1
|
Ambite I, Chao SM, Rosenblad T, Hopkins R, Storm P, Ng YH, Ganesan I, Lindén M, Haq F, Tran TH, Ahmadi S, Lee B, Chen SL, Godaly G, Brandström P, Connolly JE, Svanborg C. Molecular analysis of acute pyelonephritis-excessive innate and attenuated adaptive immunity. Life Sci Alliance 2025; 8:e202402926. [PMID: 40036168 PMCID: PMC11662066 DOI: 10.26508/lsa.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/06/2025] Open
Abstract
This study investigated the molecular basis of disease severity in acute pyelonephritis (APN), a common and potentially life-threatening bacterial infection. Two cohorts of infants with febrile urinary tract infection were included. Renal involvement was defined by DMSA scans and molecular disease determinants by gene expression analysis and proteomic screens, at diagnosis and after 6 mo. Innate immune hyper-activation, systemically and locally in the urinary tract, was defined as a cytokine storm. Neutrophil degranulation and renal toxicity genes were strongly regulated, with overexpression in the APN group (first DMSA+). Adaptive immune attenuation in the APN group further supported the notion of an immune imbalance. DNA exome genotyping identified APN and febrile urinary tract infection as genetically distinct and scarring associated genes, but the activation of renal toxicity genes during acute infection was unrelated to the development of renal scarring. The results define APN as a hyper-inflammatory disorder with the characteristics of a cytokine storm combined with adaptive immune attenuation. The findings are consistent with innate immune dysfunctions and neutrophil disorders identified as determinants of APN susceptibility in genetic models.
Collapse
Affiliation(s)
- Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Duke-National University of Singapore Academic Clinical Program, Pediatric Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Therese Rosenblad
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Pediatrics, Lund Children's Hospital, Lund, Sweden
| | - Richard Hopkins
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Petter Storm
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yong Hong Ng
- Duke-National University of Singapore Academic Clinical Program, Pediatric Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Indra Ganesan
- Duke-National University of Singapore Academic Clinical Program, Pediatric Nephrology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Magnus Lindén
- Department of Pediatrics, Halland Hospital, Halmstad, Sweden
| | - Farhan Haq
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Swaine L Chen
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Infectious Diseases Translational Research Program, Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Gabriela Godaly
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Per Brandström
- Pediatric Uro-Nephrology Center, Queen Silvia's Children's Hospital, Gothenburg, Sweden
- University of Gothenburg, Gothenburg, Sweden
| | - John E Connolly
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Ambite I, Wan MLY, Tran HT, Nazari A, Chaudhuri A, Krintel C, Gomes I, Sabari S, Ahmadi S, Carneiro ANBM, Ishac R, Haq F, Svanborg C. Multitarget mechanism of MYC inhibition by the bacterial lon protease in disease. Sci Rep 2025; 15:6778. [PMID: 40000737 PMCID: PMC11861601 DOI: 10.1038/s41598-025-88093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Identifying specific inhibitors of the MYC oncogene has been challenging, due to off target effects associated with MYC inhibition. This study investigated how the recombinant Escherichia coli Lon protease (rLon), which targets MYC in human cells, inhibits MYC over-activation in models of infection and cancer. In silico predictions identified specific peptide domains of bacterial Lon that target MYC and the affinity of these peptides for MYC was investigated by surface plasmon resonance. The N-terminal domain of rLon was shown to interact with the C-terminal, leucine zipper domain of MYC and MAX and to prevent MYC/MAX dimerization. Furthermore, rLon targeted and degraded c-MYC in vitro and in cellular models, through the peptidase domain. In a model of kidney infection, rLon treatment prevented, c-MYC, N-MYC and L-MYC over-expression, MYC-dependent gene expression, specifically renal toxicity genes and pathology, suggesting that rLon recognizes and corrects MYC dysregulation in this disease. The findings describe a multitarget mechanism of MYC inhibition by rLon, and the combined effects achieved by the Lon domains, targeting different MYC epitopes and MYC-dependent functions, with no evidence of toxicity or detrimental effects on homeostatic MYC expression.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Murphy Lam Yim Wan
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Hien Thi Tran
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Atefeh Nazari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Arunima Chaudhuri
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Christian Krintel
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Inês Gomes
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Samudra Sabari
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Shahram Ahmadi
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - António N B M Carneiro
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Rita Ishac
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Farhan Haq
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden
| | - Catharina Svanborg
- Department of Laboratory Medicine, Division of Microbiology, Immunology and Glycobiology, Lund University, Klinikgatan 28, Lund, 221 84, Sweden.
| |
Collapse
|
3
|
Long Q, Rabi K, Cai Y, Li L, Huang S, Qian B, Zhong Y, Qi Z, Zhang Y, Huang K, Wang X, Chang L, Xie W, Jiang H, Zhang H, Zhang J, Ren T, Wang Z, Teesalu T, Wu C, Lu L, Zhu Z, Chu Y, Santos HA, Liu Z, Zhao Q, Ye X. Identification of splenic IRF7 as a nanotherapy target for tele-conditioning myocardial reperfusion injury. Nat Commun 2025; 16:1909. [PMID: 39994192 PMCID: PMC11850716 DOI: 10.1038/s41467-025-57048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
The sequestration of nanoparticles by mononuclear phagocyte system is a challenge for the use of nanotherapy for treating cardiovascular diseases due to the conventionally perceived loss of therapeutic potency. Here, we revitalize cardiovascular nanotherapy by unlocking an alternative route in which nanomedicines are redirected to the spleen, leveraging its potential as a highly efficient and targeted site for remote conditioning, or tele-conditioning myocardial reperfusion injury. The theoretical foundation underpinning is the splenogenic nature of recruited monocytes upon myocardial reperfusion in the acute stage, which is confirmed through murine heterotopic spleen transplantation. Single-cell RNA-seq analysis identifies IRF7 as a pivotal mediator in the spleen-heart communication network that is initially induced in the spleen and orchestrates functional changes in myocardial macrophages. Spleen-related induction of IRF7 is also valid in human myocardial reperfusion scenarios. In addition, in a murine preclinical model of male mice, temporal inhibition of splenic IRF7 through the designed spleen-targeting erythrosome engineered with the targeting peptide RP182, termed as STEER nanoparticles, mitigates the acute-stage innate immune responses and improves the cardiac function in the long term. In contrast, systemic inhibition, genetic knockout of IRF7 or absolute depletion of splenic monocytes does not have therapeutic benefits, indicating the superiority of nanoparticle-based targeted treatment. These findings establish the spleen as a naturally favored site for nanoparticle-based treatments, offering promising avenues for managing myocardial reperfusion injury.
Collapse
Affiliation(s)
- Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kristina Rabi
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yu Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lihui Li
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaichen Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Chang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weichang Xie
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haonan Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Ren
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichen Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengbin Zhu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Biotherapy Research Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen (UMCG), AV, Groningen, Netherlands
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen (UMCG), AV, Groningen, Netherlands.
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Kiruba B, Naidu A, Sundararajan V, Lulu S S. Mapping integral cell-type-specific interferon-induced gene regulatory networks (GRNs) involved in systemic lupus erythematosus using systems and computational analysis. Heliyon 2025; 11:e41342. [PMID: 39844998 PMCID: PMC11751531 DOI: 10.1016/j.heliyon.2024.e41342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the production of autoantibodies, resulting in inflammation and organ damage. Although extensive research has been conducted on SLE pathogenesis, a comprehensive understanding of its molecular landscape in different cell types has not been achieved. This study uncovers the molecular mechanisms of the disease by thoroughly examining gene regulatory networks within neutrophils, dendritic cells, T cells, and B cells. Firstly, we identified genes and ncRNAs with differential expression in SLE patients compared to controls for different cell types. Furthermore, the derived differentially expressed genes were curated based on immune functions using functional enrichment analysis to create a protein-protein interaction network. Topological network analysis of the formed genes revealed key hub genes associated with each of the cell types. To understand the regulatory mechanism through which these hub genes function in the diseased state, their associations with transcription factors, and non-coding RNAs in different immune cell types were investigated through correlation analysis and regression models. Finally, by integrating these findings, distinct gene regulatory networks were constructed, which provide a novel perspective on the molecular, cellular, and immunological landscapes of SLE. Importantly, we reveal the crucial role of IRF3, IRF7, and STAT1 in neutrophils, dendritic cells, and T cells, where their aberrant upregulation in disease states might enhance the production of type I IFN. Furthermore, we found MYB to be a crucial regulator that might activate T cells toward autoimmune responses in SLE. Similarly, in B-cell lymphocytes, we found FOXO1 to be a key player in autophagy and chemokine regulation. These findings were also validated using single-cell RNASeq analysis using an independent dataset. Genotype variations of these genes were also explored using the GWAS central database to ensure their targetability. These findings indicate that IRF3, IRF7, STAT1, MYB, and FOXO1 are promising targets for therapeutic interventions for SLE.
Collapse
Affiliation(s)
- Blessy Kiruba
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Vino Sundararajan
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Sajitha Lulu S
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
5
|
Simoni A, Schwartz L, Junquera GY, Ching CB, Spencer JD. Current and emerging strategies to curb antibiotic-resistant urinary tract infections. Nat Rev Urol 2024; 21:707-722. [PMID: 38714857 PMCID: PMC11540872 DOI: 10.1038/s41585-024-00877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/23/2024]
Abstract
Rising rates of antibiotic resistance in uropathogenic bacteria compromise patient outcomes and prolong hospital stays. Consequently, new strategies are needed to prevent and control the spread of antibiotic resistance in uropathogenic bacteria. Over the past two decades, sizeable clinical efforts and research advances have changed urinary tract infection (UTI) treatment and prevention strategies to conserve antibiotic use. The emergence of antimicrobial stewardship, policies from national societies, and the development of new antimicrobials have shaped modern UTI practices. Future UTI management practices could be driven by the evolution of antimicrobial stewardship, improved and readily available diagnostics, and an improved understanding of how the microbiome affects UTI. Forthcoming UTI treatment and prevention strategies could employ novel bactericidal compounds, combinations of new and classic antimicrobials that enhance bacterial killing, medications that prevent bacterial attachment to uroepithelial cells, repurposing drugs, and vaccines to curtail the rising rates of antibiotic resistance in uropathogenic bacteria and improve outcomes in people with UTI.
Collapse
Affiliation(s)
- Aaron Simoni
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
| | - Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Guillermo Yepes Junquera
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children's, Columbus, OH, USA
| | - Christina B Ching
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- Department of Urology, Nationwide Children's, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- Department of Pediatrics, Division of Nephrology and Hypertension, Nationwide Children's, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
6
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Yuan K, Yang Y, Lin Y, Zhou F, Huang K, Yang S, Kong W, Li F, Kan T, Wang Y, Cheng C, Liang Y, Chang H, Huang J, Ao H, Yu Z, Li H, Liu Y, Tang T. Targeting Bacteria-Induced Ferroptosis of Bone Marrow Mesenchymal Stem Cells to Promote the Repair of Infected Bone Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404453. [PMID: 39166412 PMCID: PMC11497072 DOI: 10.1002/advs.202404453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/30/2024] [Indexed: 08/22/2024]
Abstract
The specific mechanisms underlying bacteria-triggered cell death and osteogenic dysfunction in host bone marrow mesenchymal stem cells (BMSCs) remain unclear, posing a significant challenge to the repair of infected bone defects. This study identifies ferroptosis as the predominant cause of BMSCs death in the infected bone microenvironment. Mechanistically, the bacteria-induced activation of the innate immune response in BMSCs leads to upregulation and phosphorylation of interferon regulatory factor 7 (IRF7), thus facilitating IRF7-dependent ferroptosis of BMSCs through the transcriptional upregulation of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4). Moreover, it is found that intervening in ferroptosis can partially rescue cell injuries and osteogenic dysfunction. Based on these findings, a hydrogel composite 3D-printed scaffold is designed with reactive oxygen species (ROS)-responsive release of antibacterial quaternized chitosan and sustained delivery of the ferroptosis inhibitor Ferrostatin-1 (Fer-1), capable of eradicating pathogens and promoting bone regeneration in a rat model of infected bone defects. Together, this study suggests that ferroptosis of BMSCs is a promising therapeutic target for infected bone defect repair.
Collapse
Affiliation(s)
- Kai Yuan
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yiqi Yang
- Department of OrthopedicsThe First Affiliated HospitalZhejiang University School of Medicine79 Qingchun RdHangzhou310003P. R. China
| | - Yixuan Lin
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Feng Zhou
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversityNo. 899 Ping Hai RoadSuzhouJiangsu215006P. R. China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Weiqing Kong
- Department of Orthopaedic SurgeryXuzhou Central HospitalXuzhou Clinical School of Xuzhou Medical University199 Jiefang South RoadXuzhou221009P. R. China
| | - Fupeng Li
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Tianyou Kan
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yao Wang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Caiqi Cheng
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yakun Liang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Haishuang Chang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Jie Huang
- Shanghai Institute of Precision MedicineShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125P. R. China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and EngineeringEast China Jiaotong UniversityNanchang330000P. R. China
| | - Zhifeng Yu
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RoadShanghai200127P. R. China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic ImplantsDepartment of Orthopaedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| |
Collapse
|
8
|
Zou J, McNair E, DeCastro S, Lyons SP, Mordant A, Herring LE, Vetreno RP, Coleman LG. Microglia either promote or restrain TRAIL-mediated excitotoxicity caused by Aβ 1-42 oligomers. J Neuroinflammation 2024; 21:215. [PMID: 39218898 PMCID: PMC11367981 DOI: 10.1186/s12974-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) features progressive neurodegeneration and microglial activation that results in dementia and cognitive decline. The release of soluble amyloid (Aβ) oligomers into the extracellular space is an early feature of AD pathology. This can promote excitotoxicity and microglial activation. Microglia can adopt several activation states with various functional outcomes. Protective microglial activation states have been identified in response to Aβ plaque pathology in vivo. However, the role of microglia and immune mediators in neurotoxicity induced by soluble Aβ oligomers is unclear. Further, there remains a need to identify druggable molecular targets that promote protective microglial states to slow or prevent the progression of AD. METHODS Hippocampal entorhinal brain slice culture (HEBSC) was employed to study mechanisms of Aβ1-42 oligomer-induced neurotoxicity as well as the role of microglia. The roles of glutamate hyperexcitation and immune signaling in Aβ-induced neurotoxicity were assessed using MK801 and neutralizing antibodies to the TNF-related apoptosis-inducing ligand (TRAIL) respectively. Microglial activation state was manipulated using Gi-hM4di designer receptor exclusively activated by designer drugs (DREADDs), microglial depletion with the colony-stimulating factor 1 receptor (CSF1R) antagonist PLX3397, and microglial repopulation (PLX3397 withdrawal). Proteomic changes were assessed by LC-MS/MS in microglia isolated from control, repopulated, or Aβ-treated HEBSCs. RESULTS Neurotoxicity induced by soluble Aβ1-42 oligomers involves glutamatergic hyperexcitation caused by the proinflammatory mediator and death receptor ligand TRAIL. Microglia were found to have the ability to both promote and restrain Aβ-induced toxicity. Induction of microglial Gi-signaling with hM4di to prevent pro-inflammatory activation blunted Aβ neurotoxicity, while microglial depletion with CSF1R antagonism worsened neurotoxicity caused by Aβ as well as TRAIL. HEBSCs with repopulated microglia, however, showed a near complete resistance to Aβ-induced neurotoxicity. Comparison of microglial proteomes revealed that repopulated microglia have a baseline anti-inflammatory and trophic phenotype with a predicted pathway activation that is nearly opposite that of Aβ-exposed microglia. mTORC2 and IRF7 were identified as potential targets for intervention. CONCLUSION Microglia are key mediators of both protection and neurodegeneration in response to Aβ. Polarizing microglia toward a protective state could be used as a preventative strategy against Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Jian Zou
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Elizabeth McNair
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Sagan DeCastro
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Scott P Lyons
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Angie Mordant
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- Department of Pharmacology, UNC Proteomics Core, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Rostami Nejad M, Bandarian F, Razi F, Razzaghi Z, Robati RM, Rezaei M, Arjmand B, Rezaei-Tavirani M, Hamzeloo-Moghadam M. Evaluation of Laser Intensity Effect on Photodynamic Therapy Efficacy. J Lasers Med Sci 2024; 15:e33. [PMID: 39193105 PMCID: PMC11348446 DOI: 10.34172/jlms.2024.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/08/2024] [Indexed: 08/29/2024]
Abstract
Introduction: Intensity is one of the important parameters of laser radiation in photodynamic therapy. Effective treatment requires the selection of a suitable power of laser. This study aimed to evaluate laser effectiveness in photodynamic therapy via high and low intensity by the analysis of the gene expression profiles of the treated cells. Methods: The gene expression profiles of human SK-ChA-1 cells which are treated by 500mW and 50mW laser radiation were retrieved from the Gene Expression Omnibus (GEO) database. Data were assessed by the GEO2R program, and the significant differentially expressed genes (DEGs) were investigated via expression examination and protein-protein interaction (PPI) network analysis. Results: Analyses revealed that the higher intensity of radiation is associated with wide gene expression changes relative to the lower mode. 196 significant DEGs were identified and assessed. The extremely dysregulated DEGs except MMP1 were down-regulated. STAT1, IRF7, IL1B, DDX58, ISG15, RSAD2, DHX58, OASL, OAS1, STAT2, DDX60, OAS2, USP18, and IFI44L were introduced as hubs of the main component of the PPI network. Final analysis showed that STAT1, IRF7, IL1B, DDX58, and STAT2 are the critical DEGs. Conclusion: Compared to the 50 mW mode of radiation, 500 mW laser intensity effectively changed apoptosis, differentiation, cell proliferation and angiogenesis, regulation of other inflammation-related molecules, innate immunity, and maintaining immune homeostasis.
Collapse
Affiliation(s)
- Mohammad Rostami Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Rezaei
- Genomic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | | | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ambite I, Tran TH, Butler DSC, Cavalera M, Wan MLY, Ahmadi S, Svanborg C. Therapeutic Effects of IL-1RA against Acute Bacterial Infections, including Antibiotic-Resistant Strains. Pathogens 2023; 13:42. [PMID: 38251349 PMCID: PMC10820880 DOI: 10.3390/pathogens13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Innate immunity is essential for the anti-microbial defense, but excessive immune activation may cause severe disease. In this study, immunotherapy was shown to prevent excessive innate immune activation and restore the anti-bacterial defense. E. coli-infected Asc-/- mice develop severe acute cystitis, defined by IL-1 hyper-activation, high bacterial counts, and extensive tissue pathology. Here, the interleukin-1 receptor antagonist (IL-1RA), which inhibits IL-1 hyper-activation in acute cystitis, was identified as a more potent inhibitor of inflammation and NK1R- and substance P-dependent pain than cefotaxime. Furthermore, IL-1RA treatment inhibited the excessive innate immune activation in the kidneys of infected Irf3-/- mice and restored tissue integrity. Unexpectedly, IL-1RA also accelerated bacterial clearance from infected bladders and kidneys, including antibiotic-resistant E. coli, where cefotaxime treatment was inefficient. The results suggest that by targeting the IL-1 response, control of the innate immune response to infection may be regained, with highly favorable treatment outcomes, including infections caused by antibiotic-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (I.A.); (T.H.T.); (D.S.C.B.); (M.C.); (M.L.Y.W.); (S.A.)
| |
Collapse
|
11
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
12
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
13
|
Abstract
Allergic diseases typically begin in early life and can impose a heavy burden on children and their families. Effective preventive measures are currently unavailable but may be ushered in by studies on the "farm effect", the strong protection from asthma and allergy found in children born and raised on traditional farms. Two decades of epidemiologic and immunologic research have demonstrated that this protection is provided by early and intense exposure to farm-associated microbes that target primarily innate immune pathways. Farm exposure also promotes timely maturation of the gut microbiome, which mediates a proportion of the protection conferred by the farm effect. Current research seeks to identify allergy-protective compounds from traditional farm environments, but standardization and regulation of such substances will likely prove challenging. On the other hand, studies in mouse models show that administration of standardized, pharmacological-grade lysates of human airway bacteria abrogates allergic lung inflammation by acting on multiple innate immune targets, including the airway epithelium/IL-33/ILC2 axis and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming is sufficient for asthma protection in adoptive transfer models. To the extent that these bacterial lysates mimic the protective effects of natural exposure to microbe-rich environments, these agents might provide an effective tool for prevention of allergic disease.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma & Airway Disease Research Center, The BIO5 Institute, and The Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Mohanty T, Karlsson CAQ, Chao Y, Malmström E, Bratanis E, Grentzmann A, Mørch M, Nizet V, Malmström L, Linder A, Shannon O, Malmström J. A pharmacoproteomic landscape of organotypic intervention responses in Gram-negative sepsis. Nat Commun 2023; 14:3603. [PMID: 37330510 PMCID: PMC10276868 DOI: 10.1038/s41467-023-39269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Sepsis is the major cause of mortality across intensive care units globally, yet details of accompanying pathological molecular events remain unclear. This knowledge gap has resulted in ineffective biomarker development and suboptimal treatment regimens to prevent and manage organ dysfunction/damage. Here, we used pharmacoproteomics to score time-dependent treatment impact in a murine Escherichia coli sepsis model after administering beta-lactam antibiotic meropenem (Mem) and/or the immunomodulatory glucocorticoid methylprednisolone (Gcc). Three distinct proteome response patterns were identified, which depended on the underlying proteotype for each organ. Gcc enhanced some positive proteome responses of Mem, including superior reduction of the inflammatory response in kidneys and partial restoration of sepsis-induced metabolic dysfunction. Mem introduced sepsis-independent perturbations in the mitochondrial proteome that Gcc counteracted. We provide a strategy for the quantitative and organotypic assessment of treatment effects of candidate therapies in relationship to dosing, timing, and potential synergistic intervention combinations during sepsis.
Collapse
Affiliation(s)
- Tirthankar Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Christofer A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Yashuan Chao
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Erik Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
- Emergency Medicine, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Eleni Bratanis
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Andrietta Grentzmann
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Martina Mørch
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Lars Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Adam Linder
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden
| | - Oonagh Shannon
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden.
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund, Lund University, SE-22184, Lund, Sweden.
| |
Collapse
|
15
|
Yaseen MM, Abuharfeil NM, Darmani H. The role of IL-1β during human immunodeficiency virus type 1 infection. Rev Med Virol 2023; 33:e2400. [PMID: 36209388 DOI: 10.1002/rmv.2400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
Interleukin (IL)-1β is a key innate cytokine that is essential for immune activation and promoting the inflammatory process. However, abnormal elevation in IL-1β levels has been associated with unwanted clinical outcomes. IL-1β is the most extensively studied cytokine among the IL-1 family of cytokines and its role in pathology is well established. During the course of human immunodeficiency virus type 1 (HIV-1) infection, the level of this proinflammatory cytokine is increased in different anatomical compartments, particularly in lymphatic tissues, and this elevation is associated with disease progression. The aim of this review is to address the pathological roles play by IL-1β in the light of enhancing HIV-1 replication, driving immune cell depletion, and chronic immune activation. The role of IL-1β in HIV-1 transmission (sexually or vertically 'from mother-to-child') will also be discussed. Additionally, the impact of the available antiretroviral therapy regimens on the levels of IL-1β in HIV-1 treated patients is also discussed. Finally, we will provide a glance on how IL-1β could be targeted as a therapeutic strategy.
Collapse
Affiliation(s)
- Mahmoud M Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
16
|
Schmidtchen A, Mirza H, van der Plas MJA, Nadeem A, Puthia M. Editorial: Methods and applications in inflammation pharmacology. Front Pharmacol 2022; 13:1108263. [PMID: 36578538 PMCID: PMC9792174 DOI: 10.3389/fphar.2022.1108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haris Mirza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aftab Nadeem
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden,*Correspondence: Manoj Puthia,
| |
Collapse
|
17
|
Liu Z, Meng M, Ding S, Zhou X, Feng K, Huang T, Cai YD. Identification of methylation signatures and rules for predicting the severity of SARS-CoV-2 infection with machine learning methods. Front Microbiol 2022; 13:1007295. [PMID: 36212830 PMCID: PMC9537378 DOI: 10.3389/fmicb.2022.1007295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Patients infected with SARS-CoV-2 at various severities have different clinical manifestations and treatments. Mild or moderate patients usually recover with conventional medical treatment, but severe patients require prompt professional treatment. Thus, stratifying infected patients for targeted treatment is meaningful. A computational workflow was designed in this study to identify key blood methylation features and rules that can distinguish the severity of SARS-CoV-2 infection. First, the methylation features in the expression profile were deeply analyzed by a Monte Carlo feature selection method. A feature list was generated. Next, this ranked feature list was fed into the incremental feature selection method to determine the optimal features for different classification algorithms, thereby further building optimal classifiers. These selected key features were analyzed by functional enrichment to detect their biofunctional information. Furthermore, a set of rules were set up by a white-box algorithm, decision tree, to uncover different methylation patterns on various severity of SARS-CoV-2 infection. Some genes (PARP9, MX1, IRF7), corresponding to essential methylation sites, and rules were validated by published academic literature. Overall, this study contributes to revealing potential expression features and provides a reference for patient stratification. The physicians can prioritize and allocate health and medical resources for COVID-19 patients based on their predicted severe clinical outcomes.
Collapse
Affiliation(s)
- Zhiyang Liu
- School of Life Sciences, Changchun Sci-Tech University, Changchun, China
| | - Mei Meng
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - XiaoChao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- Yu-Dong Cai,
| |
Collapse
|
18
|
Sorić Hosman I, Cvitković Roić A, Lamot L. A Systematic Review of the (Un)known Host Immune Response Biomarkers for Predicting Recurrence of Urinary Tract Infection. Front Med (Lausanne) 2022; 9:931717. [PMID: 35860746 PMCID: PMC9289160 DOI: 10.3389/fmed.2022.931717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recurrent urinary tract infections (rUTI) represent a major healthcare and economic burden along with a significant impact on patient’s morbidity and quality of life, even in the absence of well-known risk factors, such as vesicoureteral reflux. Despite numerous attempts to find a suitable therapeutic option, there is no clear benefit of any currently available intervention for prevention of UTI recurrence and its long-term consequences such as hypertension, renal scarring and/or insufficiency. The common treatment practice in many centers around the globe involves the use of continuous low-dose antibiotic prophylaxis, irrespective of various studies indicating increased microbial resistance against the prophylactic drug, leading to prolonged duration and escalating the cost of UTI treatment. Moreover, the rapid appearance of multi-drug resistant uropathogens is threatening to transform UTI to untreatable disease, while impaired host-microbiota homeostasis induced by a long-term use of antibiotics predisposes patients for various autoimmune and infectious diseases. New biomarkers of the increased risk of UTI recurrence could therefore assist in avoiding such outcomes by revealing more specific patient population which could benefit from additional interventions. In this light, the recent findings suggesting a crucial role of urothelial innate immunity mechanisms in protection of urinary tract from invading uropathogens might offer new diagnostic, prognostic and even therapeutic opportunities. Uroepithelial cells detect uropathogens via pattern recognition receptors, resulting in activation of intracellular signaling cascade and transcription factors, which ultimately leads to an increased production and secretion of chemokines, cytokines and antimicrobial peptides into the urinary stream. Emerging evidence suggest that the disturbance of a single component of the urinary tract innate immunity system might increase susceptibility for rUTI. The aim of the current review is to update clinicians and researchers on potential biomarkers of host immune response alterations predisposing for rUTI and propose those well worth exploring further. For this purpose, over a hundred original papers were identified through an extensive PubMed and Scopus databases search. This comprehensive review might enrich the current clinical practice and fill the unmet clinical needs, but also encourage the development of therapeutic agents that would facilitate urinary bacterial clearance by enhancing the host immune response.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Andrea Cvitković Roić
- Department of Nephrology and Urology, Clinic for Pediatric Medicine Helena, Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
- *Correspondence: Lovro Lamot,
| |
Collapse
|
19
|
Butler D, Ambite I, Wan MLY, Tran TH, Wullt B, Svanborg C. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat Rev Urol 2022; 19:419-437. [PMID: 35732832 PMCID: PMC9214477 DOI: 10.1038/s41585-022-00602-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Innovative solutions are needed for the treatment of bacterial infections, and a range of antibacterial molecules have been explored as alternatives to antibiotics. A different approach is to investigate the immune system of the host for new ways of making the antibacterial defence more efficient. However, the immune system has a dual role as protector and cause of disease: in addition to being protective, increasing evidence shows that innate immune responses can become excessive and cause acute symptoms and tissue pathology during infection. This role of innate immunity in disease suggests that the immune system should be targeted therapeutically, to inhibit over-reactivity. The ultimate goal is to develop therapies that selectively attenuate destructive immune response cascades, while augmenting the protective antimicrobial defence but such treatment options have remained underexplored, owing to the molecular proximity of the protective and destructive effects of the immune response. The concept of innate immunomodulation therapy has been developed successfully in urinary tract infections, based on detailed studies of innate immune activation and disease pathogenesis. Effective, disease-specific, immunomodulatory strategies have been developed by targeting specific immune response regulators including key transcription factors. In acute pyelonephritis, targeting interferon regulatory factor 7 using small interfering RNA or treatment with antimicrobial peptide cathelicidin was protective and, in acute cystitis, targeting overactive effector molecules such as IL-1β, MMP7, COX2, cAMP and the pain-sensing receptor NK1R has been successful in vivo. Furthermore, other UTI treatment strategies, such as inhibiting bacterial adhesion and vaccination, have also shown promise. Hyperactivation of innate immunity is a disease determinant in urinary tract infections (UTIs). Modulation of innate immunity has promise as a therapy for UTIs. In this Review, the authors discuss potential mechanisms and immunomodulatory therapeutic strategies in UTIs. Excessive innate immune responses to infection cause symptoms and pathology in acute pyelonephritis and acute cystitis. Innate immunomodulation therapy is, therefore, a realistic option for treating these conditions. Targeting excessive innate immune responses at the level of transcription has been successful in animal models. Innate immunomodulation therapy reduces excessive inflammation and tissue pathology and accelerates bacterial clearance from infected kidneys and bladders in mice. Innate immunomodulation therapy also accelerates the clearance of antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Daniel Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
Zhang L, Gao S, White Z, Dai Y, Malik AB, Rehman J. Single-cell transcriptomic profiling of lung endothelial cells identifies dynamic inflammatory and regenerative subpopulations. JCI Insight 2022; 7:e158079. [PMID: 35511435 PMCID: PMC9220950 DOI: 10.1172/jci.insight.158079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Studies have demonstrated the phenotypic heterogeneity of vascular endothelial cells (ECs) within a vascular bed; however, little is known about how distinct endothelial subpopulations in a particular organ respond to an inflammatory stimulus. We performed single-cell RNA-Seq of 35,973 lung ECs obtained during baseline as well as postinjury time points after inflammatory lung injury induced by LPS. Seurat clustering and gene expression pathway analysis identified 2 major subpopulations in the lung microvascular endothelium, a subpopulation enriched for expression of immune response genes such as MHC genes (immuneEC) and another defined by increased expression of vascular development genes such as Sox17 (devEC). The presence of immuneEC and devEC subpopulations was also observed in nonhuman primate lungs infected with SARS-CoV-2 and murine lungs infected with H1N1 influenza virus. After the peak of inflammatory injury, we observed the emergence of a proliferative lung EC subpopulation. Overexpression of Sox17 prevented inflammatory activation in ECs. Thus, there appeared to be a "division of labor" within the lung microvascular endothelium in which some ECs showed propensity for inflammatory signaling and others for endothelial regeneration. These results provide underpinnings for the development of targeted therapies to limit inflammatory lung injury and promote regeneration.
Collapse
Affiliation(s)
| | - Shang Gao
- Department of Pharmacology and Regenerative Medicine
- Department of Biomedical Engineering, and
- Division of Cardiology, Department of Medicine, the University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zachary White
- Department of Pharmacology and Regenerative Medicine
| | - Yang Dai
- Department of Biomedical Engineering, and
| | | | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine
- Division of Cardiology, Department of Medicine, the University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Commun Biol 2022; 5:102. [PMID: 35091696 PMCID: PMC8799722 DOI: 10.1038/s42003-022-03035-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.
Collapse
Affiliation(s)
- Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Wullt B, Butler DSC, Ambite I, Kinsolving J, Krintel C, Svanborg C. Immunomodulation-A Molecular Solution to Treating Patients with Severe Bladder Pain Syndrome? EUR UROL SUPPL 2021; 31:49-58. [PMID: 34467240 PMCID: PMC8385293 DOI: 10.1016/j.euros.2021.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Patients with bladder pain syndrome experience debilitating pain and extreme frequency of urination. Numerous therapeutic approaches have been tested, but as the molecular basis of disease has remained unclear, specific therapies are not available. Objective Recently, a systematic gene deletion strategy identified interleukin-1 (IL-1) hyperactivation as a cause of severe cystitis in a murine model. Treatment with an IL-1 receptor antagonist (IL-1RA) restored health in genetically susceptible mice, linking IL-1–dependent inflammation to pain and pathology in the bladder mucosa. The study objective was to investigate whether IL-1RA treatment might be beneficial in patients with bladder pain syndrome. Design, setting, and participants Patients diagnosed with bladder pain syndrome were invited to participate and subjected to daily IL-1RA injections for 1 wk, followed by a treatment break. Patients with other urological disorders accompanied by pain were included as controls. Outcome measurements and statistical analysis When symptoms returned, treatment was resumed and responding patients were maintained on treatment long term, with individualized dosing regimens. Symptom scores were recorded and molecular effects were quantified by neuropeptide and gene expression analysis. DNA samples were subjected to exome genotyping. Results and limitations IL-1RA treatment reduced bladder pain and the frequency of urination in 13/17 patients (p < 0.001). Substance P levels in urine were lowered, and responders returned to a more normal lifestyle. Neuroinflammatory-dependent and IL-1–dependent gene networks were inhibited, as well as regulators of innate immunity. Genotyping revealed disease-associated IL1R1, NLRP3, and IL1RN DNA sequence variants in the responders. Controls did not benefit from IL-1RA treatment, except for one patent with cystitis cystica. Conclusions In this clinical study, IL-1RA treatment is proposed to reduce chronic bladder pain, immediately and in the long term. Despite the limited number of study patients, the potent acute effect and lasting symptom relief indicate that this therapeutic approach may be worth exploring in controlled clinical trials. Patient summary Treatment with an interleukin-1 (IL-1) receptor antagonist is proposed for treating bladder pain syndrome, as it can result in symptom relief and increase quality of life. Reduced neuroinflammation and IL-1 signaling provided molecular evidence of the treatment effects.
Collapse
Affiliation(s)
- Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel S C Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julia Kinsolving
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christian Krintel
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Chang K, Han K, Qiu W, Hu Z, Chen X, Chen X, Xie X, Wang S, Hu C, Mao H. Grass carp (Ctenopharyngodon idella) interferon regulatory factor 8 down-regulates interferon1 expression via interaction with interferon regulatory factor 2 in vitro. Mol Immunol 2021; 137:202-211. [PMID: 34280770 DOI: 10.1016/j.molimm.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a negative regulatory factor of interferon (IFN) and plays an important role in cell differentiation and innate immunity in mammals. In recent years, some irf8 homologous genes have been cloned and confirmed to take part in innate immune response in fish, but the mechanism still remains unclear. In this paper, a grass carp (Ctenopharyngodon idella) irf8 gene (Ciirf8) was cloned and characterized. The deduced protein (CiIRF8) possesses a highly conserved N-terminal DNA binding domain but a less well-conserved C-terminal IRF association domain (IAD). Ciirf8 was widely expressed in all tested tissues of grass carp and up-regulated following poly(I:C) stimulation. Ciirf8 expression was also up-regulated in CIK cells upon treatment with poly(I:C). To explore the molecular mechanism of how fish IRF8 regulates ifn1 expression, the similarities and differences of grass carp IRF8 and IRF2 were compared and contrasted. Subcellular localization analysis showed that CiIRF8 is located both in the cytoplasm and nucleus; however, CiIRF2 is only located in the nucleus. The nuclear-cytoplasmic translocation of CiIRF8 was observed in CIK cells under stimulation with poly(I:C). The interaction of CiIRF8 and CiIRF2 was further confirmed by a co-immunoprecipitation assay in the nucleus. Dual-luciferase reporter assays showed that the promoter activity of Ciifn1 was significantly inhibited by co-transfection with CiIRF2 and CiIRF8. The transcription inhibition of Ciifn1 was alleviated by competitive binding of CiIRF2 and CiIRF8 to CiIRF1. In conclusion, CiIRF8 down-regulates Ciifn1 expression via interaction with CiIRF2 in cells.
Collapse
Affiliation(s)
- Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Weihua Qiu
- Teaching Material Research Office of Jiangxi Provincial Education Department, China
| | - Zhizhen Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xingxing Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xin Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
24
|
Strömdahl AC, Ignatowicz L, Petruk G, Butrym M, Wasserstrom S, Schmidtchen A, Puthia M. Peptide-coated polyurethane material reduces wound infection and inflammation. Acta Biomater 2021; 128:314-331. [PMID: 33951491 DOI: 10.1016/j.actbio.2021.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023]
Abstract
There is an urgent need for treatments that not only reduce bacterial infection that occurs during wounding but that also target the accompanying excessive inflammatory response. TCP-25, a thrombin-derived antibacterial peptide, scavenges toll-like receptor agonists such as endotoxins and lipoteichoic acid and prevents toll-like receptor-4 dimerization to reduce infection-related inflammation in vivo. Using a combination of biophysical, cellular, and microbiological assays followed by experimental studies in mouse and pig models, we show that TCP-25, when delivered from a polyurethane (PU) material, exerts anti-infective and anti-inflammatory effects in vitro and in vivo. Specifically, TCP-25 killed the common wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, in both in vitro and in vivo assays. Furthermore, after its release from the PU material, the peptide retained its capacity to induce its helical conformation upon endotoxin interaction, yielding reduced activation of NF-κB in THP-1 reporter cells, and diminished accumulation of inflammatory cells and subsequent release of IL-6 and TNF-α in subcutaneous implant models in vivo. Moreover, in a porcine partial thickness wound infection model, TCP-25 treated infection with S. aureus, and reduced the concomitant inflammatory response. Taken together, these findings demonstrate a combined antibacterial and anti-inflammatory effect of TCP-25 delivered from PU in vitro, and in mouse and porcine in vivo models of localized infection-inflammation. STATEMENT OF SIGNIFICANCE: Local wound infections may result in systemic complications and can be difficult to treat due to increasing antimicrobial resistance. Surgical site infections and biomaterial-related infections present a major challenge for hospitals. In recent years, various antimicrobial coatings have been developed for infection prevention and current concepts focus on various matrices with added anti-infective components, including various antibiotics and antiseptics. We have developed a dual action wound dressing concept where the host defense peptide TCP-25, when delivered from a PU material, targets both bacterial infection and the accompanying inflammation. TCP-25 PU showed efficacy in in vitro and experimental wound models in mouse and minipigs.
Collapse
|
25
|
Nodari A, Scambi I, Peroni D, Calabria E, Benati D, Mannucci S, Manfredi M, Frontini A, Visonà S, Bozzato A, Sbarbati A, Schena F, Marengo E, Krampera M, Galiè M. Interferon regulatory factor 7 impairs cellular metabolism in aging adipose-derived stromal cells. J Cell Sci 2021; 134:jcs256230. [PMID: 34096605 DOI: 10.1242/jcs.256230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulated immunity and widespread metabolic dysfunctions are the most relevant hallmarks of the passing of time over the course of adult life, and their combination at midlife is strongly related to increased vulnerability to diseases; however, the causal connection between them remains largely unclear. By combining multi-omics and functional analyses of adipose-derived stromal cells established from young (1 month) and midlife (12 months) mice, we show that an increase in expression of interferon regulatory factor 7 (IRF7) during adult life drives major metabolic changes, which include impaired mitochondrial function, altered amino acid biogenesis and reduced expression of genes involved in branched-chain amino acid (BCAA) degradation. Our results draw a new paradigm of aging as the 'sterile' activation of a cell-autonomous pathway of self-defense and identify a crucial mediator of this pathway, IRF7, as driver of metabolic dysfunction with age.
Collapse
Affiliation(s)
- Alice Nodari
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Daniele Peroni
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Elisa Calabria
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Donatella Benati
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Silvia Mannucci
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Alessandria, Italy
- Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 20121 Ancona, Italy
| | - Silvia Visonà
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andrea Bozzato
- Department of Biomedical Sciences and Biotechnology, University of Brescia, 25123 Brescia, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Federico Schena
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, 28100 Alessandria, Italy
- Center for Translational Research on Autoimmune and Allergic Disease - CAAD, University of Piemonte Orientale, 28100 Novara, Italy
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, Stem Cell Research Laboratory, University of Verona, 37134 Verona, Italy
| | - Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy
| |
Collapse
|
26
|
Albracht CD, Hreha TN, Hunstad DA. Sex effects in pyelonephritis. Pediatr Nephrol 2021; 36:507-515. [PMID: 32040629 PMCID: PMC7415591 DOI: 10.1007/s00467-020-04492-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Urinary tract infections (UTIs) are generally considered a disease of women. However, UTIs affect females throughout the lifespan, and certain male populations (including infants and elderly men) are also susceptible. Epidemiologically, pyelonephritis is more common in women but carries increased morbidity when it does occur in men. Among children, high-grade vesicoureteral reflux is a primary risk factor for upper-tract UTI in both sexes. However, among young infants with UTI, girls are outnumbered by boys; risk factors include posterior urethral valves and lack of circumcision. Recent advances in mouse models of UTI reveal sex differences in innate responses to UTI, which vary somewhat depending on the system used. Moreover, male mice and androgenized female mice suffer worse outcomes in experimental pyelonephritis; evidence suggests that androgen exposure may suppress innate control of infection in the urinary tract, but additional androgen effects, as well as non-hormonal sex effects, may yet be specified. Among other intriguing directions, recent experiments raise the hypothesis that the postnatal testosterone surge that occurs in male infants may represent an additional factor driving the higher incidence of UTI in males under 6 months of age. Ongoing work in contemporary models will further illuminate sex- and sex-hormone-specific effects on UTI pathogenesis and immune responses.
Collapse
Affiliation(s)
- Clayton D Albracht
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8208, St. Louis, MO, 63110, USA
| | - Teri N Hreha
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8208, St. Louis, MO, 63110, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8208, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8230, St. Louis, MO, 63110, USA.
| |
Collapse
|
27
|
Ambite I, Filenko NA, Zaldastanishvili E, Butler DS, Tran TH, Chaudhuri A, Esmaeili P, Ahmadi S, Paul S, Wullt B, Putze J, Chen SL, Dobrindt U, Svanborg C. Active bacterial modification of the host environment through RNA polymerase II inhibition. J Clin Invest 2021; 131:140333. [PMID: 33320835 DOI: 10.1172/jci140333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/09/2020] [Indexed: 01/17/2023] Open
Abstract
Unlike pathogens, which attack the host, commensal bacteria create a state of friendly coexistence. Here, we identified a mechanism of bacterial adaptation to the host niche, where they reside. Asymptomatic carrier strains were shown to inhibit RNA polymerase II (Pol II) in host cells by targeting Ser2 phosphorylation, a step required for productive mRNA elongation. Assisted by a rare, spontaneous loss-of-function mutant from a human carrier, the bacterial NlpD protein was identified as a Pol II inhibitor. After internalization by host cells, NlpD was shown to target constituents of the Pol II phosphorylation complex (RPB1 and PAF1C), attenuating host gene expression. Therapeutic efficacy of a recombinant NlpD protein was demonstrated in a urinary tract infection model, by reduced tissue pathology, accelerated bacterial clearance, and attenuated Pol II-dependent gene expression. The findings suggest an intriguing, evolutionarily conserved mechanism for bacterial modulation of host gene expression, with a remarkable therapeutic potential.
Collapse
Affiliation(s)
- Inès Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nina A Filenko
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Daniel Sc Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Arunima Chaudhuri
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Parisa Esmaeili
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shahram Ahmadi
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sanchari Paul
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Infectious Diseases Group, Genome Institute Singapore, A*STAR, Singapore
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Ambite I, Butler D, Wan MLY, Rosenblad T, Tran TH, Chao SM, Svanborg C. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol 2021; 18:468-486. [PMID: 34131331 PMCID: PMC8204302 DOI: 10.1038/s41585-021-00477-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ines Ambite
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Therese Rosenblad
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Nephrology Service, Department of Paediatrics, KK Hospital, Singapore, Singapore
| | - Catharina Svanborg
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Abstract
V. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation. To understand toxin-stimulated host-pathogen interactions, we performed dual-transcriptome sequencing experiments using human epithelial (HT-29) and differentiated THP-1 (dTHP-1) immune cells infected with the sepsis-causing pathogen Vibrio vulnificus (either the wild-type [WT] pathogen or a multifunctional-autoprocessing repeats-in-toxin [MARTX] toxin-deficient strain). Gene set enrichment analyses revealed MARTX toxin-dependent responses, including negative regulation of extracellular related kinase 1 (ERK1) and ERK2 (ERK1/2) signaling and cell cycle regulation in HT-29 and dTHP-1 cells, respectively. Further analysis of the expression of immune-related genes suggested that the MARTX toxin dampens immune responses in gut epithelial cells but accelerates inflammation and nuclear factor κB (NF-κB) signaling in immune cells. With respect to the pathogen, siderophore biosynthesis genes were significantly more highly expressed in WT V. vulnificus than in the MARTX toxin-deficient mutant upon infection of dTHP-1 cells. Consistent with these results, iron homeostasis genes that limit iron levels for invading pathogens were overexpressed in WT V. vulnificus-infected dTHP-1 cells. Taken together, these results suggest that MARTX toxin regulates host inflammatory responses during V. vulnificus infection while also countering host defense mechanisms such as iron limitation. IMPORTANCEV. vulnificus is an opportunistic human pathogen that can cause life-threatening sepsis in immunocompromised patients via seafood poisoning or wound infection. Among the toxic substances produced by this pathogen, the MARTX toxin greatly contributes to disease progression by promoting the dysfunction and death of host cells, which allows the bacteria to disseminate and colonize the host. In response to this, host cells mount a counterattack against the invaders by upregulating various defense genes. In this study, the gene expression profiles of both host cells and V. vulnificus were analyzed by RNA sequencing to gain a comprehensive understanding of host-pathogen interactions. Our results suggest that V. vulnificus uses the MARTX toxin to subvert host cell immune responses as well as to oppose host counterattacks such as iron limitation.
Collapse
|
30
|
Ching C, Schwartz L, Spencer JD, Becknell B. Innate immunity and urinary tract infection. Pediatr Nephrol 2020; 35:1183-1192. [PMID: 31197473 PMCID: PMC6908784 DOI: 10.1007/s00467-019-04269-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/31/2023]
Abstract
Urinary tract infections are a severe public health problem. The emergence and spread of antimicrobial resistance among uropathogens threaten to further compromise the quality of life and health of people who develop acute and recurrent upper and lower urinary tract infections. The host defense mechanisms that prevent invasive bacterial infection are not entirely delineated. However, recent evidence suggests that versatile innate immune defenses play a key role in shielding the urinary tract from invading uropathogens. Over the last decade, considerable advances have been made in defining the innate mechanisms that maintain immune homeostasis in the kidney and urinary tract. When these innate defenses are compromised or dysregulated, pathogen susceptibility increases. The objective of this review is to provide an overview of how basic science discoveries are elucidating essential innate host defenses in the kidney and urinary tract. In doing so, we highlight how these findings may ultimately translate into the clinic as new biomarkers or therapies for urinary tract infection.
Collapse
Affiliation(s)
- Christina Ching
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Urology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA.
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
31
|
Minaga K, Watanabe T, Arai Y, Shiokawa M, Hara A, Yoshikawa T, Kamata K, Yamashita K, Kudo M. Activation of interferon regulatory factor 7 in plasmacytoid dendritic cells promotes experimental autoimmune pancreatitis. J Gastroenterol 2020; 55:565-576. [PMID: 31960143 DOI: 10.1007/s00535-020-01662-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/05/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Excessive type I IFN (IFN-I) production by plasmacytoid dendritic cells (pDCs) promotes autoimmunity. Recently, we reported that a prominent feature of both experimental autoimmune pancreatitis (AIP) and human type 1 AIP is pDC activation followed by enhanced production of IFN-I and IL-33. However, the roles played by interferon regulatory factor 7 (IRF7), a critical transcription factor for IFN-I production in pDCs, in these disorders have not been clarified. METHODS Whole and nuclear extracts were isolated from pancreatic mononuclear cells (PMNCs) from MRL/MpJ mice exhibiting AIP. Expression of phospho-IRF7 and nuclear translocation of IRF7 was examined in these extracts by immunoblotting. Pancreatic expression of IRF7 was assessed by immunofluorescence analysis in experimental AIP. Nuclear translocation of IRF7 upon exposure to neutrophil extracellular traps (NETs) was assessed in peripheral blood pDCs from type 1 AIP patients. Pancreatic IRF7 expression was examined in surgically operated specimens from type 1 AIP patients. RESULTS IRF7 activation was induced in pancreatic pDCs in experimental AIP. siRNA-mediated knockdown of IRF7 expression prevented AIP development, which was accompanied by a marked reduction in both pancreatic accumulation of pDCs and production of IFN-α and IL-33. Notably, in peripheral blood pDCs isolated from patients with type 1 AIP, nuclear translocation of IRF7 was enhanced as compared with the translocation in pDCs from healthy controls. Furthermore, IRF7-expressing pDCs were detected in the pancreas of patients with type 1 AIP. CONCLUSIONS These findings suggest that the IRF7-IFN-I-IL-33 axis activated in pDCs drives pathogenic innate immune responses associated with type 1 AIP.
Collapse
Affiliation(s)
- Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| |
Collapse
|
32
|
Wang Y, Wei H, Song L, Xu L, Bao J, Liu J. Gene Expression Microarray Data Meta-Analysis Identifies Candidate Genes and Molecular Mechanism Associated with Clear Cell Renal Cell Carcinoma. CELL JOURNAL 2019; 22:386-393. [PMID: 31863665 PMCID: PMC6947001 DOI: 10.22074/cellj.2020.6561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
Objective We aimed to explore potential molecular mechanisms of clear cell renal cell carcinoma (ccRCC) and provide
candidate target genes for ccRCC gene therapy. Materials and Methods This is a bioinformatics-based study. Microarray datasets of GSE6344, GSE781 and GSE53000
were downloaded from Gene Expression Omnibus database. Using meta-analysis, differentially expressed genes
(DEGs) were identified between ccRCC and normal samples, followed by Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and Gene Ontology (GO) function analyses. Then, protein-protein interaction (PPI) networks and
modules were investigated. Furthermore, miRNAs-target gene regulatory network was constructed.
Results Total of 511 up-regulated and 444 down-regulated DEGs were determined in the present gene expression
microarray data meta-analysis. These DEGs were enriched in functions like immune system process and pathways like
Toll-like receptor signaling pathway. PPI network and eight modules were further constructed. A total of 10 outstanding
DEGs including TYRO protein tyrosine kinase binding protein (TYROBP), interferon regulatory factor 7 (IRF7) and
PPARG co-activator 1 alpha (PPARGC1A) were detected in PPI network. Furthermore, the miRNAs-target gene
regulation analyses showed that miR-412 and miR-199b respectively targeted IRF7 and PPARGC1A to regulate the
immune response in ccRCC.
Conclusion TYROBP, IRF7 and PPARGC1A might play important roles in ccRCC via taking part in the immune
system process.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China. Electronic Address:
| | - Haibin Wei
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lizhi Song
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lu Xu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingyao Bao
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiang Liu
- Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China. Electronic Address:
| |
Collapse
|
33
|
Hölzer M, Schoen A, Wulle J, Müller MA, Drosten C, Marz M, Weber F. Virus- and Interferon Alpha-Induced Transcriptomes of Cells from the Microbat Myotis daubentonii. iScience 2019; 19:647-661. [PMID: 31465999 PMCID: PMC6718828 DOI: 10.1016/j.isci.2019.08.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/10/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Antiviral interferons (IFN-alpha/beta) are possibly responsible for the high tolerance of bats to zoonotic viruses. Previous studies focused on the IFN system of megabats (suborder Yinpterochiroptera). We present statistically robust RNA sequencing (RNA-seq) data on transcriptomes of cells from the “microbat” Myotis daubentonii (suborder Yangochiroptera) responding at 6 and 24 h to either an IFN-inducing virus or treatment with IFN. Our data reveal genes triggered only by virus, either in both humans and Myotis (CCL4, IFNL3, CH25H), or exclusively in Myotis (STEAP4). Myotis cells also express a series of conserved IFN-stimulated genes (ISGs) and an unusually high paralog number of the antiviral ISG BST2 (tetherin) but lack several ISGs that were described for megabats (EMC2, FILIP1, IL17RC, OTOGL, SLC24A1). Also, in contrast to megabats, we detected neither different IFN-alpha subtypes nor an unusually high baseline expression of IFNs. Thus, Yangochiroptera microbats, represented by Myotis, may possess an IFN system with distinctive features. Virus- and IFN-responsive transcriptomes of the microbat Myotis daubentonii CCL4, IFNL3, CH25H, STEAP4 are IFNB-like genes triggered by virus only Microbats encode more paralogs of BST2 (tetherin) than any other mammal Clear differences between the IFN systems of microbats and megabats
Collapse
Affiliation(s)
- Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany
| | - Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany
| | - Julia Wulle
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany
| | - Marcel A Müller
- German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Christian Drosten
- German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany; Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany; European Virus Bioinformatics Center, Jena, Germany.
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany; German Centre for Infection Research (DZIF), partner sites Marburg, Giessen, and Charité Berlin, Germany.
| |
Collapse
|
34
|
Ambite I, Butler DSC, Stork C, Grönberg-Hernández J, Köves B, Zdziarski J, Pinkner J, Hultgren SJ, Dobrindt U, Wullt B, Svanborg C. Fimbriae reprogram host gene expression - Divergent effects of P and type 1 fimbriae. PLoS Pathog 2019; 15:e1007671. [PMID: 31181116 PMCID: PMC6557620 DOI: 10.1371/journal.ppat.1007671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023] Open
Abstract
Pathogens rely on a complex virulence gene repertoire to successfully attack their hosts. We were therefore surprised to find that a single fimbrial gene reconstitution can return the virulence-attenuated commensal strain Escherichia coli 83972 to virulence, defined by a disease phenotype in human hosts. E. coli 83972pap stably reprogrammed host gene expression, by activating an acute pyelonephritis-associated, IRF7-dependent gene network. The PapG protein was internalized by human kidney cells and served as a transcriptional agonist of IRF-7, IFN-β and MYC, suggesting direct involvement of the fimbrial adhesin in this process. IRF-7 was further identified as a potent upstream regulator (-log (p-value) = 61), consistent with the effects in inoculated patients. In contrast, E. coli 83972fim transiently attenuated overall gene expression in human hosts, enhancing the effects of E. coli 83972. The inhibition of RNA processing and ribosomal assembly indicated a homeostatic rather than a pathogenic end-point. In parallel, the expression of specific ion channels and neuropeptide gene networks was transiently enhanced, in a FimH-dependent manner. The studies were performed to establish protective asymptomatic bacteriuria in human hosts and the reconstituted E. coli 83972 variants were developed to improve bacterial fitness for the human urinary tract. Unexpectedly, P fimbriae were able to drive a disease response, suggesting that like oncogene addiction in cancer, pathogens may be addicted to single super-virulence factors. Urinary tract infections affect millions of individuals annually, and many patients suffer from recurring infections several times a year. Antibiotic resistance is increasing rapidly and new strategies are needed to treat even these common bacterial infections. One approach is to use the protective power of asymptomatic bacterial carriage, which has been shown to protect the host against symptomatic urinary tract infection. Instilling “nice” bacteria in the urinary bladder is therefore a promising alternative approach to antibiotic therapy. In an effort to increase the therapeutic use of asymptomatic bacteriuria, we reintroduced bacterial adhesion molecules into the therapeutic Escherichia coli strain 83972 and inoculated patients who are in need of alternative therapy. To our great surprise, the P fimbriated variant caused symptoms, despite lacking other virulence factors commonly thought to be necessary to cause disease. In contrast, type 1 fimbriae, did not provoke symptoms but enhanced the beneficial properties of the wild-type strain. This is explained by a divergent effect of these fimbrial types on host gene expression, where P fimbriae activate the IRF-7 transcription factor that regulates pathology in infected kidneys, suggesting that a single, potent virulence gene may be sufficient to create virulence in human hosts.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Daniel S. C. Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Christoph Stork
- Institute of Hygiene, University of Münster, Mendelstr, Münster, Germany
| | - Jenny Grönberg-Hernández
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Bela Köves
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Jaroslaw Zdziarski
- Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Jerome Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstr, Münster, Germany
- Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
- * E-mail:
| |
Collapse
|
35
|
Thompson CD, Matta B, Barnes BJ. Therapeutic Targeting of IRFs: Pathway-Dependence or Structure-Based? Front Immunol 2018; 9:2622. [PMID: 30515152 PMCID: PMC6255967 DOI: 10.3389/fimmu.2018.02622] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The interferon regulatory factors (IRFs) are a family of master transcription factors that regulate pathogen-induced innate and acquired immune responses. Aberration(s) in IRF signaling pathways due to infection, genetic predisposition and/or mutation, which can lead to increased expression of type I interferon (IFN) genes, IFN-stimulated genes (ISGs), and other pro-inflammatory cytokines/chemokines, has been linked to the development of numerous diseases, including (but not limited to) autoimmune and cancer. What is currently lacking in the field is an understanding of how best to therapeutically target these transcription factors. Many IRFs are regulated by post-translational modifications downstream of pattern recognition receptors (PRRs) and some of these modifications lead to activation or inhibition. We and others have been able to utilize structural features of the IRFs in order to generate dominant negative mutants that inhibit function. Here, we will review potential therapeutic strategies for targeting all IRFs by using IRF5 as a candidate targeting molecule.
Collapse
Affiliation(s)
- Cherrie D Thompson
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
36
|
Ji J, Rao Y, Wan Q, Liao Z, Su J. Teleost-Specific TLR19 Localizes to Endosome, Recognizes dsRNA, Recruits TRIF, Triggers both IFN and NF-κB Pathways, and Protects Cells from Grass Carp Reovirus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 200:573-585. [DOI: 10.4049/jimmunol.1701149] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023]
|
37
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
38
|
Li B, Haridas B, Jackson AR, Cortado H, Mayne N, Kohnken R, Bolon B, McHugh KM, Schwaderer AL, Spencer JD, Ching CB, Hains DS, Justice SS, Partida-Sanchez S, Becknell B. Inflammation drives renal scarring in experimental pyelonephritis. Am J Physiol Renal Physiol 2017; 312:F43-F53. [PMID: 27760770 PMCID: PMC5283888 DOI: 10.1152/ajprenal.00471.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022] Open
Abstract
Acquired renal scarring occurs in a subset of patients following febrile urinary tract infections and is associated with hypertension, proteinuria, and chronic kidney disease. Limited knowledge of histopathology, immune cell recruitment, and gene expression changes during pyelonephritis restricts the development of therapies to limit renal scarring. Here, we address this knowledge gap using immunocompetent mice with vesicoureteral reflux. Transurethral inoculation of uropathogenic Escherichia coli in C3H/HeOuJ mice leads to renal mucosal injury, tubulointerstitial nephritis, and cortical fibrosis. The extent of fibrosis correlates most significantly with inflammation at 7 and 28 days postinfection. The recruitment of neutrophils and inflammatory macrophages to infected kidneys is proportional to renal bacterial burden. Transcriptome analysis reveals molecular signatures associated with renal ischemia-reperfusion injury, immune cell chemotaxis, and leukocyte activation. This murine model recapitulates the cardinal histopathological features observed in humans with acquired renal scarring following pyelonephritis. The integration of histopathology, quantification of cellular immune influx, and unbiased transcriptional profiling begins to define potential mechanisms of tissue injury during pyelonephritis in the context of an intact immune response. The clear relationship between inflammatory cell recruitment and fibrosis supports the hypothesis that acquired renal scarring arises as a consequence of excessive host inflammation and suggests that immunomodulatory therapies should be investigated to reduce renal scarring in patients with pyelonephritis.
Collapse
Affiliation(s)
- Birong Li
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Babitha Haridas
- Department of Neurology, State University of New York at Buffalo, Buffalo, New York
| | - Ashley R Jackson
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Hanna Cortado
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Nicholas Mayne
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Rebecca Kohnken
- College of Veterinary Medicine and Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio
| | | | - Kirk M McHugh
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Anatomy, The Ohio State University College of Allied Health Sciences, Columbus, Ohio
| | - Andrew L Schwaderer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - John David Spencer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Christina B Ching
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Division of Urology, Department of Surgery, The Ohio State University, Columbus, Ohio
| | - David S Hains
- Children's Research Foundation Institute, Le Bonheur Children's Hospital, Memphis, Tennessee; and
| | - Sheryl S Justice
- Division of Urology, Department of Surgery, The Ohio State University, Columbus, Ohio
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Brian Becknell
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio;
- Division of Nephrology, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
39
|
|