1
|
Ortonne N. [Case #2. Lichenoid mycosis fungoides]. Ann Pathol 2025:S0242-6498(25)00068-9. [PMID: 40307113 DOI: 10.1016/j.annpat.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025]
Affiliation(s)
- Nicolas Ortonne
- Département de pathologie, hôpital Henri-Mondor, 1, rue Gustave-Eiffel, 94000 Créteil, France.
| |
Collapse
|
2
|
Sun J, Li T, Cui J, Zhang L, Wang G, Ma C, Zhang C, Wang Y. sEV-mediated intercellular transformation from MGAT4A High to MGAT4A Low tumor cells via the HOTAIRM1/miR-196b-5p axis promotes apoptosis resistance in CTCL. Oncogene 2025:10.1038/s41388-025-03356-6. [PMID: 40155530 DOI: 10.1038/s41388-025-03356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
ncRNAs encapsulated in small extracellular vesicles (sEVs) facilitate intercellular communication and are associated with tumor progression. lncRNA-HOTAIRM1 is aberrantly expressed in various cancers. However, HOTAIRM1 expression and its downstream ceRNA network in CTCL remains unclear. In this study, we found that HOTAIRM1 was reduced in CTCL. Elevated HOTAIRM1 inhibited proliferation and induced apoptosis in vitro, resulting in reduced in vivo tumorigenic capacity. Whole-transcriptome sequencing and scRNA-Seq confirmed that differential expression of HOTAIRM1/miR-196b-5p/MGAT4A axis induces apoptosis resistance in CTCL. Mechanistically, reduced MGAT4A expression in CTCL leads to decreased N-glycosylation modification of membrane proteins and reduced Galectin-1 affinity, thereby inducing partial resistance to Galectin-1-induced apoptosis. Meanwhile, benign CD4 + T cells show sensitivity to Galectin-1-induced apoptosis due to their relatively higher MGAT4A expression. Furthermore, MGAT4ALow CTCL tumor cells transformed MGAT4AHigh CD4+ benign cells into MGAT4ALow cells by secreting sEVs containing miR-196b-5p, thereby reducing Galectin-1 binding and inducing apoptosis resistance. Engineered sEVs from HOTAIRM1-overexpressing cells contain elevated HOTAIRM1, which can specifically target malignant T cells, with reduced miR-196b-5p and increased MGAT4A, demonstrating apoptosis-inducing and tumor-suppressive effects in CTCL. This study identified changes in HOTAIRM1/miR-196b-5p/MGAT4A axis and N-glycosylation modifications in CTCL. Engineered HOTAIRM1-loaded sEVs demonstrated promising targeting and therapeutic effects in CTCL.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Tingting Li
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Jing Cui
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
| | - Lihua Zhang
- Department of Pathology, Fourth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
- Tianjin Union Medical Center, Tianjin, China
| | - Chuan Ma
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
3
|
Hong JB, Hsieh TS, Tsai TF, Liau JY, Chiu HC, Lee TL, Huang TC. Preliminary assessment of the accuracy of cutaneous T-cell lymphoma diagnosis through deep sequencing of the TRG gene. Clin Exp Dermatol 2025; 50:788-794. [PMID: 39504536 DOI: 10.1093/ced/llae413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND The diagnostic challenges in early mycosis fungoides (MF) and other cutaneous T-cell lymphomas (CTCLs) persist despite advancements in molecular methods. OBJECTIVES To provide a preliminary assessment of next-generation sequencing (NGS) in analysing TRG (T-cell receptor gamma locus) sequences for distinguishing CTCLs from benign inflammatory skin disorders. METHODS NGS was used to assess TRG sequences in skin samples from clinicopathologically proven CTCLs and benign inflammatory skin disorders. RESULTS Our study analysed skin samples from a total of 36 participants, comprising 22 cases of CTCL, including 14 MF and 8 other CTCLs, alongside 14 cases of benign inflammatory skin disorders. According to LymphoTrack® criteria, monoclonality was detected in 16 (73%) of the 22 patients with CTCL. Specifically, in cases of MF, 10 of 14 (71%) were identified as monoclonal, with all 4 non-monoclonal cases being in the patch stage. For the other cases of CTCL, six of eight displayed monoclonality. Among the 22 patients with CTCL, 10 (45%) had multiple biopsies, with 8 (36%) displaying the same dominant clone across different sites. Among the 14 benign cases, only the case of erythrodermic psoriasis exhibited monoclonality. Our decision tree analysis suggests that a high frequency of the most abundant clone, its ratio to the third most abundant clone and TRG VγI segment usage are effective markers that can help in the diagnosis of CTCL. CONCLUSIONS A combination of the clone frequencies and TRG V segment usage may enhance diagnosis of MF and other CTCLs, helping to differentiate them from benign conditions. However, molecular diagnosis for patch-stage MF remains challenging.
Collapse
Affiliation(s)
- Jin-Bon Hong
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tyng-Shiuan Hsieh
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jau-Yu Liau
- Department of Pathology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsien-Ching Chiu
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tung-Lung Lee
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Tai-Chung Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Gniadecki R, Guenova E, Querfeld C, Nicolay JP, Scarisbrick J, Sokol L. Haematogenous seeding in mycosis fungoides and Sézary syndrome: current evidence and clinical implications. Br J Dermatol 2025; 192:381-389. [PMID: 39545505 DOI: 10.1093/bjd/ljae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a heterogeneous group of diseases characterized by abnormal neoplastic T-cell growth in the skin. Mycosis fungoides (MF), the most common CTCL, manifests as erythematous skin patches and/or plaques, tumours or erythroderma. The disease may involve blood, lymph nodes and rarely viscera. Sézary syndrome (SS) is a unique leukaemia/lymphoma syndrome related to MF, which presents with blood and skin involvement at diagnosis. The pathogenesis of MF/SS is not fully elucidated. The presence of skin lesions at distant sites underpins a hypothesis that MF/SS lesions may develop through haematogenous seeding. Phenotypic similarities between malignant and normal T cells led to the notion that disease-initiating mutations occur in specific subtypes of mature T cells, which are responsible for most CTCLs. However, this mature T-cell precursor model is not always consistent with clinical observations and research on MF/SS pathogenesis. Here, we review evidence supporting an alternative model of pathogenesis for MF/SS involving haematogenous seeding as a key process responsible for the initiation and progression of the disease. According to this hypothesis, malignant transformation occurs at an early stage of T-cell development (probably in bone marrow or thymus), yielding circulating neoplastic T cells which colonize the skin where the microenvironment is most permissive for proliferation and evolution. These mutated precursor cells seed the skin where they find a suitable niche to develop into clinically perceptible disease. Subsequently, malignant T cells can re-enter the bloodstream, re-seed pre-existing lesions and seed new areas of the skin, causing synchronous and convergent changes in the transcriptomic profile of lesions and tumours, and clinical disease progression - 'consecutive haematogenous seeding' captures this temporal phenomenon. This model radically changes the current understanding of CTCL pathogenesis, transforming it from a primarily cutaneous disease with secondary involvement of blood, to a systemic disease, where the spread of malignant cells through the blood to the skin is not a phenomenon of advanced disease but is an essential component of pathogenesis. This understanding of MF/SS could have several clinical implications, including standardizing our approach to assessing blood tumour burden, potential advances in prognosis and monitoring, and investigating combination treatments to improve patient outcomes.
Collapse
Affiliation(s)
- Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Christiane Querfeld
- Department of Pathology and Division of Dermatology, City of Hope Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Jan P Nicolay
- University Medical Center Mannheim/Ruprecht Karls University of Heidelberg, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
5
|
Alkon N, Chennareddy S, Cohenour ER, Ruggiero JR, Stingl G, Bangert C, Rindler K, Bauer WM, Weninger W, Griss J, Jonak C, Brunner PM. Single-cell sequencing delineates T-cell clonality and pathogenesis of the parapsoriasis disease group. J Allergy Clin Immunol 2025; 155:461-478. [PMID: 39278361 DOI: 10.1016/j.jaci.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Mycosis fungoides (MF), the most common cutaneous T-cell lymphoma, is often underdiagnosed in early stages because of similarities with benign dermatoses such as atopic dermatitis (AD). Furthermore, the delineation from what is called "parapsoriasis en plaque", a disease that can appear either in a small- or large-plaque form, is still controversial. OBJECTIVE We sought to characterize the parapsoriasis disease spectrum. METHODS We performed single-cell RNA sequencing of skin biopsies from patients within the parapsoriasis-to-early-stage MF spectrum, stratified for small and large plaques, and compared them to AD, psoriasis, and healthy control skin. RESULTS Six of 8 large-plaque lesions harbored either an expanded alpha/beta or gamma/delta T-cell clone with downregulation of CD7 expression, consistent with a diagnosis of early-stage MF. In contrast, 6 of 7 small-plaque lesions were polyclonal in nature, thereby lacking a lymphomatous phenotype, and also revealed a less inflammatory microenvironment than early-stage MF or AD. Of note, polyclonal small- and large-plaque lesions characteristically harbored a population of NPY+ innate lymphoid cells and displayed a stromal signature of complement upregulation and antimicrobial hyperresponsiveness in fibroblasts and sweat gland cells, respectively. These conditions were clearly distinct from AD or psoriasis, which uniquely harbored CD3+CRTH2+ IL-13 expressing "TH2A" cells, or strong type 17 inflammation, respectively. CONCLUSION These data position polyclonal small- and large-plaque parapsoriasis lesions as a separate disease entity that characteristically harbors a so far undescribed innate lymphoid cell population. We thus propose a new term, "polyclonal parapsoriasis en plaque", for this kind of lesion because they can be clearly differentiated from early- and advanced-stage MF, psoriasis, and AD on several cellular and molecular levels.
Collapse
Affiliation(s)
- Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sumanth Chennareddy
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emry R Cohenour
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John R Ruggiero
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
6
|
Thiele B, Schmidt-Barbo P, Schultheiss C, Willscher E, Weber T, Binder M. Oligoclonality of TRBC1 and TRBC2 in T cell lymphomas as mechanism of primary resistance to TRBC-directed CAR T cell therapies. Nat Commun 2025; 16:1104. [PMID: 39881151 PMCID: PMC11779876 DOI: 10.1038/s41467-025-56395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
- Benjamin Thiele
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Christoph Schultheiss
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Weber
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University and University Hospital Basel, Basel, Switzerland.
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany.
| |
Collapse
|
7
|
Ferrari M, Parekh F, Maciocia P, Horna P, Thomas S, Sewell AK, Pule M. Reply to: Oligoclonality of TRBC1 and TRBC2 in T cell lymphomas as mechanism of primary resistance to TRBC-directed CAR T cell therapies. Nat Commun 2025; 16:1103. [PMID: 39880830 PMCID: PMC11779960 DOI: 10.1038/s41467-025-56396-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Affiliation(s)
| | | | - Paul Maciocia
- Research Department of Haematology, University College London, London, UK
| | - Pedro Horna
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Simon Thomas
- Research Division, Autolus Therapeutics, London, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Martin Pule
- Research Division, Autolus Therapeutics, London, UK.
- Research Department of Haematology, University College London, London, UK.
| |
Collapse
|
8
|
Popova L, Carabetta VJ. The Use of Next-Generation Sequencing in Personalized Medicine. Methods Mol Biol 2025; 2866:287-315. [PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
9
|
Licht P, Mailänder V. Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides. Cancers (Basel) 2024; 16:3947. [PMID: 39682136 DOI: 10.3390/cancers16233947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Mycosis fungoides (MF) represents the most prevalent entity of cutaneous T cell lymphoma (CTCL). The MF aetiopathogenesis is incompletely understood, due to significant transcriptomic heterogeneity and conflicting views on whether oncologic transformation originates in early thymocytes or mature effector memory T cells. Recently, using clinical specimens, our group showed that the skin microbiome aggravates disease course, mainly driven by an outgrowing, pathogenic S. aureus strain carrying the virulence factor spa, which was shown by others to activate the T cell signalling pathway NF-κB. METHODS To explore the role of the skin microbiome in MF aetiopathogenesis, we here performed RNA sequencing, multi-omic data integration of the skin microbiome and skin transcriptome using Multi-Omic Factor Analysis (MOFA), virome profiling, and T cell receptor (TCR) sequencing in 10 MF patients from our previous study group. RESULTS We observed that inter-patient transcriptional heterogeneity may be largely attributed to differential activation of T cell signalling pathways. Notably, the MOFA model resolved the heterogenous activation pattern of T cell signalling after denoising the transcriptome from microbial influence. The MOFA model suggested that the outgrowing S. aureus strain evoked signalling by non-canonical NF-κB and IL-1B, which in turn may have fuelled the aggravated disease course. Further, the MOFA model indicated aberrant pathways of early thymopoiesis alongside enrichment of antiviral innate immunity. In line with this, viral prevalence, particularly of Epstein-Barr virus (EBV), trended higher in both lesional skin and the blood compared to nonlesional skin. Additionally, TCRs in both MF skin lesions and the blood were significantly more likely to recognize EBV peptides involved in latent infection. CONCLUSIONS First, our findings suggest that S. aureus with its virulence factor spa fuels MF progression through non-canonical NF-κB and IL-1B signalling. Second, our data provide insights into the potential role of viruses in MF aetiology. Last, we propose a model of microbiome-driven MF aetiopathogenesis: Thymocytes undergo initial oncologic transformation, potentially caused by viruses. After maturation and skin infiltration, an outgrowing, pathogenic S. aureus strain evokes activation and maturation into effector memory T cells, resulting in aggressive disease. Further studies are warranted to verify and extend our data, which are based on computational analyses.
Collapse
Affiliation(s)
- Philipp Licht
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Centre Mainz, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
10
|
Cieslak C, Hain C, Rückert-Reed C, Busche T, Klages LJ, Schaper-Gerhardt K, Gutzmer R, Kalinowski J, Stadler R. Nanopore Sequencing for T-Cell Receptor Rearrangement Analysis in Cutaneous T-Cell Lymphoma. Cancers (Basel) 2024; 16:3700. [PMID: 39518138 PMCID: PMC11544856 DOI: 10.3390/cancers16213700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Analysis of T-cell receptor (TCR) clonality is a major diagnostic tool for lymphomas, particularly for cutaneous T-cell lymphomas (CTCL) like Mycosis fungoides and Sézary syndrome. However, a fast and cost-effective workflow is needed to enable widespread use of this method. Methods: We established a procedure for TCR rearrangement analysis via Oxford Nanopore Technology (ONT) sequencing. TCR receptor rearrangements (TCR-gamma and TCR-beta chains) were analyzed in samples from 45 patients with various diagnoses: Mycosis fungoides (37/45), Sézary Syndrome (2/45), folliculotropic CTCL (1/45), and non-CTCL diagnoses as polyclonal controls (5/45). Sample types included formalin-fixed paraffin-embedded (FFPE) samples (27/45), fresh frozen samples (9/45), and CD3-isolated cells (9/45). In addition, DNA of a Jurkat cell line was used as a monoclonal control. TCR amplicons were generated employing an optimized version of the protocol from the Euro Clonality consortium. Sequencing was conducted on the ONT GridION and Illumina MiSeq platforms, followed by similar bioinformatic analysis protocols. The tumor clone frequency (TCF), a crucial prognostic factor for CTCL patients, was used for method comparison. Results: The use of an optimized amplicon protocol and adapted bioinformatic tools demonstrated a strong correlation in TCF values between both sequencing methods across all sample types (range R: 0.992-0.996; range r2: 0.984-0.991). Conclusions: In summary, ONT sequencing was able to detect TCR clonality comparable to NGS, indicating its potential as a faster and more cost-effective option for routine diagnostic use.
Collapse
Affiliation(s)
- Cassandra Cieslak
- Department of Dermatology, Johannes Wesling Medical Centre, University Hospitals of the Ruhr-University of Bochum (UKRUB), University of Bochum, 32429 Minden, Germany
| | - Carsten Hain
- Medical School OWL, Bielefeld University, 33594 Bielefeld, Germany
| | | | - Tobias Busche
- Medical School OWL, Bielefeld University, 33594 Bielefeld, Germany
| | - Levin Joe Klages
- Medical School OWL, Bielefeld University, 33594 Bielefeld, Germany
| | - Katrin Schaper-Gerhardt
- Department of Dermatology, Johannes Wesling Medical Centre, University Hospitals of the Ruhr-University of Bochum (UKRUB), University of Bochum, 32429 Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Centre, University Hospitals of the Ruhr-University of Bochum (UKRUB), University of Bochum, 32429 Minden, Germany
| | - Jörn Kalinowski
- Medical School OWL, Bielefeld University, 33594 Bielefeld, Germany
| | - Rudolf Stadler
- Department of Dermatology, Johannes Wesling Medical Centre, University Hospitals of the Ruhr-University of Bochum (UKRUB), University of Bochum, 32429 Minden, Germany
| |
Collapse
|
11
|
Weiner DM, Rook AH. Cutaneous T-cell Lymphoma. Hematol Oncol Clin North Am 2024; 38:1087-1110. [PMID: 39079789 DOI: 10.1016/j.hoc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Cutaneous T-cell lymphoma is a group of non-Hodgkin T-cell lymphomas that develop in and affect the skin but can potentially spread to other organs. There are many subtypes, the most common of which are mycosis fungoides, Sezary syndrome, lymphomatoid papulosis, and primary cutaneous anaplastic large cell lymphoma. Cutaneous lymphoma is a common cause of recalcitrant chronic skin rash and notoriously mimics other dermatologic and hematologic conditions, often resulting in diagnostic delays of months to years. This review provides an introduction to cutaneous T-cell lymphoma, with a primary focus on the clinical presentation, diagnosis, immunopathogenesis, and management of the condition.
Collapse
Affiliation(s)
- David M Weiner
- Department of Dermatology, Johns Hopkins University School of Medicine, 601 North Caroline Street, 8th Floor, Baltimore, MD 21287, USA.
| | - Alain H Rook
- Department of Dermatology, Cutaneous Lymphoma Program, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, 1st Floor, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Shinohara MM, Rieger KE, Sundram U, Fung MA, Hristov AC. Assessing T-cell receptor clonality by next-generation sequencing in atypical cutaneous lymphoid infiltrates and cutaneous T-cell lymphoma: A scoping review. J Cutan Pathol 2024; 51:813-819. [PMID: 39021266 DOI: 10.1111/cup.14694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The diagnosis of cutaneous T-cell lymphoma (CTCL) remains challenging. Demonstration of a clonal T-cell population using T-cell receptor (TCR) gene rearrangement studies by next-generation sequencing (NGS) has been explored in several studies. This review summarizes the current literature on NGS-based sequencing methods for the assessment of TCR clonality in the evaluation of atypical cutaneous lymphoid infiltrates and CTCL on behalf of the American Society of Dermatopathology Appropriate Use Criteria Committee (lymphoproliferative subgroup). PubMed was searched for relevant articles, including CTCL and NGS, for clonality from 1967 to 2022. Thirteen studies were included in the analysis. The skin was the most commonly assayed compartment with TCR NGS. Sensitivity for TCR NGS in the skin ranged between 69% and 100%, compared to 44%-72% for polymerase chain reaction (PCR)-capillary electrophoresis. Specificity for TCR NGS in the skin ranged from 86% to 100%, compared to 77%-88% for PCR capillary electrophoresis. TCR NGS was also reported to have potential prognostic value in CTCL and can also be used to detect relapse and/or minimal residual disease after treatment.
Collapse
Affiliation(s)
- Michi M Shinohara
- Department of Dermatology, University of Washington, Seattle, Washington, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Kerri E Rieger
- Department of Dermatology, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Uma Sundram
- Department of Pathology, Oakland University William Beaumont School of Medicine and Beaumont Health Systems, Royal Oak, Michigan, USA
| | - Maxwell A Fung
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, California, USA
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Alexandra C Hristov
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Avallone G, Roccuzzo G, Pileri A, Agostinelli C, Maronese CA, Aquino C, Tavoletti G, Onida F, Fava P, Ribero S, Marzano AV, Berti E, Quaglino P, Alberti-Violetti S. Clinicopathological definition, management and prognostic value of mogamulizumab-associated rash and other cutaneous events: A systematic review. J Eur Acad Dermatol Venereol 2024; 38:1738-1748. [PMID: 38279614 DOI: 10.1111/jdv.19801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
Mogamulizumab is a first-in-class IgG1k monoclonal antibody that selectively targets the chemokine receptor type 4. The drug has received Food and Drug administration authorisation for mycosis fungoides and Sézary syndrome following failure of at least one previous course of systemic therapy and now is available in Europe. One of the most common treatment-related side effects observed has been the mogamulizumab-associated rash (MAR), which affects up to a quarter of patients and is the most frequent adverse event leading to drug discontinuation. The aim of this study is to perform a systematic review of the literature on patients diagnosed with MAR and other mogamulizumab-related cutaneous events to describe the clinical and histological characteristics, the management in clinical practice and to assess whether these events have prognostic implications. In total, 2073 records were initially identified through a literature search, 843 of which were duplicates. After screening for eligibility and inclusion criteria, 49 articles reporting mogamulizumab-associated cutaneous events were included. Totally, 1516 patients were retrieved, with a slight male prevalence as for the available data (639 males and 570 females, i.e. 52.9% vs. 47.1%). Regarding the reported clinicopathological findings of the cutaneous reactions, the five most common patterns were spongiotic/psoriasiform dermatitis (22%), eruptions characterized by the presence of papules and/or plaques (16.1%), cutaneous granulomatosis (11.4%), morbilliform or erythrodermic dermatitis (9.4%) and photodermatitis (7.1%). Our results highlight how the majority of the reported cutaneous adverse events on mogamulizumab are of mild-to-moderate entity and generally manageable in clinical practice, though prompt recognition is essential and case-by-case assessment should be recommended. Future research will need to focus on the MAR prognostic implications and to identify genomic and molecular markers for a more rapid and accurate diagnosis.
Collapse
Affiliation(s)
- G Avallone
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - G Roccuzzo
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - A Pileri
- Dermatology Unit, IRCCS of Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dermatology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Agostinelli
- Hematopathology Unit, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - C A Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - C Aquino
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - G Tavoletti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - F Onida
- Hematology-BMT Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - P Fava
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - S Ribero
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - A V Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - E Berti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Inter-Hospital Pathology Division, IRCCS MultiMedica, Milan, Italy
| | - P Quaglino
- Department of Medical Sciences, Dermatology Clinic, University of Turin, Turin, Italy
| | - S Alberti-Violetti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Narala S, Saleem A, Brown RA, Novoa RA, Kim YH, Rieger KE. Histopathologic and Clinical Characterization of Brentuximab Vedotin-associated Rash. Am J Surg Pathol 2024; 48:1131-1137. [PMID: 38907612 DOI: 10.1097/pas.0000000000002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Rash is one of the commonly observed adverse events with brentuximab vedotin (BV), a CD30-targeted antibody-drug conjugate used to treat cutaneous T-cell lymphoma (CTCL). However, clinical and histopathologic characterization of BV-associated rash (BVAR) is limited. Distinguishing BVAR from a patient's underlying CTCL can be challenging and can lead to treatment interruptions or even premature drug discontinuation. We performed a thorough clinical and histopathologic retrospective characterization of BVAR from a single institution. Utilizing polymerase chain reaction (PCR) and T-cell receptor high-throughput sequencing (TCR-HTS), we were able to isolate skin biopsy specimens from rash clinically suggestive of BVAR that also lacked a dominant TCR clone. A retrospective evaluation was performed of 26 biopsy specimens from 14 patients. Clinical features of BVAR included predominantly morbilliform or maculopapular morphology, delayed onset, and the trend toward moderate to severe classification, often requiring oral steroids. Most histopathologic specimens (25/26) showed spongiotic dermatitis as the primary reaction pattern. Many cases showed subtle findings to support a background interface or lichenoid eruption. Langerhans cell microabscesses were seen in one-fourth of specimens, and eosinophils were present in over one-half of the specimens. There were focal features mimicking CTCL, but these were not prominent. In 17 specimens with immunohistochemistry, the CD4:CD8 ratio in intraepidermal lymphocytes was relatively normal (1-6:1) in 65% (11/17) and 1:1 in 35% (6/17), demonstrating a trend toward increased CD8-positive cells compared with baseline CTCL. We have identified features that can help distinguish BVAR from a patient's CTCL, which can, in turn, help guide appropriate clinical management.
Collapse
Affiliation(s)
- Saisindhu Narala
- Departments of Pathology
- Dermatology, Stanford University School of Medicine, Stanford, CA
| | | | - Ryanne A Brown
- Departments of Pathology
- Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Roberto A Novoa
- Departments of Pathology
- Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Youn H Kim
- Dermatology, Stanford University School of Medicine, Stanford, CA
| | - Kerri E Rieger
- Departments of Pathology
- Dermatology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
15
|
Chen L, Hu Y, Zheng B, Luo L, Su Z. Human TCR repertoire in cancer. Cancer Med 2024; 13:e70164. [PMID: 39240157 PMCID: PMC11378360 DOI: 10.1002/cam4.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND T cells, the "superstar" of the immune system, play a crucial role in antitumor immunity. T-cell receptors (TCR) are crucial molecules that enable T cells to identify antigens and start immunological responses. The body has evolved a unique method for rearrangement, resulting in a vast diversity of TCR repertoires. A healthy TCR repertoire is essential for the particular identification of antigens by T cells. METHODS In this article, we systematically summarized the TCR creation mechanisms and analysis methodologies, particularly focusing on the application of next-generation sequencing (NGS) technology. We explore the TCR repertoire in health and cancer, and discuss the implications of TCR repertoire analysis in understanding carcinogenesis, cancer progression, and treatment. RESULTS The TCR repertoire analysis has enormous potential for monitoring the emergence and progression of malignancies, as well as assessing therapy response and prognosis. The application of NGS has dramatically accelerated our comprehension of TCR diversity and its role in cancer immunity. CONCLUSIONS To substantiate the significance of TCR repertoires as biomarkers, more thorough and exhaustive research should be conducted. The TCR repertoire analysis, enabled by advanced sequencing technologies, is poised to become a crucial tool in the future of cancer diagnosis, monitoring, and therapy evaluation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Bohao Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Licht P, Dominelli N, Kleemann J, Pastore S, Müller ES, Haist M, Hartmann KS, Stege H, Bros M, Meissner M, Grabbe S, Heermann R, Mailänder V. The skin microbiome stratifies patients with cutaneous T cell lymphoma and determines event-free survival. NPJ Biofilms Microbiomes 2024; 10:74. [PMID: 39198450 PMCID: PMC11358159 DOI: 10.1038/s41522-024-00542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Mycosis fungoides (MF) is the most common entity of Cutaneous T cell lymphomas (CTCL) and is characterized by the presence of clonal malignant T cells in the skin. The role of the skin microbiome for MF development and progression are currently poorly understood. Using shotgun metagenomic profiling, real-time qPCR, and T cell receptor sequencing, we compared lesional and nonlesional skin of 20 MF patients with early and advanced MF. Additionally, we isolated Staphylococcus aureus and other bacteria from MF skin for functional profiling and to study the S. aureus virulence factor spa. We identified a subgroup of MF patients with substantial dysbiosis on MF lesions and concomitant outgrowth of S. aureus on plaque-staged lesions, while the other MF patients had a balanced microbiome on lesional skin. Dysbiosis and S. aureus outgrowth were accompanied by ectopic levels of cutaneous antimicrobial peptides (AMPs), including adaptation of the plaque-derived S. aureus strain. Furthermore, the plaque-derived S. aureus strain showed a reduced susceptibility towards antibiotics and an upregulation of the virulence factor spa, which may activate the NF-κB pathway. Remarkably, patients with dysbiosis on MF lesions had a restricted T cell receptor repertoire and significantly lower event-free survival. Our study highlights the potential for microbiome-modulating treatments targeting S. aureus to prevent MF progression.
Collapse
Affiliation(s)
- Philipp Licht
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
| | - Nazzareno Dominelli
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Johannes Kleemann
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stefan Pastore
- University Medical Centre Mainz, Institute of Human Genetics, Mainz, Germany
- Johannes Gutenberg-University, Institute of Pharmaceutical and Biomedical Sciences, Mainz, Germany
| | - Elena-Sophia Müller
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Maximilian Haist
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | | | - Henner Stege
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Matthias Bros
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Markus Meissner
- University Hospital Frankfurt, Department of Dermatology, Venerology and Allergology, Frankfurt am Main, Germany
| | - Stephan Grabbe
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany
| | - Ralf Heermann
- Johannes Gutenberg-University, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Volker Mailänder
- University Medical Centre Mainz, Department of Dermatology, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
17
|
Goel RR, Rook AH. Immunobiology and treatment of cutaneous T-cell lymphoma. Expert Rev Clin Immunol 2024; 20:985-996. [PMID: 38450476 DOI: 10.1080/1744666x.2024.2326035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Primary cutaneous T cell lymphomas (CTCL) are a heterogenous group of non-Hodgkin lymphomas derived from skin-homing T cells. These include mycosis fungoides and its leukemic variant Sezary syndrome, as well as the CD30+ lymphoproliferative disorders. AREAS COVERED In this review, we provide a summary of the current literature on CTCL, with a focus on the immunopathogenesis and treatment of mycosis fungoides and Sezary syndrome. EXPERT OPINION Recent advances in immunology have provided new insights into the biology of malignant T cells. This in turn has led to the development of new therapies that modulate the immune system to facilitate tumor clearance or target specific aspects of tumor biology.
Collapse
Affiliation(s)
- Rishi R Goel
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health (I3H), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alain H Rook
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Jiang TT, Kruglov O, Akilov OE. Unleashed monocytic engagement in Sézary syndrome during the combination of anti-CCR4 antibody with type I interferon. Blood Adv 2024; 8:2384-2397. [PMID: 38489234 PMCID: PMC11127216 DOI: 10.1182/bloodadvances.2023010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
ABSTRACT Sézary syndrome (SS) is an aggressive leukemic expansion of skin-derived malignant CD4+ T cells. Drug monotherapy often results in disease relapse because of the heterogenous nature of malignant CD4+ T cells, but how therapies can be optimally combined remains unclear because of limitations in understanding the disease pathogenesis. We identified immunologic transitions that interlink mycosis fungoides with SS using single-cell transcriptome analysis in parallel with high-throughput T-cell receptor sequencing. Nascent peripheral CD4+ T cells acquired a distinct profile of transcription factors and trafficking receptors that gave rise to antigenically mature Sézary cells. The emergence of malignant CD4+ T cells coincided with the accumulation of dysfunctional monocytes with impaired fragment crystallizable γ-dependent phagocytosis, decreased responsiveness to cytokine stimulation, and limited repertoire of intercellular interactions with Sézary cells. Type I interferon supplementation when combined with a monoclonal antibody targeting the chemokine receptor type 4 (CCR4), unleashed monocyte induced phagocytosis and eradication of Sézary cells in vitro. In turn, coadministration of interferon-α with the US Food and Drug Administration-approved anti-CCR4 antibody, mogamulizumab, in patients with SS induced marked depletion of peripheral malignant CD4+ T cells. Importantly, residual CD4+ T cells after Sézary cell ablation lacked any immunologic shifts. These findings collectively unveil an auxiliary role for augmenting monocytic activity during mogamulizumab therapy in the treatment of SS and underscore the importance of targeted combination therapy in this disease.
Collapse
Affiliation(s)
- Tony T. Jiang
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg Kruglov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg E. Akilov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
19
|
Glass DR, Mayer-Blackwell K, Ramchurren N, Parks KR, Duran GE, Wright AK, Bastidas Torres AN, Islas L, Kim YH, Fling SP, Khodadoust MS, Newell EW. Multi-omic profiling reveals the endogenous and neoplastic responses to immunotherapies in cutaneous T cell lymphoma. Cell Rep Med 2024; 5:101527. [PMID: 38670099 PMCID: PMC11148639 DOI: 10.1016/j.xcrm.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.
Collapse
Affiliation(s)
- David R Glass
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Koshlan Mayer-Blackwell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nirasha Ramchurren
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - George E Duran
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna K Wright
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Laura Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Youn H Kim
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven P Fling
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michael S Khodadoust
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
20
|
Di Prete M, Michelerio A, Lora V, Tomasini CF, Cota C. When mycosis fungoides seems not to be within the spectrum of clinical and histopathological differential diagnoses. Dermatol Reports 2024; 16:10008. [PMID: 39295886 PMCID: PMC11406214 DOI: 10.4081/dr.2024.10008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024] Open
Abstract
The most prevalent primary cutaneous T-cell lymphoma, mycosis fungoides (MF), is characterized by the development of plaques and nodules after an erythematous patchy phase that is non-specific. An infiltrate of atypical small- to medium-sized cerebriform lymphocytes in the superficial dermis, with variable epidermotropism, is the histopathological hallmark of the disease. In more advanced stages of the illness, large-cell transformation may be seen. Early diagnosis of MF can be very challenging based only on histopathologic or clinical findings, so it is critical to have a clinical-pathological correlation. Many atypical variants of MF that deviate from the classic Alibert-Bazin presentation of the disease have been described over the past 30 years, sometimes with different prognostic and therapeutic implications. Clinically or histopathologically, they can mimic a wide range of benign inflammatory skin disorders. To make a conclusive diagnosis in these cases, it is recommended to take multiple biopsies from various lesions and to carefully correlate the clinical and pathological findings. We have outlined the various facets of the illness in this review, positioning MF as a "great imitator", with an emphasis on the more recently identified variations, differential diagnosis, and its benign mimics.
Collapse
Affiliation(s)
- Monia Di Prete
- Dermatopathology Laboratory, San Gallicano Dermatological Institute IRCCS, Rome
| | - Andrea Michelerio
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Dermatology Unit, Cardinal Massaia Hospital, Asti
| | - Viviana Lora
- Clinical Dermatology Unit, San Gallicano Dermatological Institute IRCCS, Rome
| | - Carlo Francesco Tomasini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia
- Dermatology Clinic, IRCCS San Matteo Foundation Hospital, Pavia, Italy
| | - Carlo Cota
- Dermatopathology Laboratory, San Gallicano Dermatological Institute IRCCS, Rome
| |
Collapse
|
21
|
Jiang TT, Cao S, Kruglov O, Virmani A, Geskin LJ, Falo LD, Akilov OE. Deciphering Tumor Cell Evolution in Cutaneous T-Cell Lymphomas: Distinct Differentiation Trajectories in Mycosis Fungoides and Sézary Syndrome. J Invest Dermatol 2024; 144:1088-1098. [PMID: 38036289 PMCID: PMC11034798 DOI: 10.1016/j.jid.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
Cutaneous T-cell lymphomas are a heterogeneous group of neoplasms originating in the skin, with mycosis fungoides (MF) and Sézary syndrome (SS) representing the most common variants. The cellular origin of cutaneous lymphomas has remained controversial owing to their immense phenotypic heterogeneity that obfuscates lineage reconstruction on the basis of classical surface biomarkers. To overcome this heterogeneity and reconstruct the differentiation trajectory of malignant cells in MF and SS, TCR sequencing was performed in parallel with targeted transcriptomics at the single-cell resolution among cutaneous samples in MF and SS. Unsupervised lineage reconstruction showed that Sézary cells exist as a population of CD4+ T cells distinct from those in patch, plaque, and tumor MF. Further investigation of malignant cell heterogeneity in SS showed that Sézary cells phenotypically comprised at least 3 subsets on the basis of differential proliferation potentials and expression of exhaustion markers. A T helper 1-polarized cell type, intermediate cell type, and exhausted T helper 2-polarized cell type were identified, with T helper 1- and T helper 2-polarized cells displaying divergent proliferation potentials. Collectively, these findings provide evidence to clarify the relationship between MF and SS and reveal cell subsets in SS that suggest a possible mechanism for therapeutic resistance.
Collapse
Affiliation(s)
- Tony T Jiang
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon Cao
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg Kruglov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aman Virmani
- School of Art and Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Larisa J Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Oleg E Akilov
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
22
|
Nichakawade TD, Ge J, Mog BJ, Lee BS, Pearlman AH, Hwang MS, DiNapoli SR, Wyhs N, Marcou N, Glavaris S, Konig MF, Gabelli SB, Watson E, Sterling C, Wagner-Johnston N, Rozati S, Swinnen L, Fuchs E, Pardoll DM, Gabrielson K, Papadopoulos N, Bettegowda C, Kinzler KW, Zhou S, Sur S, Vogelstein B, Paul S. TRBC1-targeting antibody-drug conjugates for the treatment of T cell cancers. Nature 2024; 628:416-423. [PMID: 38538786 PMCID: PMC11250631 DOI: 10.1038/s41586-024-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024]
Abstract
Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor β-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.
Collapse
Affiliation(s)
- Tushar D Nichakawade
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaxin Ge
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Brian J Mog
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bum Seok Lee
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alexander H Pearlman
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael S Hwang
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Genentech, San Francisco, CA, USA
| | - Sarah R DiNapoli
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nicolas Wyhs
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nikita Marcou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Stephanie Glavaris
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Maximilian F Konig
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sandra B Gabelli
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Evangeline Watson
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cole Sterling
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nina Wagner-Johnston
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sima Rozati
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lode Swinnen
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ephraim Fuchs
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathy Gabrielson
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nickolas Papadopoulos
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Kinzler
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Surojit Sur
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Suman Paul
- Ludwig Center and Lustgarten Laboratory, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Popova L, Carabetta VJ. The use of next-generation sequencing in personalized medicine. ARXIV 2024:arXiv:2403.03688v1. [PMID: 38495572 PMCID: PMC10942477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden NJ, 08103
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden NJ, 08103
| |
Collapse
|
24
|
Yu Z, Vieyra-Garcia P, Benezeder T, Crouch JD, Kim IR, O'Malley JT, Devlin PM, Gehad A, Zhan Q, Gudjonsson JE, Sarkar MK, Kahlenberg JM, Gerard N, Teague JE, Kupper TS, LeBoeuf NR, Larocca C, Tawa M, Pomahac B, Talbot SG, Orgill DP, Wolf P, Clark RA. Phototherapy Restores Deficient Type I IFN Production and Enhances Antitumor Responses in Mycosis Fungoides. J Invest Dermatol 2024; 144:621-632.e1. [PMID: 37716650 PMCID: PMC10922223 DOI: 10.1016/j.jid.2023.06.212] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 09/18/2023]
Abstract
Transcriptional profiling demonstrated markedly reduced type I IFN gene expression in untreated mycosis fungoides (MF) skin lesions compared with that in healthy skin. Type I IFN expression in MF correlated with antigen-presenting cell-associated IRF5 before psoralen plus UVA therapy and epithelial ULBP2 after therapy, suggesting an enhancement of epithelial type I IFN. Immunostains confirmed reduced baseline type I IFN production in MF and increased levels after psoralen plus UVA treatment in responding patients. Effective tumor clearance was associated with increased type I IFN expression, enhanced recruitment of CD8+ T cells into skin lesions, and expression of genes associated with antigen-specific T-cell activation. IFNk, a keratinocyte-derived inducer of type I IFNs, was increased by psoralen plus UVA therapy and expression correlated with upregulation of other type I IFNs. In vitro, deletion of keratinocyte IFNk decreased baseline and UVA-induced expression of type I IFN and IFN response genes. In summary, we find a baseline deficit in type I IFN production in MF that is restored by psoralen plus UVA therapy and correlates with enhanced antitumor responses. This may explain why MF generally develops in sun-protected skin and suggests that drugs that increase epithelial type I IFNs, including topical MEK and EGFR inhibitors, may be effective therapies for MF.
Collapse
Affiliation(s)
- Zizi Yu
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pablo Vieyra-Garcia
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Theresa Benezeder
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Jack D Crouch
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ira R Kim
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John T O'Malley
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Phillip M Devlin
- Department of Radiation Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ahmed Gehad
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Zhan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Mrinal K Sarkar
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nega Gerard
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole R LeBoeuf
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cecilia Larocca
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianne Tawa
- Center for Cutaneous Oncology, Dana-Farber Cancer Institute/Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Simon G Talbot
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Wolf
- Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria.
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
25
|
Chang YT, Prompsy P, Kimeswenger S, Tsai YC, Ignatova D, Pavlova O, Iselin C, French LE, Levesque MP, Kuonen F, Bobrowicz M, Brunner PM, Pascolo S, Hoetzenecker W, Guenova E. MHC-I upregulation safeguards neoplastic T cells in the skin against NK cell-mediated eradication in mycosis fungoides. Nat Commun 2024; 15:752. [PMID: 38272918 PMCID: PMC10810852 DOI: 10.1038/s41467-024-45083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Cancer-associated immune dysfunction is a major challenge for effective therapies. The emergence of antibodies targeting tumor cell-surface antigens led to advancements in the treatment of hematopoietic malignancies, particularly blood cancers. Yet their impact is constrained against tumors of hematopoietic origin manifesting in the skin. In this study, we employ a clonality-supervised deep learning methodology to dissect key pathological features implicated in mycosis fungoides, the most common cutaneous T-cell lymphoma. Our investigations unveil the prominence of the IL-32β-major histocompatibility complex (MHC)-I axis as a critical determinant in tumor T-cell immune evasion within the skin microenvironment. In patients' skin, we find MHC-I to detrimentally impact the functionality of natural killer (NK) cells, diminishing antibody-dependent cellular cytotoxicity and promoting resistance of tumor skin T-cells to cell-surface targeting therapies. Through murine experiments in female mice, we demonstrate that disruption of the MHC-I interaction with NK cell inhibitory Ly49 receptors restores NK cell anti-tumor activity and targeted T-cell lymphoma elimination in vivo. These findings underscore the significance of attenuating the MHC-I-dependent immunosuppressive networks within skin tumors. Overall, our study introduces a strategy to reinvigorate NK cell-mediated anti-tumor responses to overcome treatment resistance to existing cell-surface targeted therapies for skin lymphoma.
Collapse
Affiliation(s)
- Yun-Tsan Chang
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Pacôme Prompsy
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Susanne Kimeswenger
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Yi-Chien Tsai
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Olesya Pavlova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christoph Iselin
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lars E French
- Department of Dermatology and Allergology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Steve Pascolo
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Wolfram Hoetzenecker
- Department of Dermatology and Venerology, Medical Faculty, Johannes Kepler University, Linz, Austria.
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Dermatology, University Hospital of Zurich and Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, Hospital 12 de Octubre, Medical School, University Complutense, Madrid, Spain.
| |
Collapse
|
26
|
Ren J, Liao X, Lewis JM, Chang J, Qu R, Carlson KR, Foss F, Girardi M. Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-Vβ2+ T cell malignancy. Nat Commun 2024; 15:519. [PMID: 38225288 PMCID: PMC10789731 DOI: 10.1038/s41467-024-44786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Current treatments for T cell malignancies encounter issues of disease relapse and off-target toxicity. Using T cell receptor (TCR)Vβ2 as a model, here we demonstrate the rapid generation of an off-the-shelf allogeneic chimeric antigen receptor (CAR)-T platform targeting the clone-specific TCR Vβ chain for malignant T cell killing while limiting normal cell destruction. Healthy donor T cells undergo CRISPR-induced TRAC, B2M and CIITA knockout to eliminate T cell-dependent graft-versus-host and host-versus-graft reactivity. Second generation 4-1BB/CD3zeta CAR containing high affinity humanized anti-Vβ scFv is expressed efficiently on donor T cells via both lentivirus and adeno-associated virus transduction with limited detectable pre-existing immunoreactivity. Our optimized CAR-T cells demonstrate specific and persistent killing of Vβ2+ Jurkat cells and Vβ2+ patient derived malignant T cells, in vitro and in vivo, without affecting normal T cells. In parallel, we generate humanized anti-Vβ2 antibody with enhanced antibody-dependent cellular cytotoxicity (ADCC) by Fc-engineering for NK cell ADCC therapy.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Xiaofeng Liao
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- The Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Francine Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Mandel J, Gleason L, Joffe D, Bhatti S, Nikbakht N. Immunosequencing applications in cutaneous T-cell lymphoma. Front Immunol 2023; 14:1300061. [PMID: 38213330 PMCID: PMC10783977 DOI: 10.3389/fimmu.2023.1300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Immunosequencing has emerged as a newer clinical test for assessment of T-cell clonality in the blood and skin of cutaneous T-cell lymphoma (CTCL) patients. Utilization of immunosequencing, also known as high-throughput sequencing of the T-cell receptor (HTS-TCR), enables identification and quantification of the precise genetic signature of dominant T-cell clones. Although immunosequencing is more sensitive than commonly used methods such as polymerase chain reaction (PCR) paired with capillary electrophoresis or flow cytometry, it remains underutilized for CTCL management. Nonetheless, incorporation of HTS-TCR in clinical practice offers distinct advantages compared to other molecular analyses that may improve diagnostic evaluation, prognostication, and disease monitoring in CTCL. The objective of this comprehensive review is to provide a thorough explanation of the application of immunosequencing in the context of CTCL. We describe the significance of T-cell clonality and the methods used to detect it, including a detailed comparison between PCR paired with capillary electrophoresis and HTS-TCR. The utilization of immunosequencing in the blood and skin of CTCL patients is discussed in depth, specifically outlining how HTS-TCR can assist in diagnosing CTCL, predicting outcomes, and tracking disease progression. Finally, we address the potential applications of immunosequencing in clinical management and research as well as the novel challenges it presents.
Collapse
Affiliation(s)
| | | | | | | | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Bhatti S, Joffe D, Banner L, Talasila S, Mandel J, Lee J, Porcu P, Nikbakht N. Utility of T-cell immunosequencing in distinguishing mycosis fungoides progression from treatment related cutaneous adverse events. Front Med (Lausanne) 2023; 10:1243459. [PMID: 38164221 PMCID: PMC10758200 DOI: 10.3389/fmed.2023.1243459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/19/2023] [Indexed: 01/03/2024] Open
Abstract
Cutaneous adverse events of both topical and systemic drugs in patients with mycosis fungoides (MF) present a diagnostic challenge as it is often difficult to distinguish drug associated rash from disease progression in the skin. Mogamulizumab and mechlorethamine gel are approved treatments for MF, both of which can cause treatment related cutaneous adverse events. It can often be challenging to distinguish mogamulizumab associated rash (MAR) and mechlorethamine gel associated hypersensitivity dermatitis from MF progression both clinically and histologically. High-throughput sequencing (HTS) of the T-cell receptor (TCR), also known as immunosequencing, can be used to assess T-cell clonality to support a diagnosis of MF. After identification of the malignant TCR clone at baseline, immunosequencing can track the established malignant TCR sequence and its frequency over time with high sensitivity. As a result, immunosequencing clone tracking can aid in distinguishing disease progression from treatment side effects. Here, we present a case series to demonstrate how monitoring of the malignant T-cell frequency by immunosequencing can aid in diagnosis of mogamulizumab and mechlorethamine gel cutaneous adverse events.
Collapse
Affiliation(s)
- Safiyyah Bhatti
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Hematology and Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Joffe
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Lauren Banner
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jenna Mandel
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jason Lee
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Department of Hematology and Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
29
|
Gleason L, Talasila S, Tekmen V, Nikbakht N. Reduced Skin T-Cell Receptor Diversity in Large Cell Transformed Mycosis Fungoides. J Invest Dermatol 2023; 143:2318-2322.e4. [PMID: 37127182 PMCID: PMC10592559 DOI: 10.1016/j.jid.2023.03.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/26/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Laura Gleason
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sahithi Talasila
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Volkan Tekmen
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Neda Nikbakht
- Department of Dermatology & Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
30
|
Roenneberg S, Braun SA, Garzorz-Stark N, Stark SP, Muresan AM, Schmidle P, Biedermann T, Guenova E, Eyerich K. Histology-based classifier to distinguish early mycosis fungoides from atopic dermatitis. J Eur Acad Dermatol Venereol 2023; 37:2284-2292. [PMID: 37422709 DOI: 10.1111/jdv.19325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Histopathological differentiation of early mycosis fungoides (MF) from benign chronic inflammatory dermatoses remains difficult and often impossible, despite the inclusion of all available diagnostic parameters. OBJECTIVE To identify the most impactful histological criteria for a predictive diagnostic model to discriminate MF from atopic dermatitis (AD). METHODS In this multicentre study, two cohorts of patients with either unequivocal AD or MF were evaluated by two independent dermatopathologists. Based on 32 histological attributes, a hypothesis-free prediction model was developed and validated on an independent patient's cohort. RESULTS A reduced set of two histological features (presence of atypical lymphocytes in either epidermis or dermis) was trained. In an independent validation cohort, this model showed high predictive power (95% sensitivity and 100% specificity) to differentiate MF from AD and robustness against inter-individual investigator differences. LIMITATIONS The study investigated a limited number of cases and the classifier is based on subjectively evaluated histological criteria. CONCLUSION Aiming at distinguishing early MF from AD, the proposed binary classifier performed well in an independent cohort and across observers. Combining this histological classifier with immunohistochemical and/or molecular techniques (such as clonality analysis or molecular classifiers) could further promote differentiation of early MF and AD.
Collapse
Affiliation(s)
- Sophie Roenneberg
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Stephan Alexander Braun
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
- Department of Dermatology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Natalie Garzorz-Stark
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Paul Stark
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Ana-Maria Muresan
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Paul Schmidle
- Department of Dermatology, University Hospital Muenster, Muenster, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Emmanuella Guenova
- Dermatology Department, University Hospital Zurich and Medical Faculty, University of Zurich, Zurich, Switzerland
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kilian Eyerich
- Department of Dermatology and Venerology, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Joffe D, Bhatti S, Banner L, Zaya R, Gleason L, Mishra A, Kirsch I, Porcu P, Nikbakht N. The overlap of skin and blood T-cell clones in early-stage mycosis fungoides. Blood Adv 2023; 7:6206-6210. [PMID: 37611154 PMCID: PMC10582838 DOI: 10.1182/bloodadvances.2023010867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Daniel Joffe
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Safiyyah Bhatti
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Lauren Banner
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Romsin Zaya
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Laura Gleason
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| | - Anjali Mishra
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | | | - Pierluigi Porcu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
32
|
Saleh JS, Subtil A, Hristov AC. Primary cutaneous T-cell lymphoma: a review of the most common entities with focus on recent updates. Hum Pathol 2023; 140:75-100. [PMID: 37802757 DOI: 10.1016/j.humpath.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 10/08/2023]
Abstract
Cutaneous T-cell lymphomas are an heterogeneous group of uncommon lymphoid neoplasms that are challenging to diagnose and require close collaboration between dermatologists, pathologists and hematologists/oncologists. This article reviews the most common cutaneous T-cell lymphomas: mycosis fungoides (both classic and variant forms) as well as its leukemic counterpart Sézary syndrome, CD30+ T-cell lymphoproliferative disorders including the ever-expanding group of lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma, and primary cutaneous CD4+ small/medium lymphoproliferative disorder. We discuss the classic clinical and histopathologic features of these lymphomas and review how they can be distinguished from reactive entities. In particularly, updates to these diagnostic categories and current controversies in classification are highlighted. Moreover, we review the prognosis and treatment for each entity. These lymphomas exhibit variable prognosis, and therefore it is important to correctly classify atypical cutaneous T-cell infiltrates for appropriate patient treatment and prognosis. Cutaneous T-cell lymphomas are at the interface of several medical specialties; this review seeks to summarize key features of these lymphomas and highlight new and emerging insights into these lymphomas.
Collapse
Affiliation(s)
- Jasmine S Saleh
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Subtil
- Department of Pathology, Royal Jubilee Hospital, University of British Columbia, Victoria, British Columbia, V8R1J8, Canada
| | - Alexandra C Hristov
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
33
|
Knaneh J, Hodak E, Fedida-Metula S, Edri A, Eren R, Yoffe Y, Amitay-Laish I, Prag Naveh H, Lubin I, Porgador A, Moyal L. mAb14, a Monoclonal Antibody against Cell Surface PCNA: A Potential Tool for Sezary Syndrome Diagnosis and Targeted Immunotherapy. Cancers (Basel) 2023; 15:4421. [PMID: 37686697 PMCID: PMC10486495 DOI: 10.3390/cancers15174421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of primary cutaneous T-cell lymphoma (CTCL). Proliferating cell nuclear antigen (PCNA) is expressed on the cell surface of cancer cells (csPCNA), but not on normal cells. It functions as an immune checkpoint ligand by interacting with natural killer (NK) cells through the NK inhibitory receptor NKp44, leading to the inhibition of NK cytotoxicity. A monoclonal antibody (mAb14) was established to detect csPCNA on cancer cells and block their interaction with NKp44. In this study, three CTCL cell lines and peripheral blood mononuclear cells (PBMCs) from patients with SS and healthy donors were analyzed for csPCNA using mAb14, compared to monoclonal antibody PC10, against nuclear PCNA (nPCNA). The following assays were used: immunostaining, imaging flow cytometry, flow cytometry, cell sorting, cell cycle analysis, ELISA, and the NK-cell cytotoxic assay. mAb14 successfully detected PCNA on the membrane and in the cytoplasm of viable CTCL cell lines associated with the G2/M phase. In the Sézary PBMCs, csPCNA was expressed on lymphoma cells that had an atypical morphology and not on normal cells. Furthermore, it was not expressed on PBMCs from healthy donors. In the co-culture of peripheral blood NK (pNK) cells with CTCL lines, mAb14 increased the secretion of IFN-γ, indicating the reactivation of pNK activity. However, mAb14 did not enhance the cytotoxic activity of pNK cells against CTCL cell lines. The unique expression of csPCNA detected by mAb14 suggests that csPCNA and mAb14 may serve as a potential biomarker and tool, respectively, for detecting malignant cells in SS and possibly other CTCL variants.
Collapse
Affiliation(s)
- Jamal Knaneh
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
| | - Emmilia Hodak
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| | | | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410101, Israel; (A.E.); (A.P.)
| | - Rachel Eren
- PiNK Biopharma Ltd., Ness Ziona 7403648, Israel; (S.F.-M.); (Y.Y.)
| | - Yael Yoffe
- PiNK Biopharma Ltd., Ness Ziona 7403648, Israel; (S.F.-M.); (Y.Y.)
| | - Iris Amitay-Laish
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Division of Dermatology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Hadas Prag Naveh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Division of Dermatology, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ido Lubin
- Core Facility, Felsenstein Medical Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410101, Israel; (A.E.); (A.P.)
- National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva 8410101, Israel
| | - Lilach Moyal
- Laboratory for Molecular Dermatology, Felsenstein Medical Research Center, Tel Aviv 6997801, Israel; (J.K.); (E.H.)
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (I.A.-L.); (H.P.N.)
- Davidoff Cancer Center, Rabin Medical Center, Petach Tikva 4941492, Israel
| |
Collapse
|
34
|
Kosche C, Jaishankar D, Cosgrove C, Ramesh P, Hong S, Li L, Shivde RS, Bhuva D, White BEP, Munir SS, Zhang H, Lu KQ, Choi JN, Le Poole IC. Skin Infiltrate Composition as a Telling Measure of Responses to Checkpoint Inhibitors. JID INNOVATIONS 2023; 3:100190. [PMID: 37554516 PMCID: PMC10405096 DOI: 10.1016/j.xjidi.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Checkpoint inhibitors treat a variety of tumor types with significant benefits. Unfortunately, these therapies come with diverse adverse events. Skin rash is observed early into treatment and might serve as an indicator of downstream responses to therapy. We studied the cellular composition of cutaneous eruptions and whether their contribution varies with the treatment applied. Skin samples from 18 patients with cancer and 11 controls were evaluated by mono- and multiplex imaging, quantification, and statistical analysis. T cells were the prime contributors to skin rash, with T cells and macrophages interacting and proliferating on site. Among T cell subsets examined, type 1 and 17 T cells were relatively increased among inflammatory skin infiltrates. A combination of increased cytotoxic T cell content and decreased macrophage abundance was associated with dual checkpoint inhibition over PD1 inhibition alone. Importantly, responders significantly separated from nonresponders by greater CD68+ macrophage and either CD11c+ antigen-presenting cell or CD4+ T cell abundance in skin rash. The microenvironment promoted epidermal proliferation and thickening as well. The combination of checkpoint inhibitors used affects the development and composition of skin infiltrates, whereas the combined abundance of two cell types in cutaneous eruptions aligns with responses to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Cory Kosche
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dinesh Jaishankar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Prathyaya Ramesh
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Suyeon Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Li
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rohan S. Shivde
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Deven Bhuva
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bethany E. Perez White
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabah S. Munir
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kurt Q. Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer N. Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
35
|
Lefebvre MN, Borcherding N, Reis RJ, Mou E, Liu V, Jabbari A. Molecular techniques drive cutting edge advancements in management of cutaneous T cell lymphoma. Front Immunol 2023; 14:1228563. [PMID: 37654486 PMCID: PMC10465366 DOI: 10.3389/fimmu.2023.1228563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Cutaneous 5T cell lymphoma (CTCL), characterized by malignant T cells infiltrating the skin with potential for dissemination, remains a challenging disease to diagnose and treat due to disease heterogeneity, treatment resistance, and lack of effective and standardized diagnostic and prognostic clinical tools. Currently, diagnosis of CTCL practically relies on clinical presentation, histopathology, and immunohistochemistry. These methods are collectively fraught with limitations in sensitivity and specificity. Fortunately, recent advances in flow cytometry, polymerase chain reaction, high throughput sequencing, and other molecular techniques have shown promise in improving diagnosis and treatment of CTCL. Examples of these advances include T cell receptor clonotyping via sequencing to detect CTCL earlier in the disease course and single-cell RNA sequencing to identify gene expression patterns that commonly drive CTCL pathogenesis. Experience with these techniques has afforded novel insights which may translate into enhanced diagnostic and therapeutic approaches for CTCL.
Collapse
Affiliation(s)
- Mitchell N. Lefebvre
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Dermatology, University of Iowa, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan J. Reis
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Cancer Biology Graduate Program, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Eric Mou
- Department of Hematology and Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Vincent Liu
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Ali Jabbari
- University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City Veterans Affairs Medical Center, Iowa City, IA, United States
| |
Collapse
|
36
|
Saleh JS, Subtil A, Hristov AC. Primary cutaneous T-cell lymphoma: a review of the most common entities with focus on recent updates. Hum Pathol 2023; 138:76-102. [PMID: 37307932 DOI: 10.1016/j.humpath.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Cutaneous T-cell lymphomas are an heterogeneous group of uncommon lymphoid neoplasms that are challenging to diagnose and require close collaboration between dermatologists, pathologists and hematologists/oncologists. This article reviews the most common cutaneous T-cell lymphomas: mycosis fungoides (both classic and variant forms) as well as its leukemic counterpart Sézary syndrome, CD30+ T-cell lymphoproliferative disorders including the ever-expanding group of lymphomatoid papulosis and primary cutaneous anaplastic large cell lymphoma, and primary cutaneous CD4+ small/medium lymphoproliferative disorder. We discuss the classic clinical and histopathologic features of these lymphomas and review how they can be distinguished from reactive entities. In particularly, updates to these diagnostic categories and current controversies in classification are highlighted. Moreover, we review the prognosis and treatment for each entity. These lymphomas exhibit variable prognosis, and therefore it is important to correctly classify atypical cutaneous T-cell infiltrates for appropriate patient treatment and prognosis. Cutaneous T-cell lymphomas are at the interface of several medical specialties; this review seeks to summarize key features of these lymphomas and highlight new and emerging insights into these lymphomas.
Collapse
Affiliation(s)
- Jasmine S Saleh
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Antonio Subtil
- Department of Pathology, Royal Jubilee Hospital, University of British Columbia, Victoria, British Columbia, V8R1J8, Canada
| | - Alexandra C Hristov
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Strobl J, Haniffa M. Functional heterogeneity of human skin-resident memory T cells in health and disease. Immunol Rev 2023; 316:104-119. [PMID: 37144705 PMCID: PMC10952320 DOI: 10.1111/imr.13213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/06/2023]
Abstract
The human skin is populated by a diverse pool of memory T cells, which can act rapidly in response to pathogens and cancer antigens. Tissue-resident memory T cells (TRM ) have been implicated in range of allergic, autoimmune and inflammatory skin diseases. Clonal expansion of cells with TRM properties is also known to contribute to cutaneous T-cell lymphoma. Here, we review the heterogeneous phenotypes, transcriptional programs, and effector functions of skin TRM . We summarize recent studies on TRM formation, longevity, plasticity, and retrograde migration and contextualize the findings to skin TRM and their role in maintaining skin homeostasis and altered functions in skin disease.
Collapse
Affiliation(s)
- Johanna Strobl
- Department of DermatologyMedical University of ViennaViennaAustria
- CeMM Research Center for Molecular MedicineViennaAustria
| | - Muzlifah Haniffa
- Wellcome Sanger InstituteCambridgeUK
- Department of Dermatology and NIHR Newcastle Biomedical Research CentreNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
- Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
38
|
Hey S, Whyte D, Hoang MC, Le N, Natvig J, Wingfield C, Onyeama C, Howrylak J, Toby IT. Analysis of CDR3 Sequences from T-Cell Receptor β in Acute Respiratory Distress Syndrome. Biomolecules 2023; 13:biom13050825. [PMID: 37238695 DOI: 10.3390/biom13050825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an illness that typically develops in people who are significantly ill or have serious injuries. ARDS is characterized by fluid build-up that occurs in the alveoli. T-cells are implicated as playing a role in the modulation of the aberrant response leading to excessive tissue damage and, eventually, ARDS. Complementarity Determining Region 3 (CDR3) sequences derived from T-cells are key players in the adaptive immune response. This response is governed by an elaborate specificity for distinct molecules and the ability to recognize and vigorously respond to repeated exposures to the same molecules. Most of the diversity in T-cell receptors (TCRs) is contained in the CDR3 regions of the heterodimeric cell-surface receptors. For this study, we employed the novel technology of immune sequencing to assess lung edema fluid. Our goal was to explore the landscape of CDR3 clonal sequences found within these samples. We obtained more than 3615 CDR3 sequences across samples in the study. Our data demonstrate that: (1) CDR3 sequences from lung edema fluid exhibit distinct clonal populations, and (2) CDR3 sequences can be further characterized based on biochemical features. Analysis of these CDR3 sequences offers insight into the CDR3-driven T-cell repertoire of ARDS. These findings represent the first step towards applications of this technology with these types of biological samples in the context of ARDS.
Collapse
Affiliation(s)
- Sara Hey
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Dayjah Whyte
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Minh-Chau Hoang
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Nick Le
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Joseph Natvig
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | - Claire Wingfield
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| | | | - Judie Howrylak
- Pulmonary, Allergy and Critical Care Division, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Inimary T Toby
- Department of Biology, University of Dallas, Irving, TX 75062, USA
| |
Collapse
|
39
|
Povlsen HR, Bentzen AK, Kadivar M, Jessen LE, Hadrup SR, Nielsen M. Improved T cell receptor antigen pairing through data-driven filtering of sequencing information from single cells. eLife 2023; 12:e81810. [PMID: 37133356 PMCID: PMC10156162 DOI: 10.7554/elife.81810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/13/2023] [Indexed: 05/04/2023] Open
Abstract
Novel single-cell-based technologies hold the promise of matching T cell receptor (TCR) sequences with their cognate peptide-MHC recognition motif in a high-throughput manner. Parallel capture of TCR transcripts and peptide-MHC is enabled through the use of reagents labeled with DNA barcodes. However, analysis and annotation of such single-cell sequencing (SCseq) data are challenged by dropout, random noise, and other technical artifacts that must be carefully handled in the downstream processing steps. We here propose a rational, data-driven method termed ITRAP (improved T cell Receptor Antigen Paring) to deal with these challenges, filtering away likely artifacts, and enable the generation of large sets of TCR-pMHC sequence data with a high degree of specificity and sensitivity, thus outputting the most likely pMHC target per T cell. We have validated this approach across 10 different virus-specific T cell responses in 16 healthy donors. Across these samples, we have identified up to 1494 high-confident TCR-pMHC pairs derived from 4135 single cells.
Collapse
Affiliation(s)
- Helle Rus Povlsen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Amalie Kai Bentzen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Mohammad Kadivar
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Leon Eyrich Jessen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Sine Reker Hadrup
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| | - Morten Nielsen
- Department of Health Technology at Technical University of DenmarkKongens LyngbyDenmark
| |
Collapse
|
40
|
Schaefer L, Comfere N, Sokumbi O. Development of Cutaneous T-Cell Lymphoma Following Biologic Treatment: A Systematic Review. Am J Clin Dermatol 2023; 24:153-164. [PMID: 36627479 DOI: 10.1007/s40257-022-00749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cutaneous T-cell lymphoma following biologic therapy is extremely rare. OBJECTIVE The aim of this systematic review was to investigate the development of cutaneous T-cell lymphoma (CTCL) following treatment with a biologic agent. METHODS A systematic literature review was performed for patients who developed CTCL after exposure to biologic therapy. Works were limited to English language and excluded animal studies, guidelines, and protocols. Potentially eligible titles were identified using controlled vocabulary in tandem with key words. The search strategy was peer-reviewed prior to execution. RESULTS Twenty-eight total studies revealed sixty-two patients who developed CTCL following exposure to a biologic agent. Of these, 44% were Caucasian, and the median age at diagnosis was 56 years. Seventy-six percent of patients received biologic therapy for a primary inflammatory skin condition. Dupilumab was the most reported (42%) agent amongst the cohort. The median time from initiation of the biologic agent to diagnosis of CTCL in these cases was 4 months (range: 0-84). Mycosis fungoides (65%) and Sézary syndrome (10%) were the most common subtypes of CTCL diagnosed. Twenty-one (34%) patients were reported to be alive with disease, outcome was not reported in 21 patients (34%), ten patients (16%) were alive and in complete remission, eight patients (13%) died of disease and two patients (3%) died due to other causes. CONCLUSION While biologic agents may have a role in the development of CTCL, in order to definitively elucidate their role, more methodologically robust studies (such as those that utilize population databases) would need to occur.
Collapse
Affiliation(s)
| | - Nneka Comfere
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA.,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Olayemi Sokumbi
- Department of Dermatology, Mayo Clinic, Jacksonville, FL, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
41
|
Vitiello P, Sagnelli C, Ronchi A, Franco R, Caccavale S, Mottola M, Pastore F, Argenziano G, Creta M, Calogero A, Fiorelli A, Casale B, Sica A. Multidisciplinary Approach to the Diagnosis and Therapy of Mycosis Fungoides. Healthcare (Basel) 2023; 11:614. [PMID: 36833148 PMCID: PMC9957453 DOI: 10.3390/healthcare11040614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Mycosis fungoides is the most common primary cutaneous T-cell lymphoma, characterized by skin-homing CD4+ T cells derivation, indolent course, and low-grade of malignancy. Mycosis fungoides's classic type typically onsets with cutaneous erythematous patches, plaque, and tumor. In WHO-EORTC classification, folliculotropic mycosis fungoides, pagetoid reticulosis, and granulomatous slack skin are recognized as distinct variants of mycosis fungoides, because of their clinical and histological features, behavior, and /or prognosis. Mycosis fungoides often shows diagnostic difficulties, due to its absence of specific features and lesional polymorphism. A patient's treatment requires staging. In about 10% of cases, mycosis fungoides can progress to lymph nodes and internal organs. Prognosis is poor at advanced stage and management needs a multidisciplinary team approach. Advanced stage disease including tumors, erythroderma, and nodal, visceral, or blood involvement needs skin directed therapy associated with systemic drugs. Skin directed therapy includes steroids, nitrogen mustard, bexarotene gel, phototherapy UVB, and photochemiotherapy, i.e., total skin electron radiotherapy. Systemic therapies include retinoids, bexarotene, interferon, histone deacetylase inhibitors, photopheresis, targeted immunotherapy, and cytotoxic chemotherapy. Complexity of mycosis fungoides associated with long-term chronic evolution and multiple therapy based on disease stage need a multidisciplinary team approach to be treated.
Collapse
Affiliation(s)
- Paola Vitiello
- Dermatology Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Stefano Caccavale
- Dermatology Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Maria Mottola
- Department of Heart Surgery and Transplantations, AORN Dei Colli-V Monaldi, 80131 Naples, Italy
| | | | - Giuseppe Argenziano
- Dermatology Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Massimiliano Creta
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Armando Calogero
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Beniamino Casale
- Department of Pneumology and Tisiology, AO Dei Colli-V. Monaldi, 80131 Naples, Italy
| | - Antonello Sica
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
42
|
Ren J, Qu R, Rahman NT, Lewis JM, King ALO, Liao X, Mirza FN, Carlson KR, Huang Y, Gigante S, Evans B, Rajendran BK, Xu S, Wang G, Foss FM, Damsky W, Kluger Y, Krishnaswamy S, Girardi M. Integrated transcriptome and trajectory analysis of cutaneous T-cell lymphoma identifies putative precancer populations. Blood Adv 2023; 7:445-457. [PMID: 35947128 PMCID: PMC9979716 DOI: 10.1182/bloodadvances.2022008168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of cutaneous T-cell lymphoma (CTCL) increases with age, and blood involvement portends a worse prognosis. To advance our understanding of the development of CTCL and identify potential therapeutic targets, we performed integrative analyses of paired single-cell RNA and T-cell receptor (TCR) sequencing of peripheral blood CD4+ T cells from patients with CTCL to reveal disease-unifying features. The malignant CD4+ T cells of CTCL showed highly diverse transcriptomic profiles across patients, with most displaying a mature Th2 differentiation and T-cell exhaustion phenotype. TCR-CDR3 peptide prediction analysis suggested limited diversity between CTCL samples, consistent with a role for a common antigenic stimulus. Potential of heat diffusion for affinity-based trajectory embedding transition analysis identified putative precancerous circulating populations characterized by an intermediate stage of gene expression and mutation level between the normal CD4+ T cells and malignant CTCL cells. We further revealed the therapeutic potential of targeting CD82 and JAK that endow the malignant CTCL cells with survival and proliferation advantages.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Nur-Taz Rahman
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT
| | - Julia M. Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | | | - Xiaofeng Liao
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT
| | - Fatima N. Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Kacie R. Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Yaqing Huang
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Scott Gigante
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT
| | - Benjamin Evans
- Yale Center for Research Computing, Yale University, New Haven, CT
| | | | - Suzanne Xu
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT
| | - Francine M. Foss
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT
- Correspondence: Michael Girardi, Department of Dermatology, Yale University School of Medicine, 333 Cedar St, PO Box 208059, New Haven, CT 06520;
| |
Collapse
|
43
|
Borcherding N, Severson KJ, Henderson N, Ortolan LS, Rosenthal AC, Bellizzi AM, Liu V, Link BK, Mangold AR, Jabbari A. Single-cell analysis of Sézary syndrome reveals novel markers and shifting gene profiles associated with treatment. Blood Adv 2023; 7:321-335. [PMID: 35390145 PMCID: PMC9881051 DOI: 10.1182/bloodadvances.2021005991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/08/2022] [Accepted: 03/10/2022] [Indexed: 02/02/2023] Open
Abstract
Cutaneous T-cell lymphomas (CTCLs) are a spectrum of diseases with varied clinical courses caused by malignant clonal proliferation of skin-tropic T cells. Most patients have an indolent disease course managed with skin-directed therapies. In contrast, others, especially in advanced stages of disease or with specific forms, have aggressive progression and poor median survival. Sézary syndrome (SS), a leukemic variant of CTCL, lacks highly consistent phenotypic and genetic markers that may be leveraged to prevent the delay in diagnosis experienced by most patients with CTCL and could be useful for optimal treatment selection. Using single-cell mRNA and T-cell receptor sequencing of peripheral blood immune cells in SS, we extensively mapped the transcriptomic variations of nearly 50 000 T cells of both malignant and nonmalignant origins. We identified potential diverging SS cell populations, including quiescent and proliferative populations shared across multiple patients. In particular, the expression of AIRE was the most highly upregulated gene in our analysis, and AIRE protein expression could be observed over a variety of CTCLs. Furthermore, within a single patient, we were able to characterize differences in cell populations by comparing malignant T cells over the course of treatment with histone deacetylase inhibition and photopheresis. New cellular clusters after progression of the therapy notably exhibited increased expression of the transcriptional factor FOXP3, a master regulator of regulatory T-cell function, raising the potential implication of an evolving mechanism of immune evasion.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology, University of Iowa, Iowa City, IA
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | | | | | - Luana S. Ortolan
- Department of Dermatology, University of Iowa, Iowa City, IA
- Seattle Children’s Research Institute, Seattle, WA
| | | | | | - Vincent Liu
- Department of Pathology, University of Iowa, Iowa City, IA
- Department of Dermatology, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Brian K. Link
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | | | - Ali Jabbari
- Department of Pathology, University of Iowa, Iowa City, IA
- Department of Dermatology, University of Iowa, Iowa City, IA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA
| |
Collapse
|
44
|
Rassek K, Iżykowska K, Żurawek M, Nowicka K, Joks M, Olek-Hrab K, Olszewska B, Sokołowska-Wojdyło M, Biernat W, Nowicki RJ, Przybylski GK. TMEM244 Gene Expression as a Potential Blood Diagnostic Marker Distinguishing Sézary Syndrome from Mycosis Fungoides and Benign Erythroderma. J Invest Dermatol 2023; 143:344-347.e3. [PMID: 36087622 DOI: 10.1016/j.jid.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Karina Nowicka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Monika Joks
- Department of Hematology and Marrow Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Olek-Hrab
- Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Berenika Olszewska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Biernat
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
45
|
Zhang B, Roesner LM, Traidl S, Koeken VACM, Xu CJ, Werfel T, Li Y. Single-cell profiles reveal distinctive immune response in atopic dermatitis in contrast to psoriasis. Allergy 2023; 78:439-453. [PMID: 35986602 DOI: 10.1111/all.15486] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Understanding the complex orchestrated inflammation in atopic dermatitis (AD), one of the most common chronic inflammatory diseases worldwide, is essential for therapeutic approaches. However, a comparative analysis on the single-cell level of the inflammation signatures correlated with the severity is missing so far. METHODS We applied single-cell RNA and T-cell receptor (TCR) sequencing on immune cells enriched from skin biopsies and matched blood samples of AD in comparison with psoriasis (PS) patients. RESULTS Clonally propagated skin-derived T cells showed disease-specific TCR motifs shared between patients which was more pronounced in PS compared to AD. The disease-specific T-cell clusters were mostly of a Th2/Th22 sub-population in AD and Th17/Tc17 in PS, and their numbers were associated with severity scores in both diseases. Herein, we provide for the first time a list that associates cell type-specific gene expression with the severity of the two most common chronic inflammatory skin diseases. Investigating the cell signatures in the patients´ PBMCs and skin stromal cells, a systemic involvement of type-3 inflammation was clearly detectable in PS circulating cells, while in AD inflammatory signatures were most pronounced in fibroblasts, pericytes, and keratinocytes. Compositional and functional analyses of myeloid cells revealed the activation of antiviral responses in macrophages in association with disease severity in both diseases. CONCLUSION Different disease-driving cell types and subtypes which contribute to the hallmarks of type-2 and type-3 inflammatory signatures and are associated with disease activities could be identified by single-cell RNA-seq and TCR-seq in AD and PS.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Valerie A C M Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Werfel
- Department of Dermatology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Yang Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI), Hannover Medical School (MHH), Hannover, Germany.,TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Peiffer L, Gambichler T, Buus TB, Horny K, Gravemeyer J, Furtmann F, Spassova I, Kubat L, Susok L, Stranzenbach R, Srinivas N, Ødum N, Becker JC. Phenotypic plasticity of malignant T cells in blood and skin of a Sézary syndrome patient revealed by single cell transcriptomics. Front Oncol 2023; 13:1090592. [PMID: 36761972 PMCID: PMC9905421 DOI: 10.3389/fonc.2023.1090592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Background Sézary Syndrome (SS) is an aggressive leukemic variant of cutaneous T-cell lymphomas (CTCL). In SS patients, malignant T cells are circulating through the blood and cause erythroderma. Objective To compare the transcriptome of single cells in blood and skin samples from a patient with advanced SS. Methods We utilized combined single cell RNA and T-cell receptor (TCR) sequencing (scRNA-seq). Results We scrutinized the malignant T cells in blood and skin in an unbiased manner without pre-sorting of cells. We observed different phenotypes of the same monoclonal malignant T-cell population, confirmed by TCR sequencing and inferred copy number variation analysis. Malignant T cells present in the circulating blood expressed genes resembling central memory T cells such as CCR7, IL7R and CD27. In the skin, we detected two major malignant T-cell populations: One subpopulation was closely related to the malignant T cells from the blood, while the other subpopulation expressed genes reminiscent of skin resident effector memory T cells including GZMB and NKG7. Pseudotime analysis indicated crucial transcriptomic changes in the transition of malignant T cells between blood and skin. These changes included the differential regulation of TXNIP, a putative tumor suppressor in CTCL, and the adaptation to the hypoxic conditions in the skin. Tumor cell proliferation in the skin was supported by stimulating interactions between myeloid cells and malignant T cells. Conclusions Using scRNA-seq we detected a high degree of functional heterogeneity within the malignant T-cell population in SS and highlighted crucial differences between SS cells in blood and skin.
Collapse
Affiliation(s)
- Lukas Peiffer
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany,*Correspondence: Thilo Gambichler,
| | - Terkild B. Buus
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kai Horny
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Frauke Furtmann
- Department of Dermatology, University of Essen, Essen, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Department of Dermatology, University of Essen, Essen, Germany
| | - Linda Kubat
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Department of Dermatology, University of Essen, Essen, Germany
| | - Laura Susok
- Skin Cancer Center, Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany
| | - René Stranzenbach
- Skin Cancer Center, Department of Dermatology, Venereology, and Allergology, Ruhr-University, Bochum, Germany
| | - Nalini Srinivas
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Niels Ødum
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen C. Becker
- Translational Skin Cancer Research, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Essen, Germany,Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany,Department of Dermatology, University of Essen, Essen, Germany
| |
Collapse
|
47
|
Stadler R, Hain C. [New insights into the pathogenesis and molecular understanding of cutaneous T-cell lymphomas]. DERMATOLOGIE (HEIDELBERG, GERMANY) 2022; 73:765-771. [PMID: 35960311 DOI: 10.1007/s00105-022-05047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The pathogenesis of cutaneous T‑cell lymphomas (CTCL) is still an enigma. Therefore, extensive translational research efforts have been undertaken in recent years to gain further clinical and molecular insights. There is increasing evidence that the different clinical appearance of the CTCL subtypes derives from the assumption that they develop from different skin subpopulations of T cells. Detection and quantification of the malignant T‑cell clones is crucial for the diagnosis and prognosis of CTCL. Numerous recurrent mutant cellular signalling pathways have been found in recent years. This includes the JAK-STAT, NFκB, T‑cell receptor and MAP kinase signalling pathways, as well as cell cycle control and epigenetics. The most recent analyses imply a tumour evolution model with initial copy number variation, like amplification or deletions of specific DNA fragments (CNVs) and only subsequent later single nucleotide variations (SNVs). The crucial question, however, is which CNVs are sufficient to initiate general tumourigenesis? The challenge is to identify possible driver genes. Increasing molecular understanding in CTCL will include new breakthrough therapeutic options in the near future.
Collapse
Affiliation(s)
- Rudolf Stadler
- Universitätsklinik für Dermatologie, Johannes Wesling Klinikum Minden, UK RUB, Hans-Nolte-Str. 1, 32429, Minden, Deutschland.
| | - Carsten Hain
- Zentrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Deutschland
| |
Collapse
|
48
|
Ji F, Chen L, Chen Z, Luo B, Wang Y, Lan X. TCR repertoire and transcriptional signatures of circulating tumour-associated T cells facilitate effective non-invasive cancer detection. Clin Transl Med 2022; 12:e853. [PMID: 36134717 PMCID: PMC9494610 DOI: 10.1002/ctm2.853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Fansen Ji
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Lin Chen
- School of Medicine, Tsinghua University, Beijing, China.,General Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhizhuo Chen
- School of Life Science, Tsinghua University, Beijing, China
| | - Bin Luo
- General Surgery Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yongwang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xun Lan
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Tsinghua University, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Roesner LM, Farag AK, Pospich R, Traidl S, Werfel T. T-cell receptor sequencing specifies psoriasis as a systemic and atopic dermatitis as a skin-focused, allergen-driven disease. Allergy 2022; 77:2737-2747. [PMID: 35255168 DOI: 10.1111/all.15272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis represent two of the most common inflammatory skin diseases in developed countries. A hallmark of both diseases is T-cell infiltration into the skin. However, it is still not clarified to what extent these infiltrating T cells are antigen-specific skin-homing T cells or unspecific heterogeneous bystander cells. METHODS To elucidate this, T cells from lesional skin and from blood of 9 AD and 10 psoriasis patients were compared by receptor (TCR) sequencing. Therefore, peripheral blood mononuclear cells (PBMC) were cell-sorted according to expression of the cutaneous leukocyte antigen (CLA) into skin-homing (CLA+ ) and non-skin-homing (CLA- ) subfractions. Aeroallergen-specific T-cell lines were grown from AD patients' PBMC in parallel. RESULTS Intra-individual comparison of TCRB CDR3 regions revealed that clonally expanded T cells in skin lesions of both AD and psoriasis patients corresponded to skin-homing circulating T cells. However, in psoriasis patients, these T-cell clones were also detectable to a larger extent among CLA- circulating T cells. Up to 28% of infiltrating cells in AD skin were identified as allergen-specific by overlapping TCR sequences. CONCLUSIONS Our data show that in line with the systemic nature of psoriasis, T-cell clones that infiltrate psoriatic skin lesions do not exclusively possess skin-homing ability and are therefore most probably specific to antigens that are not exclusively expressed or located in the skin. T cells driving AD skin inflammation appear to home nearly exclusively to the skin and are, to a certain extent, specific to aeroallergens.
Collapse
Affiliation(s)
- Lennart M Roesner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ahmed K Farag
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Rebecca Pospich
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
50
|
IL-32 Supports the Survival of Malignant T Cells in Cutaneous T-cell Lymphoma. J Invest Dermatol 2022; 142:2285-2288.e2. [PMID: 35143819 PMCID: PMC9329172 DOI: 10.1016/j.jid.2022.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
|