1
|
Abolfazli S, Karav S, Johnston TP, Sahebkar A. Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. Pharmacol Rep 2025; 77:355-374. [PMID: 39832074 DOI: 10.1007/s43440-025-00694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells. Several therapeutic approaches have been tested to increase the production of NO or some downstream NO signaling pathways. The health benefits of red wine are typically attributed to the polyphenolic phytoalexin, resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in several plant species. Resveratrol has beneficial cardiovascular properties, some of which are mediated through endothelial nitric oxide synthase production (eNOS). Resveratrol promotes NO generation from eNOS through various methods, including upregulation of eNOS expression, activation in the enzymatic activity of eNOS, and reversal of eNOS uncoupling. Additionally, by reducing of oxidative stress, resveratrol inhibits the formation of superoxide and inactivation NO, increasing NO bioavailability. This review discusses the scientific literature on resveratrol's beneficial impact on NO signaling and how this effect improves the function of vascular endothelium.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Balan AI, Scridon A. MicroRNAs in atrial fibrillation - have we discovered the Holy Grail or opened a Pandora's box? Front Pharmacol 2025; 16:1535621. [PMID: 40012622 PMCID: PMC11861496 DOI: 10.3389/fphar.2025.1535621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Atrial fibrillation (AF) causes a heavy socio-economic burden on healthcare systems around the globe. Identification of new preventive, diagnostic, and treatment methods is imperative. In recent years, special attention has been paid to microRNAs (miRNAs) as potential regulators of AF pathogenesis. Through post-transcriptional regulation of genes, miRNAs have been shown to play crucial roles in AF-related structural and electrical atrial remodeling. Altered expression of different miRNAs has been related to proarrhythmic changes in the duration of action potentials and atrial fibrosis. In clinical studies, miRNA changes have been associated with AF, whereas in experimental studies miRNA manipulation has emerged as a potential therapeutic approach. It would appear that, with the advent of miRNAs, we may have found the Holy Grail, and that efficient and personalized AF therapy may be one step away. Yet, the clinical relevance of miRNA evaluation and manipulation remains questionable. Studies have identified numerous miRNAs associated with AF, but none of them have shown sufficient specificity for AF. MicroRNAs are not gene-specific but regulate the expression of a myriad of genes. Cardiac and non-cardiac off-target effects may thus occur following miRNA manipulation. A Pandora's box might thus have opened with the advent of these sophisticated molecules. In this paper, we provide a critical analysis of the clinical and experimental, epidemiological and mechanistic data linking miRNAs to AF, we discuss the most promising miRNA therapeutic approaches, we emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
Affiliation(s)
| | - Alina Scridon
- Physiology Department and Center for Advanced Medical and Pharmaceutical Research, Pharmacy, Science and Technology “George Emil Palade” of Târgu Mureș, University of Medicine, Târgu Mures, Romania
| |
Collapse
|
3
|
Carlström M, Weitzberg E, Lundberg JO. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol Rev 2024; 76:1038-1062. [PMID: 38866562 DOI: 10.1124/pharmrev.124.001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitric oxide (NO) from endothelial NO synthase importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NO synthases (NOS) system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species, which can transfer between proteins, partition into a hydrophobic phase, and directly activate the soluble guanylyl cyclase-cGMP-protein kinase G pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and nonclassical pathways for NO generation in the cardiovascular system and how these can be modulated for therapeutic purposes. SIGNIFICANCE STATEMENT: After four decades of intensive research, questions persist about the transduction and control of nitric oxide (NO) synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Nonclassical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.C., E.W., J.O.L.); and Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden (E.W.)
| |
Collapse
|
4
|
Lang D, Ni H, Medvedev RY, Liu F, Alvarez-Baron CP, Tyan L, Turner DG, Warden A, Morotti S, Schrauth TA, Chanda B, Kamp TJ, Robertson GA, Grandi E, Glukhov AV. Caveolar Compartmentalization of Pacemaker Signaling is Required for Stable Rhythmicity of Sinus Nodal Cells and is Disrupted in Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589457. [PMID: 38659841 PMCID: PMC11042225 DOI: 10.1101/2024.04.14.589457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Heart rhythm relies on complex interactions between electrogenic membrane proteins and intracellular Ca2+ signaling in sinoatrial node (SAN) myocytes; however, mechanisms underlying the functional organization of proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, but the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods Biochemical co-purification, in vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca2+ imaging, and immunofluorescent and electron microscopy analyses were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results In both mouse and human SANs, caveolae compartmentalized HCN4, Cav1.2, Cav1.3, Cav3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca2+ release events (LCRs), which diffuse across ~15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca2+ current, a negative shift of the HCN current (I f) activation curve, and a 40% reduction of Na+/Ca2+-exchanger function, along with ~2.3-times widening of the sarcolemma-SR distance. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially demonstrating a new dimension of SAN remodeling and providing a newly recognized target for therapy.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Roman Y. Medvedev
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Fang Liu
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Leonid Tyan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel G.P. Turner
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleah Warden
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Thomas A. Schrauth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J. Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gail A. Robertson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Alexey V. Glukhov
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Nakashima M, Suga N, Yoshikawa S, Matsuda S. Caveolin and NOS in the Development of Muscular Dystrophy. Int J Mol Sci 2024; 25:8771. [PMID: 39201459 PMCID: PMC11354531 DOI: 10.3390/ijms25168771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/02/2024] Open
Abstract
Caveolin is a structural protein within caveolae that may be involved in transmembrane molecular transport and/or various intercellular interactions within cells. Specific mutations of caveolin-3 in muscle fibers are well known to cause limb-girdle muscular dystrophy. Altered expression of caveolin-3 has also been detected in Duchenne muscular dystrophy, which may be a part of the pathological process leading to muscle weakness. Interestingly, it has been shown that the renovation of nitric oxide synthase (NOS) in sarcolemma with muscular dystrophy could improve muscle health, suggesting that NOS may be involved in the pathology of muscular dystrophy. Here, we summarize the notable function of caveolin and/or NOS in skeletal muscle fibers and discuss their involvement in the pathology as well as possible tactics for the innovative treatment of muscular dystrophies.
Collapse
Affiliation(s)
| | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
6
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
7
|
Miao S, Yang L, Xu T, Liu Z, Zhang Y, Ding L, Ding W, Ao X, Wang J. A novel circPIK3C2A/miR‐31‐5p/TFRC axis drives ferroptosis and accelerates myocardial injury. MedComm (Beijing) 2024; 5:e571. [PMID: 38840772 PMCID: PMC11151151 DOI: 10.1002/mco2.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 06/07/2024] Open
Abstract
Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lanting Yang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Tao Xu
- Central LaboratoryQingdao Agricultural UniversityQingdaoChina
| | - Zhantao Liu
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yixiao Zhang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lin Ding
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- Department of Comprehensive Internal MedicineAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
8
|
Nguyen MN, Hooper C, Stefanini M, Vrellaku B, Carnicer R, Wood MJ, Simon JN, Casadei B. Why is early-onset atrial fibrillation uncommon in patients with Duchenne muscular dystrophy? Insights from the mdx mouse. Cardiovasc Res 2024; 120:519-530. [PMID: 38270932 PMCID: PMC11060487 DOI: 10.1093/cvr/cvae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
AIMS A reduction in both dystrophin and neuronal nitric oxide synthase (NOS1) secondary to microRNA-31 (miR-31) up-regulation contributes to the atrial electrical remodelling that underpins human and experimental atrial fibrillation (AF). In contrast, patients with Duchenne muscular dystrophy (DMD), who lack dystrophin and NOS1 and, at least in the skeletal muscle, have raised miR-31 expression, do not have increase susceptibility to AF in the absence of left ventricular (LV) dysfunction. Here, we investigated whether dystrophin deficiency is also associated with atrial up-regulation of miR-31, loss of NOS1 protein, and increased AF susceptibility in young mdx mice. METHODS AND RESULTS Echocardiography showed normal cardiac structure and function in 12-13 weeks mdx mice, with no indication by assay of hydroxyproline that atrial fibrosis had developed. The absence of dystrophin in mdx mice was accompanied by an overall reduction in syntrophin and a lower NOS1 protein content in the skeletal muscle and in the left atrial and ventricular myocardium, with the latter occurring alongside reduced Nos1 transcript levels (exons 1-2 by quantitative polymerase chain reaction) and an increase in NOS1 polyubiquitination [assessed using tandem polyubiquitination pulldowns; P < 0.05 vs. wild type (WT)]. Neither the up-regulation of miR-31 nor the substantial reduction in NOS activity observed in the skeletal muscle was present in the atrial tissue of mdx mice. At difference with the skeletal muscle, the mdx atrial myocardium showed a reduction in the constitutive NOS inhibitor, caveolin-1, coupled with an increase in NOS3 serine1177 phosphorylation, in the absence of differences in the protein content of other NOS isoforms or in the relative expression NOS1 splice variants. In line with these findings, transoesophageal atrial burst pacing revealed no difference in AF susceptibility between mdx mice and their WT littermates. CONCLUSION Dystrophin depletion is not associated with atrial miR-31 up-regulation, reduced NOS activity, or increased AF susceptibility in the mdx mouse. Compared with the skeletal muscle, the milder atrial biochemical phenotype may explain why patients with DMD do not exhibit a higher prevalence of atrial arrhythmias despite a reduction in NOS1 content.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| | - Matilde Stefanini
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| | - Matthew J Wood
- Department of Paediatrics and Muscular Dystrophy UK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, L6 West Wing, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Abolfazli S, Mortazavi P, Kheirandish A, Butler AE, Jamialahmadi T, Sahebkar A. Regulatory effects of curcumin on nitric oxide signaling in the cardiovascular system. Nitric Oxide 2024; 143:16-28. [PMID: 38141926 DOI: 10.1016/j.niox.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/25/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The continuously rising prevalence of cardiovascular disease (CVD) globally substantially impacts the economic growth of developing countries. Indeed, one of the leading causes of death worldwide is unfavorable cardiovascular events. Reduced nitric oxide (NO) generation is the pathogenic foundation of endothelial dysfunction, which is regarded as the first stage in the development of a number of CVDs. Nitric oxide exerts an array of biological effects, including vasodilation, the suppression of vascular smooth muscle cell proliferation and the functional control of cardiac cells. Numerous treatment strategies aim to increase NO synthesis or upregulate downstream NO signaling pathways. The major component of Curcuma longa, curcumin, has long been utilized in traditional medicine to treat various illnesses, especially CVDs. Curcumin improves CV function as well as having important pleiotropic effects, such as anti-inflammatory and antioxidant, through its ability to increase the bioavailability of NO and to positively impact NO-related signaling pathways. In this review, we discuss the scientific literature relating to curcumin's positive effects on NO signaling and vascular endothelial function.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Parham Mortazavi
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kheirandish
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, PO Box, 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Mierzejewski K, Kurzyńska A, Golubska M, Całka J, Gałęcka I, Szabelski M, Paukszto Ł, Andronowska A, Bogacka I. New insights into the potential effects of PET microplastics on organisms via extracellular vesicle-mediated communication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166967. [PMID: 37699490 DOI: 10.1016/j.scitotenv.2023.166967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Plastics have become an integral part of our daily lives. In the environment, plastics break down into small pieces (<5 mm) that are referred to as microplastics. Microplastics are ubiquitous and widespread in the environment, and all living organisms are exposed to their effects. The present study provides new insights into the potential effects of polyethylene terephthalate (PET) microplastics on organisms via extracellular vesicle (EV)-mediated communication. The study demonstrated that serum-derived EVs are able to transport plastic particles. In addition, PET microplastics alter the content of miRNA in EVs. The identified differentially regulated miRNAs may target genes associated with lifestyle diseases, such as cardiovascular or metabolic diseases, and carcinogenesis. This work expands our understanding of PET microplastics' effects on organisms via EV-mediated communication and identifies directions for further research and strategies.
Collapse
Affiliation(s)
- Karol Mierzejewski
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Jarosław Całka
- Department of Clinical Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ismena Gałęcka
- Department of Clinical Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Mariusz Szabelski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Poland.
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Poland.
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, University of Warmia and Mazury in Olsztyn, Poland.
| |
Collapse
|
11
|
Muniandy S, Few LL, Khoo BY, Hassan SA, Yvonne-Τee GB, See Too WC. Dysregulated expression of miR‑367 in disease development and its prospects as a therapeutic target and diagnostic biomarker (Review). Biomed Rep 2023; 19:91. [PMID: 37901877 PMCID: PMC10603372 DOI: 10.3892/br.2023.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
MicroRNA (miR)-367 has a wide range of functions in gene regulation and as such plays a critical role in cell proliferation, differentiation and development, making it an essential molecule in various physiological processes. miR-367 belongs to the miR-302/367 cluster and is located in the intronic region of human chromosome 4 on the 4q25 locus. Dysregulation of miR-367 is associated with various disease conditions, including cancer, inflammation and cardiac conditions. Moreover, miR-367 has shown promise both as a tumor suppressor and a potential diagnostic biomarker for breast, gastric and prostate cancer. The elucidation of the essential role of miR-367 in inflammation, development and cardiac diseases emphasizes its versatility in regulating various physiological processes beyond cancer biology. However, further research is necessary to fully understand the complex regulatory mechanisms involving miR-367 in different physiological and pathological contexts. In conclusion, the versatility and significance of miR-367 makes it a promising candidate for further study and in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shaleniprieya Muniandy
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Asma' Hassan
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Get Bee Yvonne-Τee
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
12
|
van den Berg NWE, Kawasaki M, Nariswari FA, Fabrizi B, Neefs J, van der Made I, Wesselink R, van Boven WJP, Driessen AHG, Jongejan A, de Groot JR. MicroRNAs in atrial fibrillation target genes in structural remodelling. Cell Tissue Res 2023; 394:497-514. [PMID: 37833432 DOI: 10.1007/s00441-023-03823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/07/2023] [Indexed: 10/15/2023]
Abstract
We aim to elucidate how miRNAs regulate the mRNA signature of atrial fibrillation (AF), to gain mechanistic insight and identify candidate targets for future therapies. We present combined miRNA-mRNA sequencing using atrial tissues of patient without AF (n = 22), with paroxysmal AF (n = 22) and with persistent AF (n = 20). mRNA sequencing previously uncovered upregulated epithelial to mesenchymal transition, endothelial cell proliferation and extracellular matrix remodelling involving glycoproteins and proteoglycans in AF. MiRNA co-sequencing discovered miRNAs regulating the mRNA expression changes. Key downregulated miRNAs included miR-135b-5p, miR-138-5p, miR-200a-3p, miR-200b-3p and miR-31-5p and key upregulated miRNAs were miR-144-3p, miR-15b-3p, miR-182-5p miR-18b-5p, miR-4306 and miR-206. MiRNA expression levels were negatively correlated with the expression levels of a multitude of predicted target genes. Downregulated miRNAs associated with increased gene expression are involved in upregulated epithelial and endothelial cell migration and glycosaminoglycan biosynthesis. In vitro inhibition of miR-135b-5p and miR-138-5p validated an effect of miRNAs on multiple predicted targets. Altogether, the discovered miRNAs may be explored in further functional studies as potential targets for anti-fibrotic therapies in AF.
Collapse
Affiliation(s)
- Nicoline W E van den Berg
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Makiri Kawasaki
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Fransisca A Nariswari
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Ingeborg van der Made
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Wim Jan P van Boven
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, Department of Epidemiology and Data Science, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Ramos-Mondragón R, Lozhkin A, Vendrov AE, Runge MS, Isom LL, Madamanchi NR. NADPH Oxidases and Oxidative Stress in the Pathogenesis of Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1833. [PMID: 37891912 PMCID: PMC10604902 DOI: 10.3390/antiox12101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.
Collapse
Affiliation(s)
- Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
| | - Andrey Lozhkin
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Marschall S. Runge
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, 1150 West Medical Center Drive, 2301 Medical Science Research Building III, Ann Arbor, MI 48109, USA; (R.R.-M.); (L.L.I.)
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48019, USA; (A.L.); (A.E.V.); (M.S.R.)
| |
Collapse
|
14
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
15
|
Butova X, Myachina T, Simonova R, Kochurova A, Mukhlynina E, Kopylova G, Shchepkin D, Khokhlova A. The inter-chamber differences in the contractile function between left and right atrial cardiomyocytes in atrial fibrillation in rats. Front Cardiovasc Med 2023; 10:1203093. [PMID: 37608813 PMCID: PMC10440706 DOI: 10.3389/fcvm.2023.1203093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction The left and right atria (LA, RA) work under different mechanical and metabolic environments that may cause an intrinsic inter-chamber diversity in structure and functional properties between atrial cardiomyocytes (CM) in norm and provoke their different responsiveness to pathological conditions. In this study, we assessed a LA vs. RA difference in CM contractility in paroxysmal atrial fibrillation (AF) and underlying mechanisms. Methods We investigated the contractile function of single isolated CM from LA and RA using a 7-day acetylcholine (ACh)-CaCl2 AF model in rats. We compared auxotonic force, sarcomere length dynamics, cytosolic calcium ([Ca2+]i) transients, intracellular ROS and NO production in LA and RA CM, and analyzed the phosphorylation levels of contractile proteins and actin-myosin interaction using an in vitro motility assay. Results AF resulted in more prominent structural and functional changes in LA myocardium, reducing sarcomere shortening amplitude, and velocity of sarcomere relengthening in mechanically non-loaded LA CM, which was associated with the increased ROS production, decreased NO production, reduced myofibrillar content, and decreased phosphorylation of cardiac myosin binding protein C and troponin I. However, in mechanically loaded CM, AF depressed the auxotonic force amplitude and kinetics in RA CM, while force characteristics were preserved in LA CM. Discussion Thus, inter-atrial differences are increased in paroxysmal AF and affected by the mechanical load that may contribute to the maintenance and progression of AF.
Collapse
Affiliation(s)
- Xenia Butova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Raisa Simonova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Elena Mukhlynina
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
| | - Galina Kopylova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, Russian Federation
| | - Anastasia Khokhlova
- Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russian Federation
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russian Federation
| |
Collapse
|
16
|
Desantis V, Potenza MA, Sgarra L, Nacci C, Scaringella A, Cicco S, Solimando AG, Vacca A, Montagnani M. microRNAs as Biomarkers of Endothelial Dysfunction and Therapeutic Target in the Pathogenesis of Atrial Fibrillation. Int J Mol Sci 2023; 24:5307. [PMID: 36982382 PMCID: PMC10049145 DOI: 10.3390/ijms24065307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The pathophysiology of atrial fibrillation (AF) may involve atrial fibrosis/remodeling and dysfunctional endothelial activities. Despite the currently available treatment approaches, the progression of AF, its recurrence rate, and the high mortality risk of related complications underlay the need for more advanced prognostic and therapeutic strategies. There is increasing attention on the molecular mechanisms controlling AF onset and progression points to the complex cell to cell interplay that triggers fibroblasts, immune cells and myofibroblasts, enhancing atrial fibrosis. In this scenario, endothelial cell dysfunction (ED) might play an unexpected but significant role. microRNAs (miRNAs) regulate gene expression at the post-transcriptional level. In the cardiovascular compartment, both free circulating and exosomal miRNAs entail the control of plaque formation, lipid metabolism, inflammation and angiogenesis, cardiomyocyte growth and contractility, and even the maintenance of cardiac rhythm. Abnormal miRNAs levels may indicate the activation state of circulating cells, and thus represent a specific read-out of cardiac tissue changes. Although several unresolved questions still limit their clinical use, the ease of accessibility in biofluids and their prognostic and diagnostic properties make them novel and attractive biomarker candidates in AF. This article summarizes the most recent features of AF associated with miRNAs and relates them to potentially underlying mechanisms.
Collapse
Affiliation(s)
- Vanessa Desantis
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Luca Sgarra
- General Hospital “F. Miulli” Acquaviva delle Fonti, 70021 Bari, Italy
| | - Carmela Nacci
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonietta Scaringella
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Sebastiano Cicco
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area, Unit of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Pharmacology Section, University of Bari Aldo Moro Medical School, 70124 Bari, Italy
| |
Collapse
|
17
|
Tarabochia AD, Tan NY, Lewis BR, Slusser JP, Hayes SN, Best PJM, Gulati R, Deshmukh AJ, Tweet MS. Association of Spontaneous Coronary Artery Dissection With Atrial Arrhythmias. Am J Cardiol 2023; 186:203-208. [PMID: 36328832 PMCID: PMC10403149 DOI: 10.1016/j.amjcard.2022.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
Abstract
The co-morbidities and long-term complications of spontaneous coronary artery dissection (SCAD) are incompletely understood. This study investigated the association of atrial arrhythmias (AA), defined as atrial fibrillation and atrial flutter, with SCAD in a patient registry and population-based cohort. This observational study was performed in 2 parts. The first was a retrospective study reviewing patients diagnosed with AA in the Mayo Clinic SCAD Registry. The second was a population-based, case-control study to assess AA in patients with SCAD compared with age- and gender-matched controls. Of 1,214 patients in the Mayo Clinic SCAD Registry, 45 patients (3.7%) with SCAD were identified with an AA. A total of 8 of those patients (17.8%) had a pre-SCAD AA; 20 (44.4%) had a peri-SCAD AA; and 17 (37.8%) had a post-SCAD AA. The univariate analysis did not reveal significant associations with traditional cardiovascular risk factors. In the population-based cohort, 5 patients with SCAD (4%) and 4 controls (1%) developed an AA before the date of SCAD for each patient (odds ratio 4.5, 95% confidence interval [CI] 1.05 to 19.0, p = 0.04). A total of 5 patients with SCAD (4%) and 3 controls (1%) developed an AA in the 10 years after SCAD (hazard ratio 6.3, 95% CI 1.2 to 32.8, p = 0.03). A subgroup of patients with SCAD experienced AA before and after SCAD. Patients with a history of SCAD were more likely to develop AA in the next 10 years than were age- and gender-matched healthy controls.
Collapse
Affiliation(s)
- Alex D Tarabochia
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Nicholas Y Tan
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Bradley R Lewis
- Division of Clinical Trials and Biostatistics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joshua P Slusser
- Division of Clinical Trials and Biostatistics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Patricia J M Best
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Abhishek J Deshmukh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.
| |
Collapse
|
18
|
Koya T, Watanabe M, Natsui H, Kadosaka T, Koizumi T, Nakao M, Hagiwara H, Kamada R, Temma T, Anzai T. Pharmacological nNOS inhibition modified small-conductance Ca 2+-activated K + channel without altering Ca 2+ dynamics. Am J Physiol Heart Circ Physiol 2022; 323:H869-H878. [PMID: 36149772 DOI: 10.1152/ajpheart.00252.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atrial fibrillation (AF) is associated with electrical remodeling processes that promote a substrate for the maintenance of AF. Although the small-conductance Ca2+-activated K+ (SK) channel is a key factor in atrial electrical remodeling, the mechanism of its activation remains unclear. Regional nitric oxide (NO) production by neuronal nitric oxide synthase (nNOS) is involved in atrial electrical remodeling. In this study, atrial tachyarrhythmia (ATA) induction and optical mapping were performed on perfused rat hearts. nNOS is pharmacologically inhibited by S-methylthiocitrulline (SMTC). The influence of the SK channel was examined using a specific channel inhibitor, apamin (APA). Parameters such as action potential duration (APD), conduction velocity, and calcium transient (CaT) were evaluated using voltage and calcium optical mapping. The dominant frequency was examined in the analysis of AF dynamics. SMTC (100 nM) increased the inducibility of ATA and apamin (100 nM) mitigated nNOS inhibition-induced arrhythmogenicity. SMTC caused abbreviations and enhanced the spatial dispersion of APD, which was reversed by apamin. By contrast, conduction velocity and other parameters associated with CaT were not affected by SMTC or apamin administration. Apamin reduced the frequency of SMTC-induced ATA. In summary, nNOS inhibition abbreviates APD by modifying the SK channels. A specific SK channel blocker, apamin, mitigated APD abbreviation without alteration of CaT, implying an underlying mechanism of posttranslational modification of SK channels.NEW & NOTEWORTHY We demonstrated that pharmacological nNOS inhibition increased the atrial arrhythmia inducibility and a specific small-conductance Ca2+-activated K+ channel blocker, apamin, reversed the enhanced atrial arrhythmia inducibility. Apamin mitigated APD abbreviation without alteration of Ca2+ transient, implying an underlying mechanism of posttranslational modification of SK channels.
Collapse
Affiliation(s)
- Taro Koya
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Watanabe
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Natsui
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takahide Kadosaka
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Koizumi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Motoki Nakao
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hikaru Hagiwara
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rui Kamada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Temma
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Moskalik A, Ratajska A, Majchrzak B, Jankowska-Steifer E, Bartkowiak K, Bartkowiak M, Niderla-Bielińska J. miR-31-5p-Modified RAW 264.7 Macrophages Affect Profibrotic Phenotype of Lymphatic Endothelial Cells In Vitro. Int J Mol Sci 2022; 23:13193. [PMID: 36361979 PMCID: PMC9657882 DOI: 10.3390/ijms232113193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/23/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Cardiac lymphatic vessel (LyV) remodeling as a contributor to heart failure has not been extensively evaluated in metabolic syndrome (MetS). Our studies have shown structural changes in cardiac LyV in MetS that contribute to the development of edema and lead to myocardial fibrosis. Tissue macrophages may affect LyV via secretion of various substances, including noncoding RNAs. The aim of the study was to evaluate the influence of macrophages modified by miR-31-5p, a molecule that regulates fibrosis and lymphangiogenesis, on lymphatic endothelial cells (LECs) in vitro. The experiments were carried out on the RAW 264.7 macrophage cell line and primary dermal lymphatic endothelial cells. RAW 264.7 macrophages were transfected with miR-31-5p and supernatant from this culture was used for LEC stimulation. mRNA expression levels for genes associated with lymphangiogenesis and fibrosis were measured with qRT-PCR. Selected results were confirmed with ELISA or Western blotting. miR-31-5p-modified RAW 264.7 macrophages secreted increased amounts of VEGF-C and TGF-β and a decreased amount of IGF-1. The supernatant from miR-31-5p-modified RAW 264.7 downregulated the mRNA expression for genes regulating endothelial-to-mesenchymal transition (EndoMT) and fibrosis in LECs. Our results suggest that macrophages under the influence of miR-31-5p show the potential to inhibit LEC-dependent fibrosis. However, more studies are needed to confirm this effect in vivo.
Collapse
Affiliation(s)
- Aneta Moskalik
- Postgraduate School of Molecular Medicine, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Anna Ratajska
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Barbara Majchrzak
- Department of Pathology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Ewa Jankowska-Steifer
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Bartkowiak
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Mateusz Bartkowiak
- Department of History of Medicine, Medical University of Warsaw, 00-581 Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Department of Histology and Embryology, Collegium Anatomicum, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
20
|
Lundberg JO, Weitzberg E. Nitric oxide signaling in health and disease. Cell 2022; 185:2853-2878. [DOI: 10.1016/j.cell.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/16/2022]
|
21
|
MicroRNAs in Dystrophinopathy. Int J Mol Sci 2022; 23:ijms23147785. [PMID: 35887128 PMCID: PMC9318410 DOI: 10.3390/ijms23147785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which represent the range of dystrophinopathies, account for nearly 80% of muscle dystrophy. DMD and BMD result from the loss of a functional dystrophin protein, and the leading cause of death in these patients is cardiac remodeling and heart failure. The pathogenesis and progression of the more severe form of DMD have been extensively studied and are controlled by many determinants, including microRNAs (miRNAs). The regulatory role of miRNAs in muscle function and the differential miRNA expression in muscular dystrophy indicate the clinical significance of miRNAs. This review discusses the relevant microRNAs as potential biomarkers and therapeutic targets for DMD and DMD cardiomyopathy as examples of dystrophinopathies.
Collapse
|
22
|
Xiang K, Akram M, Elbossaty WF, Yang J, Fan C. Exosomes in atrial fibrillation: therapeutic potential and role as clinical biomarkers. Heart Fail Rev 2022; 27:1211-1221. [PMID: 34251579 DOI: 10.1007/s10741-021-10142-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is a global epidemic. AF can cause heart failure and myocardial infarction and increase the risk of stroke, disability, and thromboembolic events. AF is becoming increasingly ubiquitous and is associated with increased morbidity and mortality at higher ages, resulting in an increasing threat to human health as well as substantial medical and social costs. Currently, treatment strategies for AF focus on controlling heart rate and rhythm with medications to restore and maintain sinus rhythm, but this approach has limitations. Catheter ablation is not entirely satisfactory and does not address the issues underlying AF. Research exploring the mechanisms causing AF is urgently needed for improved prevention, diagnosis, and treatment of AF. Exosomes are small vesicles (30-150 nm) released by cells that transmit information between cells. MicroRNAs in exosomes play an important role in the pathogenesis of AF and are established as a biomarker for AF. In this review, a summary of the role of exosomes in AF is presented. The role of exosomes and microRNAs in AF occurrence, their therapeutic potential, and their potential role as clinical biomarkers is considered. A better understanding of exosomes has the potential to improve the prognosis of AF patients worldwide, reducing the global medical burden of this disease.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Jinfu Yang
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha, 410011, China.
| |
Collapse
|
23
|
Li H, Zhan J, Chen C, Wang D. MicroRNAs in cardiovascular diseases. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:140-168. [PMID: 37724243 PMCID: PMC10471109 DOI: 10.1515/mr-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/29/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and disability worldwide, despite the wide diversity of molecular targets identified and the development of therapeutic methods. MicroRNAs (miRNAs) are a class of small (about 22 nucleotides) non-coding RNAs (ncRNAs) that negatively regulate gene expression at the post-transcriptional level in the cytoplasm and play complicated roles in different CVDs. While miRNA overexpression in one type of cell protects against heart disease, it promotes cardiac dysfunction in another type of cardiac cell. Moreover, recent studies have shown that, apart from cytosolic miRNAs, subcellular miRNAs such as mitochondria- and nucleus-localized miRNAs are dysregulated in CVDs. However, the functional properties of cellular- and subcellular-localized miRNAs have not been well characterized. In this review article, by carefully revisiting animal-based miRNA studies in CVDs, we will address the regulation and functional properties of miRNAs in various CVDs. Specifically, the cell-cell crosstalk and subcellular perspective of miRNAs are highlighted. We will provide the background for attractive molecular targets that might be useful in preventing the progression of CVDs and heart failure (HF) as well as insights for future studies.
Collapse
Affiliation(s)
- Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
24
|
Wiedmann F, Kraft M, Kallenberger S, Büscher A, Paasche A, Blochberger PL, Seeger T, Jávorszky N, Warnecke G, Arif R, Kremer J, Karck M, Frey N, Schmidt C. MicroRNAs Regulate TASK-1 and Are Linked to Myocardial Dilatation in Atrial Fibrillation. J Am Heart Assoc 2022; 11:e023472. [PMID: 35301863 PMCID: PMC9075420 DOI: 10.1161/jaha.121.023472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. However, underlying molecular mechanisms are insufficiently understood. Previous studies suggested that microRNA (miRNA) dependent gene regulation plays an important role in the initiation and maintenance of AF. The 2‐pore‐domain potassium channel TASK‐1 (tandem of P domains in a weak inward rectifying K+ channel–related acid sensitive K+ channel 1) is an atrial‐specific ion channel that is upregulated in AF. Inhibition of TASK‐1 current prolongs the atrial action potential duration to similar levels as in patients with sinus rhythm. Here, we hypothesize that miRNAs might be responsible for the regulation of KCNK3 that encodes for TASK‐1. Methods and Results We selected miRNAs potentially regulating KCNK3 and studied their expression in atrial tissue samples obtained from patients with sinus rhythm, paroxysmal AF, or permanent/chronic AF. MiRNAs differentially expressed in AF were further investigated for their ability to regulate KCNK3 mRNA and TASK‐1 protein expression in human induced pluripotent stem cells, transfected with miRNA mimics or inhibitors. Thereby, we observed that miR‐34a increases TASK‐1 expression and current and further decreases the resting membrane potential of Xenopus laevis oocytes, heterologously expressing hTASK‐1. Finally, we investigated associations between miRNA expression in atrial tissues and clinical parameters of our patient cohort. A cluster containing AF stage, left ventricular end‐diastolic diameter, left ventricular end‐systolic diameter, left atrial diameter, atrial COL1A2 (collagen alpha‐2(I) chain), and TASK‐1 protein level was associated with increased expression of miR‐25, miR‐21, miR‐34a, miR‐23a, miR‐124, miR‐1, and miR‐29b as well as decreased expression of miR‐9 and miR‐485. Conclusions These results suggest an important pathophysiological involvement of miRNAs in the regulation of atrial expression of the TASK‐1 potassium channel in patients with atrial cardiomyopathy.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Manuel Kraft
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Stefan Kallenberger
- Digital Health Center Berlin Institute of Health (BIH) and Charité Berlin Germany.,Department of Medical Oncology National Center for Tumor DiseasesHeidelberg University Hospital Heidelberg Germany.,Health Data Science UnitMedical Faculty Heidelberg Heidelberg Germany
| | - Antonius Büscher
- Department for Cardiology II: Electrophysiology University Hospital Münster Münster Germany
| | - Amelie Paasche
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Pablo L Blochberger
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Timon Seeger
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany
| | - Natasa Jávorszky
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Gregor Warnecke
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Rawa Arif
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Jamila Kremer
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Matthias Karck
- Department of Cardiac Surgery University of Heidelberg Germany
| | - Norbert Frey
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| | - Constanze Schmidt
- Department of Cardiology Heidelberg University Hospital Heidelberg Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim University of Heidelberg Germany.,HCR Heidelberg Center for Heart Rhythm Disorders Heidelberg University Hospital Heidelberg Germany
| |
Collapse
|
25
|
Caveolin-3 and Arrhythmias: Insights into the Molecular Mechanisms. J Clin Med 2022; 11:jcm11061595. [PMID: 35329921 PMCID: PMC8952412 DOI: 10.3390/jcm11061595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Caveolin-3 is a muscle-specific protein on the membrane of myocytes correlated with a variety of cardiovascular diseases. It is now clear that the caveolin-3 plays a critical role in the cardiovascular system and a significant role in cardiac protective signaling. Mutations in the gene encoding caveolin-3 cause a broad spectrum of clinical phenotypes, ranging from persistent elevations in the serum levels of creatine kinase in asymptomatic humans to cardiomyopathy. The influence of Caveolin-3(CAV-3) mutations on current density parallels the effect on channel trafficking. For example, mutations in the CAV-3 gene promote ventricular arrhythmogenesis in long QT syndrome 9 by a combined decrease in the loss of the inward rectifier current (IK1) and gain of the late sodium current (INa-L). The functional significance of the caveolin-3 has proved that caveolin-3 overexpression or knockdown contributes to the occurrence and development of arrhythmias. Caveolin-3 overexpression could lead to reduced diastolic spontaneous Ca2+ waves, thus leading to the abnormal L-Type calcium channel current-induced ventricular arrhythmias. Moreover, CAV-3 knockdown resulted in a shift to more negative values in the hyperpolarization-activated cyclic nucleotide channel 4 current (IHCN4) activation curve and a significant decrease in IHCN4 whole-cell current density. Recent evidence indicates that caveolin-3 plays a significant role in adipose tissue and is related to obesity development. The role of caveolin-3 in glucose homeostasis has attracted increasing attention. This review highlights the underlining mechanisms of caveolin-3 in arrhythmia. Progress in this field may contribute to novel therapeutic approaches for patients prone to developing arrhythmia.
Collapse
|
26
|
Lang D, Medvedev RY, Ratajczyk L, Zheng J, Yuan X, Lim E, Han OY, Valdivia HH, Glukhov AV. Region-specific distribution of transversal-axial tubule system organization underlies heterogeneity of calcium dynamics in the right atrium. Am J Physiol Heart Circ Physiol 2022; 322:H269-H284. [PMID: 34951544 PMCID: PMC8782648 DOI: 10.1152/ajpheart.00381.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca2+ dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher (P < 0.01) TATS density in the right atrial appendage (RAA) than in the intercaval regions (ICR, the anatomical region between the superior vena cava and atrioventricular junction and between the crista terminalis and interatrial septum). Whereas RAA predominantly consisted of well-tubulated myocytes, ICR showed partially tubulated/untubulated cells. Similar TATS distribution was also observed in healthy human atrial myocardium sections. In both mouse atrial preparations and isolated mouse atrial myocytes, we observed a strong anatomical correlation between TATS distribution and Ca2+ transient synchronization and rise-up time. This region-specific difference in Ca2+ transient morphology disappeared after formamide-induced detubulation. ICR myocytes showed a prolonged action potential duration at 80% of repolarization as well as a significantly lower expression of RyR2 and Cav1.2 proteins but similar levels of NCX1 and Cav1.3 compared with RAA tissue. Our findings provide a detailed characterization of the region-specific distribution of TATS in mouse and human atrial myocardium, highlighting the structural foundation for anatomical heterogeneity of Ca2+ dynamics and contractility in the atria. These results could indicate different roles of TATS in Ca2+ signaling at distinct anatomical regions of the atria and provide mechanistic insight into pathological atrial remodeling.NEW & NOTEWORTHY Mouse and human atrial myocardium demonstrate high variability in the organization of the transversal-axial tubule system (TATS), with more organized TATS expressed in the right atrial appendage. TATS distribution governs anatomical heterogeneity of Ca2+ dynamics and thus could contribute to integral atrial contractility, mechanics, and arrhythmogenicity.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lucas Ratajczyk
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jingjing Zheng
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaoyu Yuan
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Evi Lim
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Owen Y Han
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hector H Valdivia
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
27
|
Jayaram R, Jones M, Reilly S, Crabtree MJ, Pal N, Goodfellow N, Nahar K, Simon J, Carnicer R, DeSilva R, Ratnatunga C, Petrou M, Sayeed R, Roalfe A, Channon KM, Bashir Y, Betts T, Hill M, Casadei B. Atrial nitroso-redox balance and refractoriness following on-pump cardiac surgery: a randomized trial of atorvastatin. Cardiovasc Res 2022; 118:184-195. [PMID: 33098411 PMCID: PMC8752359 DOI: 10.1093/cvr/cvaa302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
AIMS Systemic inflammation and increased activity of atrial NOX2-containing NADPH oxidases have been associated with the new onset of atrial fibrillation (AF) after cardiac surgery. In addition to lowering LDL-cholesterol, statins exert rapid anti-inflammatory and antioxidant effects, the clinical significance of which remains controversial. METHODS AND RESULTS We first assessed the impact of cardiac surgery and cardiopulmonary bypass (CPB) on atrial nitroso-redox balance by measuring NO synthase (NOS) and GTP cyclohydrolase-1 (GCH-1) activity, biopterin content, and superoxide production in paired samples of the right atrial appendage obtained before (PRE) and after CPB and reperfusion (POST) in 116 patients. The effect of perioperative treatment with atorvastatin (80 mg once daily) on these parameters, blood biomarkers, and the post-operative atrial effective refractory period (AERP) was then evaluated in a randomized, double-blind, placebo-controlled study in 80 patients undergoing cardiac surgery on CPB. CPB and reperfusion led to a significant increase in atrial superoxide production (74% CI 71-76%, n = 46 paired samples, P < 0.0001) and a reduction in atrial tetrahydrobiopterin (BH4) (34% CI 33-35%, n = 36 paired samples, P < 0.01), and in GCH-1 (56% CI 55-58%, n = 26 paired samples, P < 0.001) and NOS activity (58% CI 52-67%, n = 20 paired samples, P < 0.001). Perioperative atorvastatin treatment prevented the effect of CPB and reperfusion on all parameters but had no significant effect on the postoperative right AERP, troponin release, or NT-proBNP after cardiac surgery. CONCLUSION Perioperative statin therapy prevents post-reperfusion atrial nitroso-redox imbalance in patients undergoing on-pump cardiac surgery but has no significant impact on postoperative atrial refractoriness, perioperative myocardial injury, or markers of postoperative LV function. CLINICAL TRIAL REGISTRATION https://clinicaltrials.gov/ct2/show/NCT01780740.
Collapse
Affiliation(s)
- Raja Jayaram
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Michael Jones
- Cardiology, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Nikhil Pal
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Nicola Goodfellow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Keshav Nahar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Jillian Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Ravi DeSilva
- Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chandana Ratnatunga
- Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mario Petrou
- Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rana Sayeed
- Cardiothoracic Surgery, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrea Roalfe
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| | - Yaver Bashir
- Cardiology, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy Betts
- Cardiology, Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Michael Hill
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, L6, West Wing, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Imani A, Rajani SF, Rakhshan K, Faghihi M, Nemati M, Parsazadegan T. The role of nitric oxide on the antiarrhythmic effects of ketamine/xylazine in a rat model of acute cardiac ischemia-reperfusion. Curr Res Physiol 2022; 5:302-311. [PMID: 35856058 PMCID: PMC9287742 DOI: 10.1016/j.crphys.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
The prevalence of ventricular arrhythmias during general anesthesia is about 70%. In experimental studies on the antiarrhythmic effects of different agents, using anesthetic drugs that do not have any protective properties are preferable. The present study was conducted to investigate molecular mechanisms involved in the antiarrhythmic effects of ketamine/xylazine (K/X). Sixty male rats were assigned to eight groups: K/X, L -NAME (25–35 mg/kg) with thiopental (TP), L-NAME (25–35 mg/kg) with ketamine/xylazine, L arginine (100 mg/kg) with thiopental, L-arginine (100 mg/kg) with ketamine/xylazine. After anesthetic induction using TP or K/X, the animals were subjected to 30 min of ischemia. Hemodynamic parameters, ventricular arrhythmias during ischemia, the incidence of ventricular tachycardia (VT), and ventricular fibrillation (VF) were measured. Additionally, in order to assess nitrite/nitrate ratio and LDH after ischemia, serum samples were collected and used. Our results showed that in the K/X group, the number of VT and VF, duration of VT (p = 0.006), the severity of arrhythmias (p = 0.0179). There was no VF incidence in this group. These protective effects were faded by administration of L-NAME with K/X. The combination of L- Arginine in the TP group decreased the number and duration of VT (p < 0.001, p = 0.0013) with no incidence of VF in comparison with TP. L-arginine with K/X groups increased the number and duration of VT (p < 0.0001, p < 0.001) compared to K/X and VF was seen (100%). However, there was no significant difference between TP and K/X groups in terms of this nitrite/nitrate ratio. These findings suggest that the antiarrhythmic effects of ketamine/xylazine might be partially relative to the nitric oxide synthesis pathway. The prevalence of ventricular arrhythmias during general anesthesia is about 70%. ketamine/xylazine as common anesthetic agents have antiarrhythmic properties. The antiarrhythmic effects of ketamine/xylazine might be partially relative to the nitric oxide synthesis pathway.
Collapse
|
29
|
Kotar A, Ma S, Keane SC. pH dependence of C•A, G•A and A•A mismatches in the stem of precursor microRNA-31. Biophys Chem 2022; 283:106763. [DOI: 10.1016/j.bpc.2022.106763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
30
|
Identifying Atrial Fibrillation Mechanisms for Personalized Medicine. J Clin Med 2021; 10:jcm10235679. [PMID: 34884381 PMCID: PMC8658178 DOI: 10.3390/jcm10235679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Atrial fibrillation (AF) is a major cause of heart failure and stroke. The early maintenance of sinus rhythm has been shown to reduce major cardiovascular endpoints, yet is difficult to achieve. For instance, it is unclear how discoveries at the genetic and cellular level can be used to tailor pharmacotherapy. For non-pharmacologic therapy, pulmonary vein isolation (PVI) remains the cornerstone of rhythm control, yet has suboptimal success. Improving these therapies will likely require a multifaceted approach that personalizes therapy based on mechanisms measured in individuals across biological scales. We review AF mechanisms from cell-to-organ-to-patient from this perspective of personalized medicine, linking them to potential clinical indices and biomarkers, and discuss how these data could influence therapy. We conclude by describing approaches to improve ablation, including the emergence of several mapping systems that are in use today.
Collapse
|
31
|
Pérez-Carrillo L, Sánchez-Lázaro I, Triviño JC, Feijóo-Bandín S, Lago F, González-Juanatey JR, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Diagnostic value of serum miR-144-3p for the detection of acute cellular rejection in heart transplant patients. J Heart Lung Transplant 2021; 41:137-147. [PMID: 34895840 DOI: 10.1016/j.healun.2021.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The development of noninvasive approaches for the early diagnosis of acute cellular rejection (ACR), an important complication of cardiac transplantation, is of great importance in clinical practice. We conducted a nontargeted transcriptomic study focused on identifying serum miRNAs to evaluate their diagnostic accuracy for detecting rejection episodes. METHODS We included consecutive serum samples from transplant recipients undergoing routine endomyocardial biopsies. In the discovery phase (n = 40), an RNA sequencing analysis (Illumina HiSeq 2500 sequencer) was performed. We focused on the validation of miR-144-3p in a larger patient cohort (n = 212), selected based on the criteria of higher accuracy for ACR detection. ACR was assessed according to the International Society for Heart and Lung Transplantation. RESULTS In the discovery phase, 26 altered miRNAs were identified as potential markers for detecting ACR. miR-144-3p showed the best results, it was the only molecule with an AUC greater than 0.95 to detect Grade ≥2R ACR and it showed significant differences in its levels when we compared Grade 1R ACR with the nonrejection group. In the validation phase, we confirmed this finding, and it had an excellent diagnostic capacity for clinically relevant rejection (Grade ≥2R AUC = 0.801, p < 0.0001), detecting mild rejection (Grade 1R AUC = 0.631, p < 0.01) and was an independent predictor for the presence of ACR (odds ratio of 14.538, p < 0.01). CONCLUSIONS ACR is associated with the differential expression of specific serum miRNAs that correlate with the severity of the episode. Circulating miR-144-3p is a candidate noninvasive ACR biomarker that could contribute to improving the surveillance of cardiac transplanted patients.
Collapse
Affiliation(s)
- Lorena Pérez-Carrillo
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, CIBERCV, Madrid, Spain
| | - Ignacio Sánchez-Lázaro
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, CIBERCV, Madrid, Spain; Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | | | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain; and CIBERCV, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain; and CIBERCV, Madrid, Spain
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, Department of Cardiology and Institute of Biomedical Research, University Clinical Hospital, Santiago de Compostela, Spain; and CIBERCV, Madrid, Spain
| | - Luis Martínez-Dolz
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, CIBERCV, Madrid, Spain; Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Manuel Portolés
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, CIBERCV, Madrid, Spain
| | - Estefanía Tarazón
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, CIBERCV, Madrid, Spain
| | - Esther Roselló-Lletí
- Myocardial Dysfunction and Cardiac Transplantation Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, CIBERCV, Madrid, Spain.
| |
Collapse
|
32
|
Atrial Fibrillation in Heart Failure Is Associated with High Levels of Circulating microRNA-199a-5p and 22-5p and a Defective Regulation of Intracellular Calcium and Cell-to-Cell Communication. Int J Mol Sci 2021; 22:ijms221910377. [PMID: 34638717 PMCID: PMC8508749 DOI: 10.3390/ijms221910377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) participate in atrial remodeling and atrial fibrillation (AF) promotion. We determined the circulating miRNA profile in patients with AF and heart failure with reduced ejection fraction (HFrEF), and its potential role in promoting the arrhythmia. In plasma of 98 patients with HFrEF (49 with AF and 49 in sinus rhythm, SR), differential miRNA expression was determined by high-throughput microarray analysis followed by replication of selected candidates. Validated miRNAs were determined in human atrial samples, and potential arrhythmogenic mechanisms studied in HL-1 cells. Circulating miR-199a-5p and miR-22-5p were significantly increased in HFrEF patients with AF versus those with HFrEF in SR. Both miRNAs, but particularly miR-199a-5p, were increased in atrial samples of patients with AF. Overexpression of both miRNAs in HL-1 cells resulted in decreased protein levels of L-type Ca2+ channel, NCX and connexin-40, leading to lower basal intracellular Ca2+ levels, fewer inward currents, a moderate reduction in Ca2+ buffering post-caffeine exposure, and a deficient cell-to-cell communication. In conclusion, circulating miR-199a-5p and miR-22-5p are higher in HFrEF patients with AF, with similar findings in human atrial samples of AF patients. Cells exposed to both miRNAs exhibited altered Ca2+ handling and defective cell-to-cell communication, both findings being potential arrhythmogenic mechanisms.
Collapse
|
33
|
Xiao J, Zhang Y, Tang Y, Dai H, OuYang Y, Li C, Yu M. MiRNA-1202 promotes the TGF-β1-induced proliferation, differentiation and collagen production of cardiac fibroblasts by targeting nNOS. PLoS One 2021; 16:e0256066. [PMID: 34428251 PMCID: PMC8384215 DOI: 10.1371/journal.pone.0256066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Background Atrial fibrillation (AF) is a clinically common arrhythmia that affects human health. Myocardial fibrosis serves as an important contributor to AF. Recently, miRNA-1202 have been reported to be up-regulated in AF. However, the role of miRNA-1202 and its mechanism in myocardial fibrosis remain unclear. Methods Human cardiac fibroblasts (HCFs) were used to construct a fibrosis model by TGF-β1 induction. The expression of miR-1202 was measured by qRT-PCR. Cell proliferation was assessed by CCK-8 assays. Protein expression levels were measured by western blot. Collagen accumulation was measured by ELISA. The relationship between miR-1202 and nNOS was investigated by luciferase reporter assays. Results MiR-1202 expression was obviously increased in HCFs and was both time- and dose-independent. MiR-1202 could increase the proliferation and collagen I, collagen III, and α-SMA levels with or without TGF-β1. MiR-1202 could also increase TGF-β1 and p-Smad2/3 protein levels in comparison to the control group. However, they were obviously decreased after inhibitor transfection. MiR-1202 targets nNOS for negative regulation of HCFs fibrosis by decreasing cell differentiation, collagen deposition and the activity of the TGF-β1/Smad2/3 pathway. Co-transfection of miR-1202 inhibitor and siRNA of nNOS inhibited nNOS protein expression, thereby enhancing the HCFs proliferation. Furthermore, co-transfection of the miR-1202 inhibitor and siRNA of nNOS significantly promoted collagen I, collagen III, TGF-β1, Smad2/3 and α-SMA protein expression and Smad2/3 protein phosphorylation. These findings suggested that miR-1202 promotes HCFs transformation to a pro-fibrotic phenotype by targeting nNOS through activating the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Jingwen Xiao
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Yan Zhang
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
- * E-mail:
| | - Yuan Tang
- The Cardiac Function Laboratory of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Hengfen Dai
- The Department of Clinical Pharmacy, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Yu OuYang
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Chuanchuan Li
- The Department of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| | - Meiqin Yu
- The Cardiac Function Laboratory of Cardiovascular Medicine, FuZhou First Hospital, FuZhou, Fujian, P.R. China
| |
Collapse
|
34
|
Ciesielska S, Slezak-Prochazka I, Bil P, Rzeszowska-Wolny J. Micro RNAs in Regulation of Cellular Redox Homeostasis. Int J Mol Sci 2021; 22:6022. [PMID: 34199590 PMCID: PMC8199685 DOI: 10.3390/ijms22116022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.
Collapse
Affiliation(s)
- Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | | - Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (J.R.-W.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
35
|
Construction of mRNA Regulatory Networks Reveals the Key Genes in Atrial Fibrillation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021. [DOI: 10.1155/2021/5527240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atrial fibrillation (AF), the most familiar heart rhythm disorder, is a major cause of stroke in the world, whereas the mechanism behind AF remains largely unclear. In the current study, we used the RNA-seq method to identify 275 positively regulated mRNAs and 117 negatively regulated mRNAs in AF compared to healthy controls. Through bioinformatic analysis, it indicated that these distinctively expressed genes took part in regulating multiple AF-related biological processes and pathways, such as platelet aggregation, platelet activation, pri-miRNA transcription, and transforming growth factor-beta (TGF-β) receptor signaling pathway. Protein-protein interaction (PPI) network analysis identified ITGB5, SRC, ACTG1, ILK, ITGA2B, ITGB3, TUBB4B, CDK11A, PAFAH1B1, CDK11B, and TUBG1 as hub regulators in AF. Moreover, the quantitative real-time PCR (qRT-PCR) assay was conducted and revealed that these hub genes were remarkably overexpressed in AF samples compared to normal samples. We believed that this study would enrich the understanding of the pathogenesis of AF and enable further research on the pathogenesis of AF.
Collapse
|
36
|
Du T, Han J. Arginine Metabolism and Its Potential in Treatment of Colorectal Cancer. Front Cell Dev Biol 2021; 9:658861. [PMID: 34095122 PMCID: PMC8172978 DOI: 10.3389/fcell.2021.658861] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer is the leading cause of death from cancer globally. The current treatment protocol still heavily relies on early detection and surgery. The molecular mechanisms underlying development of colorectal cancer are clinically important and determine the prognosis and treatment response. The arginine metabolism pathway is hyperactive in colorectal cancer and several molecules involved in the pathway are potential targets for chemoprevention and targeted colorectal cancer therapy. Endothelial nitric oxide synthase (eNOS), argininosuccinate synthetase and ornithine decarboxylase (ODC) are the main enzymes for arginine metabolism. Limiting arginine-rich meat consumption and inhibiting ODC activity largely reduces polyamine synthesis and the incidence of colorectal cancer. Arginine transporter CAT-1 and Human member 14 of the solute carrier family 6 (SLC6A14) are overexpressed in colorectal cancer cells and contributes to intracellular arginine levels. Human member 9 of the solute carrier family 38 (SLC38A9) serves as a component of the lysosomal arginine-sensing machinery. Pharmaceutical inhibition of single enzyme or arginine transporter is hard to meet requirement of restoring of abnormal arginine metabolic network. Apart from application in early screening for colorectal cancer, microRNA-based therapeutic strategy that simultaneously manipulating multiple targets involved in arginine metabolism brings promising future in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tao Du
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| | - Junyi Han
- Department of Colorectal Surgery, East Hospital, Tongji University School of Medicine, Pudong, China
| |
Collapse
|
37
|
Wang S, Li L, Hu X, Liu T, Jiang W, Wu R, Ren Y, Wang M. Effects of Atrial Fibrillation-Derived Exosome Delivery of miR-107 to Human Umbilical Vein Endothelial Cells. DNA Cell Biol 2021; 40:568-579. [PMID: 33651959 DOI: 10.1089/dna.2020.6356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to explore the effects of atrial fibrillation (AF)-derived exosome delivery of miR-107 to human umbilical vein endothelial cells (HUVECs) and its related mechanisms. Exosomes were isolated from the plasma of patients with AF and healthy controls, followed by characterization. The expression levels of miR-320d, miR-103a-3p, and miR-107 were measured using real-time quantitative PCR (RT-qPCR). The dual-luciferase reporter gene was used to verify the downstream target of miR-107. Afterward, HUVECs were treated with AF-derived exosomes or transfected with miR-107 mimics. After cell culture, Cell Counting Kit-8, Transwell, and flow cytometry were used to determine cell viability, migration, and apoptosis and cell cycle phase. Finally, RT-qPCR was performed to examine the expression of related genes. NanoSight, transmission electron microscopy, and western blotting showed that exosomes were successfully isolated, and that AF-derived exosomes could be taken up by HUVECs. The expression of miR-107 was significantly higher in AF-derived exosomes than in normal exosomes (p < 0.05). USP14 was shown to be the direct target of miR-107. In addition, miR-107 mimics and AF-derived exosomes significantly suppressed cell viability and migration (p < 0.05) and enhanced cell apoptosis; they also increased G0/G1-phase cells and reduced S-phase cells. RT-qPCR showed that exosomal miR-107 overexpression significantly downregulated the expression of USP14 and Bcl2 (p < 0.05), whereas it markedly upregulated the expression of ERK2, FAK, and Bax (p < 0.05). AF-derived exosomes can deliver miR-107 to HUVECs, and exosomal miR-107 may regulate cell viability, migration, and apoptosis and cell cycle progression by mediating the miR-107/USP14 pathway.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Cardiology, Hebei Medical University, Shijiazhuang, China.,Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Liu Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xitian Hu
- Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Tao Liu
- Department of Cardiology, Hebei Medical University, Shijiazhuang, China
| | - Wenyan Jiang
- Department of Cardiology, Hebei Medical University, Shijiazhuang, China
| | - Rubing Wu
- Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yanchun Ren
- Department of Cardiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Mei Wang
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
38
|
Valera IC, Wacker AL, Hwang HS, Holmes C, Laitano O, Landstrom AP, Parvatiyar MS. Essential roles of the dystrophin-glycoprotein complex in different cardiac pathologies. Adv Med Sci 2021; 66:52-71. [PMID: 33387942 DOI: 10.1016/j.advms.2020.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The dystrophin-glycoprotein complex (DGC), situated at the sarcolemma dynamically remodels during cardiac disease. This review examines DGC remodeling as a common denominator in diseases affecting heart function and health. Dystrophin and the DGC serve as broad cytoskeletal integrators that are critical for maintaining stability of muscle membranes. The presence of pathogenic variants in genes encoding proteins of the DGC can cause absence of the protein and/or alterations in other complex members leading to muscular dystrophies. Targeted studies have allowed the individual functions of affected proteins to be defined. The DGC has demonstrated its dynamic function, remodeling under a number of conditions that stress the heart. Beyond genetic causes, pathogenic processes also impinge on the DGC, causing alterations in the abundance of dystrophin and associated proteins during cardiac insult such as ischemia-reperfusion injury, mechanical unloading, and myocarditis. When considering new therapeutic strategies, it is important to assess DGC remodeling as a common factor in various heart diseases. The DGC connects the internal F-actin-based cytoskeleton to laminin-211 of the extracellular space, playing an important role in the transmission of mechanical force to the extracellular matrix. The essential functions of dystrophin and the DGC have been long recognized. DGC based therapeutic approaches have been primarily focused on muscular dystrophies, however it may be a beneficial target in a number of disorders that affect the heart. This review provides an account of what we now know, and discusses how this knowledge can benefit persistent health conditions in the clinic.
Collapse
Affiliation(s)
- Isela C Valera
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Amanda L Wacker
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Hyun Seok Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Christina Holmes
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL, USA
| | - Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michelle S Parvatiyar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
39
|
Tyan L, Turner D, Komp KR, Medvedev RY, Lim E, Glukhov AV. Caveolin-3 is required for regulation of transient outward potassium current by angiotensin II in mouse atrial myocytes. Am J Physiol Heart Circ Physiol 2021; 320:H787-H797. [PMID: 33416459 PMCID: PMC8082791 DOI: 10.1152/ajpheart.00569.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 01/21/2023]
Abstract
Angiotensin II (AngII) is a key mediator of the renin-angiotensin system and plays an important role in the regulation of cardiac electrophysiology by affecting various cardiac ion currents, including transient outward potassium current, Ito. AngII receptors and molecular components of Ito, Kv4.2 and Kv4.3 channels, have been linked to caveolae structures. However, their functional interaction and the importance of such proximity within 50- to 100-nm caveolar nanodomains remain unknown. To address this, we studied the mechanisms of Ito regulation by AngII in atrial myocytes of wild-type (WT) and cardiac-specific caveolin-3 (Cav3) conditional knockout (Cav3KO) mice. We showed that in WT atrial myocytes, a short-term (2 h) treatment with AngII (5 µM) significantly reduced Ito density. This effect was prevented 1) by a 30-min pretreatment with a selective antagonist of AngII receptor 1 (Ang1R) losartan (2 µM) or 2) by a selective inhibition of protein kinase C (PKC) by BIM1 (10 µM). The effect of AngII on Ito was completely abolished in Cav3-KO mice, with no change in a baseline Ito current density. In WT atria, Ang1Rs co-localized with Cav3, and the expression of Ang1Rs was significantly decreased in Cav3KO in comparison with WT mice, whereas no change in Kv4.2 and Kv4.3 protein expression was observed. Overall, our findings demonstrate that Cav3 is involved in the regulation of Ang1R expression and is required for the modulation of Ito by AngII in mouse atrial myocytes.NEW & NOTEWORTHY Angiotensin II receptor 1 is associated with caveolae and caveolar scaffolding protein caveolin-3 in mouse atrial myocytes that is required for the regulation of Ito by angiotensin II. Downregulation of caveolae/caveolin-3 disrupts this regulation and may be implicated in pathophysiological atrial remodeling.
Collapse
Affiliation(s)
- Leonid Tyan
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Daniel Turner
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Karlie R Komp
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Roman Y Medvedev
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Evi Lim
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alexey V Glukhov
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
40
|
Mighiu AS, Recalde A, Ziberna K, Carnicer R, Tomek J, Bub G, Brewer AC, Verheule S, Shah AM, Simon JN, Casadei B. Inducibility, but not stability, of atrial fibrillation is increased by NOX2 overexpression in mice. Cardiovasc Res 2021; 117:2354-2364. [PMID: 33483749 PMCID: PMC8479801 DOI: 10.1093/cvr/cvab019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/01/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023] Open
Abstract
Aims Gp91-containing NADPH oxidases (NOX2) are a significant source of myocardial superoxide production. An increase in NOX2 activity accompanies atrial fibrillation (AF) induction and electrical remodelling in animal models and predicts incident AF in humans; however, a direct causal role for NOX2 in AF has not been demonstrated. Accordingly, we investigated whether myocardial NOX2 overexpression in mice (NOX2-Tg) is sufficient to generate a favourable substrate for AF and further assessed the effects of atorvastatin, an inhibitor of NOX2, on atrial superoxide production and AF susceptibility. Methods and results NOX2-Tg mice showed a 2- to 2.5-fold higher atrial protein content of NOX2 compared with wild-type (WT) controls, which was associated with a significant (twofold) increase in NADPH-stimulated superoxide production (2-hydroxyethidium by HPLC) in left and right atrial tissue homogenates (P = 0.004 and P = 0.019, respectively). AF susceptibility assessed in vivo by transoesophageal atrial burst stimulation was modestly increased in NOX2-Tg compared with WT (probability of AF induction: 88% vs. 69%, respectively; P = 0.037), in the absence of significant alterations in AF duration, surface ECG parameters, and LV mass or function. Mechanistic studies did not support a role for NOX2 in promoting electrical or structural remodelling, as high-resolution optical mapping of atrial tissues showed no differences in action potential duration and conduction velocity between genotypes. In addition, we did not observe any genotype difference in markers of fibrosis and inflammation, including atrial collagen content and Col1a1, Il-1β, Il-6, and Mcp-1 mRNA. Similarly, NOX2 overexpression did not have consistent effects on RyR2 Ca2+ leak nor did it affect PKA or CaMKII-mediated RyR2 phosphorylation. Finally, treatment with atorvastatin significantly inhibited atrial superoxide production in NOX2-Tg but had no effect on AF induction in either genotype. Conclusion Together, these data indicate that while atrial NOX2 overexpression may contribute to atrial arrhythmogenesis, NOX2-derived superoxide production does not affect the electrical and structural properties of the atrial myocardium.
Collapse
Affiliation(s)
| | - Alice Recalde
- Division of Cardiovascular Medicine, University of Oxford, UK
| | - Klemen Ziberna
- Division of Cardiovascular Medicine, University of Oxford, UK
| | | | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Gil Bub
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - Alison C Brewer
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Sander Verheule
- Department of Physiology, Maastricht University, Maastricht, Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, University of Oxford, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, University of Oxford, UK
| |
Collapse
|
41
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Moreira LM, Takawale A, Hulsurkar M, Menassa DA, Antanaviciute A, Lahiri SK, Mehta N, Evans N, Psarros C, Robinson P, Sparrow AJ, Gillis MA, Ashley N, Naud P, Barallobre-Barreiro J, Theofilatos K, Lee A, Norris M, Clarke MV, Russell PK, Casadei B, Bhattacharya S, Zajac JD, Davey RA, Sirois M, Mead A, Simmons A, Mayr M, Sayeed R, Krasopoulos G, Redwood C, Channon KM, Tardif JC, Wehrens XHT, Nattel S, Reilly S. Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature 2020; 587:460-465. [PMID: 33149301 DOI: 10.1038/s41586-020-2890-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/13/2020] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.
Collapse
Affiliation(s)
- Lucia M Moreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Abhijit Takawale
- Research Centre, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Mohit Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - David A Menassa
- Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Biological Sciences, Faculty of Life and Environmental Sciences, University of Southampton, Southampton, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Neelam Mehta
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Neil Evans
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Constantinos Psarros
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander J Sparrow
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Marc-Antoine Gillis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Neil Ashley
- Single-Cell Genomics Facility, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Patrice Naud
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Angela Lee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Mary Norris
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michele V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Shoumo Bhattacharya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, Australia
| | - Martin Sirois
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Adam Mead
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Rana Sayeed
- Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
| | - George Krasopoulos
- Cardiothoracic Surgery, Oxford Heart Centre, John Radcliffe Hospital, Oxford, UK
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jean-Claude Tardif
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Nattel
- Research Centre, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- IHU LIRYC, Fondation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
44
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
45
|
Ravelli F, Masè M. MicroRNAs: New contributors to mechano-electric coupling and atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:146-156. [PMID: 33011190 DOI: 10.1016/j.pbiomolbio.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation (AF) is a multifactorial disease, which often occurs in the presence of underlying cardiac abnormalities and is supported by electrophysiological and structural alterations, generally referred to as atrial remodeling. Abnormal substrates are commonly encountered in various conditions that predispose to AF, such as hypertension, heart failure, obesity, and sleep apnea, in which atrial stretch plays a key mechanistic role. Emerging evidence suggests a role for microRNAs (small non-coding RNAs) in the pathogenesis of AF, where they can act as post-transcriptional regulators of the genes involved in atrial remodeling. This review summarizes the experimental and clinical evidence that supports the role of microRNAs in the modulation of atrial electrical and structural remodeling with a focus on overload-induced atrial alterations, and discusses the potential contribution of microRNAs to mechano-electrical coupling and AF.
Collapse
Affiliation(s)
- Flavia Ravelli
- Laboratory of Biophysics and Biosignals, University of Trento, Trento, Italy.
| | - Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy; Healthcare Research and Innovation Program, IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|
46
|
Stølen TO, Høydal MA, Ahmed MS, Jørgensen K, Garten K, Hortigon-Vinagre MP, Zamora V, Scrimgeour NR, Berre AMO, Nes BM, Skogvoll E, Johnsen AB, Moreira JBN, McMullen JR, Attramadal H, Smith GL, Ellingsen Ø, Wisløff U. Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. J Mol Cell Cardiol 2020; 148:106-119. [PMID: 32918915 DOI: 10.1016/j.yjmcc.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/09/2023]
Abstract
AIMS Endurance training improves aerobic fitness and cardiac function in individuals with heart failure. However, the underlying mechanisms are not well characterized. Exercise training could therefore act as a tool to discover novel targets for heart failure treatment. We aimed to associate changes in Ca2+ handling and electrophysiology with micro-RNA (miRNA) profile in exercise trained heart failure rats to establish which miRNAs induce heart failure-like effects in Ca2+ handling and electrophysiology. METHODS AND RESULTS Post-myocardial infarction (MI) heart failure was induced in Sprague Dawley rats. Rats with MI were randomized to sedentary control (sed), moderate (mod)- or high-intensity (high) endurance training for 8 weeks. Exercise training improved cardiac function, Ca2+ handling and electrophysiology including reduced susceptibility to arrhythmia in an exercise intensity-dependent manner where high intensity gave a larger effect. Fifty-five miRNAs were significantly regulated (up or down) in MI-sed, of which 18 and 3 were changed towards Sham-sed in MI-high and MI-mod, respectively. Thereafter we experimentally altered expression of these "exercise-miRNAs" individually in human induced pluripotent stem cell-derived cardiomyocytes (hIPSC-CM) in the same direction as they were changed in MI. Of the "exercise-miRNAs", miR-214-3p prolonged AP duration, whereas miR-140 and miR-208a shortened AP duration. miR-497-5p prolonged Ca2+ release whereas miR-214-3p and miR-31a-5p prolonged Ca2+ decay. CONCLUSION Using exercise training as a tool, we discovered that miR-214-3p, miR-497-5p, miR-31a-5p contribute to heart-failure like behaviour in Ca2+ handling and electrophysiology and could be potential treatment targets.
Collapse
Affiliation(s)
- Tomas O Stølen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Cardiothoracic Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Cardiothoracic Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Muhammad Shakil Ahmed
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Kari Jørgensen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karin Garten
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Nathan R Scrimgeour
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marie Ormbostad Berre
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne M Nes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eirik Skogvoll
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Anesthesia and Intensive Care Medicine, St. Olav University Hospital, Trondheim, Norway
| | - Anne Berit Johnsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jose B N Moreira
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julie R McMullen
- Cardiac Hypertrophy Laboratory, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Godfrey L Smith
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology, Trondheim, Norway; School of Human Movement & Nutrition Sciences, University of Queensland, Australia
| |
Collapse
|
47
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
48
|
Franco D, Aranega A, Dominguez JN. Non-coding RNAs and Atrial Fibrillation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:311-325. [PMID: 32285421 DOI: 10.1007/978-981-15-1671-9_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation is the most frequent type of cardiac arrhythmia in humans, with an estimate incidence of 1-2% in the general population, rising up to 8-10% in the elderly. Cardiovascular risk factors such as diabetes, obesity, hypertension and hyperthyroidism can increase the occurrence of AF. The onset of AF triggers additional AF episodes, leading to structural and electrical remodeling of the diseased heart. Understanding the molecular bases of atrial fibrillation have greatly advance over the last decade demonstrating a pivotal role of distinct ion channels in AF pathophysiology. A new scenario has opened on the understanding of the molecular mechanisms underlying AF, with the discovery of non-coding RNAs and their wide implication in multiple disease states, including cardiac arrhythmogenic pathologies. microRNAs are small non-coding RNAs of 22-24 nucleotides that are capable of regulating gene expression by interacting with the mRNA transcript 3'UTRs and promoting mRNA degradation and/or protein translation blockage. Long non-coding RNAs are a more diverse group of non-coding RNAs, providing transcriptional and post-transcriptional roles and subclassified according to their functional properties. In this chapter we summarized current state-of-the-art knowledge on the functional of microRNAs and long non-coding RNAs as well as their cross-talk regulatory mechanisms in atrial fibrillation.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Dominguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
49
|
Ji X, Ding W, Xu T, Zheng X, Zhang J, Liu M, Liu G, Wang J. MicroRNA-31-5p attenuates doxorubicin-induced cardiotoxicity via quaking and circular RNA Pan3. J Mol Cell Cardiol 2020; 140:56-67. [PMID: 32135167 DOI: 10.1016/j.yjmcc.2020.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/05/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
AIMS Doxorubicin (DOX) is a broad-spectrum anticancer drug with considerable cardiotoxicity. DOX can induce myocardial apoptosis by modulating multiple signalling pathways. A better understanding of the underlying mechanism of DOX's cardiotoxicity will improve its clinical application and help avoid heart failure in patients. METHODS AND RESULTS Models of DOX cardiotoxicity in cultured cardiomyocytes and mice were used. Cell death was determined by TUNEL and caspase 3/7 activity assay. Quaking (QKI) expression was detected by immunoblotting; microRNA-31-5p and circular RNA (circRNA) levels were determined by qRT-PCR. Luciferase reporter assays were performed to validate the miR-31-5p target. We found that DOX treatment upregulated miR-31-5p expression both in cultured cardiomyocytes and in mouse heart tissue. Silencing of miR-31-5p significantly alleviated the myocardial apoptosis induced by DOX treatment both in vivo and in vitro. Further analysis indicated QKI as a direct target of miR-31-5p, which has been reported to influence circRNA expression in a series of cell types. We found that circPan3 was specifically downregulated in cardiomyocytes upon DOX treatment. We further confirmed that the downregulation of circPan3 was due to the silencing of QKI by miR-31-5p. CONCLUSIONS Our data reveal links among miR-31-5p, QKI and circPan3 in the apoptotic programme of cardiomyocytes. MiR-31-5p acted as a negative regulator of circPan3 by directly suppressing QKI, which may be a potential therapeutic target and strategy for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoyu Ji
- School of Basic Medicine, Qingdao University, Qingdao, China; Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Wei Ding
- Department of General Practice, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Xu
- Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Xianxin Zheng
- School of Basic Medicine, Qingdao University, Qingdao, China; Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China; Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Mengxin Liu
- School of Basic Medicine, Qingdao University, Qingdao, China; Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Gaoli Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
50
|
Su Y, Yu Y, Liu C, Zhang Y, Liu C, Ge M, Li L, Lan M, Wang T, Li M, Liu F, Xiong L, Wang K, He T, Shi J, Song Y, Zhao Y, Li N, Yu Z, Meng Q. Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death Differ 2020; 27:949-965. [PMID: 31332295 PMCID: PMC7206105 DOI: 10.1038/s41418-019-0390-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022] Open
Abstract
Quiescent satellite cells (SCs) that are activated to produce numerous myoblasts underpin the complete healing of damaged skeletal muscle. How cell-autonomous regulatory mechanisms modulate the balance among cells committed to differentiation and those committed to self-renewal to maintain the stem cell pool remains poorly explored. Here, we show that miR-31 inactivation compromises muscle regeneration in adult mice by impairing the expansion of myoblasts. miR-31 is pivotal for SC proliferation, and its deletion promotes asymmetric cell fate segregation of proliferating cells, resulting in enhanced myogenic commitment and re-entry into quiescence. Further analysis revealed that miR-31 posttranscriptionally suppresses interleukin 34 (IL34) mRNA, the protein product of which activates JAK-STAT3 signaling required for myogenic progression. IL34 inhibition rescues the regenerative deficiency of miR-31 knockout mice. Our results provide evidence that targeting miR-31 or IL34 activities in SCs could be used to counteract the functional exhaustion of SCs in pathological conditions.
Collapse
Affiliation(s)
- Yang Su
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Yingying Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Chuncheng Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yuying Zhang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Chang Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Mengxu Ge
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Lei Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Miaomiao Lan
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Tongtong Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Min Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Fan Liu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Lei Xiong
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Kun Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Ting He
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Jianyun Shi
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Yongli Song
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Yaofeng Zhao
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Ning Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China
| | - Qingyong Meng
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, China.
| |
Collapse
|