1
|
Zhu Y, Guo Y, Guo P, Zhang J, He Y, Xia Y, Wei Z, Dai Y. Estrogen receptor β activation alleviates inflammatory bowel disease by suppressing NLRP3-dependent IL-1β production in macrophages via downregulation of intracellular calcium level. J Adv Res 2025; 71:571-584. [PMID: 38844124 DOI: 10.1016/j.jare.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Although several estrogen receptor β (ERβ) agonists have been reported to alleviate IBD, the pivotal mechanism remains obscure. OBJECTIVES To examine the effects and mechanisms of ERβ activation on cytokine/chemokine networks in colitis mice. METHODS Dextran sulfate sodium salt (DSS) and trinitro-benzene-sulfonic acid (TNBS) were used to induce mouse colitis model. Multiple molecular biological methods were employed to evaluate the severity of mouse colitis and the level of cytokine and/or chemokine. RESULTS Bioinformatics analysis, ELISA and immunofluorescence results showed that the targeted cytokines and/or chemokines associated with ERβ expression and activation is IL-1β, and the anti-colitis effect of ERβ activation was significantly attenuated by the overexpression of AAV9-IL-1β. Immunofluorescence analysis indicated that ERβ activation led to most evident downregulation of IL-1β expression in colonic macrophages as compared to monocytes and neutrophils. Given the pivotal roles of NLRP3, NLRC4, and AIM2 inflammasome activation in the production of IL-1β, we examined the influence of ERβ activation on inflammasome activity. ELISA and WB results showed that ERβ activation selectively blocked the NLRP3 inflammasome assembly-mediated IL-1β secretion. The calcium-sensing receptor (CaSR) and calcium signaling play crucial roles in the assembly of the NLRP3 inflammasome. WB and immunofluorescence results showed that ERβ activation reduced intracellular CaSR expression and calcium signaling in colonic macrophages. Combination with CaSR overexpression plasmid reversed the suppressive effect of ERβ activation on NLRP3 inflammasome assembly, and counteracting the downregulation of IL-1β secretion. CONCLUSION Our research uncovers that the anti-colitis effect of ERβ activation is accomplished through the reduction of IL-1β levels in colonic tissue, achieved by specifically decreasing CaSR expression in macrophages to lower intracellular calcium levels and inhibit NLRP3 inflammasome assembly-mediated IL-1β production.
Collapse
Affiliation(s)
- Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China.
| |
Collapse
|
2
|
Wolffs K, Li R, Mansfield B, Pass DA, Bruce RT, Huang P, de Araújo RP, Haddadi BS, Mur LAJ, Dally J, Moseley R, Ecker R, Karmouty-Quintana H, Lewis KE, Simpson AJ, Ward JPT, Corrigan CJ, Jurkowska RZ, Hope-Gill BD, Riccardi D, Yarova PL. Calcium-Sensing Receptor as a Novel Target for the Treatment of Idiopathic Pulmonary Fibrosis. Biomolecules 2025; 15:509. [PMID: 40305220 PMCID: PMC12025166 DOI: 10.3390/biom15040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and no curative therapies. Fibroblast activation by transforming growth factor β1 (TGFβ1) and disrupted metabolic pathways, including the arginine-polyamine pathway, play crucial roles in IPF development. Polyamines are agonists of the calcium/cation-sensing receptor (CaSR), activation of which is detrimental for asthma and pulmonary hypertension, but its role in IPF is unknown. To address this question, we evaluated polyamine abundance using metabolomic analysis of IPF patient saliva. Furthermore, we examined CaSR functional expression in human lung fibroblasts (HLFs), assessed the anti-fibrotic effects of a CaSR antagonist, NPS2143, in TGFβ1-activated normal and IPF HLFs by RNA sequencing and immunofluorescence imaging, respectively; and NPS2143 effects on polyamine synthesis in HLFs by immunoassays. Our results demonstrate that polyamine metabolites are increased in IPF patient saliva. Polyamines activate fibroblast CaSR in vitro, elevating intracellular calcium concentration. CaSR inhibition reduced TGFβ1-induced polyamine and pro-fibrotic factor expression in normal and IPF HLFs. TGFβ1 directly stimulated polyamine release by HLFs, an effect that was blocked by NPS2143. This suggests that TGFβ1 promotes CaSR activation through increased polyamine expression, driving a pro-fibrotic response. By halting some polyamine-induced pro-fibrotic changes, CaSR antagonists exhibit disease-modifying potential in IPF onset and development.
Collapse
Affiliation(s)
- Kasope Wolffs
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Renjiao Li
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Bethan Mansfield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Daniel A. Pass
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Richard T. Bruce
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Ping Huang
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Rachel Paes de Araújo
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.P.d.A.); (B.S.H.); (L.A.J.M.)
- Molecular Oncology Laboratory, Experimental Research Unit, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Bahareh Sadat Haddadi
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.P.d.A.); (B.S.H.); (L.A.J.M.)
| | - Luis A. J. Mur
- Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK; (R.P.d.A.); (B.S.H.); (L.A.J.M.)
| | - Jordanna Dally
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (J.D.); (R.M.)
| | - Ryan Moseley
- School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (J.D.); (R.M.)
| | - Rupert Ecker
- TissueGnostics, 1020 Vienna, Austria;
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Harry Karmouty-Quintana
- The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA;
| | - Keir E. Lewis
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8QA, UK;
| | - A. John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Jeremy P. T. Ward
- King’s Centre for Lung Health, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK; (J.P.T.W.); (C.J.C.)
| | - Christopher J. Corrigan
- King’s Centre for Lung Health, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK; (J.P.T.W.); (C.J.C.)
| | - Renata Z. Jurkowska
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Benjamin D. Hope-Gill
- Department of Respiratory Medicine, Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK;
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (R.L.); (B.M.); (D.A.P.); (R.T.B.); (P.H.); (R.Z.J.); (D.R.)
| | - Polina L. Yarova
- Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| |
Collapse
|
3
|
Yuan M, Ma T, Fan Z, Li J, Zhang S. The calcium-sensing receptor: a comprehensive review on its role in calcium homeostasis and therapeutic implications. Am J Transl Res 2025; 17:2322-2338. [PMID: 40226019 PMCID: PMC11982861 DOI: 10.62347/qgts5711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
The calcium-sensing receptor (CaSR), a key member of the family C G protein-coupled receptors (GPCRs), plays a crucial role in regulating calcium homeostasis and parathyroid hormone (PTH) secretion. It responds to various physiological ligands, including calcium ions and amino acids, activating multiple signaling pathways through interactions with different G proteins and β-arrestin. This review focuses on the structural features of CaSR, emphasizing recent advances in understanding its activation mechanisms via agonists and allosteric modulators. CaSR holds significant therapeutic potential, particularly in treating calcitropic disorders such as hyperparathyroidism and hypoparathyroidism. Current pharmacological agents, including calcimimetics such as cinacalcet and etelcalcetide, have proven effective in managing secondary hyperparathyroidism (SHPT); however, they are associated with side effects such as hypocalcemia. Emerging investigational drugs, including palopegteriparatide and other small molecules, show promise in addressing various calcium-related conditions. Despite challenges that have led to the discontinuation of some drug developments, ongoing research is focused on refining CaSR-targeted therapies to improve efficacy, reduce adverse effects, and enhance patient outcomes.
Collapse
Affiliation(s)
- Ming Yuan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Guangzhou 510005, Guangdong, China
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan 430074, Hubei, China
| | - Tianrui Ma
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Guangzhou 510005, Guangdong, China
| | - Zhiran Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Guangzhou 510005, Guangdong, China
| | - Jing Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Guangzhou 510005, Guangdong, China
| | - Shenglan Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)Guangzhou 510005, Guangdong, China
| |
Collapse
|
4
|
Du W, Rahman SN, Barker E, Bräuner-Osborne H, Mathiesen JM, Ward DT, Jensen AA. Detailed functional characterization of four nanobodies as positive allosteric modulators of the human calcium-sensing receptor. Biochem Pharmacol 2025; 231:116619. [PMID: 39522703 DOI: 10.1016/j.bcp.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The calcium-sensing receptor (CaSR) plays a key role in calcium homeostasis, and small-molecule and peptide positive allosteric modulators (PAMs) of CaSR, so-called calcimimetics, are used in the treatment of hyperparathyroidism and hypocalcemic disorders. In this study, four monovalent nanobodies - representing four distinct nanobody families with CaSR PAM activity - were subjected to elaborate pharmacological profiling at the receptor. While Nb5 displayed negligible PAM activity at CaSR in all assays, Nb4, Nb10 and Nb45 all potently potentiated Ca2+-evoked signalling through a myc epitope-tagged CaSR expressed in HEK293 or HEK293T cells in Gαq and Gαi1 protein activation assays and in a Ca2+/Fluo-4 assay. Nb4 and Nb10 also displayed comparable PAM properties at a stable CaSR-HEK293 cell line in a Ca2+/Fura-2 imaging assay, but surprisingly Nb45 was completely inactive at this cell line in both the Ca2+/Fura-2 and Ca2+/Fluo-4 assays. Investigations into this binary difference in Nb45 activity revealed that the nanobody only possesses modulatory activity at CaSRs tagged N-terminally with various epitopes (myc, HA, Flag-SNAP), whereas it is inactive at the untagged wild-type receptor. In conclusion, overall each of the four nanobodies exhibit similar CaSR PAM properties in a range of assays, and thus none of them display pathway bias as modulators. However, of the four nanobodies Nb4 and Nb10 would be applicable as pharmacological tools for the wild-type CaSR, whereas the complete inactivity of Nb45 at the untagged CaSR serves as an reminder that epitope-tagging of a receptor, even if deemed functionally silent, can have profound implications for ligand discovery efforts.
Collapse
Affiliation(s)
- Wei Du
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sabrina N Rahman
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Eleanor Barker
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
5
|
Bossé Y. The airway smooth muscle and the pipe dream of better bronchodilators. Can J Physiol Pharmacol 2025; 103:2-11. [PMID: 39361971 DOI: 10.1139/cjpp-2024-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Research on airway smooth muscle has traditionally focused on its putative detrimental role in asthma, emphasizing on how its shortening narrows the airway lumen, without much consideration about its potential role in subserving the function of the entire respiratory system. New experimental evidence on mice suggests that not only the smooth muscle is required to sustain life postnatally, but its stiffening effect on the lung tissue also protects against excessive airway narrowing and, most importantly, against small airway narrowing heterogeneity and closure. These results suggest that the smooth muscle plays an vital role in the lung periphery, essentially safeguarding alveolar ventilation by preventing small airway closure. These results also shed light on perplexing clinical observations, such as the long-standing doubts about the safety of bronchodilators. Since there seems to be an optimal level of smooth muscle contraction, at least in small airways, the therapeutic goal of maximizing the relaxation of the smooth muscle in asthma needs to be revisited. A bronchodilator with an excessive potency for inhibiting smooth muscle contraction, and that is still potent at concentrations reaching the lung periphery, may foster airway closure and air trapping, resulting in no net gain or even a decline in lung function.
Collapse
Affiliation(s)
- Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ) - Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Piatek K, Gushchina V, Kleinwächter A, Kupper N, Mesteri I, Elajnaf T, Iamartino L, Salzmann M, Müller C, Manhardt T, Vlasaty A, Kallay E, Schepelmann M. Targeting the Calcium-Sensing Receptor in Chemically Induced Medium-Grade Colitis in Female BALB/C Mice. Nutrients 2024; 16:4362. [PMID: 39770982 PMCID: PMC11679268 DOI: 10.3390/nu16244362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES The extracellular calcium-sensing receptor (CaSR) is a multifunctional receptor proposed as a possible drug target for inflammatory bowel disease. We showed previously that CaSR inhibition with NPS 2143, a negative allosteric modulator of the CaSR, somewhat ameliorated the symptoms of chemically induced severe colitis in mice. However, it was unclear whether the potential of CaSR inhibition to reduce colitis may have been overshadowed by the severity of the induced inflammation in our previous study. Therefore, we tested if CaSR inhibition could prevent medium-grade colitis. METHODS Female BALB/c mice were treated with NPS 2143 or a vehicle prior to the induction of colitis with 2.5% DSS. On the day of sacrifice, colons and plasma were collected. The histology score was determined based on hematoxylin-eosin-stained sections. Mucin content, proliferation (Ki67), and immune cell infiltration (CD3 and CD20) were quantified based on immunostainings. Gene expression was measured by RT-qPCR. RESULTS Treatment with NPS 2143 had no effect on the clinical symptom score of the mice. However, the colons of the mice in the treated group were significantly longer (p < 0.05), and NPS 2143 significantly reduced colon ulceration (p < 0.05). The treatment also significantly reduced the expression of COX2 in the proximal colon and IL-22 in the distal colon. The proliferation of cells in the lymph nodes was significantly lower after the treatment, but no difference was observed in the epithelial cells. CONCLUSIONS In summary, while NPS 2143 had an anti-inflammatory effect on medium-grade colitis, this effect appeared to be milder than in severe colitis, as observed previously, indicating that the effectiveness of CaSR inhibition as an anti-inflammatory measure in the colon is proportional to disease severity.
Collapse
Affiliation(s)
- Karina Piatek
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Valeriya Gushchina
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Ava Kleinwächter
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Nadja Kupper
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | | | - Taha Elajnaf
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
- Nuffield Department of Women’s and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Luca Iamartino
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Martina Salzmann
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Christian Müller
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Teresa Manhardt
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Andrea Vlasaty
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Enikö Kallay
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| | - Martin Schepelmann
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (K.P.); (E.K.)
| |
Collapse
|
7
|
Jiang Y, Xing W, Li Z, Zhao D, Xiu B, Xi Y, Bai S, Li X, Zhang Z, Zhang W, Li H. The calcium-sensing receptor alleviates endothelial inflammation in atherosclerosis through regulation of integrin β1-NLRP3 inflammasome. FEBS J 2024. [PMID: 39552549 DOI: 10.1111/febs.17308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of arteries. Endothelial inflammation is key to the initiation and development of AS. The calcium-sensing receptor (CaSR) is expressed in endothelial cells (ECs) but its role in endothelial inflammation during AS remains unclear. This study focused on the involvement of CaSR in regulating endothelial inflammation and its underlying mechanisms, providing novel insights for AS therapy. Here, we observed that CaSR agonist NPS-R568 significantly reduced atherosclerotic lesions and aortic inflammation in high-fat diet (HFD)-fed ApoE-/- mice, while enhancing the expression of CaSR in aortic tissues. In vitro, human umbilical vein endothelial cells (HUVECs) exposed to oxidized low-density lipoprotein (oxLDL) at 20 μg·mL-1 triggered inflammation, as indicated by the upregulation of vascular cell adhesion molecule-1 (VCAM-1), interleukin (IL)-6, and IL-1β expression, along with increased adherence of THP-1 or U937 cells to the HUVECs. Additionally, treatment with 20 μg·mL-1 oxLDL led to downregulation of CaSR expression in HUVECs. The administration of CaSR agonist NPS-R568 or overexpression of CaSR in HUVECs resulted in a significant reversal of inflammation induced by oxLDL. Mechanistically, CaSR was found to mitigate NLRP3 inflammasome activation by downregulating the protein level of integrin β1. In conclusion, our study elucidates the beneficial role of CaSR in reducing endothelial inflammation in AS through the regulation of integrin β1 and the subsequent NLRP3 inflammasome. CaSR emerges as a promising target for potential therapeutic interventions in AS.
Collapse
Affiliation(s)
- Yunge Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, China
| | - Zhong Li
- Department of Nephrology, First Affiliated Hospital of Harbin Medical University, China
| | - Defeng Zhao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Bingxu Xiu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Yuhui Xi
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Shuzhi Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Xiaoxue Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Zheqi Zhang
- Department of Immunology, Harbin Medical University, China
| | - Weihua Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| | - Hongxia Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, China
| |
Collapse
|
8
|
Ambhore NS, Balraj P, Kumar A, Reza MI, Ramakrishnan YS, Tesch J, Lohana S, Sathish V. Kiss1 receptor knockout exacerbates airway hyperresponsiveness and remodeling in a mouse model of allergic asthma. Respir Res 2024; 25:387. [PMID: 39468619 PMCID: PMC11520794 DOI: 10.1186/s12931-024-03017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND In asthma, sex-steroids signaling is recognized as a critical regulator of disease pathophysiology. However, the paradoxical role of sex-steroids, especially estrogen, suggests that an upstream mechanism or even independent of estrogen plays an important role in regulating asthma pathophysiology. In this context, in our previous studies, we explored kisspeptin (Kp) and its receptor Kiss1R's signaling in regulating human airway smooth muscle cell remodeling in vitro and airway hyperresponsiveness (AHR) in vivo in a mouse (wild-type, WT) model of asthma. In this study, we evaluated the effect of endogenous Kp in regulating AHR and remodeling using Kiss1R knockout (Kiss1R-/-) mice. METHODS C57BL/6J WT (Kiss1R+/+) and Kiss1R-/- mice, both male and female, were intranasally challenged with mixed-allergen (MA) and/or phosphate-buffered saline (PBS). We used flexiVent analysis to assess airway resistance (Rrs), elastance (Ers), and compliance (Crs). Following this, broncho-alveolar lavage (BAL) was performed for differential leukocyte count (DLC) and cytokine analysis. Histology staining was performed using hematoxylin and eosin (H&E) for morphological analysis and Masson's Trichrome (MT) for collagen deposition. Additionally, lung sections were processed for immunofluorescence (IF) of Ki-67, α-smooth muscle actin (α-SMA), and tenascin-c. RESULTS Interestingly, the loss of Kiss1R exacerbated lung function and airway contractility in mice challenged with MA, with more profound effects in Kiss1R-/- female mice. MA-challenged Kiss1R-/- mice showed a significant increase in immune cell infiltration and proinflammatory cytokine levels. Importantly, the loss of Kiss1R aggravated Th2/Th17 biased cytokines in MA-challenged mice. Furthermore, histology of lung sections from Kiss1R-/- mice showed increased collagen deposition on airway walls and mucin production in airway cells compared to Kiss1R+/+ mice. In addition, immunofluorescence analysis showed loss of Kiss1R significantly aggravated airway remodeling and subsequently AHR. CONCLUSIONS These findings demonstrate the importance of inherent Kiss1R signaling in regulating airway inflammation, AHR, and remodeling in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Ashish Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Mohammad Irshad Reza
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Yogaraj S Ramakrishnan
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Jacob Tesch
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Sahil Lohana
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND, 58102, USA.
| |
Collapse
|
9
|
Du W, Boisen IM, Rahman SN, Poulsen NN, Mathiesen JM, Blomberg Jensen M, Bräuner-Osborne H, Jensen AA. Heterogenous Origins of Calcium Homeostasis Disorders Arising from Five Heterozygous Calcium-Sensing Receptor Variants. J Clin Endocrinol Metab 2024:dgae735. [PMID: 39413244 DOI: 10.1210/clinem/dgae735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
CONTEXT AND OBJECTIVES The human calcium-sensing receptor (CaSR) plays a key role in calcium homeostasis, and most identified CASR variants are associated with hypercalcemic and hypocalcemic disorders. Here we characterized the pharmacological implications of five heterozygous CASR variants from individuals with familial hypocalciuric hypercalcemia 1 [FHH1: Y63C, I81T, Q459R, W818stop] or autosomal dominant hypocalcemia 1 [ADH1: R955stop]. METHODS Total and cell surface expression levels of wild-type (WT) and variant CaSRs expressed in human embryonic kidney 293T (HEK293T) cells were determined using ELISA, and the pharmacological properties of the receptors were delineated in two functional assays. RESULTS The Y63C and I81T variations in the extracellular domain (ECD) of CaSR yielded markedly reduced cell surface expression and Ca2+ responsiveness, while Q459R displayed WT-like expression and functional properties. Truncation of the 7-transmembrane domain (7TMD) in W818stop eliminated cell surface expression, whereas R955stop in the intracellular carboxy-terminal yielded modestly increased surface expression and Ca2+ potency compared with WT CaSR. Interestingly, the effectiveness of positive allosteric modulators (PAMs) at the variants varied. Ca2+-mediated signaling through Y63C and I81T was significantly augmented by 7TMD-binding PAMs (NPS R-568 and Evocalcet) but not by ECD-binding PAMs (Etelcalcetide and Nb4), whereas signaling through Q459R and R955stop were robustly potentiated by all four PAMs. CONCLUSIONS While the molecular phenotypes exhibited by the five CaSR variants concord with the clinical phenotypes in individuals harboring them, CASR variant-induced calcium homeostasis disorders clearly arise from diverse molecular origins, and the effectiveness of calcimimetics in these disorders could differ depending on the specific variants.
Collapse
Affiliation(s)
- Wei Du
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Ida Marie Boisen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, DK-2730 Herlev, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sabrina N Rahman
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Nadia Nicholine Poulsen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, DK-2730 Herlev, Denmark
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Martin Blomberg Jensen
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, University Hospital Copenhagen, Herlev-Gentofte, DK-2730 Herlev, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Khan S, Mosvi SN, Vohra S, Poddar NK. Implication of calcium supplementations in health and diseases with special focus on colorectal cancer. Crit Rev Clin Lab Sci 2024; 61:496-509. [PMID: 38456354 DOI: 10.1080/10408363.2024.2322565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Calcium is a fundamental and integrative element and helps to ensure optimal health by regulating various physiological and pathological processes. While there is substantiated evidence confirming the beneficial effects of calcium in the treatment, management, and prevention of various health conditions, including cancer, conflicting studies are imperative to acknowledge the potential negative role of calcium supplementation. The studies on calcium supplementation showed that a specific dose can help in the maintenance of good human health, and in the control of different types of diseases, including cancer. Calcium alone and when combined with vitamin D, emerges as a promising therapeutic option for efficiently managing cancer growth, when used with chemotherapy. Combination therapy is considered a more effective approach for treating advanced types of colorectal cancer. Nevertheless, several challenges drastically influence the treatment of cancer, such as individual discrepancy, drug resistance, and stage of cancer, among others. Henceforth, novel preventive, reliable therapeutic modalities are essential to control and reduce the incidence and mortality of colorectal cancer (CRC). The calcium-sensing receptor (CaSR) plays a pivotal role in calcium homeostasis, metabolism, and regulation of oncogenesis. Numerous studies have underscored the potential of CaSR, a G protein-coupled receptor, as a potential biomarker and target for colorectal cancer prevention and treatment. The multifaceted involvement of CaSR in anti-inflammatory and anti-carcinogenic processes paves the way for its utilization in the diagnosis and management of colorectal cancer. The current review highlights the important role of supplemental calcium in overall health and disease, along with the exploration of intricate mechanisms of CaSR pathways in the management and prevention of colorectal cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney, Australia
| | - S Needa Mosvi
- Department of Biosciences, Shri Ram Group of College (SRGC), Muzaffarnagar, India
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | |
Collapse
|
11
|
Matarage Don NJ, Padmavathi R, Khasro TD, Zaman MRU, Ji HF, Ram JL, Ahn YH. Glutathione-Based Photoaffinity Probe Identifies Caffeine as a Positive Allosteric Modulator of the Calcium-Sensing Receptor. ACS Chem Biol 2024; 19:1661-1670. [PMID: 38975966 PMCID: PMC11267565 DOI: 10.1021/acschembio.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The calcium-sensing receptor (CaSR), abundantly expressed in the parathyroid gland and kidney, plays a central role in calcium homeostasis. In addition, CaSR exerts multimodal roles, including inflammation, muscle contraction, and bone remodeling, in other organs and tissues. The diverse functions of CaSR are mediated by many endogenous and exogenous ligands, including calcium, amino acids, glutathione, cinacalcet, and etelcalcetide, that have distinct binding sites in CaSR. However, strategies to evaluate ligand interactions with CaSR remain limited. Here, we developed a glutathione-based photoaffinity probe, DAZ-G, that analyzes ligand binding to CaSR. We showed that DAZ-G binds to the amino acid binding site in CaSR and acts as a positive allosteric modulator of CaSR. Oxidized and reduced glutathione and phenylalanine effectively compete with DAZ-G conjugation to CaSR, while calcium, cinacalcet, and etelcalcetide have cooperative effects. An unexpected finding was that caffeine effectively competes with DAZ-G's conjugation to CaSR and acts as a positive allosteric modulator of CaSR. The effective concentration of caffeine for CaSR activation (<10 μM) is easily attainable in plasma by ordinary caffeine consumption. Our report demonstrates the utility of a new chemical probe for CaSR and discovers a new protein target of caffeine, suggesting that caffeine consumption can modulate the diverse functions of CaSR.
Collapse
Affiliation(s)
| | - Rayavarapu Padmavathi
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Talan D. Khasro
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Md. Rumman U. Zaman
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Hai-Feng Ji
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey L. Ram
- Department
of Physiology, Wayne State University, Detroit, Michigan 48201, United States
| | - Young-Hoon Ahn
- Department
of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Bátora D, Fischer J, Kaderli RM, Varga M, Lochner M, Gertsch J. Silicon-Rhodamine Functionalized Evocalcet Probes Potently and Selectively Label Calcium Sensing Receptors In Vitro, In Vivo, and Ex Vivo. ACS Pharmacol Transl Sci 2024; 7:1557-1570. [PMID: 38751613 PMCID: PMC11091967 DOI: 10.1021/acsptsci.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The calcium sensing receptor (CaSR) is a ubiquitously expressed G-protein coupled receptor (GPCR) that regulates extracellular calcium signals via the parathyroid glands. CaSR has recently also been implicated in noncalcitropic pathophysiologies like asthma, gut inflammation, and cancer. To date, molecular tools that enable the bioimaging of CaSR in tissues are lacking. Based on in silico analyses of available structure-activity relationship data on CaSR ligands, we designed and prepared silicon-rhodamine (SiR) conjugates of the clinically approved drug evocalcet. The new probes EvoSiR4 and EvoSiR6, with differing linker lengths at the evocalcet carboxyl end, both showed a 6-fold and 3-fold increase in potency toward CaSR (EC50 < 45 nM) compared to evocalcet and the evocalcet-linker conjugate, respectively, in an FLIPR-based cellular functional assay. The specificity of the EvoSiR probes toward CaSR binding and the impact of albumin was evaluated in live cell experiments. Both probes showed strong albumin binding, which facilitated the clearance of nonspecific binding interactions. Accordingly, in zebrafish embryos, EvoSiR4 specifically labeled the high CaSR expressing neuromasts of the lateral line in vivo. EvoSiR4 was also assessed in human parathyroid tissues ex vivo, showing a specific absolute CaSR-associated fluorescence compared to that of parathyroid autofluorescence. In summary, functionalization of evocalcet by SiR led to the preparation of potent and specific fluorescent CaSR probes. EvoSiR4 is a versatile small-molecular probe that can be employed in CaSR-related biomedical analyses where antibodies are not applicable.
Collapse
Affiliation(s)
- Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Jérôme
P. Fischer
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Reto M. Kaderli
- Department
of Visceral Surgery and Medicine, Inselspital,
Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Máté Varga
- Department
of Genetics, ELTE Eötvös Loránd
University, 1117 Budapest, Hungary
| | - Martin Lochner
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
13
|
Cui Q, Wang L, Wang H, Chen X, Han L, Geng T, Kou Y, Zhang W, Dai M, Qiao H, Sun Z, Li L, Lan Z, Xu H, Xu J, Dai Y, Geng Y. Nanobodies as negative allosteric modulators for human calcium sensing receptor. Biochem Biophys Res Commun 2024; 695:149401. [PMID: 38154264 DOI: 10.1016/j.bbrc.2023.149401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Human calcium sensing receptor (CaSR) senses calcium ion concentrations in vivo and is an important class of drug targets. Mutations in the receptor can lead to disorders of calcium homeostasis, including hypercalcemia and hypocalcemia. Here, 127 CaSR-targeted nanobodies were generated from camels, and four nanobodies with inhibitory function were further identified. Among these nanobodies, NB32 can effectively inhibit the mobilization of intracellular calcium ions (Ca2+i) and suppress the G12/13 and ERK1/2 signaling pathways downstream of CaSR. Moreover, it enhanced the inhibitory effect of the calcilytics as a negative allosteric modulator (NAM). We determined the structure of complex and found NB32 bound to LB2 (Ligand-binding 2) domain of CaSR to prevent the interaction of LB2 domains of two protomers to stabilize the inactive state of CaSR.
Collapse
Affiliation(s)
- Qianqian Cui
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China; The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu Wang
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haonan Wang
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaochen Chen
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Han
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tengjie Geng
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongjun Kou
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenqing Zhang
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mei Dai
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huarui Qiao
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zengchao Sun
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lingyun Li
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhongyun Lan
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China.
| | - Yuanyuan Dai
- Department of Pharmacy, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, and Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100021, China.
| | - Yong Geng
- The CAS Key Laboratory of Receptor Research, Stake Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Kappen JH, Agache I, Jutel M, Pillai P, Corrigan CJ. Allergen Immunotherapy for Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:23-30. [PMID: 38013158 DOI: 10.1016/j.jaip.2023.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
Allergen immunotherapy is a disease-modifying treatment for IgE-mediated allergies reducing disease burden and symptoms in patients with allergic rhinitis, with or without asthma. The growing evidence that allergen immunotherapy also has the potential to facilitate achieving asthma control in patients with allergic asthma resulted in its acknowledgment by international bodies (Global Initiative for Asthma and European Academy of Allergy and Clinical Immunology) as add-on treatment for mild/moderate asthma. Although there have been promising developments in biomarkers for patient selection and for allergen immunotherapy efficacy evaluation in patients with asthma, a lot more data are still required.
Collapse
Affiliation(s)
- Jasper H Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus & Vlietland, Rotterdam, The Netherlands; Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Prathap Pillai
- Department of Adult Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom; King's Centre for Lung Health, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Chris J Corrigan
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Li C, Chang L, Guo MM, Wang L, Kuo H. Sex differences in vitamin D and behavioral profiles among children with allergic diseases. Food Sci Nutr 2023; 11:5492-5500. [PMID: 37701228 PMCID: PMC10494661 DOI: 10.1002/fsn3.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/29/2023] [Accepted: 06/02/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies have suggested that vitamin D has a protective effect on allergic diseases, while an individual's sex may have a moderating effect on the relationship between vitamin D and allergic-related immunity. This study aimed to determine the role of vitamin D in children with coexisting allergic diseases in the context of sex differences and to explore the behavioral profiles of these patients. We recruited a total of 103 children with atopic diseases and divided them into four groups: males with one allergic disease (MA1, n = 20), males with two or more allergic diseases (MA2, n = 26), females with one allergic disease (FA1, n = 30), and females with two or more allergic diseases (FA2, n = 27). We measured serum calcium levels using the colorimetric method and serum 25-OH vitamin D total levels using electrochemiluminescence immunoassay. We found that MA2 had significantly lower vitamin D levels than MA1 and FA2. The levels of IgE were negatively correlated with vitamin D in females, whereas the levels of IgE were not significantly correlated with vitamin D in males. Furthermore, serum IgE was significantly correlated with children's adaptive skills, and different sexes were associated with different aspects of adaptive skills. Our findings suggest a protective role of vitamin D in the development of one allergic disease against the coexistence of allergic diseases in males, as well as extend the evidence for sex differences in immunity by demonstrating a sex-different correlation between IgE and vitamin D and the relationship between IgE and children's adaptive skills.
Collapse
Affiliation(s)
- Chia‐Jung Li
- Department of Child and Adolescent PsychiatryKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ling‐Sai Chang
- Department of PediatricsKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Mindy Ming‐Huey Guo
- Department of PediatricsKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Liang‐Jen Wang
- Department of Child and Adolescent PsychiatryKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ho‐Chang Kuo
- Department of PediatricsKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Kawasaki Disease CenterKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| |
Collapse
|
16
|
Borkar NA, Ambhore NS, Balraj P, Ramakrishnan YS, Sathish V. Kisspeptin regulates airway hyperresponsiveness and remodeling in a mouse model of asthma. J Pathol 2023; 260:339-352. [PMID: 37171283 PMCID: PMC10759912 DOI: 10.1002/path.6086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/06/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Asthma is a multifactorial disease of origin characterized by airway hyperresponsiveness (AHR) and airway remodeling. Several pieces of evidence from other pathologies suggest that Kisspeptins (Kp) regulate cell proliferation, migration, and invasion, mechanisms that are highly relevant to asthma. Our recent in vitro studies show Kp-10 (active peptide of Kp), via its receptor, KISS1R, inhibits human airway smooth muscle cell proliferation. Here, we hypothesize a crucial role for Kp-10 in regulating AHR and airway remodeling in vivo. Utilizing C57BL/6J mice, we assessed the effect of chronic intranasal Kp-10 exposure on mixed allergen (MA)-induced mouse model of asthma. MA-challenged mice showed significant deterioration of lung function compared to those exposed to vehicle (DPBS); Kp-10 treatment significantly improved the MA-altered lung functions. Mice treated with Kp-10 alone did not show any notable changes in lung functions. MA-exposed mice showed a significant reduction in KISS1R expression as compared to vehicle alone. MA-challenged mice showed significant alterations in immune cell infiltration in the airways and remodeling changes. Proinflammatory cytokines were significantly increased upon MA exposure, an effect abrogated by Kp-10 treatment. Furthermore, biochemical and histological studies showed Kp-10 exposure significantly reduced MA-induced smooth muscle mass and soluble collagen in the lung. Overall, our findings highlight the effect of chronic Kp-10 exposure in regulating MA-induced AHR and remodeling. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | | | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
17
|
Wang Y, Wang J, Yan Z, Liu S, Xu W. Microenvironment modulation by key regulators of RNA N6-methyladenosine modification in respiratory allergic diseases. BMC Pulm Med 2023; 23:210. [PMID: 37328853 DOI: 10.1186/s12890-023-02499-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) regulators are considered post-transcriptional regulators that affect several biological functions, and their role in immunity, in particular, is emerging. However, the role of m6A regulators in respiratory allergic diseases remains unclear. Therefore, we aimed to investigate the role of key m6A regulators in mediating respiratory allergic diseases and immune microenvironment infiltration characteristics. METHODS We downloaded gene expression profiles of respiratory allergies from the Gene Expression Omnibus (GEO) database and we performed hierarchical clustering, difference analysis, and construction of predictive models to identify hub m6A regulators that affect respiratory allergies. Next, we investigate the underlying biological mechanisms of key m6A regulators by performing PPI network analysis, functional enrichment analysis, and immune microenvironment infiltration analysis. In addition, we performed a drug sensitivity analysis on the key m6A regulator, hoping to be able to provide some implications for clinical medication. RESULTS In this study, we identified four hub m6A regulators that affect the respiratory allergy and investigated the underlying biological mechanisms. In addition, studies on the characteristics of immune microenvironment infiltration revealed that the expression of METTL14, METTL16, and RBM15B correlated with the infiltration of the mast and Th2 cells in respiratory allergy, and METTL16 expression was found to be significantly negatively correlated with macrophages for the first time (R = -0.53, P < 0.01). Finally, a key m6A regulator, METTL14, was screened by combining multiple algorithms. In addition, by performing a drug sensitivity analysis on METTL14, we hypothesized that it may play an important role in the improvement of allergic symptoms in the upper and lower airways with topical nasal glucocorticoids. CONCLUSIONS Our findings suggest that m6A regulators, particularly METTL14, play a crucial role in the development of respiratory allergic diseases and the infiltration of immune cells. These results may provide insight into the mechanism of action of methylprednisolone in treating respiratory allergic diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Wang
- Department of Otorhinolaryngology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.
| | - Zhanfeng Yan
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Siming Liu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Xu
- Department of Otorhinolaryngology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Ranieri M, Schepelmann M, Valenti G, Kallay E, Riccardi D. Editorial: The calcium-sensing receptor: from physiology to pharmacology. Front Physiol 2023; 14:1225074. [PMID: 37346486 PMCID: PMC10280635 DOI: 10.3389/fphys.2023.1225074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martin Schepelmann
- Intitute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Enikö Kallay
- Intitute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Lam M, Lamanna E, Organ L, Donovan C, Bourke JE. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol 2023; 14:1162889. [PMID: 37261291 PMCID: PMC10228656 DOI: 10.3389/fphar.2023.1162889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institut Pasteur, Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Paris, France
| | - Louise Organ
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
20
|
Gushchina V, Kupper N, Schwarzkopf M, Frisch G, Piatek K, Aigner C, Michel A, Schueffl H, Iamartino L, Elajnaf T, Manhardt T, Vlasaty A, Heffeter P, Bassetto M, Kállay E, Schepelmann M. The calcium-sensing receptor modulates the prostaglandin E 2 pathway in intestinal inflammation. Front Pharmacol 2023; 14:1151144. [PMID: 37153788 PMCID: PMC10157649 DOI: 10.3389/fphar.2023.1151144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction: The prostaglandin E2 (PGE2) pathway is one of the main mediators of intestinal inflammation. As activation of the calcium-sensing receptor (CaSR) induces expression of inflammatory markers in the colon, we assessed the impact of the CaSR on the PGE2 pathway regulation in colon cancer cells and the colon in vitro and in vivo. Methods and Results: We treated CaSR-transfected HT29 and Caco-2 colon cancer cell lines with different orthosteric ligands or modulators of the CaSR and measured gene expression and PGE2 levels. In CaSR-transfected HT29CaSR-GFP and Caco-2CaSR-GFP cells, the orthosteric CaSR ligand spermine and the positive allosteric CaSR modulator NPS R-568 both induced an inflammatory state as measured by IL-8 gene expression and significantly increased the expression of the PGE2 pathway key enzymes cyclooxygenase (COX)-2 and/or prostaglandin E2 synthase 1 (PGES-1). Inhibition of the CaSR with the calcilytic NPS 2143 abolished the spermine- and NPS R-568-induced pro-inflammatory response. Interestingly, we observed cell-line specific responses as e.g. PGES-1 expression was affected only in HT29CaSR-GFP but not in Caco-2CaSR-GFP cells. Other genes involved in the PGE2 pathway (COX-1, or the PGE2 receptors) were not responsive to the treatment. None of the studied genes were affected by any CaSR agonist in GFP-only transfected HT29GFP and Caco-2GFP cells, indicating that the observed gene-inducing effects of spermine and R-568 were indeed mediated by the CaSR. In vivo, we had previously determined that treatment with the clinically approved calcimimetic cinacalcet worsened symptoms in a dextran sulfate sodium (DSS)-induced colitis mouse model. In the colons of these mice, cinacalcet significantly induced gene expression of PGES-2 and the EP3 receptor, but not COX-2; while NPS 2143 increased the expression of the PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Importantly, neither treatment had any effect on the colons of non-DSS treated mice. Discussion: Overall, we show that activation of the CaSR induces the PGE2 pathway, albeit with differing effects in vitro and in vivo. This may be due to the different microenvironment in vivo compared to in vitro, specifically the presence of a CaSR-responsive immune system. Since calcilytics inhibit ligand-mediated CaSR signaling, they may be considered for novel therapies against inflammatory bowel disease.
Collapse
Affiliation(s)
- Valeriya Gushchina
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadja Kupper
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Schwarzkopf
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gitta Frisch
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karina Piatek
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cornelia Aigner
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Michel
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hemma Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Luca Iamartino
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- SiSaf Ltd, Guildford, United Kingdom
| | - Taha Elajnaf
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Nuffield Department of Women’s and Reproductive Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Teresa Manhardt
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Andrea Vlasaty
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Enikö Kállay
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martin Schepelmann
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Chen X, Lu W, Lu C, Zhang L, Xu F, Dong H. The CaSR/TRPV4 coupling mediates pro-inflammatory macrophage function. Acta Physiol (Oxf) 2023; 237:e13926. [PMID: 36606511 DOI: 10.1111/apha.13926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca2+ signaling. METHODS The role of CaSR/TRPV4/Ca2+ signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca2+ imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA. RESULTS We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca2+ signaling predominately through extracellular Ca2+ entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca2+ signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca2+ entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice. CONCLUSION We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca2+ -dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.
Collapse
Affiliation(s)
- Xiongying Chen
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Lazrak A, Song W, Yu Z, Zhang S, Nellore A, Hoopes CW, Woodworth BA, Matalon S. Low molecular weight hyaluronan inhibits lung epithelial ion channels by activating the calcium-sensing receptor. Matrix Biol 2023; 116:67-84. [PMID: 36758905 PMCID: PMC10012407 DOI: 10.1016/j.matbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Herein, we tested the hypothesis that low molecular weight hyaluronan (LMW-HA) inhibits lung epithelial ions transport in-vivo, ex-vivo, and in-vitro by activating the calcium-sensing receptor (CaSR). Twenty-four hours post intranasal instillation of 50-150 µg/ml LMW-HA to C57BL/6 mice, there was a 75% inhibition of alveolar fluid clearance (AFC), a threefold increase in the epithelial lining fluid (ELF) depth, and a 20% increase in lung wet/dry (W/D) ratio. Incubation of human and mouse precision cut lung slices with 150 µg/ml LMW-HA reduced the activity and the open probability (Po) of epithelial sodium channel (ENaC) in alveolar epithelial type 2 (ATII) cells, and in mouse tracheal epithelial cells (MTEC) monolayers as early as 4 h. The Cl- current through cystic fibrosis transmembrane conductance regulator (CFTR) and the activity of Na,K-ATPase were both inhibited by more than 66% at 24 h. The inhibitory effects of LMW-HA on ion channels were reversed by 1 µM NPS-2143, or 150 µg/ml high molecular weight hyaluronan (HMW-HA). In HEK-293 cells expressing the calcium-sensitive Cl- channel TMEM16-A, CaSR was required for the activation of the Cl- current by LMW-HA. This is the first demonstration of lung ions and water transport inhibition by LMW-HA, and its mediation through the activation of CaSR.
Collapse
Affiliation(s)
- Ahmed Lazrak
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA.
| | - Weifeng Song
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Zhihong Yu
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Shaoyan Zhang
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Anoma Nellore
- Department of Medicine, Division of Infectious Diseases, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Charles W Hoopes
- Division of Cardiothoracic Surgery, Heersink School of Medicine, University of Alabama at Birmingham, AL 35295, USA
| | - Bradford A Woodworth
- Department of Otolaryngology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Gregory Fleming James Cystic Fibrosis Research Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Division of Molecular and Translational Biomedicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA; Pulmonary Injury and Repair Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35295, USA
| |
Collapse
|
23
|
Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. Front Physiol 2023; 13:1078569. [PMID: 36685206 PMCID: PMC9854345 DOI: 10.3389/fphys.2022.1078569] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in many cell types - including immune cells and in particular circulating monocytes. Here, the receptor plays an important physiological role as a regulator of constitutive macropinocytosis. This review article provides an overview of the literature on the role of the calcium sensing receptor in the context of inflammatory processes. Special emphasis is laid upon the importance for monocytes in the context of rheumatoid arthritis. We have shown previously, that stimulation of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-inflammatory response due to NLRP3 inflammasome assembly and interleukin (IL)-1β release. The underlying mechanism includes macropinocytosis of calciprotein particles (CPPs), which are taken up in a [Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1β release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1β release is significantly increased due to increased expression of the receptor. Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1β release is associated with more active disease, while CaSR overexpression has been reported to be associated with cardiovascular complications of RA. Most importantly, however, in animal experiments with arthritic mice, increased local calcium concentrations are present, which in combination with release of fetuin-A from eroded bone could contribute to formation of CPPs. We propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a vicious cycle of inflammation and bone destruction which in turn offers new potential therapeutic approaches.
Collapse
|
24
|
Rosenwasser Y, Berger I, Loewy ZG. Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations. Pathogens 2022; 11:1513. [PMID: 36558847 PMCID: PMC9784349 DOI: 10.3390/pathogens11121513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive pulmonary disorder underpinned by poorly reversible airflow resulting from chronic bronchitis or emphysema. The prevalence and mortality of COPD continue to increase. Pharmacotherapy for patients with COPD has included antibiotics, bronchodilators, and anti-inflammatory corticosteroids (but with little success). Oral diseases have long been established as clinical risk factors for developing respiratory diseases. The establishment of a very similar microbiome in the mouth and the lung confirms the oral-lung connection. The aspiration of pathogenic microbes from the oral cavity has been implicated in several respiratory diseases, including pneumonia and chronic obstructive pulmonary disease (COPD). This review focuses on current and future pharmacotherapeutic approaches for COPD exacerbation including antimicrobials, mucoregulators, the use of bronchodilators and anti-inflammatory drugs, modifying epigenetic marks, and modulating dysbiosis of the microbiome.
Collapse
Affiliation(s)
- Yehudis Rosenwasser
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Irene Berger
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
| | - Zvi G. Loewy
- College of Pharmacy, Touro University, 230 West 125th Street, New York, NY 10027, USA
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
25
|
Xiang ZY, Tao DD. The role of calcium-sensitive receptor in ovalbumin-induced airway inflammation and hyperresponsiveness in juvenile mice with asthma. Kaohsiung J Med Sci 2022; 38:1203-1212. [PMID: 36169192 DOI: 10.1002/kjm2.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022] Open
Abstract
The role of the calcium-sensitive receptor (CaSR) was assessed in a juvenile mouse model of asthma induced by ovalbumin (OVA). The experiment was divided into normal control, OVA, and OVA +2.5/5 mg/kg NPS2143 (a CaSR antagonist) groups. OVA induction was performed in all groups except the normal control, followed by assessing airway hyperresponsiveness (AHR) and lung pathological changes. Serum OVA-specific IgE and IgG1 were detected with an enzyme-linked immunosorbent assay (ELISA), and inflammatory cells were counted in bronchoalveolar lavage fluid (BALF). Real-time quantitative polymerase chain reaction, ELISA, and western blotting were performed to detect gene and protein expression. NPS2143 improved the OVA-induced AHR in mice, and AHR was higher in the OVA +2.5 mg/kg NPS2143 group than in the OVA +5 mg/kg NPS2143 group. Furthermore, NPS2143 reduced the production of OVA-specific IgE and IgG1 in serum and the number of eosinophils and lymphocytes in BALF in OVA mice with reduced CaSR expression in lung tissues. Besides, OVA-induced mice exhibited peribronchial and perivascular inflammatory cell infiltration, which was accompanied by severe goblet cell hyperplasia/hyperplasia and airway mucus hypersecretion. Furthermore, these mice exhibited increased levels of Interleukin (IL)-5, IL-13, MCP-1, and eotaxin, which were alleviated by NPS2143. The 5 mg/kg NPS2143 showed more effective than the 2.5 mg/kg treatment. CaSR expression was elevated in the lung tissues of OVA-induced asthmatic juvenile mice, whereas the CaSR antagonist NPS2143 reduced AHR and attenuated the inflammatory response in OVA-induced juvenile mice, possibly exerting therapeutic effects on childhood asthma.
Collapse
Affiliation(s)
- Zhao-Yan Xiang
- Department of Paediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Di-Di Tao
- Department of Paediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
26
|
Iamartino L, Brandi ML. The calcium-sensing receptor in inflammation: Recent updates. Front Physiol 2022; 13:1059369. [PMID: 36467702 PMCID: PMC9716066 DOI: 10.3389/fphys.2022.1059369] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023] Open
Abstract
The Calcium-Sensing Receptor (CaSR) is a member of the class C of G-proteins coupled receptors (GPCRs), it plays a pivotal role in calcium homeostasis by directly controlling calcium excretion in the kidneys and indirectly by regulating parathyroid hormone (PTH) release from the parathyroid glands. The CaSR is found to be ubiquitously expressed in the body, playing a plethora of additional functions spanning from fluid secretion, insulin release, neuronal development, vessel tone to cell proliferation and apoptosis, to name but a few. The present review aims to elucidate and clarify the emerging regulatory effects that the CaSR plays in inflammation in several tissues, where it mostly promotes pro-inflammatory responses, with the exception of the large intestine, where contradictory roles have been recently reported. The CaSR has been found to be expressed even in immune cells, where it stimulates immune response and chemokinesis. On the other hand, CaSR expression seems to be boosted under inflammatory stimulus, in particular, by pro-inflammatory cytokines. Because of this, the CaSR has been addressed as a key factor responsible for hypocalcemia and low levels of PTH that are commonly found in critically ill patients under sepsis or after burn injury. Moreover, the CaSR has been found to be implicated in autoimmune-hypoparathyroidism, recently found also in patients treated with immune-checkpoint inhibitors. Given the tight bound between the CaSR, calcium and vitamin D metabolism, we also speculate about their roles in the pathogenesis of severe acute respiratory syndrome coronavirus-19 (SARS-COVID-19) infection and their impact on patients' prognosis. We will further explore the therapeutic potential of pharmacological targeting of the CaSR for the treatment and management of aberrant inflammatory responses.
Collapse
Affiliation(s)
- Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O. (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
27
|
Thrum S, Sommer M, Raulien N, Gericke M, Massier L, Kovacs P, Krasselt M, Landgraf K, Körner A, Dietrich A, Blüher M, Rossol M, Wagner U. Macrophages in obesity are characterised by increased IL-1β response to calcium-sensing receptor signals. Int J Obes (Lond) 2022; 46:1883-1891. [PMID: 35931812 PMCID: PMC9492543 DOI: 10.1038/s41366-022-01135-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/10/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Objective Obesity is complicated by inflammatory activation of the innate immune system. Stimulation of the calcium-sensing receptor (CaSR) by extra-cellular calcium ions ([Ca2+]ex) can trigger NLRP3 inflammasome activation and inflammation. We hypothesised, that this mechanism might contribute to the activation of adipose tissue (AT) in obesity, and investigated [Ca2+]ex-induced, CaSR mediated IL-1β release by macrophages in obesity. Methods [Ca2+]ex-induced IL-1β release was investigated in monocyte-derived macrophages (MDM) generated from peripheral blood of patients with obesity and from normal-weight controls. Visceral and subcutaneous AT biosamples were stimulated with [Ca2+]ex, and IL-1β release, as well as expression of NLRP3 inflammasome and cytokine genes, was determined. Results Both MDM and AT readily responded with concentration-dependent IL-1β release already at low, near physiological concentrations to addition of [Ca2+]ex, which was more than 80 fold higher than the LPS-induced effect. IL-1β levels induced by [Ca2+]ex were significantly higher not only in MDM from patients with obesity compared to controls, but also in visceral versus subcutaneous AT. This fat-depot difference was also reflected by mRNA expression levels of inflammasome and cytokine genes. Conclusions Obesity renders macrophages more susceptible to [Ca2+]ex-induced IL-1β release and pyroptosis. Increased susceptibility was independent of the response to LPS and circulating CRP arguing against mere pro-inflammatory pre-activation of monocytes. Instead, we propose that CaSR mediated signalling is relevant for the deleterious innate immune activation in obesity.
Collapse
Affiliation(s)
- Stephan Thrum
- Medical Department III, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Miriam Sommer
- Medical Department III, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Nora Raulien
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Lucas Massier
- Medical Department III, Leipzig University, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III, Leipzig University, Leipzig, Germany.,Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Marco Krasselt
- Medical Department III, Leipzig University, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents, Department of Women's and Child Health, University of Leipzig, Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, Leipzig University, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III, Leipzig University, Leipzig, Germany
| | - Manuela Rossol
- Medical Department III, Leipzig University, Leipzig, Germany
| | - Ulf Wagner
- Medical Department III, Leipzig University, Leipzig, Germany.
| |
Collapse
|
28
|
Schepelmann M, Ranieri M, Lopez-Fernandez I, Webberley TS, Brennan SC, Yarova PL, Graca J, Hanif UK, Müller C, Manhardt T, Salzmann M, Quasnichka H, Price SA, Ward DT, Gilbert T, Matchkov VV, Fenton RA, Herberger A, Hwong J, Santa Maria C, Tu CL, Kallay E, Valenti G, Chang W, Riccardi D. Impaired Mineral Ion Metabolism in a Mouse Model of Targeted Calcium-Sensing Receptor (CaSR) Deletion from Vascular Smooth Muscle Cells. J Am Soc Nephrol 2022; 33:1323-1340. [PMID: 35581010 PMCID: PMC9257819 DOI: 10.1681/asn.2021040585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/07/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Impaired mineral ion metabolism is a hallmark of CKD-metabolic bone disorder. It can lead to pathologic vascular calcification and is associated with an increased risk of cardiovascular mortality. Loss of calcium-sensing receptor (CaSR) expression in vascular smooth muscle cells exacerbates vascular calcification in vitro. Conversely, vascular calcification can be reduced by calcimimetics, which function as allosteric activators of CaSR. METHODS To determine the role of the CaSR in vascular calcification, we characterized mice with targeted Casr gene knockout in vascular smooth muscle cells ( SM22α CaSR Δflox/Δflox ). RESULTS Vascular smooth muscle cells cultured from the knockout (KO) mice calcified more readily than those from control (wild-type) mice in vitro. However, mice did not show ectopic calcifications in vivo but they did display a profound mineral ion imbalance. Specifically, KO mice exhibited hypercalcemia, hypercalciuria, hyperphosphaturia, and osteopenia, with elevated circulating fibroblast growth factor 23 (FGF23), calcitriol (1,25-D3), and parathyroid hormone levels. Renal tubular α-Klotho protein expression was increased in KO mice but vascular α-Klotho protein expression was not. Altered CaSR expression in the kidney or the parathyroid glands could not account for the observed phenotype of the KO mice. CONCLUSIONS These results suggest that, in addition to CaSR's established role in the parathyroid-kidney-bone axis, expression of CaSR in vascular smooth muscle cells directly contributes to total body mineral ion homeostasis.
Collapse
Affiliation(s)
- Martin Schepelmann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | - Sarah C. Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Polina L. Yarova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, United Kingdom
| | - Joao Graca
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- AstraZeneca, Macclesfield, United Kingdom
| | | | - Christian Müller
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Teresa Manhardt
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Martina Salzmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen Quasnichka
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | - Donald T. Ward
- Division of Diabetes, Endocrinology, and Gastroenterology, University of Manchester, Manchester, United Kingdom
| | - Thierry Gilbert
- Centre for Developmental Biology, University Paul Sabatier, Toulouse, France
| | | | | | - Amanda Herberger
- Department of Medicine, University of California, San Francisco, California
| | - Jenna Hwong
- Department of Medicine, University of California, San Francisco, California
| | | | - Chia-Ling Tu
- Department of Medicine, University of California, San Francisco, California
| | - Enikö Kallay
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Wenhan Chang
- Department of Medicine, University of California, San Francisco, California
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
29
|
Sood A, Singh G, Singh TG, Gupta K. Pathological role of the calcium-sensing receptor in sepsis-induced hypotensive shock: Therapeutic possibilities and unanswered questions. Drug Dev Res 2022; 83:1241-1245. [PMID: 35689439 DOI: 10.1002/ddr.21959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Sepsis is a life-threatening disease involving multiorgan dysfunction, prompted by an unregulated host response to infection. Shock is a complication of sepsis in which the circulatory and cellular metabolism anomalies are significant enough to raise the risk of death. Calcium dyshomeostasis occurs during sepsis condition due to imbalance between calcium uptake and excessive release induced by inflammatory cytokines. This calcium imbalance can cause activation of calcium-sensing receptors (CaSRs) located on the surface of T cells and thereby promote release of reactive oxygen species (ROS). The elevated ROS and inflammatory cytokines during sepsis condition have been reported to directly damage the endothelial cells, disrupt the barrier functions that might result in leakage of fluids, and inflammatory cells in tissues Moreover, several evidence have revealed that the calcium mediated activation of CaSR could produce systemic vasodilatory response by stimulating the nitric oxide production and opening of calcium-activated potassium channels, while infusion of its antagonist elevated the blood pressure. These evidence indicate that activation of CaSR during sepsis conditions results in release of ROS and inflammatory cytokines, which could produce an endothelial barrier damage, cardiomyocyte apoptosis. These pathological events could produce loss of fluid in tissues and cardiac dysfunction. Further the direct vasodilatory effects of CaSR activation might add to the shock-like condition. Thus, we hereby propose that inhibition of CaSR could suppress the release of ROS, inflammatory mediators, and thereby prevent the endothelial damage, cardiac dysfunction, and maintain systemic vascular tone.
Collapse
Affiliation(s)
- Ankita Sood
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaaminepreet Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Thakur G Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Kirti Gupta
- Department of Pharmacology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India
| |
Collapse
|
30
|
Mayer CA, Roos B, Teske J, Wells N, Martin RJ, Chang W, Pabelick CM, Prakash YS, MacFarlane PM. Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice. Pediatr Res 2022; 91:1391-1398. [PMID: 33958714 PMCID: PMC8571113 DOI: 10.1038/s41390-021-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND Continuous positive airway pressure (CPAP) in preterm infants is initially beneficial, but animal models suggest longer term detrimental airway effects towards asthma. We used a neonatal CPAP mouse model and human fetal airway smooth muscle (ASM) to investigate the role of extracellular calcium-sensing receptor (CaSR) in these effects. METHODS Newborn wild type and smooth muscle-specific CaSR-/- mice were given CPAP for 7 days via a custom device (mimicking CPAP in premature infants), and recovered in normoxia for another 14 days (representing infants at 3-4 years). Airway reactivity was tested using lung slices, and airway CaSR quantified. Role of CaSR was tested using NPS2143 (inhibitor) or siRNA in WT mice. Fetal ASM cells stretched cyclically with/without static stretch mimicking breathing and CPAP were analyzed for intracellular Ca2+ ([Ca2+]i) responses, role of CaSR, and signaling cascades. RESULTS CPAP increased airway reactivity in WT but not CaSR-/- mice, increasing ASM CaSR. NPS2143 or CaSR siRNA reversed CPAP effects in WT mice. CPAP increased fetal ASM [Ca2+]I, blocked by NPS2143, and increased ERK1/2 and RhoA suggesting two mechanisms by which stretch increases CaSR. CONCLUSIONS These data implicate CaSR in CPAP effects on airway function with implications for wheezing in former preterm infants. IMPACT Neonatal CPAP increases airway reactivity to bronchoconstrictor agonist. CPAP increases smooth muscle expression of the extracellular calcium-sensing receptor (CaSR). Inhibition or absence of CaSR blunts CPAP effects on contractility. These data suggest a causal/contributory role for CaSR in stretch effects on the developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jacob Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Natalya Wells
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA
| | - Wenhan Chang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Peter M MacFarlane
- Department of Pediatrics, Division of Neonatology, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
31
|
Nakamura R, Doyle C, Bing R, Johnson AM, Branski RC. Preliminary Investigation of In vitro, Bidirectional Vocal Fold Muscle-Mucosa Interactions. Ann Otol Rhinol Laryngol 2022; 131:512-519. [PMID: 34192972 PMCID: PMC11775648 DOI: 10.1177/00034894211028497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Oversimplified clinical dogma suggests that laryngeal diseases fall into two broad, mutually exclusive diagnostic categories-mucosal injury or neuromuscular/functional disorders. Extensive investigation in the lower airway as well as other organ systems suggest complex interactions between tissue types underlying both tissue health and pathological states. To date, no such relationship has been described in the vocal folds, likely the most bioactive organ in the body. We hypothesize interactions between the vocal fold muscle and mucosa likely contribute to aberrant phonatory physiology and warrant further investigation to ultimately develop novel therapeutic strategies. METHODS Primary culture of myoblasts from rat thyroarytenoid muscle and fibroblasts from the vocal fold mucosa were established. Co-culture and conditioned media experiments were performed to established bidirectional interactions between cell types. Transforming Growth Factor (TGF)-β was employed to stimulate a fibrotic phenotype in culture. In addition to quantitative PCR, standard migration and proliferation assays were performed as well as immunocytochemistry. RESULTS Bidirectional cell-cell interactions were observed. Without TGF-β stimulation, myoblast conditioned media inhibited fibroblast migration, but enhanced proliferation. Conversely, fibroblast conditioned media increased both myoblast proliferation and migration. Myoblast conditioned media decreased TGF-β-mediated gene expression and of particular interest, ACTA2 mRNA expression. In both co-culture and in response to fibroblast conditioned media, myosin heavy chain (Myh2) mRNA expression decreased in myoblasts. CONCLUSIONS These data are the first to describe interactions between cell types within the vocal fold. The implications for these interactions in vivo warrant further investigation to develop and refine optimal treatment strategies.
Collapse
Affiliation(s)
- Rysouke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Carina Doyle
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Aaron M. Johnson
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Ryan C. Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
32
|
Borkar NA, Ambhore NS, Kalidhindi RSR, Pabelick CM, Prakash YS, Sathish V. Kisspeptins inhibit human airway smooth muscle proliferation. JCI Insight 2022; 7:152762. [PMID: 35420998 DOI: 10.1172/jci.insight.152762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Sex/gender disparity in asthma is recognized, and suggests a modulatory role for sex-steroids, particularly estrogen. However, studies including our own show a dichotomous role for estrogen in airway remodeling, making it unclear whether sex hormones are protective or detrimental in asthma, and suggesting a need to explore mechanisms upstream or independent of estrogen. We hypothesize that Kisspeptin (Kp)/KISS1R signaling serves this role. Airway smooth muscle (ASM) is a key structural cell type that contributes to remodeling in asthma. We explored the role of Kp/KISS1R in regulating ASM proliferation. We report novel data that Kp and KISS1R are expressed in human airways, especially ASM, with lower expression in ASM from females compared to males, and asthmatics showing lowest expression compared to non-asthmatics. Proliferation studies showed that cleaved forms of Kp, particularly Kp-10 mitigates PDGF-induced ASM proliferation. Pharmacological inhibition and shRNA knockdown of KISS1R increased basal ASM proliferation, further amplified by PDGF. The anti-proliferative effect of Kp-10 in ASM was found to be mediated by inhibition of MAPK-ERK-Akt pathways, with altered expression of PCNA, C/EBP-alpha, Ki-67, Cyclin-D1, and Cyclin-E leading to cell-cycle arrest at G0/G1 phase. Overall, we demonstrate the importance of Kp/KISS1R signaling in regulating ASM proliferation and a potentially novel therapeutic avenue to blunt remodeling in asthma.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, United States of America
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, United States of America
| | | | - Christina M Pabelick
- Department of Anesthesiology and Physiology, Mayo Clinic, Rochester, United States of America
| | - Y S Prakash
- Department of Anesthesiology and Physiology, Mayo Clinic, Rochester, United States of America
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, United States of America
| |
Collapse
|
33
|
Riccardi D, Ward JPT, Yarova PL, Janssen LJ, Lee TH, Ying S, Corrigan CJ. Topical therapy with negative allosteric modulators of the calcium-sensing receptor (calcilytics) for the management of asthma: the beginning of a new era? Eur Respir J 2022; 60:13993003.02103-2021. [DOI: 10.1183/13993003.02103-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/16/2021] [Indexed: 11/05/2022]
Abstract
In this review article we present the evidence to date supporting the role of the calcium-sensing receptor (CaSR) as a key, pluripotential molecular trigger for asthma and speculate on the likely benefits of topical therapy of asthma with negative allosteric modulators of the CaSR: calcilytics.
Collapse
|
34
|
Pera T, Loblundo C, Penn RB. Pharmacological Management of Asthma and COPD. COMPREHENSIVE PHARMACOLOGY 2022:762-802. [DOI: 10.1016/b978-0-12-820472-6.00095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Nayak AP, Deshpande DA, Shah SD, Villalba DR, Yi R, Wang N, Penn RB. OGR1-dependent regulation of the allergen-induced asthma phenotype. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1044-L1054. [PMID: 34668419 PMCID: PMC8715030 DOI: 10.1152/ajplung.00200.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
The proton-sensing receptor, ovarian cancer G protein-coupled receptor (OGR1), has been shown to be expressed in airway smooth muscle (ASM) cells and is capable of promoting ASM contraction in response to decreased extracellular pH. OGR1 knockout (OGR1KO) mice are reported to be resistant to the asthma features induced by inhaled allergen. We recently described certain benzodiazepines as OGR1 activators capable of mediating both procontractile and prorelaxant signaling in ASM cells. Here we assess the effect of treatment with the benzodiazepines lorazepam or sulazepam on the asthma phenotype in wild-type (WT) and OGR1KO mice subjected to inhaled house dust mite (HDM; Dermatophagoides pteronyssius) challenge for 3 wk. In contrast to previously published reports, both WT and OGR1KO mice developed significant allergen-induced lung inflammation and airway hyperresponsiveness (AHR). In WT mice, treatment with sulazepam (a Gs-biased OGR1 agonist), but not lorazepam (a balanced OGR1 agonist), prevented allergen-induced AHR, although neither drug inhibited lung inflammation. The protection from development of AHR conferred by sulazepam was absent in OGR1KO mice. Treatment of WT mice with sulazepam also resulted in significant inhibition of HDM-induced collagen accumulation in the lung tissue. These findings suggest that OGR1 expression is not a requirement for development of the allergen-induced asthma phenotype, but OGR1 can be targeted by the Gs-biased OGR1 agonist sulazepam (but not the balanced agonist lorazepam) to protect from allergen-induced AHR, possibly mediated via suppression of chronic bronchoconstriction and airway remodeling in the absence of effects on airway inflammation.
Collapse
Affiliation(s)
- Ajay P Nayak
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dominic R Villalba
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Roslyn Yi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nadan Wang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B Penn
- Department of Medicine, Division of Pulmonary and Critical Care Medicine & Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Schepelmann M, Kupper N, Sladczyk M, Mansfield B, Manhardt T, Piatek K, Iamartino L, Riccardi D, Kariuki BM, Bassetto M, Kallay E. Stereo-Specific Modulation of the Extracellular Calcium-Sensing Receptor in Colon Cancer Cells. Int J Mol Sci 2021; 22:10124. [PMID: 34576291 PMCID: PMC8464956 DOI: 10.3390/ijms221810124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 01/19/2023] Open
Abstract
Pharmacological allosteric agonists (calcimimetics) of the extracellular calcium-sensing receptor (CaSR) have substantial gastro-intestinal side effects and induce the expression of inflammatory markers in colon cancer cells. Here, we compared the effects of both CaSR-specific (R enantiomers) and -unspecific (S enantiomers) enantiomers of a calcimimetic (NPS 568) and a calcilytic (allosteric CaSR antagonists; NPS 2143) to prove that these effects are indeed mediated via the CaSR, rather than via off-target effects, e.g., on β-adrenoceptors or calcium channels, of these drugs. The unspecific S enantiomer of NPS 2143 and NPS S-2143 was prepared using synthetic chemistry and characterized using crystallography. NPS S-2143 was then tested in HEK-293 cells stably transfected with the human CaSR (HEK-CaSR), where it did not inhibit CaSR-mediated intracellular Ca2+ signals, as expected. HT29 colon cancer cells transfected with the CaSR were treated with both enantiomers of NPS 568 and NPS 2143 alone or in combination, and the expression of CaSR and the pro-inflammatory cytokine interleukin 8 (IL-8) was measured by RT-qPCR and ELISA. Only the CaSR-selective enantiomers of the calcimimetic NPS 568 and NPS 2143 were able to modulate CaSR and IL-8 expression. We proved that pro-inflammatory effects in colon cancer cells are indeed mediated through CaSR activation. The non-CaSR selective enantiomer NPS S-2143 will be a valuable tool for investigations in CaSR-mediated processes.
Collapse
Affiliation(s)
- Martin Schepelmann
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Nadja Kupper
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Marta Sladczyk
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Bethan Mansfield
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (B.M.); (D.R.)
| | - Teresa Manhardt
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Karina Piatek
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Luca Iamartino
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 18, 50139 Florence, Italy
| | - Daniela Riccardi
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (B.M.); (D.R.)
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK;
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Singleton Park Campus, Swansea SA2 8PP, UK;
| | - Enikö Kallay
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| |
Collapse
|
37
|
Kalinkovich A, Livshits G. Biased and allosteric modulation of bone cell-expressing G protein-coupled receptors as a novel approach to osteoporosis therapy. Pharmacol Res 2021; 171:105794. [PMID: 34329703 DOI: 10.1016/j.phrs.2021.105794] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/16/2022]
Abstract
On the cellular level, osteoporosis (OP) is a result of imbalanced bone remodeling, in which osteoclastic bone resorption outcompetes osteoblastic bone formation. Currently available OP medications include both antiresorptive and bone-forming drugs. However, their long-term use in OP patients, mainly in postmenopausal women, is accompanied by severe side effects. Notably, the fundamental coupling between bone resorption and formation processes underlies the existence of an undesirable secondary outcome that bone anabolic or anti-resorptive drugs also reduce bone formation. This drawback requires the development of anti-OP drugs capable of selectively stimulating osteoblastogenesis and concomitantly reducing osteoclastogenesis. We propose that the application of small synthetic biased and allosteric modulators of bone cell receptors, which belong to the G-protein coupled receptors (GPCR) family, could be the key to resolving the undesired anti-OP drug selectivity. This approach is based on the capacity of these GPCR modulators, unlike the natural ligands, to trigger signaling pathways that promote beneficial effects on bone remodeling while blocking potentially deleterious effects. Under the settings of OP, an optimal anti-OP drug should provide fine-tuned regulation of downstream effects, for example, intermittent cyclic AMP (cAMP) elevation, preservation of Ca2+ balance, stimulation of osteoprotegerin (OPG) and estrogen production, suppression of sclerostin secretion, and/or preserved/enhanced canonical β-catenin/Wnt signaling pathway. As such, selective modulation of GPCRs involved in bone remodeling presents a promising approach in OP treatment. This review focuses on the evidence for the validity of our hypothesis.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6905126, Israel; Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
38
|
Lines KE, Gluck AK, Thongjuea S, Bountra C, Thakker RV, Gorvin CM. The bromodomain inhibitor JQ1+ reduces calcium-sensing receptor activity in pituitary cell lines. J Mol Endocrinol 2021; 67:83-94. [PMID: 34223822 PMCID: PMC8345903 DOI: 10.1530/jme-21-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/05/2022]
Abstract
Corticotrophinomas represent 10% of all surgically removed pituitary adenomas, however, current treatment options are often not effective, and there is a need for improved pharmacological treatments. Recently, JQ1+, a bromodomain inhibitor that promotes gene transcription by binding acetylated histone residues and recruiting transcriptional machinery, has been shown to reduce proliferation in a murine corticotroph cell line, AtT20. RNA-Seq analysis of AtT20 cells following treatment with JQ1+ identified the calcium-sensing receptor (CaSR) gene as significantly downregulated, which was subsequently confirmed using real-time PCR and Western blot analysis. CaSR is a G protein-coupled receptor that plays a central role in calcium homeostasis but can elicit non-calcitropic effects in multiple tissues, including the anterior pituitary where it helps regulate hormone secretion. However, in AtT20 cells, CaSR activates a tumour-specific cAMP pathway that promotes ACTH and PTHrP hypersecretion. We hypothesised that the Casr promoter may harbour binding sites for BET proteins, and using chromatin immunoprecipitation (ChIP)-sequencing demonstrated that the BET protein Brd3 binds to the promoter of the Casr gene. Assessment of CaSR signalling showed that JQ1+ significantly reduced Ca2+e-mediated increases in intracellular calcium (Ca2+i) mobilisation and cAMP signalling. However, the CaSR-negative allosteric modulator, NPS-2143, was unable to reduce AtT20 cell proliferation, indicating that reducing CaSR expression rather than activity is likely required to reduce pituitary cell proliferation. Thus, these studies demonstrate that reducing CaSR expression may be a viable option in the treatment of pituitary tumours. Moreover, current strategies to reduce CaSR activity, rather than protein expression for cancer treatments, may be ineffective.
Collapse
Affiliation(s)
- Kate E Lines
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
- Correspondence should be addressed to K E Lines or C M Gorvin: or
| | - Anna K Gluck
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
| | - Supat Thongjuea
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chas Bountra
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
| | - Caroline M Gorvin
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford,UK
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK
- Correspondence should be addressed to K E Lines or C M Gorvin: or
| |
Collapse
|
39
|
Fang Z, Yi F, Peng Y, Zhang JJ, Zhang L, Deng Z, Chen F, Li C, He Y, Huang C, Zhang Q, Lai K, Xie J. Inhibition of TRPA1 reduces airway inflammation and hyperresponsiveness in mice with allergic rhinitis. FASEB J 2021; 35:e21428. [PMID: 33774861 DOI: 10.1096/fj.201902627r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2020] [Accepted: 01/22/2021] [Indexed: 12/26/2022]
Abstract
This study was conducted to investigate whether a transient receptor potential ankyrin 1 (TRPA1) antagonist (HC-030031) can reduce airway inflammation and hyperresponsiveness in a murine allergic rhinitis (AR) model. BALB/c mice were sensitized and challenged by ovalbumin (OVA) to induce AR. HC-030031 or vehicle was administrated to mice via intraperitoneal injection prior to OVA challenges. Nose-scratching events, histopathologic alterations of the airways, and bronchial hyperresponsiveness (BHR) were assessed. Differential cells and proinflammatory cytokines in the nasal lavage (NAL) and bronchoalveolar lavage (BAL) fluid were measured. Expressions of TRPA1 in nasal mucosa were examined by immunohistochemistry. TRPA1-expressing vagal neurons were labeled by immunofluorescent staining. HC-030031-treated AR mice had markedly reduced type-2 inflammation in nasal mucosa and ameliorated-nose-scratching events than AR mice received vehicle. HC-030031 treatment also dramatically reduced leucocyte numbers and IL-8 level in the BAL fluid, inhibited lower airway remodeling and fibrosis, and nearly abolished BHR. HC-0300031 treatment significantly inhibited the upregulated number of TRPA1 expressing nasal epithelial cells and TRPA1 expressing sensory neurons, leading to downregulation of SP in both upper and lower airways. Targeting TRPA1 may represent a promising strategy for treating AR and AR-related asthma.
Collapse
Affiliation(s)
- Zhangfu Fang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junfeng Jim Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Global Health Institute, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Liting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fagui Chen
- Department of Respiratory Medicine, Shantou Central Hospital, Shantou, China
| | - Chenhui Li
- Department of Respiratory and Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, China
| | - Yaowei He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingling Zhang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kefang Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiaxing Xie
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
40
|
Amison RT, Page CP. Novel pharmacological therapies for the treatment of bronchial asthma. Minerva Med 2021; 113:31-50. [PMID: 34236157 DOI: 10.23736/s0026-4806.21.07559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma has long been recognised as a chronic inflammatory disease of the airways, often in response to inhaled allergens prompting inappropriate activation of the immune response. involving a range of cells including mast cells, Th2 lymphocytes and eosinophils and a wide range of inflammatory mediators. First-line therapy for treatment of persistent asthma involves the use of inhaled corticosteroids (ICS) in combination with inhaled β2-agonists enabling both the control of the underlying airways inflammation and a reduction of airway hyperresponsiveness. However, many patients remain symptomatic despite high-dose therapy. There is therefore a continued unmet clinical need to develop specifically new anti-inflammatory therapies for patients with asthma, either as an add-on therapy to ICS or as replacement monotherapies. The success of fixed dose combination inhalers containing both a bronchodilator and an anti-inflammatory drug has also led to the development of "bifunctional" drugs which are molecules specifically designed to have two distinct pharmacological actions based on distinct pharmacophores. In this review we will discuss these different pharmacological approaches under development for the treatment of bronchial asthma and the available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK -
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
41
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
42
|
Abid HA, Inoue A, Gorvin CM. Heterogeneity of G protein activation by the calcium-sensing receptor. J Mol Endocrinol 2021; 67:41-53. [PMID: 34077389 PMCID: PMC8240730 DOI: 10.1530/jme-21-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor that plays a fundamental role in extracellular calcium (Ca2+e) homeostasis by regulating parathyroid hormone release and urinary calcium excretion. The CaSR has been described to activate all four G protein subfamilies (Gαq/11, Gαi/o, Gα12/13, Gαs), and mutations in the receptor that cause hyper/hypocalcaemia, have been described to bias receptor signalling. However, many of these studies are based on measurements of second messengers or gene transcription that occurs many steps downstream of receptor activation and can represent convergence points of several signalling pathways. Therefore, to assess CaSR-mediated G protein activation directly, we took advantage of a recently described NanoBiT G protein dissociation assay system. Our studies, performed in HEK293 cells stably expressing CaSR, demonstrate that Ca2+e stimulation activates all Gαq/11 family and several Gαi/o family proteins, although Gαz was not activated. CaSR stimulated dissociation of Gα12/13 and Gαs from Gβ-subunits, but this occurred at a slower rate than that of other Gα-subunits. Investigation of cDNA expression of G proteins in three tissues abundantly expressing CaSR, the parathyroids, kidneys and pancreas, showed Gα11, Gαz, Gαi1 and Gα13 genes were highly expressed in parathyroid tissue, indicating CaSR most likely activates Gα11 and Gαi1 in parathyroids. In kidney and pancreas, the majority of G proteins were similarly expressed, suggesting CaSR may activate multiple G proteins in these cells. Thus, these studies validate a single assay system that can be used to robustly assess CaSR variants and biased signalling and could be utilised in the development of new pharmacological compounds targeting CaSR.
Collapse
Affiliation(s)
- Hasnat Ali Abid
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research and Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
- Correspondence should be addressed to C M Gorvin:
| |
Collapse
|
43
|
Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. SCIENCE ADVANCES 2021; 7:7/23/eabg1483. [PMID: 34088669 PMCID: PMC8177707 DOI: 10.1126/sciadv.abg1483] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo-electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca2+ and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation. The positive modulator (evocalcet) and the negative allosteric modulator (NPS-2143) occupy the similar binding pocket in 7TMD. The binding of NPS-2143 causes a considerable rearrangement of two 7TMDs, forming an inactivated TM6/TM6 interface. Moreover, a total of 305 disease-causing missense mutations of CaSR have been mapped to the structure in the active state, creating hotspot maps of five clinical endocrine disorders. Our results provide a structural framework for understanding the activation, allosteric modulation mechanism, and disease therapy for class C GPCRs.
Collapse
Affiliation(s)
- Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ziyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xiaozhe Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yangfei Xing
- State Key Laboratory of Medical Genomics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
- Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
44
|
Sharma P, Penn RB. Can GPCRs Be Targeted to Control Inflammation in Asthma? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:1-20. [PMID: 34019260 DOI: 10.1007/978-3-030-68748-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs "stay in their lane" with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be "tuned" and not just turned "off" or "on" to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.
Collapse
Affiliation(s)
- Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy, & Critical Care Medicine Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
46
|
Liu W, Guo Y, Liu Y, Sun J, Yin X. Calcium-Sensing Receptor of Immune Cells and Diseases. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2021. [DOI: 10.15212/cvia.2021.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium-sensing receptor (CaSR), which was initially found in the parathyroid gland, is ubiquitously expressed and exerts specific functions in multiple cells, including immune cells. CaSR is functionally expressed on neutrophils, monocytes/macrophages, and T lymphocytes, but not B
lymphocytes, and regulates cell functions, such as cytokine secretion, chemotaxis, phenotype switching, and ligand delivery. In these immune cells, CaSR is involved in the development of many diseases, such as sepsis, cryopyrin-associated periodic syndromes, rheumatism, myocardial infarction,
diabetes, and peripheral artery disease. Since its discovery, it has been controversial whether CaSR is expressed and plays a role in immune cells. This article reviews current knowledge of the role of CaSR in immune cells.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Yutong Guo
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Jiaxing Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| |
Collapse
|
47
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
48
|
Roesler AM, Ravix J, Bartman CM, Patel BS, Schiliro M, Roos B, Nesbitt L, Pabelick CM, Martin RJ, MacFarlane PM, Prakash YS. Calcium-Sensing Receptor Contributes to Hyperoxia Effects on Human Fetal Airway Smooth Muscle. Front Physiol 2021; 12:585895. [PMID: 33790802 PMCID: PMC8006428 DOI: 10.3389/fphys.2021.585895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Brijeshkumar S Patel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Benjamin Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Lisa Nesbitt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Richard J Martin
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Peter M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
49
|
Kalidhindi RSR, Ambhore NS, Balraj P, Schmidt T, Khan MN, Sathish V. Androgen receptor activation alleviates airway hyperresponsiveness, inflammation, and remodeling in a murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2021; 320:L803-L818. [PMID: 33719566 DOI: 10.1152/ajplung.00441.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies demonstrate an apparent sex-based difference in the prevalence of asthma, with a higher risk in boys than girls, which is reversed postpuberty, where women become more prone to asthma than men, suggesting a plausible beneficial role for male hormones, especially androgens as a regulator of pathophysiology in asthmatic lungs. Using a murine model of asthma developed with mixed allergen (MA) challenge, we report a significant change in airway hyperresponsiveness (AHR), as demonstrated by increased thickness of epithelial and airway smooth muscle layers and collagen deposition, as well as Th2/Th17-biased inflammation in the airways of non-gonadectomized (non-GDX) and gonadectomized (GDX) male mice. Here, compared with non-GDX mice, MA-induced AHR and inflammatory changes were more prominent in GDX mice. Activation of androgen receptor (AR) using 5α-dihydrotestosterone (5α-DHT, AR agonist) resulted in decreased Th2/Th17 inflammation and remodeling-associated changes, resulting in improved lung function compared with MA alone challenged mice, especially in GDX mice. These changes were not observed with Flutamide (Flut, AR antagonist). Overall, we show that AR exerts a significant and beneficial role in asthma by regulating AHR and inflammation.
Collapse
Affiliation(s)
- Rama Satyanarayana Raju Kalidhindi
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| | - Taylor Schmidt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - M Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
50
|
Diercks BP, Jensen HH, Chalmers SB, Coode E, Vaughan MB, Tadayon R, Sáez PJ, Davis FM, Brohus M. The first junior European Calcium Society meeting: calcium research across scales, Kingdoms and countries. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118999. [PMID: 33711364 DOI: 10.1016/j.bbamcr.2021.118999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 01/09/2023]
Abstract
The first junior European Calcium Society online meeting, held October 20-21, 2020, aimed to promote junior researchers in the Ca2+ community. The meeting included four scientific sessions, covering Ca2+ research from molecular detail to whole organisms. Each session featured one invited speaker and three speakers selected based on submitted abstracts, with the overall aim of actively involving early-career researchers. Consequently, the meeting underlined the diversity of Ca2+ physiology, by showcasing research across scales and Kingdoms, as presented by a correspondingly diverse speaker panel across career stages and countries. In this meeting report, we introduce the visions of the junior European Calcium Society board and summarize the meeting content.
Collapse
Affiliation(s)
- Björn-Philipp Diercks
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany.
| | - Helene H Jensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Silke B Chalmers
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily Coode
- School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Michael B Vaughan
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Roya Tadayon
- Department of Biochemistry, School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pablo J Sáez
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg - Eppendorf, Hamburg, Germany
| | - Felicity M Davis
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|