lysosomes with autophagosomes, a feature also found in VEXAS and CHS. Other similarities regarding these three diseases include granulocyte and monocyte dysfunctions and a recurrent inflammatory climate. In the present review we discuss the possibility that some common clinical manifestations of these diseases, notably the hematopoietic ones are consecutive to a dysfunction of the endo-lysosomal pathway in myeloid/erythroid progenitors and in mature myeloid cells including neutrophiles, monocytes and macrophages. Finally, we propose reacidification as a way of reinducing lysosome functionalities and autophagy as a potential approach for a better management of these diseases.
Collapse
Affiliation(s)
- Coline Savy
- University Cote d'Azur, Inserm, C3M, Nice, France
| | | | - Thomas Cluzeau
- University Cote d'Azur, Inserm, C3M, Nice, France
- Clinical Hematology Department, Centre Hospitalier Universitaire, Nice, France
| | | | | | | |
Collapse
|
9
|
Nabiyeva Çevik N, Berker E, Tezcan I, Cagdas D. Inborn errors of immunity-related immunological mechanisms and pharmacological therapy alternatives in periodontitis. Clin Exp Immunol 2025; 219:uxae089. [PMID: 39412215 PMCID: PMC11773607 DOI: 10.1093/cei/uxae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 01/29/2025] Open
Abstract
Periodontitis is a frequent local inflammatory disease. The microbiota and repeated exposure to bacterial endotoxins triggers excessive inflammation through oral mucosal immunity and sometimes leads to a destructive effect on the supportive mucosal tissues around the teeth. Elimination of the pathogens and increasing the tolerance of the cellular immune response is crucial in addition to standard dental therapies like mechanical debridement. Based on our experience with immune-mediated diseases, especially primary immunodeficiency diseases, we wrote this review to discuss the treatment alternatives for severe periodontal disease. Risk factors are malnutrition, vitamin deficiencies, smoking, systemic inherited and acquired immune-mediated diseases, infections, endocrinological diseases, and pharmacological agents that may accompany periodontitis. The diagnosis and treatment of dietary deficiencies, as well as the addition of nutritional supplements, may aid in epithelial regeneration and immune system function. Recently, modifications to the therapeutic option for severe periodontitis have been made depending on the fact that the immune response against bacteria may modify the severity of periodontal inflammation. The anti-inflammatory therapies support or inhibit the host's immune response. The clinical approach to severe periodontitis should extend beyond classical therapies. There is a need for a diverse therapeutic strategy that supports the epithelial barrier, which is the crucial component of innate immunity against microbiota. Leukocytes are the main cellular component in periodontal inflammation. Anti-inflammatory therapeutic options directed at leukocytes, such as IL-17 and IL-23-targeted therapies, could be the candidates for the treatment of severe periodontitis. Therapy against other inflammatory cytokines, IL-1, IL-6, IL-12, IL-23, TNF-alpha, PGE2, and cytokine receptors, could also be used in periodontal inflammation control.
Collapse
Affiliation(s)
- Nadira Nabiyeva Çevik
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children’s Hospital, Hacettepe University Medical School, Ankara, Turkey
| | - Ezel Berker
- Division of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Ilhan Tezcan
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children’s Hospital, Hacettepe University Medical School, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, İhsan Doğramacı Children’s Hospital, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
10
|
Mo K, Wang Y, Lu C, Li Z. Insight into the role of macrophages in periodontitis restoration and development. Virulence 2024; 15:2427234. [PMID: 39535076 PMCID: PMC11572313 DOI: 10.1080/21505594.2024.2427234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Periodontitis is one of the chronic diseases that have the greatest impact on human health, and it is associated with several other chronic diseases. Tissue damage associated with periodontitis is often connected with immune response. Immune cells are a crucial component of the human immune system and are directly involved in periodontitis during the inflammatory phase of the disease. Macrophages, as a key component of the immune system, are responsible for defence, antigen presentation and phagocytosis in healthy tissue. They are also closely linked to the development and resolution of periodontitis, through mechanisms such as macrophage polarization, pattern recognition receptors recognition, efferocytosis, and Specialized Pro-resolving Mediators (SPMs) production. Additionally, apoptosis and autophagy are also known to play a role in the recovery of periodontitis. This review aims to investigate the aforementioned mechanisms in more detail and identify novel therapeutic approaches for periodontitis.
Collapse
Affiliation(s)
- Keyin Mo
- School of Stomatology, Jinan University, Guangzhou, China
| | - Yijue Wang
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Wang Y, Li J, Chen R, Xu Q, Wang D, Mao C, Xiang Z, Wu G, Yu Y, Li J, Zheng Y, Chen K. Emerging concepts in mucosal immunity and oral microecological control of respiratory virus infection-related inflammatory diseases. Microbiol Res 2024; 289:127930. [PMID: 39427450 DOI: 10.1016/j.micres.2024.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Oral microecological imbalance is closely linked to oral mucosal inflammation and is implicated in the development of both local and systemic diseases, including those caused by viral infections. This review examines the critical role of the interleukin (IL)-17/helper T cell 17 (Th17) axis in regulating immune responses within the oral mucosa, focusing on both its protective and pathogenic roles during inflammation. We specifically highlight how the IL-17/Th17 pathway contributes to dysregulated inflammation in the context of respiratory viral infections. Furthermore, this review explores the potential interactions between respiratory viruses and the oral microbiota, emphasizing how alterations in the oral microbiome and increased production of proinflammatory factors may serve as early, non-invasive biomarkers for predicting the severity of respiratory viral infections. These findings provide insights into novel diagnostic approaches and therapeutic strategies aimed at mitigating respiratory disease severity through monitoring and modulating the oral microbiome.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Qiuyi Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Di Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Chenxi Mao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ziyi Xiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ying Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310063, China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
12
|
Olujitan M, Ayanbadejo PO, Umeizudike K, Oyapero A, Okunseri C, Butali A. Periodontal diseases in Africa. Periodontol 2000 2024. [PMID: 39494604 DOI: 10.1111/prd.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Periodontal diseases, a group of complex conditions marked by an excessive immune response and periodontal tissue destruction, are a global health concern. Since 1990, the incidence of these diseases has doubled, with Western sub-Saharan Africa experiencing the highest burden. Accurate diagnosis and case identification are crucial for understanding the etiology, features of disease, research, treatment and prevention. Modern perspectives on periodontal disease classification are based on commonality among those affected. However, current literature is often plagued by methodological inconsistencies and focused on disease mechanisms in European populations. Health inequalities in low- and middle-income countries (LMICs) are exacerbated by these challenges, with sub-Saharan Africa, and Nigeria specifically, facing unique difficulties such as clinical personnel shortages and limited research infrastructure. This review explored disparities in periodontal disease research, care and outcomes in African populations. We highlighted these disparities and identified the factors contributing to inequities in periodontal health outcomes. We further demonstrated the critical need for inclusive and equitable healthcare and research practices tailored to the unique challenges faced by diverse populations and regions with limited resources. Addressing these disparities is essential for ensuring that advancements in healthcare are accessible to all, thereby improving global oral health and general health.
Collapse
Affiliation(s)
- Mojisola Olujitan
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Oral Radiology, Pathology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Patricia O Ayanbadejo
- Department of Periodontology and Community Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Kehinde Umeizudike
- Department of Periodontology and Community Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Afolabi Oyapero
- Department of Periodontology and Community Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christopher Okunseri
- Department of Periodontology and Community Dentistry, Faculty of Dental Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Community Dental Sciences, School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Azeez Butali
- Iowa Institute of Oral Health Research, University of Iowa, Iowa City, Iowa, USA
- Department of Oral Radiology, Pathology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
Konkel JE, Cox JR, Wemyss K. Bite-sized immunology; damage and microbes educating immunity at the gingiva. Mucosal Immunol 2024; 17:1141-1150. [PMID: 39038755 DOI: 10.1016/j.mucimm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune cells residing at the gingiva experience diverse and unique signals, tailoring their functions to enable them to appropriately respond to immunological challenges and maintain tissue integrity. The gingiva, defined as the mucosal barrier that surrounds and supports the teeth, is the only barrier site completely transected by a hard structure, the tooth. The tissue is damaged in early life during tooth eruption and chronically throughout life by the process of mastication. This occurs alongside challenges typical of barrier sites, including exposure to invading pathogens, the local commensal microbial community and environmental antigens. This review will focus on the immune network safeguarding gingival integrity, which is far less understood than that resident at other barrier sites. A detailed understanding of the gingiva-resident immune network is vital as it is the site of the inflammatory disease periodontitis, the most common chronic inflammatory condition in humans which has well-known detrimental systemic effects. Furthering our understanding of how the immune populations within the gingiva develop, are tailored in health, and how this is dysregulated in disease would further the development of effective therapies for periodontitis.
Collapse
Affiliation(s)
- Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Joshua R Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Soheili F, Delfan N, Masoudifar N, Ebrahimni S, Moshiri B, Glogauer M, Ghafar-Zadeh E. Toward Digital Periodontal Health: Recent Advances and Future Perspectives. Bioengineering (Basel) 2024; 11:937. [PMID: 39329678 PMCID: PMC11428937 DOI: 10.3390/bioengineering11090937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Periodontal diseases, ranging from gingivitis to periodontitis, are prevalent oral diseases affecting over 50% of the global population. These diseases arise from infections and inflammation of the gums and supporting bones, significantly impacting oral health. The established link between periodontal diseases and systemic diseases, such as cardiovascular diseases, underscores their importance as a public health concern. Consequently, the early detection and prevention of periodontal diseases have become critical objectives in healthcare, particularly through the integration of advanced artificial intelligence (AI) technologies. This paper aims to bridge the gap between clinical practices and cutting-edge technologies by providing a comprehensive review of current research. We examine the identification of causative factors, disease progression, and the role of AI in enhancing early detection and treatment. Our goal is to underscore the importance of early intervention in improving patient outcomes and to stimulate further interest among researchers, bioengineers, and AI specialists in the ongoing exploration of AI applications in periodontal disease diagnosis.
Collapse
Affiliation(s)
- Fatemeh Soheili
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Niloufar Delfan
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
| | - Negin Masoudifar
- Department of Internal Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shahin Ebrahimni
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Behzad Moshiri
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran P9FQ+M8X, Kargar, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory (BIOSA), Lassonde School of Engineering, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Electrical Engineering and Computer Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
15
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
16
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
17
|
McClure FA, Wemyss K, Cox JR, Bridgeman HM, Prise IE, King JI, Jaigirdar S, Whelan A, Jones GW, Grainger JR, Hepworth MR, Konkel JE. Th17-to-Tfh plasticity during periodontitis limits disease pathology. J Exp Med 2024; 221:e20232015. [PMID: 38819409 PMCID: PMC11143381 DOI: 10.1084/jem.20232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Th17 cell plasticity is crucial for development of autoinflammatory disease pathology. Periodontitis is a prevalent inflammatory disease where Th17 cells mediate key pathological roles, yet whether they exhibit any functional plasticity remains unexplored. We found that during periodontitis, gingival IL-17 fate-mapped T cells still predominantly produce IL-17A, with little diversification of cytokine production. However, plasticity of IL-17 fate-mapped cells did occur during periodontitis, but in the gingiva draining lymph node. Here, some Th17 cells acquired features of Tfh cells, a functional plasticity that was dependent on IL-6. Notably, Th17-to-Tfh diversification was important to limit periodontitis pathology. Preventing Th17-to-Tfh plasticity resulted in elevated periodontal bone loss that was not simply due to increased proportions of conventional Th17 cells. Instead, loss of Th17-to-Tfh cells resulted in reduced IgG levels within the oral cavity and a failure to restrict the biomass of the oral commensal community. Thus, our data identify a novel protective function for a subset of otherwise pathogenic Th17 cells during periodontitis.
Collapse
Affiliation(s)
- Flora A. McClure
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joshua R. Cox
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Hayley M. Bridgeman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ian E. Prise
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - James I. King
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Shafqat Jaigirdar
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Annie Whelan
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Gareth W. Jones
- Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John R. Grainger
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew R. Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Joanne E. Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Zhou Y, Lv D, Wei W, Zhou T, Tang S, Yang F, Zhang J, Jiang L, Xia X, Jiang Y, Chen Q, Yue Y, Feng X. Type 17 immune response promotes oral epithelial cell proliferation in periodontitis. Arch Oral Biol 2024; 164:106005. [PMID: 38781743 DOI: 10.1016/j.archoralbio.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aims to investigate the effects of type 17 immune response on the proliferation of oral epithelial cells in periodontitis. DESIGN A time-dependent ligature induced periodontitis mouse model was utilized to explore gingival hyperplasia and the infiltration of interleukin 17A (IL-17A) positive cells. Immunohistochemistry and flow cytometry were employed to determine the localization and expression of IL-17A in the ligature induced periodontitis model. A pre-existing single-cell RNA sequencing dataset, comparing individuals affected by periodontitis with healthy counterparts, was reanalyzed to evaluate IL-17A expression levels. We examined proliferation markers, including proliferating cell nuclear antigen (PCNA), signal transducer and activator of transcription (STAT3), Yes-associated protein (YAP), and c-JUN, in the gingival and tongue epithelium of the periodontitis model. An anti-IL-17A agent was administered daily to observe proliferative changes in the oral mucosa within the periodontitis model. Cell number quantification, immunofluorescence, and western blot analyses were performed to assess the proliferative responses of human normal oral keratinocytes to IL-17A treatment in vitro. RESULTS The ligature induced periodontitis model exhibited a marked infiltration of IL-17A-positive cells, alongside significant increase in thickness of the gingival and tongue epithelium. IL-17A triggers the proliferation of human normal oral keratinocytes, accompanied by upregulation of PCNA, STAT3, YAP, and c-JUN. The administration of an anti-IL-17A agent attenuated the proliferation in oral mucosa. CONCLUSIONS These findings indicate that type 17 immune response, in response to periodontitis, facilitates the proliferation of oral epithelial cells, thus highlighting its crucial role in maintaining the oral epithelial barrier.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Die Lv
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shijie Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang 310006, China
| | - Yuan Yue
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
19
|
Chung YL, Lee JJ, Chien HH, Chang MC, Jeng JH. Interplay between diabetes mellitus and periodontal/pulpal-periapical diseases. J Dent Sci 2024; 19:1338-1347. [PMID: 39035271 PMCID: PMC11259663 DOI: 10.1016/j.jds.2024.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
This longevity of life expectancy has indirectly led to an increase in the number of chronic diseases such as periodontitis, apical periodontitis (AP), and diabetes mellitus (DM) in the aging society, thus affecting people's quality of life. There is an interaction between periodontitis/AP and DM with a two-way relationship. Although type 1 and 2 diabetes (T1DM, T2DM) have different etiologies, glycemic control may affect the infection, inflammation and tissue healing of periodontitis and AP. Non-surgical periodontal treatment may influence the glycemic control as shown by decrease of HbA1c level in T2DM patient. However, the effect of periodontal treatment on glycemic control in T1DM and root canal treatment/apical surgery on T1DM and T2DM patients awaits investigation. DM may affect the periodontal and periapical tissues possibly via altered oral microbiota, impairment of neutrophils' activity and host immune responses and cytokine production, induction of oxidative stress etc. While periodontitis associated systemic inflammation and hyperlipidemia is suggested to contribute to the control of T2DM, more intricate studies are necessary to clarify the detailed mechanisms. The interactions between DM (T1DM and T2DM) and periodontitis and AP are therefore reviewed to provide a basis for the treatment of subsequent patients with pulpal/periodontal disease and diabetes. A two-pronged approach of medical and dental treatment is needed for the management of these patients, with emphasis on blood glucose control and improving oral hygiene and periodontal maintenance care, to ensure the best treatment outcome.
Collapse
Affiliation(s)
- Yi-Lun Chung
- Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Hong Chien
- Division of Regenerative Sciences & Periodontology, Department of Advanced Specialty Sciences, Medical University of South Carolina, James B. Edwards College of Dental Medicine, Charleston, SC, USA
| | - Mei-Chi Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
- Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Liu S, Chen Y, Jiang Y, Du J, Guo L, Xu J, Liu Y, Liu Y. The bidirectional effect of neutrophils on periodontitis model in mice: A systematic review. Oral Dis 2024; 30:2865-2875. [PMID: 37927000 DOI: 10.1111/odi.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To evaluate the regulatory role of neutrophils as the first line of host immune defense in the periodontal microenvironment of mice. METHODS A systematic search was performed using PubMed, Web of Science, and ScienceDirect databases for articles published between 2012 and 2023. In this review, articles investigating the effect of neutrophils on alveolar bone resorption in a mouse model of periodontitis were selected and evaluated according to eligibility criteria. Important variables that may influence outcomes were analyzed. RESULTS Eleven articles were included in this systematic review. The results showed that because of their immune defense functions, the functional homeostasis of local neutrophils is critical for periodontal health. Neutrophil deficiency aggravates alveolar bone loss. However, several studies have shown that excessive neutrophil infiltration is positively correlated with alveolar bone resorption caused by periodontitis in mice. Therefore, the homeostasis of neutrophil function needs to be considered in the treatment of periodontitis. CONCLUSIONS Pooled analysis suggests that neutrophils play a bidirectional role in periodontal tissue remodeling in mouse periodontitis models. Therefore, targeted regulation of local neutrophil function provides a novel strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Hu ST, Zhou G, Zhang J. Implications of innate lymphoid cells in oral diseases. Int Immunopharmacol 2024; 133:112122. [PMID: 38663313 DOI: 10.1016/j.intimp.2024.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Innate lymphoid cells (ILCs), as newly discovered antigen-independent innate immune cells, respond promptly to stimuli by secreting effector cytokines to exert effector functions similar to those of T cells. ILCs predominantly reside at mucosal sites and play critical roles in defending against infections, maintaining mucosal homeostasis, regulating inflammatory and immune responses, and participating in tumorigenesis. Recently, there has been a growing interest in the role of ILCs in oral diseases. This review outlines the classifications and the major characteristics of ILCs, and then comprehensively expatiates the research on ILCs in oral cancer, primary Sjogren's syndrome, periodontal diseases, oral lichen planus, oral candidiasis, Behcet's disease, and pemphigus vulgaris, aiming at summarising the implications of ILCs in oral diseases and providing new ideas for further research.
Collapse
Affiliation(s)
- Si-Ting Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
22
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
23
|
Kim TS, Ikeuchi T, Theofilou VI, Williams DW, Greenwell-Wild T, June A, Adade EE, Li L, Abusleme L, Dutzan N, Yuan Y, Brenchley L, Bouladoux N, Sakamachi Y, Palmer RJ, Iglesias-Bartolome R, Trinchieri G, Garantziotis S, Belkaid Y, Valm AM, Diaz PI, Holland SM, Moutsopoulos NM. Epithelial-derived interleukin-23 promotes oral mucosal immunopathology. Immunity 2024; 57:859-875.e11. [PMID: 38513665 PMCID: PMC11058479 DOI: 10.1016/j.immuni.2024.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vasileios Ionas Theofilou
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Drake Winslow Williams
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Armond June
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Emmanuel E Adade
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Loreto Abusleme
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yosuke Sakamachi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert J Palmer
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex M Valm
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Brenchley L, McDermott DH, Gardner PJ, Silva LM, Gao JL, Cho E, Velez D, Moutsopoulos NM, Murphy PM, Fraser D. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol 2024; 51:464-473. [PMID: 38185798 PMCID: PMC11000827 DOI: 10.1111/jcpe.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.
Collapse
Affiliation(s)
- Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Lakmali M. Silva
- Department of Oral Medicine, Immunity, and Infection. Harvard School of Dental Medicine, Boston, MA 02115
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Elena Cho
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David Fraser
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| |
Collapse
|
25
|
Liu J, Meng H, Mao Y, Zhong L, Pan W, Chen Q. IL-36 Regulates Neutrophil Chemotaxis and Bone Loss at the Oral Barrier. J Dent Res 2024; 103:442-451. [PMID: 38414292 DOI: 10.1177/00220345231225413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
Tissue-specific mechanisms regulate neutrophil immunity at the oral barrier, which plays a key role in periodontitis. Although it has been proposed that fibroblasts emit a powerful neutrophil chemotactic signal, how this chemotactic signal is driven has not been clear. The objective of this study was to investigate the site-specific regulatory mechanisms by which fibroblasts drive powerful neutrophil chemotactic signals within the oral barrier, with particular emphasis on the role of the IL-36 family. The present study found that IL-36γ, agonist of IL-36R, could promote neutrophil chemotaxis via fibroblast. Single-cell RNA sequencing data disclosed that IL36G is primarily expressed in human and mouse gingival epithelial cells and mouse neutrophils. Notably, there was a substantial increase in IL-36γ levels during periodontitis. In vitro experiments demonstrated that IL-36γ specifically activates gingival fibroblasts, leading to chemotaxis of neutrophils. In vivo experiments revealed that IL-36Ra inhibited the infiltration of neutrophils and bone resorption, while IL-36γ promoted their progression in the ligature-induced periodontitis mouse model. In summary, these data elucidate the function of the site-enriched IL-36γ in regulating neutrophil immunity and bone resorption at the oral barrier. These findings provide new insights into the tissue-specific pathophysiology of periodontitis and offer a promising avenue for prevention and treatment through targeted intervention of the IL-36 family.
Collapse
Affiliation(s)
- J Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - H Meng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Y Mao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - L Zhong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - W Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Q Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Choi Y. Association of neutrophil defects with oral ulcers but undetermined role of neutrophils in recurrent aphthous stomatitis. Heliyon 2024; 10:e26740. [PMID: 38439826 PMCID: PMC10911260 DOI: 10.1016/j.heliyon.2024.e26740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Objective Recurrent oral ulcers and severe periodontal diseases in patients with quantitative or qualitative neutrophil defects highlight the important role of neutrophils in maintaining oral mucosal barrier homeostasis. Recurrent aphthous stomatitis (RAS) is a common oral mucosal disease affecting up to 25% of the population, yet its etiopathogenesis remains unclear, and management is unsatisfactory. This review aims to gain insight into the pathogenesis of RAS. Design This narrative review examines the characteristics of oral and blood neutrophils, the associations between neutrophil defects and the occurrence of oral ulcers, and the evidence for the involvement of neutrophils in RAS. To conduct the review, relevant literature was searched in PubMed and Google Scholar, which was then thoroughly reviewed and critically appraised. Results Neutropenia, specifically a decrease in the number of oral neutrophils, impaired extravasation, and defective ROS production appear to be associated with oral ulcers, while defects in granule enzymes or NETosis are unlikely to have a link to oral ulcers. The review of the histopathology of RAS shows that neutrophils are concentrated in the denuded area but are latecomers to the scene and early leavers. However, the evidence for the involvement of neutrophils in the pathogenesis of RAS is inconsistent, leading to the proposal of two different scenarios involving either impaired or hyperactive neutrophils in the pathogenesis of RAS.
Collapse
Affiliation(s)
- Youngnim Choi
- Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Salimi M, Khanzadeh M, Nabipoorashrafi SA, Seyedi SA, Yaghoobpoor S, Brismée JM, Lucke-Wold B, Ebadi M, Ghaedi A, Kumar VS, Mirghaderi P, Rabie H, Khanzadeh S. Association of neutrophil to lymphocyte ratio with bone mineral density in post-menopausal women: a systematic review and meta-analysis. BMC Womens Health 2024; 24:169. [PMID: 38461235 PMCID: PMC10924380 DOI: 10.1186/s12905-024-03006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to compare the neutrophil lymphocyte ratio (NLR) levels between women with post-menopausal osteopenia or osteoporosis to those with normal bone mineral density (BMD). METHODS We used Web of Science, PubMed, and Scopus to conduct a systematic search for relevant publications published before June 19, 2022, only in English language. We reported standardized mean difference (SMD) with a 95% confidence interval (CI). Because a significant level of heterogeneity was found, we used the random-effects model to calculate pooled effects. We used the Newcastle-Ottawa scale for quality assessment. RESULTS Overall, eight articles were included in the analysis. Post-menopausal women with osteoporosis had elevated levels of NLR compared to those without osteoporosis (SMD = 1.03, 95% CI = 0.18 to 1.88, p = 0.017, I2 = 98%). In addition, there was no difference between post-menopausal women with osteopenia and those without osteopenia in neutrophil lymphocyte ratio (NLR) levels (SMD = 0.58, 95% CI=-0.08 to 1.25, p = 0.085, I2 = 96.8%). However, there was no difference between post-menopausal women with osteoporosis and those with osteopenia in NLR levels (SMD = 0.75, 95% CI=-0.01 to 1.51, p = 0.05, I2 = 97.5%, random-effect model). CONCLUSION The results of this study point to NLR as a potential biomarker that may be easily introduced into clinical settings to help predict and prevent post-menopausal osteoporosis.
Collapse
Affiliation(s)
- Maryam Salimi
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Khanzadeh
- Geriatric & Gerontology Department, Medical School, Tehran University of medical and health sciences, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Michel Brismée
- Center for Rehabilitation Research, Department of Rehabilitation Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Mehrnoosh Ebadi
- Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arshin Ghaedi
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Varun Singh Kumar
- Department of Orthopaedic Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peyman Mirghaderi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Rabie
- Department of Orthopedic Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Chen WA, Boskovic DS. Neutrophil Extracellular DNA Traps in Response to Infection or Inflammation, and the Roles of Platelet Interactions. Int J Mol Sci 2024; 25:3025. [PMID: 38474270 DOI: 10.3390/ijms25053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Neutrophils present the host's first line of defense against bacterial infections. These immune effector cells are mobilized rapidly to destroy invading pathogens by (a) reactive oxygen species (ROS)-mediated oxidative bursts and (b) via phagocytosis. In addition, their antimicrobial service is capped via a distinct cell death mechanism, by the release of their own decondensed nuclear DNA, supplemented with a variety of embedded proteins and enzymes. The extracellular DNA meshwork ensnares the pathogenic bacteria and neutralizes them. Such neutrophil extracellular DNA traps (NETs) have the potential to trigger a hemostatic response to pathogenic infections. The web-like chromatin serves as a prothrombotic scaffold for platelet adhesion and activation. What is less obvious is that platelets can also be involved during the initial release of NETs, forming heterotypic interactions with neutrophils and facilitating their responses to pathogens. Together, the platelet and neutrophil responses can effectively localize an infection until it is cleared. However, not all microbial infections are easily cleared. Certain pathogenic organisms may trigger dysregulated platelet-neutrophil interactions, with a potential to subsequently propagate thromboinflammatory processes. These may also include the release of some NETs. Therefore, in order to make rational intervention easier, further elucidation of platelet, neutrophil, and pathogen interactions is still needed.
Collapse
Affiliation(s)
- William A Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
29
|
Ando Y, Tsukasaki M, Huynh NCN, Zang S, Yan M, Muro R, Nakamura K, Komagamine M, Komatsu N, Okamoto K, Nakano K, Okamura T, Yamaguchi A, Ishihara K, Takayanagi H. The neutrophil-osteogenic cell axis promotes bone destruction in periodontitis. Int J Oral Sci 2024; 16:18. [PMID: 38413562 PMCID: PMC10899642 DOI: 10.1038/s41368-023-00275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024] Open
Abstract
The immune-stromal cell interactions play a key role in health and diseases. In periodontitis, the most prevalent infectious disease in humans, immune cells accumulate in the oral mucosa and promote bone destruction by inducing receptor activator of nuclear factor-κB ligand (RANKL) expression in osteogenic cells such as osteoblasts and periodontal ligament cells. However, the detailed mechanism underlying immune-bone cell interactions in periodontitis is not fully understood. Here, we performed single-cell RNA-sequencing analysis on mouse periodontal lesions and showed that neutrophil-osteogenic cell crosstalk is involved in periodontitis-induced bone loss. The periodontal lesions displayed marked infiltration of neutrophils, and in silico analyses suggested that the neutrophils interacted with osteogenic cells through cytokine production. Among the cytokines expressed in the periodontal neutrophils, oncostatin M (OSM) potently induced RANKL expression in the primary osteoblasts, and deletion of the OSM receptor in osteogenic cells significantly ameliorated periodontitis-induced bone loss. Epigenomic data analyses identified the OSM-regulated RANKL enhancer region in osteogenic cells, and mice lacking this enhancer showed decreased periodontal bone loss while maintaining physiological bone metabolism. These findings shed light on the role of neutrophils in bone regulation during bacterial infection, highlighting the novel mechanism underlying osteoimmune crosstalk.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misaki-cho, Chiyoda-ku, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Nam Cong-Nhat Huynh
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
- Unit of Prosthodontics, Laboratory of Oral-Maxillofacial Biology Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Shizao Zang
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kazutaka Nakamura
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Department of Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masatsugu Komagamine
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Noriko Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Akira Yamaguchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misaki-cho, Chiyoda-ku, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
30
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Klaus T, Hieber C, Bros M, Grabbe S. Integrins in Health and Disease-Suitable Targets for Treatment? Cells 2024; 13:212. [PMID: 38334604 PMCID: PMC10854705 DOI: 10.3390/cells13030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Integrin receptors are heterodimeric surface receptors that play multiple roles regarding cell-cell communication, signaling, and migration. The four members of the β2 integrin subfamily are composed of an alternative α (CD11a-d) subunit, which determines the specific receptor properties, and a constant β (CD18) subunit. This review aims to present insight into the multiple immunological roles of integrin receptors, with a focus on β2 integrins that are specifically expressed by leukocytes. The pathophysiological role of β2 integrins is confirmed by the drastic phenotype of patients suffering from leukocyte adhesion deficiencies, most often resulting in severe recurrent infections and, at the same time, a predisposition for autoimmune diseases. So far, studies on the role of β2 integrins in vivo employed mice with a constitutive knockout of all β2 integrins or either family member, respectively, which complicated the differentiation between the direct and indirect effects of β2 integrin deficiency for distinct cell types. The recent generation and characterization of transgenic mice with a cell-type-specific knockdown of β2 integrins by our group has enabled the dissection of cell-specific roles of β2 integrins. Further, integrin receptors have been recognized as target receptors for the treatment of inflammatory diseases as well as tumor therapy. However, whereas both agonistic and antagonistic agents yielded beneficial effects in animal models, the success of clinical trials was limited in most cases and was associated with unwanted side effects. This unfavorable outcome is most probably related to the systemic effects of the used compounds on all leukocytes, thereby emphasizing the need to develop formulations that target distinct types of leukocytes to modulate β2 integrin activity for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (T.K.); (C.H.); (M.B.)
| |
Collapse
|
32
|
Dinis M, Tran NC. Oral immune system and microbes. MICROBES, MICROBIAL METABOLISM, AND MUCOSAL IMMUNITY 2024:147-228. [DOI: 10.1016/b978-0-323-90144-4.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Fujihara C, Murakami K, Magi S, Motooka D, Nantakeeratipat T, Canela A, Tanaka RJ, Okada M, Murakami S. Omics-Based Mathematical Modeling Unveils Pathogenesis of Periodontitis in an Experimental Murine Model. J Dent Res 2023; 102:1468-1477. [PMID: 37800405 DOI: 10.1177/00220345231196530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Periodontitis is a multifactorial disease that progresses via dynamic interaction between bacterial and host-derived genetic factors. The recent trend of omics analyses has discovered many periodontitis-related risk factors. However, how much the individual factor affects the pathogenesis of periodontitis is still unknown. This article aims to identify multiple key factors related to the pathogenesis of periodontitis and quantitatively predict the influence of each factor on alveolar bone resorption by omics analysis and mathematical modeling. First, we induced periodontitis in mice (n = 3 or 4 at each time point) by tooth ligation. Next, we assessed alveolar bone resorption by micro-computed tomography, alterations in the gene expression by RNA sequencing, and the microbiome of the gingivae by 16S ribosomal RNA sequencing during disease pathogenesis. Omics data analysis identified key players (bacteria and molecules) involved in the pathogenesis of periodontitis. We then constructed a mathematical model of the pathogenesis of periodontitis by employing ordinary differential equations that described the dynamic regulatory interplay between the key players and predicted the alveolar bone integrity as output. Finally, we estimated the model parameters using our dynamic experimental data and validated the model prediction of influence on alveolar bone resorption by in vivo experiments. The model predictions and experimental results revealed that monocyte recruitment induced by bacteria-mediated Toll-like receptor activation was the principal reaction regulating alveolar bone resorption in a periodontitis condition. On the other hand, osteoblast-mediated osteoclast differentiation had less impact on bone integrity in a periodontitis condition.
Collapse
Affiliation(s)
- C Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - K Murakami
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - S Magi
- Department of Physiology, Division of Cell Physiology, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - D Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - T Nantakeeratipat
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Conservative Dentistry and Prothodontics, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - A Canela
- The Hakubi Center for Advanced Research, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - R J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| | - M Okada
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - S Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
34
|
Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. MICROBIOLOGY RESEARCH 2023; 14:1862-1878. [DOI: 10.3390/microbiolres14040127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Giuseppe Sangiovanni
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
35
|
Kitamoto S, Kamada N. The oral-gut axis: a missing piece in the IBD puzzle. Inflamm Regen 2023; 43:54. [PMID: 37932859 PMCID: PMC10626704 DOI: 10.1186/s41232-023-00304-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial intractable intestinal disease. Focusing on only one facet of the pathogenesis of IBD is insufficient to fully capture the complexity of the disease, and results in limited advance in clinical management. Therefore, it is critical to dissect the interactions amongst the multifarious contributors to the pathogenesis to comprehensively understand its pathology and subsequently improve clinical outcomes. In this context, the systemic interactions between organs, particularly the oral-gut axis mediated by host immune cells and resident microorganisms, have garnered significant attention in IBD research. More specifically, periodontal disease such as periodontitis has been implicated in augmenting intestinal inflammation beyond the confines of the oral cavity. There is mounting evidence suggesting that potentially harmful oral resident bacteria, termed pathobionts, and pro-inflammatory immune cells from the oral mucosa can migrate to the gastrointestinal tract, thereby potentiating intestinal inflammation. This article aims to provide a holistic overview of the causal relationship between periodontal disease and intestinal inflammation. Furthermore, we will discuss potential determinants that facilitate the translocation of oral pathobionts into the gut, a key event underpinning the oral-gut axis. Unraveling the complex dynamics of microbiota and immunity in the oral-gut continuum will lead to a better understanding of the pathophysiology inherent in both oral and intestinal diseases and the development of prospective therapeutic strategies.
Collapse
Affiliation(s)
- Sho Kitamoto
- The World Premier International Research Center (WPI) Immunology Frontier Research Center (IFReC), 1012 IFReC Research Building, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Nobuhiko Kamada
- The World Premier International Research Center (WPI) Immunology Frontier Research Center (IFReC), 1012 IFReC Research Building, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI, 48109, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
36
|
Kim TS, Silva LM, Theofilou VI, Greenwell-Wild T, Li L, Williams DW, Ikeuchi T, Brenchley L, NIDCD/NIDCR Genomics and Computational Biology Core, Bugge TH, Diaz PI, Kaplan MJ, Carmona-Rivera C, Moutsopoulos NM. Neutrophil extracellular traps and extracellular histones potentiate IL-17 inflammation in periodontitis. J Exp Med 2023; 220:e20221751. [PMID: 37261457 PMCID: PMC10236943 DOI: 10.1084/jem.20221751] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/07/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Neutrophil infiltration is a hallmark of periodontitis, a prevalent oral inflammatory condition in which Th17-driven mucosal inflammation leads to destruction of tooth-supporting bone. Herein, we document that neutrophil extracellular traps (NETs) are early triggers of pathogenic inflammation in periodontitis. In an established animal model, we demonstrate that neutrophils infiltrate the gingival oral mucosa at early time points after disease induction and expel NETs to trigger mucosal inflammation and bone destruction in vivo. Investigating mechanisms by which NETs drive inflammatory bone loss, we find that extracellular histones, a major component of NETs, trigger upregulation of IL-17/Th17 responses, and bone destruction. Importantly, human findings corroborate our experimental work. We document significantly increased levels of NET complexes and extracellular histones bearing classic NET-associated posttranslational modifications, in blood and local lesions of severe periodontitis patients, in the absence of confounding disease. Our findings suggest a feed-forward loop in which NETs trigger IL-17 immunity to promote immunopathology in a prevalent human inflammatory disease.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lakmali M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Vasileios Ionas Theofilou
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lu Li
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY, USA
| | - Drake Winslow Williams
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Patricia I. Diaz
- Department of Oral Biology, State University of New York at Buffalo, University at Buffalo, Buffalo, NY, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Metzemaekers M, Malengier-Devlies B, Gouwy M, De Somer L, Cunha FDQ, Opdenakker G, Proost P. Fast and furious: The neutrophil and its armamentarium in health and disease. Med Res Rev 2023; 43:1537-1606. [PMID: 37036061 DOI: 10.1002/med.21958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Division of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at the University Hospital Leuven, Leuven, Belgium
| | | | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Chang Y, Hummel SN, Watson MN, Jin G, Lian XL, Bao X. Engineered Artificial Human Neutrophils Exhibit Mature Functional Performance. ACS Synth Biol 2023; 12:2262-2270. [PMID: 37523468 PMCID: PMC11070884 DOI: 10.1021/acssynbio.3c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Neutrophils, a key innate immune component, are powerful effector leukocytes for mediating opposing effects on tumor progression and ameliorating pathogen infections. However, their short lifespan and complex purification process have limited neutrophil clinical applications. Here we combined genetic engineering technology with a nanodrug system to construct artificial neutrophils that display functions similar to those of native neutrophils. K562 and HL60 human leukemia cells were engineered to express the human G protein-coupled receptor hM4Di. Compared to the parental cells, engineered hM4Di-K562 and hM4Di-HL60 cells exhibited excellent chemotaxis ability towards clozapine-N-oxide (CNO) and superior bacteria phagocytic behavior, resembling native neutrophils. The antibacterial ability of the hM4Di-K562 cells was further enhanced by loading them with the glycopeptide vancomycin via mesoporous silica nanoparticles (Nano@Van). Our proposed artificial cell engineering platform provides a new avenue to investigate the physiological properties of neutrophils.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Sydney N. Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Monique N. Watson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| |
Collapse
|
39
|
Silva L, Divaris K, Bugge T, Moutsopoulos N. Plasmin-Mediated Fibrinolysis in Periodontitis Pathogenesis. J Dent Res 2023; 102:972-978. [PMID: 37506226 PMCID: PMC10477773 DOI: 10.1177/00220345231171837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
The hemostatic and inflammatory systems work hand in hand to maintain homeostasis at mucosal barrier sites. Among the factors of the hemostatic system, fibrin is well recognized for its role in mucosal homeostasis, wound healing, and inflammation. Here, we present a basic overview of the fibrinolytic system, discuss fibrin as an innate immune regulator, and provide recent work uncovering the role of fibrin-neutrophil activation as a regulator of mucosal/periodontal homeostasis. We reason that the role of fibrin in periodontitis becomes most evident in individuals with the Mendelian genetic defect, congenital plasminogen (PLG) deficiency, who are predisposed to severe periodontitis in childhood due to a defect in fibrinolysis. Consistent with plasminogen deficiency being a risk factor for periodontitis, recent genomics studies uncover genetic polymorphisms in PLG, encoding plasminogen, being significantly associated with periodontal disease, and suggesting PLG variants as candidate risk indicators for common forms of periodontitis.
Collapse
Affiliation(s)
- L.M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K. Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina–Chapel Hill, Chapel Hill, NC,USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina–Chapel Hill, Chapel Hill, NC, USA
| | - T.H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N.M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Salvi GE, Roccuzzo A, Imber JC, Stähli A, Klinge B, Lang NP. Clinical periodontal diagnosis. Periodontol 2000 2023. [PMID: 37452444 DOI: 10.1111/prd.12487] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 07/18/2023]
Abstract
Periodontal diseases include pathological conditions elicited by the presence of bacterial biofilms leading to a host response. In the diagnostic process, clinical signs such as bleeding on probing, development of periodontal pockets and gingival recessions, furcation involvement and presence of radiographic bone loss should be assessed prior to periodontal therapy, following active therapy, and during long-term supportive care. In addition, patient-reported outcomes such as increased tooth mobility, migration, and tilting should also be considered. More important to the patient, however, is the fact that assessment of signs of periodontal diseases must be followed by an appropriate treatment plan. Furthermore, it should be realized that clinical and radiographic periodontal diagnosis is based on signs which may not reflect the presence of active disease but rather represent the sequelae of a previous bacterial challenge. Hence, the aim of the present review is to provide a summary of clinical and radiographic diagnostic criteria required to classify patients with periodontal health or disease.
Collapse
Affiliation(s)
- Giovanni E Salvi
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andrea Roccuzzo
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Niklaus P Lang
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
41
|
Erdem S, Haskologlu S, Haliloglu Y, Çelikzencir H, Arik E, Keskin O, Eltan SB, Yucel E, Canatan H, Avcilar H, Yilmaz E, Ozcan A, Unal E, Karakukcu M, Celiksoy MH, Kilic SS, Demir A, Genel F, Gulez N, Koker MY, Ozen AO, Baris S, Metin A, Guner SN, Reisli I, Keles S, Dogu EF, Ikinciogullari KA, Eken A. Defective Treg generation and increased type 3 immune response in leukocyte adhesion deficiency 1. Clin Immunol 2023:109691. [PMID: 37433423 DOI: 10.1016/j.clim.2023.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
In 15 Turkish LAD-1 patients and controls, we assessed the impact of pathogenic ITGB2 mutations on Th17/Treg differentiation and functions, and innate lymphoid cell (ILC) subsets. The percentage of peripheral blood Treg cells, in vitro-generated induced Tregs differentiated from naive CD4+ T cells were decreased despite the elevated absolute counts of CD4+ cells in LAD1 patients. Serum IL-23 levels were elevated in LAD1 patients. Post-curdlan stimulation, LAD1 patient-derived PBMCs produced more IL-17A. Additionally, the percentages of CD18-deficient Th17 cells expanded from total or naïve CD4+ T cells were higher. The blood ILC3 subset was significantly elevated in LAD1. Finally, LAD1 PBMCs showed defects in trans-well migration and proliferation and were more resistant to apoptosis. Defects in de novo generation of Tregs from CD18-deficient naïve T cells and elevated Th17s, and ILC3s in LAD1 patients' peripheral blood suggest a type 3-skewed immunity and may contribute to LAD1-associated autoimmune symptoms.
Collapse
Affiliation(s)
- Serife Erdem
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Sule Haskologlu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huriye Çelikzencir
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Elif Arik
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Ozlem Keskin
- Gaziantep University School of Medicine, Department of Pediatric Allergy and Immunology, Gaziantep, Turkey
| | - Sevgi Bilgic Eltan
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Yucel
- Istanbul University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Halit Canatan
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Huseyin Avcilar
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey
| | - Ebru Yilmaz
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Alper Ozcan
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Musa Karakukcu
- Erciyes University School of Medicine, Department of Pediatric Hematology and Oncology, Kayseri, Turkey
| | - Mehmet Halil Celiksoy
- İstanbul Başakşehir Çam ve Sakura City Hospital, Pediatric Allergy and Immunology Clinic Istanbul, Turkey
| | - Sara Sebnem Kilic
- Bursa Uludag University, Department of Pediatric Immunology and Rheumatology, Bursa, Turkey.
| | - Ayca Demir
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Ferah Genel
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Nesrin Gulez
- Dr Behcet Uz Children's Education and Research Hospital, University of Health Sciences, Department of Pediatric Allergy and Immunology, Izmir, Turkey
| | - Mustafa Yavuz Koker
- Erciyes University School of Medicine, Department of Immunology, Kayseri, Turkey.
| | - Ahmet Oguzhan Ozen
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Safa Baris
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayse Metin
- Ankara City Hospital, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | - Sukru Nail Guner
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Ismail Reisli
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Sevgi Keles
- Necmettin Erbakan University School of Medicine, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Esin Figen Dogu
- Ankara University School of Medicine, Department of Pediatric Allergy and Immunology, Ankara, Turkey
| | | | - Ahmet Eken
- Erciyes University School of Medicine, Department of Medical Biology, Kayseri, Turkey; Erciyes University, Betul-Ziya Eren Genome and Stem Cell Center, Kayseri, Turkey.
| |
Collapse
|
42
|
Frase D, Lee C, Nachiappan C, Gupta R, Akkouch A. The Inflammatory Contribution of B-Lymphocytes and Neutrophils in Progression to Osteoporosis. Cells 2023; 12:1744. [PMID: 37443778 PMCID: PMC10340451 DOI: 10.3390/cells12131744] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a bone disease characterized by structural deterioration and low bone mass, leading to fractures and significant health complications. In this review, we summarize the mechanisms by which B-lymphocytes and neutrophils contribute to the development of osteoporosis and potential therapeutics targeting these immune mediators to reduce the proinflammatory milieu. B-lymphocytes-typically appreciated for their canonical role in adaptive, humoral immunity-have emerged as critical regulators of bone remodeling. B-lymphocytes communicate with osteoclasts and osteoblasts through various cytokines, including IL-7, RANK, and OPG. In inflammatory conditions, B-lymphocytes promote osteoclast activation and differentiation. However, B-lymphocytes also possess immunomodulatory properties, with regulatory B-lymphocytes (Bregs) secreting TGF-β1 to restrain pathogenic osteoclastogenesis. Neutrophils, the body's most prevalent leukocyte, also contribute to the proinflammatory environment that leads to osteoporotic bone remodeling. In aged individuals, neutrophils display reduced chemotaxis, phagocytosis, and apoptosis. Understanding the delicate interplay between B-lymphocytes and neutrophils in the context of impaired bone metabolism is crucial for targeted therapies for osteoporosis.
Collapse
Affiliation(s)
- Drew Frase
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Chi Lee
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Chidambaram Nachiappan
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Richa Gupta
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
| | - Adil Akkouch
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA; (D.F.)
- Department of Orthopaedic Surgery and Medical Engineering Program, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA
| |
Collapse
|
43
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Hajishengallis G. Illuminating the oral microbiome and its host interactions: animal models of disease. FEMS Microbiol Rev 2023; 47:fuad018. [PMID: 37113021 PMCID: PMC10198557 DOI: 10.1093/femsre/fuad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis and caries are driven by complex interactions between the oral microbiome and host factors, i.e. inflammation and dietary sugars, respectively. Animal models have been instrumental in our mechanistic understanding of these oral diseases, although no single model can faithfully reproduce all aspects of a given human disease. This review discusses evidence that the utility of an animal model lies in its capacity to address a specific hypothesis and, therefore, different aspects of a disease can be investigated using distinct and complementary models. As in vitro systems cannot replicate the complexity of in vivo host-microbe interactions and human research is typically correlative, model organisms-their limitations notwithstanding-remain essential in proving causality, identifying therapeutic targets, and evaluating the safety and efficacy of novel treatments. To achieve broader and deeper insights into oral disease pathogenesis, animal model-derived findings can be synthesized with data from in vitro and clinical research. In the absence of better mechanistic alternatives, dismissal of animal models on fidelity issues would impede further progress to understand and treat oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104-6030, USA
| |
Collapse
|
45
|
Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJ, Gul SS, Sha A, Chapple IL. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol 2023; 15:2197779. [PMID: 37025387 PMCID: PMC10071981 DOI: 10.1080/20002297.2023.2197779] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The primary etiological agent for the initiation and progression of periodontal disease is the dental plaque biofilm which is an organized aggregation of microorganisms residing within a complex intercellular matrix. The non-specific plaque hypothesis was the first attempt to explain the role of the dental biofilm in the pathogenesis of periodontal diseases. However, the introduction of sophisticated diagnostic and laboratory assays has led to the realisation that the development of periodontitis requires more than a mere increase in the biomass of dental plaque. Indeed, multispecies biofilms exhibit complex interactions between the bacteria and the host. In addition, not all resident microorganisms within the biofilm are pathogenic, since beneficial bacteria exist that serve to maintain a symbiotic relationship between the plaque microbiome and the host's immune-inflammatory response, preventing the emergence of pathogenic microorganisms and the development of dysbiosis. This review aims to highlight the development and structure of the dental plaque biofilm and to explore current literature on the transition from a healthy (symbiotic) to a diseased (dysbiotic) biofilm in periodontitis and the associated immune-inflammatory responses that drive periodontal tissue destruction and form mechanistic pathways that impact other systemic non-communicable diseases.
Collapse
Affiliation(s)
- Ali A. Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Firas B. Al-Taweel
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ali J.B. Al-Sharqi
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Sarhang S. Gul
- College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Aram Sha
- College of Dentistry, University of Sulaimani, Sulaimani, Iraq
| | - Iain L.C. Chapple
- Periodontal Research Group, Institute of Clinical Sciences, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
46
|
Li J, Zhao C, Xu Y, Song L, Chen Y, Xu Y, Ma Y, Wang S, Xu A, He F. Remodeling of the osteoimmune microenvironment after biomaterials implantation in murine tibia: Single-cell transcriptome analysis. Bioact Mater 2023; 22:404-422. [PMID: 36311047 PMCID: PMC9588995 DOI: 10.1016/j.bioactmat.2022.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022] Open
Abstract
Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.
Collapse
Key Words
- BMP2, Bone Morphogenetic Proteins 2
- CXCL12, Chemokine (C-X-C mode) Ligand 12
- CXCR, CXC Chemokine Receptor
- FcgR, Fc Gamma Receptor
- IFN-γ, Interferon-gamma
- IL-1β, Interleukin-1 beta
- Implant
- MHC, Major Histocompatibility Complex
- MIP, Macrophage inflammatory cytokines
- MPO, Myeloperoxidase
- NE, Neutrophil Elastase
- NF-κB, Nuclear Factor Kappa-light-chain-enhancer of Activated B cells
- NOD, Nucleotide Binding Oligomerization Domain
- Neutrophil
- OPG, Osteoprotegerin
- Osseointegration
- Osteoimmunology
- RANKL, Nuclear Factor B receptor Activator Ligand
- RUNX2, Runt-related Transcription Factor 2
- S100a8, S100 Calcium Binding Protein A8
- SDF-1α, Stromal Cell-derived Factor-1 alpha
- STAT, Signal Transduction and Transcription Activator
- Single-cell transcriptomics
- TLR, Toll Like Receptor
- TNFα, Tumor Necrosis Factor-alpha
- TRAP, Tartrate Resistant Acid Phosphatase
Collapse
Affiliation(s)
- Jia Li
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Congrui Zhao
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yangbo Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Lu Song
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yanqi Chen
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yuzi Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Ma
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Siyuan Wang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Antian Xu
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Wang S, Greenbaum J, Qiu C, Gong Y, Wang Z, Lin X, Liu Y, He P, Meng X, Zhang Q, Shen H, Vemulapalli KC, Sanchez FL, Schiller MR, Xiao H, Deng H. Single-cell RNA sequencing reveals in vivo osteoimmunology interactions between the immune and skeletal systems. Front Endocrinol (Lausanne) 2023; 14:1107511. [PMID: 37051201 PMCID: PMC10083244 DOI: 10.3389/fendo.2023.1107511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
BACKGROUND While osteoimmunology interactions between the immune and skeletal systems are known to play an important role in osteoblast development, differentiation and bone metabolism related disease like osteoporosis, such interactions in either bone microenvironment or peripheral circulation in vivo at the single-cell resolution have not yet been characterized. METHODS We explored the osteoimmunology communications between immune cells and osteoblastic lineage cells (OBCs) by performing CellphoneDB and CellChat analyses with single-cell RNA sequencing (scRNA-seq) data from human femoral head. We also explored the osteoimmunology effects of immune cells in peripheral circulation on skeletal phenotypes. We used a scRNA-seq dataset of peripheral blood monocytes (PBMs) to perform deconvolution analysis. Then weighted gene co-expression network analysis (WGCNA) was used to identify monocyte subtype-specific subnetworks. We next used cell-specific network (CSN) and the least absolute shrinkage and selection operator (LASSO) to analyze the correlation of a gene subnetwork identified by WGCNA with bone mineral density (BMD). RESULTS We constructed immune cell and OBC communication networks and further identified L-R genes, such as JAG1 and NOTCH1/2, with ossification related functions. We also found a Mono4 related subnetwork that may relate to BMD variation in both older males and postmenopausal female subjects. CONCLUSIONS This is the first study to identify numerous ligand-receptor pairs that likely mediate signals between immune cells and osteoblastic lineage cells. This establishes a foundation to reveal advanced and in-depth osteoimmunology interactions to better understand the relationship between local bone microenvironment and immune cells in peripheral blood and the impact on bone phenotypes.
Collapse
Affiliation(s)
- Shengran Wang
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Zun Wang
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yong Liu
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xianghe Meng
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiang Zhang
- College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Krishna Chandra Vemulapalli
- Department of Orthopaedic Surgery, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Fernando L. Sanchez
- Department of Orthopaedic Surgery, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Hongmei Xiao
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
48
|
Abstract
Mucosal tissues are constantly exposed to the outside environment. They receive signals from the commensal microbiome and tissue-specific triggers including alimentary and airborne elements and are tasked to maintain balance in the absence of inflammation and infection. Here, we present neutrophils as sentinel cells in mucosal immunity. We discuss the roles of neutrophils in mucosal homeostasis and overview clinical susceptibilities in patients with neutrophil defects. Finally, we present concepts related to specification of neutrophil responses within specific mucosal tissue microenvironments.
Collapse
Affiliation(s)
- Lakmali M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
49
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Roos D, van Leeuwen K, Madkaikar M, Kambli PM, Gupta M, Mathews V, Rawat A, Kuhns DB, Holland SM, de Boer M, Kanegane H, Parvaneh N, Lorenz M, Schwarz K, Klein C, Sherkat R, Jafari M, Wolach B, den Dunnen JT, Kuijpers TW, Köker MY. Hematologically important mutations: Leukocyte adhesion deficiency (second update). Blood Cells Mol Dis 2023; 99:102726. [PMID: 36696755 DOI: 10.1016/j.bcmd.2023.102726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, characterized directly after birth by delayed separation of the umbilical cord, mutations are found in ITGB2, the gene that encodes the β subunit (CD18) of the β2 integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Lea and Leb blood group antigens. Finally, in LAD-III, the conformational activation of the hematopoietically expressed β integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells, involved in the regulation of β integrin conformation. This article contains an update of the mutations that we consider to be relevant for the various forms of LAD.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Manisha Madkaikar
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Priyanka M Kambli
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Maya Gupta
- Pediatric Immunology and Leukocyte Biology Lab CMR, National Institute of Immunohaematology, K E M Hospital, Parel, Mumbai, India
| | - Vikram Mathews
- Dept of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Amit Rawat
- Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatrics Centre, Chandigarh, India
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University Ulm, Ulm, Germany; Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessen, Ulm, Germany
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Baruch Wolach
- Pediatric Immunology Service, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Johan T den Dunnen
- Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Children's Hospital, Amsterdam University Medical Centre, location AMC, Amsterdam, the Netherlands
| | - M Yavuz Köker
- Department of Immunology, Erciyes Medical School, University of Erciyes, Kayseri, Türkiye
| |
Collapse
|